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The socle of a nondegenerate Lie algebra
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ABSTRACT: In this paper we give a definition of socle for nondegenerate Lie algebras which is

only based on minimal inner ideals. The socle turns out to be an ideal of the whole algebra, and

it is sum of simple components. All the minimal inner ideals contained in a simple component

are conjugated under elementary automorphisms, which allows us to associate a division Jordan

algebra to any of the simple component containing abelian minimal inner ideals. All Classical

Lie algebras coincide with their socles, while relevant examples of infinite dimensional simple Lie

algebras with socle can be found within the class of finitary Lie algebras. The notion of socle is

compatible with the associative and Jordan definitions of socle, and satisfies the descending chain

condition on principal inner ideals. Furthermore, we give a structure theory for nondegenerate

Lie algebras containing abelian minimal inner ideals, and show that a simple Lie algebra over an

algebraically closed field of characteristic zero is finitary if and only if it is nondegenerate and

contains nonzero reduced elements. i.e., contains one-dimensional inner ideals.

Introduction

One of the great early achievements in Lie theory is the classification of finite
dimensional simple complex Lie algebras by W. Killing and E. Cartan at the end of
19th century. A decade later, E. Cartan classified simple infinite dimensional Lie
algebras of vectors fields on a finite dimensional space. But the study of infinite
dimensional Lie algebras disappears until the mid-sixties, with works of Guillemin,
Sternberg, Singer and others.
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Draper, Fernández, Garćıa and Gómez, The socle of a Lie algebra

Our work studies (mainly infinite dimensional) Lie algebras from a “classical”
point of view in the sense of associative or Jordan algebras, because we are in-
terested in Lie algebras that satisfy the descending chain condition on (principal)
inner ideals. We remark that this is not a “classical” approach when dealing with
Lie algebras, where one normally tries to reproduce properties of finite dimensional
Lie algebras such as having root systems.

Nevertheless, this approach we adopt to study Lie algebras with chain condi-
tions is by no means a novelty; on the contrary, the notion of Artinian Lie algebra
appears in a work [3] of G. Benkart in 1977, where she studied nondegenerate
Artinian Lie algebras with the added hypothesis that they contain nonzero ad-
nilpotent elements. G. Benkart was in fact interested in characterizing classical
Lie algebras, obtaining that a finite dimensional Lie algebra L over an algebraically
closed field of characteristic p > 5 is classical if and only if it is nondegenerate and
contains an ad-nilpotent element (the last restriction would be removed later by
A.A. Premet). Moreover, in the mentioned paper, she wrote: “It is hoped that
inner ideals will play a role analogous to Jordan inner ideals in the development
of an Artinian theory for Lie algebras”.

The main goals of this paper are to develop a socle theory for nondegenerate
Lie algebras and describe simple nondegenerate Lie algebras containing abelian
minimal inner ideals.

The paper is organized as follows. After a section of preliminaries, we record
in Section 2 the structure of minimal inner ideals in a nondegenerate Lie algebra
(any minimal inner ideal is either abelian or an ideal which is simple as a Lie
algebra and without proper inner ideals), and the existence of a 5-grading in any
Lie algebra containing a von Neumann regular element. We introduce in this
section a notion of idempotent for Lie algebras which parallels the corresponding
notion for Jordan pairs, and show how to construct new idempotents starting from
a given one.

In Section 3, we prove that the socle of a nondegenerate Lie algebra L, defined
as the sum of all its minimal inner ideals, is an ideal of L which is a direct sum
of simple ideals. We also prove that any two abelian minimal inner ideals of a
simple L are conjugate under an elementary automorphism of L, which allows
us to associate a division Jordan pair (and hence also a division Jordan algebra,
uniquely determined up to isotopy) with any simple nondegenerate Lie algebra
containing an abelian minimal inner ideal. Nondegenerate finite dimensional and,
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more generally, Artinian Lie algebras have essential socles, while relevant examples
of infinite dimensional Lie algebras coinciding with their socles can be found within
the class of finitary Lie algebras.

We see in Section 4 that the notion of socle we have introduced extends a
previous one defined by means of the Jordan socles of the Jordan pairs associated to
3-graded ideals, and prove the compatibility of the Lie socle with the Jordan socles
of the Jordan pairs defined by short gradings. As a consequence, we prove that
the socle of a nondegenerate Lie algebra satisfies the descending chain condition
on its principal inner ideals.

The notion of Lie socle is related to the associative one in Section 5. Let R

be a simple associative algebra. Then

(i) R
′
= [R, R]/Z(R)∩[R, R] is a simple nondegenerate Lie algebra. Moreover,

R
′
contains abelian minimal inner ideals if and only if R coincides with its socle

and is not a division algebra.

(ii) If R has an involution ∗ and either Z(R) = 0 or dimZ(R) R is greater
than 16, then K

′
= [K, K]/Z(R) ∩ [K, K], where K = Skew(R, ∗), is a simple

nondegenerate Lie algebra. Moreover, K
′
contains abelian minimal inner ideals if

and only if R coincides with its socle and ∗ is isotropic.

We end up our work giving in Section 6 a structure theorem for simple nonde-
generate Lie algebras containing abelian minimal inner ideals. Indeed, we describe
how such algebras are and obtain that, up to the exceptional cases, they are closely
related to associative algebras coinciding with their socles. Among them, those
which are finitary central simple over a field of characteristic 0 are characterized
by the property that the division Jordan algebras associated with them are PI.
As a consequence, we obtain that a simple Lie algebra over an algebraically closed
field is finitary if and only it is nondegenerate and contains a minimal inner ideal
of dimension one, i.e., contains a reduced element.

1. Preliminaries

1.1 Throughout this paper, we will be dealing with Lie algebras, associative
algebras, and Jordan pairs over a ring of scalars Φ such that 1

2 , 1
3 ∈ Φ (sometimes

we will also require that 1
5 ∈ Φ). Notice that the centroid of a simple Lie algebra

L is a field, and we can take it as a ring of scalars for L, so there will be no loss of
generality in our arguments if we sometimes consider simple Lie algebras over fields
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of characteristic greater than 3 (or greater than 5). As usual, [x, y] will denote
the Lie bracket, with adx the adjoint map determined by x; associative products
will be written by juxtaposition; Jordan products of a Jordan pair V = (V +, V −)
will be denoted by Qxy, for any x ∈ V σ, y ∈ V −σ, σ = ±, with linearizations
Qx,zy = {x, y, z} = Dx,yz. The reader is referred to [14, 15, 21] for basic results,
notation and terminology. Nevertheless, we will stress some notions and basic
properties for both Lie algebras and Jordan pairs.

1.2 Any associative algebra R gives rise to:

(i) a Lie algebra R(−) with Lie bracket [x, y] := xy − yx, for all x, y ∈ R,

(ii) a Jordan algebra R(+) with Jordan product x · y := 1
2 (xy + yx),

(iii) a Jordan pair V = (R, R) with Jordan quadratic operator Qxy := xyx.

1.3 Let V = (V +, V −) be a Jordan pair. An element x ∈ V σ, σ = ±, is called
an absolute zero divisor if Qx = 0. Thus V is said to be nondegenerate if it has no
nonzero absolute zero divisors, semiprime if QB±B∓ = 0 implies B = 0, and prime
if QB±C∓ = 0 implies B = 0 or C = 0, for ideals B = (B+, B−), C = (C+, C−)
of V . Similarly, given a Lie algebra L, x ∈ L is an absolute zero divisor of L if
ad2

x = 0, L is nondegenerate if it has no nonzero absolute zero divisors, semiprime
if [I, I] = 0 implies I = 0, and prime if [I, J ] = 0 implies I = 0 or J = 0, for
ideals I, J of L. A Jordan pair or Lie algebra is strongly prime if it is prime and
nondegenerate. A Lie algebra is simple if it is nonabelian and contains no proper
ideals.

1.4 Ideals of nondegenerate (respectively, strongly prime) Jordan pairs inherit
nondegeneracy (respectively, strong primeness) [15], JP3, and [18]. The same is
true for Lie algebras: every ideal of a nondegenerate (strongly prime) Lie algebra
is nondegenerate (respectively, strongly prime) [25], Lemma 4, and [9], 0.4, 1.5.

1.5 Given a subset S of L, the annihilator or centralizer of S in L, AnnL(S),
consists of the elements x ∈ L such that [x, S] = 0. By the Jacobi identity,
AnnL(S) is a subalgebra of L, and also an ideal whenever S is so. Notice that
AnnL(L) is precisely Z(L), the center of L. If L is semiprime, then

I ∩AnnL(I) = 0 (1)

for any ideal I of L. Hence I is an essential ideal of L if and only if AnnL(I) = 0.
We also have (see [6], (2.5)) that the annihilator of a nondegenerate ideal I of L
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has the following nice expression:

AnnL(I) = {a ∈ L | [a, [a, I]] = 0}. (2)

1.6 A (2n + 1)-grading of a Lie algebra L is a decomposition

L = L−n ⊕ . . .⊕ L−1 ⊕ L0 ⊕ L1 ⊕ . . .⊕ Ln,

where each Li is a submodule of L satisfying [Li, Lj ] ⊂ Li+j , where Li+j = 0 if
i + j 6= 0,±1, . . .± n, and where Ln + L−n 6= 0.

1.7 Let L = L−n ⊕ . . . ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ . . . ⊕ Ln be a Lie algebra with
a (2n + 1)-grading. Then V := (Ln, L−n) is a Jordan pair for the triple product
defined by {x, y, z} := [[x, y], z] for all x, z ∈ Lσ, y ∈ L−σ, σ = ±n, and it is
called the associated Jordan pair relative to the grading [26], p.351. Moreover, if
L is nondegenerate, so is V [26], Lemma 1.8.

A standard example of a Lie algebra with a 3-grading is that given by the
TKK-algebra of a Jordan pair:

1.8 For any Jordan pair V , there exists a Lie algebra with a 3-grading
TKK(V ) = L−1⊕L0⊕L1, the Tits-Kantor-Koecher algebra of V , uniquely deter-
mined by the following conditions (cf. [21], 1.5(6)):

(TKK1) The associated Jordan pair (L1, L−1) is isomorphic to V .

(TKK2) [L1, L−1] = L0.

(TKK3) [x0, L1 ⊕ L−1] = 0 implies x0 = 0, for any x0 ∈ L0.

In general, by a TKK-algebra we mean a Lie algebra of the form TKK(V ) for some
Jordan pair V .

2. Abelian inner ideals, regular elements and sl(2)-triples

2.1 Let L be a Lie algebra. A submodule B of L is an inner ideal if
[B, [B, L]] ⊂ B. Clearly, any ideal I of L is an inner ideal. Even more, subideals of
L, that is, ideals of ideals, are also inner ideals. An abelian inner ideal is an inner
ideal B which is also an abelian subalgebra, i.e., [B, B] = 0. Relevant examples of
abelian inner ideals can be found in the Lie inner structure of an associative ring
(cf. [2]). Another source of examples of abelian inner ideals is within the class of
Lie algebras with short Z-gradings.
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2.2 Recall that an inner ideal of a Jordan pair V is a submodule K of V σ,
σ = ±, such that QKV −σ ⊂ K. If L = L−n⊕ . . .⊕L−1⊕L0⊕L1⊕ . . .⊕Ln is a Lie
algebra with a (2n + 1)-grading and associated Jordan pair V = (Ln, L−n), then
the (Jordan) inner ideals of V (for example, K ⊂ Ln) are abelian inner ideals of L.
Indeed, because of the grading, [[K,L],K] = [[K, L−n],K] = {K,L−n,K} ⊂ K,
and [K,K] ⊂ [Ln, Ln] = 0.

Clearly, every element b of an abelian inner ideal B of L satisfies ad3
b = 0.

Conversely, by [3], Lemma 1.8, every element b ∈ L such that ad3
b = 0 generates

an abelian inner ideal, namely, B = ad2
b L. In fact, the same proof of [3], Lemma

1.8, shows the following slightly more general statement:

2.3 Lemma. Let L be a Lie algebra, B an inner ideal of L, and c ∈ L such
that ad3

c = 0. Then ad2
c B is an abelian inner ideal of L.

An inner ideal B of L is said to be minimal if B 6= 0 and for any inner ideal
C ⊂ B, either C = 0 or C = B. By [3], 1.12, we have

2.4 Let L be a nondegenerate Lie algebra and let B be a minimal inner ideal
of L. Then B is either abelian, or an ideal of L which is simple as a Lie algebra
and has no proper inner ideals. Examples of the latter situation are the following:

(i) the finitary orthogonal Lie algebra fo(X, q) where q is anisotropic, [2], Corol-
lary 4.24,

(ii) [∆,∆]/Z(∆)∩ [∆, ∆], where ∆ is a division associative algebra whose dimen-
sion over its center is greater than 16, [2], Corollary 4.27.

In the following proposition, we record some characterizations and construc-
tions of abelian minimal inner ideals in nondegenerate Lie algebras.

2.5 Lemma. Let L be a nondegenerate Lie algebra.

(i) A nonzero abelian subalgebra B of L is an abelian minimal inner ideal if and
only if B = ad2

b(L) for every 0 6= b ∈ B.

(ii) If B is a minimal inner ideal and c ∈ L satisfies ad3
c = 0, then ad2

c(B)
is either zero or an abelian minimal inner ideal. Furthermore, if B is not
abelian, ad2

c(B) = 0.

(iii) If I is an ideal of L and B is a submodule of I, then B is a minimal (not
necessarily abelian) inner ideal of L if and only if it is a minimal inner ideal
of I.
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Draper, Fernández, Garćıa and Gómez, The socle of a Lie algebra

Proof. (i) Use the same proof as that of [3], Lemma 1.8.

(ii) If B is an abelian minimal inner ideal of L, the result follows from [6],
Proposition 3.8(iii). If B is not abelian, it is a simple ideal of L without proper
inner ideals. Now, again by [6], Proposition 3.8, ad2

c(B) is an abelian inner ideal
of L contained in B, which implies that ad2

c(B) = 0.

(iii) Let B ⊂ I be a minimal inner ideal of L. If B is not abelian, then B is an
ideal of L which is simple as a Lie algebra and without proper inner ideals (2.4).
Clearly, B is a minimal inner ideal of I. Suppose then that B is abelian and let
0 6= b ∈ B. Since ad3

b = 0, by (2.3) ad2
b I is an abelian inner ideal of L. Moreover,

ad2
b I 6= 0 by nondegeneracy of I (inherited from that of L). Thus, B = ad2

b I by
minimality of B, and hence B is an abelian minimal inner ideal of I by (i).

Let now B be a minimal inner ideal of I, and use again the dichotomy abelian-
nonabelian. If B is not abelian, then B = [B, B] by simplicity, and hence it is an
ideal of L. Moreover, since B contains no proper inner ideals, it is a minimal inner
ideal of L. If B is abelian, B = ad2

b I for any nonzero element b ∈ B as before, and
hence ad3

b I = 0. We claim that ad3
b L = 0: Otherwise, there exists a ∈ L such that

0 6= c = ad3
b a ∈ B. But ad4

b L ⊂ ad3
b I = 0 and hence by using a Kostrikin’s result

(cited in [3], Proposition 1.5), ad3
c L = 0, giving that B = ad2

c I (by its minimality)
is an inner ideal of L by (2.3). But then ad3

b L = [b, [b, [b, L]]] ⊂ [b,B] = 0, since
B is abelian, a contradiction. Therefore, ad3

b L = 0 for every b ∈ B and hence, by
(2.3), B is an abelian inner ideal of L, which is clearly minimal.

2.6 Following [3], a Lie algebra L is called a ∗-Lie algebra if there exists an
element 0 6= e ∈ L such that ad3

e = 0 and e ∈ ad2
e(L). An element e satisfying

these two conditions is called (von Neumann) regular.

It follows from (2.5)(i) that if L is nondegenerate and B is an abelian minimal
inner ideal of L, then any nonzero element b ∈ B is regular. We also have, by
(2.3), that any regular element e ∈ L generates the principal inner ideal ad2

e(L),
where an inner ideal B is principal if B = ad2

b(L) for a regular element b in
L. Notice that principal inner ideals are abelian. Moreover, this notion of von
Neumann regularity is compatible with the usual one for associative rings (see [7],
Proposition 2.4).

In the next proposition, we record some well-known results for ∗-Lie algebras
which will play a relevant role in our approach. Let us first establish some notation.

2.7 Let L be a Lie algebra. A pair of elements (e, f) of L is said to be an
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idempotent if they satisfy:

ad3
e = ad3

f = 0, [[e, f ], e] = 2e and [[e, f ], f ] = −2f. (3)

Notice that the two last conditions imply that (e, [e, f ], f) is a sl(2)-triple.

2.8 Following [15], 5.1, an idempotent of a Jordan pair V is a pair (x, y) ∈
V +×V − such that Qxy = x and Qyx = y. It is a direct consequence of the grading
properties that if L = L−n⊕ . . .⊕L−1⊕L0⊕L1⊕ . . .⊕Ln is a (2n+1)-grading of a
Lie algebra L with associated Jordan pair V = (Ln, L−n), then every idempotent
of V is a idempotent of L.

2.9 Proposition. Suppose that 2, 3 and 5 are invertible in Φ, and let
0 6= e ∈ L be regular. Then.

(i) For every h ∈ [e, L] such that [h, e] = 2e, there exists f ∈ L such [e, f ] = h

and (e, f) is an idempotent.

(ii) Let (e, f) be an idempotent and put h = [e, f ]. Then adh is semisimple and

L = L
(e,f)
−2 ⊕ L

(e,f)
−1 ⊕ L

(e,f)
0 ⊕ L

(e,f)
1 ⊕ L

(e,f)
2

is a 5-grading, where Li = L
(e,f)
i is the i-eigenspace of L relative to adh, for

each i ∈ {−2,−1, 0, 1, 2}. Moreover,

(iii) L
(e,f)
2 = ad2

e(L) and L
(e,f)
−2 = ad2

f (L), and they are abelian inner ideals of L.

Suppose in addition that L is nondegenerate. Then

(iv) V (e, f) := (L(e,f)
2 , L

(e,f)
−2 ) is a nondegenerate Jordan pair containing an in-

vertible element: e ∈ L
(e,f)
2 is invertible with inverse f ∈ L

(e,f)
−2 .

(v) L
(e,f)
2 is a minimal inner ideal if and only so is L

(e,f)
−2 , equivalently, V (e, f) is

a division Jordan pair. Such an idempotent (e, f) will be then called minimal.

Proof. (i) and (ii). They are a simple adaptation of Seligman’s proof [23],
V.8.2, to the setting of Lie algebras over a ring of scalars Φ in which 2, 3 and 5 are
invertible. Using that ad3

e = 0, one proves as in [14], p.99, that

(adh−2 Id)(adh− Id) adh x = 0 = ade adh x, (4)

for all x ∈ L such that [e, x] = 0. From the right-hand side of (4), it follows
that ker(ade) is invariant under adh +2Id. On the other hand, one can verify
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that the ideals (λ + 2) and (λ(λ − 1)(λ − 2)) are comaximal in Φ[λ] (whenever 2
and 3 are invertible in Φ). By (4) it is clear that the restriction of adh +2Id to
ker(ade) is invertible. Let h = [e, y] for some y ∈ L. As observed in [23], V.8.2,
[h, y] + 2y ∈ ker(ade), so there exists v ∈ ker(ade) so that [h, v] + 2v = [h, y] + 2y.
Letting f = y − v, we get that [e, f ] = h and [h, f ] = −2f . Using now [13],
Lemma 1 (which also works over a ring containing 1

2 , 1
3 ), we get that adh satisfies

the polynomial f(λ) = λ(λ − 1)(λ + 1)(λ − 2)(λ + 2), which is separable (its
discriminant equals 210 × 34 so is invertible in Φ) and therefore it yields the five
decomposition L = L−2⊕L−1⊕L0⊕L1⊕L2 of (ii), which is actually a 5-grading
in L. (In [3], Lemma 2.1, Benkart provides the polynomial equality:

1 =
1
24

p2(λ)− 1
6
p1(λ) +

1
4
p0(λ)− 1

6
p−1(λ)

1
24

p−2(λ),

where pi(λ) = p(λ)/(λ + i), which produces directly the 5-decomposition.)

Then adh is semisimple with eigenvalues among 0,±1,±2. From

adh adf = [adh, adf ] + adf adh = −2 adf +adf adh,

it follows that adh(adf x−2) = −4 adf x−2 for any x−2 ∈ L−2. Since 4 is invertible
in Φ and it is not an eigenvalue of adh, we have that adf (L−2) = 0; similarly,
adh(ad2

f xi) = (−4 + i) ad2
f xi for xi ∈ Li implies that ad2

f (L0) = ad2
f (L−1), since

1
2 , 1

5 ∈ Φ; finally, adh(ad3
f xi) = (−6 + i) ad3

f xi for xi ∈ Li yields ad3
f (L1) =

ad3
f (L2) = 0, again since 1

2 , 1
5 ∈ Φ. (Notice that this is the unique point of

the proof where 1
5 ∈ Φ is required. Moreover, as observed in [22], Section 3, a

peculiarity of characteristic 5 is that the equality ad3
f = 0 need not hold.) Thus,

ad3
f = 0 and therefore (e, f) is an idempotent, as required. Now (iii) is [3], Lemma

2.1(3), (iv) follows from (1.7) and [15], 5.5, and (v) is an standard result of Jordan
theory [17], Lemma 1.

In the proof of the next lemma we will use the following identity in Lie algebras
(see [3], 1.7(iii)) which resembles the fundamental Jordan identity [15], JP3.

2.10 Let x ∈ L be such that ad3
x = 0. For any y ∈ L, we have that

ad2
ad2

x y = ad2
x ad2

y ad2
x .

2.11 Lemma. Let L be a nondegenerate Lie algebra and let B, C be abelian
inner ideals of L such that C is minimal. Let c ∈ C be such that ad2

c(B) 6= 0.
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Then C = ad2
c(B). Moreover, for any x ∈ B such that ad2

c x = 2c, it holds that
(c,− 1

2 ad2
x c) is a minimal idempotent.

Proof. That C = ad2
c(B) follows from (2.3), since C is an abelian minimal

inner ideal. Put b := − 1
2 ad2

x c ∈ B. Since B, C are abelian inner ideals, ad3
b =

ad3
c = 0. Therefore we only need to show that [[c, b], c] = 2c and [[c, b], b] = −2b,

which is in fact a standard application of (2.10). Indeed,

[[c, b], c] = − ad2
c b =

1
2

ad2
c ad2

x c =
1
4

ad2
c ad2

x ad2
c x =

1
4

ad2
ad2

c x x =
1
4

ad2
2c x = ad2

c x = 2c.

Similarly,

[[c, b], b] = ad2
b c = ad2

(− 1
2 ad2

x c) c =
1
4

ad2
ad2

x c c =
1
4

ad2
x ad2

c ad2
x c =

=
1
8

ad2
x(ad2

c ad2
x ad2

c x) =
1
8

ad2
x ad2

ad2
c x x =

1
8

ad2
x ad2

2c x =

1
2

ad2
x ad2

c x = ad2
x c = −2b,

which completes the proof.

2.12 Let a ∈ L be such that ada is nilpotent of index 3. Then

exp(ada) = Id + ada +
1
2

ad2
a

is an automorphism of L. The subgroup of Aut(L) generated by these automor-
phisms will be called the group of elementary automorphisms of L and denoted by
Elem(L).

2.13 Lemma. Let (e, f) be an idempotent of a nondegenerate Lie algebra
L, and set h = [e, f ]. Then

(i) (e + h− f, f) is an idempotent of L.

(ii) The principal inner ideals ad2
e(L), ad2

f (L), ad2
e+h−f (L) are conjugate under

elementary automorphisms of L.

(iii) (e, f) is minimal if and only if so is (e + h− f, f).

Proof. Since adf is nilpotent of index 3, it makes sense to consider the elemen-
tary automorphism exp(− adf ). Apply this automorphism to both e and f . We
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get exp(− adf )(f) = f and exp(− adf )(e) = e+h−f . This proves that (e+h−f, f)
is an idempotent, that the principal inner ideals ad2

e(L) and ad2
e+h−f (L) are con-

jugate, and (iii). Finally, the automorphism exp(ade) exp(− adf ) satisfies

exp(ade) exp(− adf )(e) = exp(ade)(e + h− f) = −f

and hence maps ad2
e(L) onto ad2

f (L).

2.14 Example. To illustrate the above construction, take, in the Lie algebra
L = sl(2, F ) where F is a field,

e =
(

0 1
0 0

)
and f =

(
0 0
1 0

)
.

Then

h = [e, f ] =
(

1 0
0 −1

)
and e′ = e + h− f =

(
1 1
−1 −1

)
.

Notice that L = Fe + Ff + Fe′ is a sum of abelian minimal inner ideals. This is
by no means a privilege reserved for sl(2, F ). On the contrary, as it will be seen
in the next section, any simple nondegenerate Lie algebra containing an abelian
minimal inner ideal is the sum of its abelian minimal inner ideals.

3. The socle of a nondegenerate Lie algebra

In this section we develop a socle theory for nondegenerate Lie algebras based
solely on the notion of minimal inner ideal. The socle turns out to be an ideal
which is a direct sum of simple components. Nondegenerate Artinian Lie alge-
bras have essential socle. Relevant examples of infinite dimensional Lie algebras
coinciding with their socles can be found within the class of finitary Lie algebras.
The relationship between this Lie socle and a previous one defined in terms of
the socles of the Jordan pairs associated with ideals with 3-gradings, as well as
its connection with the associative socle, will be dealt with in the following two
sections.

3.1 Proposition. Let L be a nondegenerate Lie algebra. Then any minimal
inner ideal of L generates an ideal which is simple as a Lie algebra.

Proof. Given a minimal inner ideal B of L, denote by IdL(B) the ideal of L

generated by B. We must show that I = IdL(B) is simple as a Lie algebra. By
(2.4), we may assume that B is abelian. Then we observe:

11
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(i) For any ideal J of I and any b ∈ B, B = ad2
b(J), whenever ad2

b(J) 6= 0.

This follows from (2.3) since J is an inner ideal of L and ad3
b = 0. Let now

K = IdI(B) be the ideal of I generated by B. We claim that

(ii) B = ad2
b(K) for any 0 6= b ∈ B.

By (i) it suffices to show that ad2
b(K) 6= 0. If ad2

b(K) = 0, then b ∈ AnnI(K)
by (2), and hence b ∈ K ∩AnnI(K) = 0 by (1), a contradiction.

It follows from (ii) that B ⊂ [K, K], and hence K = [K,K]. Thus, K is
actually an ideal of L, so that K = I. Now let J be a nonzero ideal of I and
pick 0 6= b ∈ B. We have that ad2

b(J) 6= 0, since otherwise b ∈ AnnI(J) and
hence I = K would be contained in AnnI(J), which again yields a contradiction.
Consequently, B = ad2

b(J) by (i), and hence B ⊂ J , so I = K ⊂ J , which proves
that I is simple.

3.2 Theorem. A nondegenerate simple Lie algebra containing a minimal
inner ideal is the sum of all its minimal inner ideals. In fact, for any minimal inner
ideal B of L, we have L =

∑
φ∈Elem(L) φ(B), where φ ranges over all elementary

automorphisms of L.

Proof. We may assume that B is abelian (otherwise B = L by (2.4), and
there is nothing to prove). In this case, L contains a minimal idempotent (e, f)
such that the induced 5-grading (see (2.9))

L = L
(e,f)
−2 ⊕ L

(e,f)
−1 ⊕ L

(e,f)
0 ⊕ L

(e,f)
1 ⊕ L

(e,f)
2 ,

satisfies L
(e,f)
2 = ad2

e L = B. Put S =
∑

φ(B), where φ ranges over all elementary
automorphisms of L. We will show in several steps that L = S. Our strategy will
be constructing minimal inner ideals conjugate to B, via (2.13).

(I) L
(e,f)
−2 ⊂ S.

This follows from (2.13)(ii).

(II) [L(e,f)
2 , L

(e,f)
−2 ] ⊂ S.

Let 0 6= x ∈ [L(e,f)
2 , L

(e,f)
−2 ]. We may assume that x = [y, f2], with y ∈ L

(e,f)
2 ,

f2 ∈ L
(e,f)
−2 . Since V (e, f) is a division Jordan pair, by [15], 5.1, there exists

e2 ∈ L
(e,f)
2 such that (e2, f2) is a division idempotent of V (e, f), equivalently,

a minimal idempotent of L. Then (e2, f2) is a new idempotent with associated
5-grading on L

L = L
(e2,f2)
−2 ⊕ L

(e2,f2)
−1 ⊕ L

(e2,f2)
0 ⊕ L

(e2,f2)
1 ⊕ L

(e2,f2)
2 ,

12
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and where it holds that L
(e2,f2)
2 = L

(e,f)
2 = B and L

(e2,f2)
−2 = L

(e,f)
−2 . Put

h2 := [e2, f2], e3 := e2 + h2 − f2 and f3 := f2.

Then (e3, f3) is a new minimal idempotent of L by (2.13)(i),(iii). Let us now see
that y′ := y + [y, f2] + 1

2 [[y, f2], f2] belongs to L
(e3,f3)
2 . Indeed,

[h3, y
′] = [h2, y + [y, f2] +

1
2
[[y, f2], f2]]− 2[f2, y]− 2[f2, [y, f2]]

= 2y − [[y, f2], f2] + 2[y, f2] + 2[[y, f2], f2]

= 2(y + [y, f2] +
1
2
[[y, f2], f2]) = 2y′.

Hence, [y, f2] = y′− y− 1
2 [[y, f2], f2] ∈ L

(e3,f3)
2 + L

(e,f)
2 + L

(e,f)
−2 ⊂ S, since L

(e3,f3)
2 ,

L
(e,f)
2 = B and L

(e,f)
−2 are conjugate by (2.13).

(III) For every x1 ∈ L
(e,f)
1 , there exists f ′ ∈ L such that (e, f ′) is a minimal

idempotent of L and [e, f ′] = [e, f ] + x1.

Indeed, write
x1 = [h, x1] = [[e, f ], x1] = [e, [f, x1]], (5)

since [e, x1] ∈ [L(e,f)
2 , L

(e,f)
1 ] = 0, and set

x−1 := [f, x1] ∈ L
(e,f)
−1 . (6)

Then [e, [e, f + x−1]] = [e, [e, f ]] = −2e, since [e, [e, x−1]] = 0. Hence, by (2.9)(i),
there exists f ′ ∈ L such that (e, f ′) is a minimal idempotent of L and [e, f ′] =
[e, f + x−1] = [e, f ] + [e, x−1] = [e, f ] + x1, by (5) and (6).

(IV) L
(e,f)
−1 and L

(e,f)
1 are contained in S.

By symmetry, (2.13)(ii), it suffices to see that L
(e,f)
1 ⊂ S. But this follows

from (II) and (III): x1 = [e, f ′]− [e, f ] ∈ S.

(V) [L(e,f)
−1 , L

(e,f)
1 ] ⊂ S.

Let x1 ∈ L
(e,f)
1 and take f ′ ∈ L as in (III). Then h′ := [e, f ′] = [e, f ] + x1 =

h + x1, and hence, for any x−1 ∈ L
(e,f)
−1 , we have

[x1, x−1] = [h′, x−1]− [h, x−1] = [h′, x−1] + x−1,

13
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but [h′, x−1] ∈ L
(e,f ′)
−2 ⊕L

(e,f ′)
−1 ⊕L

(e,f ′)
1 ⊕L

(e,f ′)
2 by (2.9)(ii), and hence [x1, x−1] ∈ S

by (I) and (IV).

Finally, L
(e,f)
−2 ⊕L

(e,f)
−1 ⊕ ([L(e,f)

−2 , L
(e,f)
2 ]+ [L(e,f)

−1 , L
(e,f)
1 ])⊕L

(e,f)
1 ⊕L

(e,f)
2 is an

ideal of L (contained in S by the above), which coincides with L by simplicity of
L.

The following corollary answers a question posed by Ottmar Loos about the
relationship among the minimal inner ideals of a simple nondegenerate Lie algebra
(see [16] for a similar question for Jordan systems).

3.3 Corollary. Let L be a nondegenerate simple Lie algebra. Then

(i) any two abelian minimal inner ideals of L are conjugate under an elementary
automorphism of L.

(ii) If (e1, f1), (e2, f2) are minimal idempotents of L, the corresponding division
Jordan pairs V (e1, f1), V (e2, f2) are isomorphic.

Proof. (i) Suppose that B, C are abelian minimal inner ideals. By (3.2),
L =

∑
φ∈Elem(L) φ(B). By nondegeneracy of L, for any 0 6= c ∈ C, there exists

φ ∈ Elem(L) such that ad2
c(φ(B)) 6= 0. Then, by (2.11), C = ad2

c(φ(B)) and
for any x ∈ φ(B) such that ad2

c x = 2c, (c,− 1
2 ad2

x c) is a minimal idempotent.
Hence C = ad2

c(L) and φ(B) = ad2
− 1

2 ad2
x c(L) are conjugate under an elementary

automorphism of L by (2.13)(ii) and, therefore, B and C are also conjugate.

(ii) By (i), there exists φ ∈ Elem(L) mapping ad2
e1

(L) onto ad2
e2

(L), and hence
φ induces a Jordan pair isomorphism of V (e1, f1) onto V (φ(e1), φ(f1)). Moreover,
V (φ(e1), φ(f1)) and V (e2, f2) have the same first component: ad2

e2
(L) = ad2

φ(e1)(L)
by minimality of ad2

e2
(L). But two division Jordan pairs sharing a component are

isomorphic, as follows from [15], 1.11.

3.4 Notice that, by (3.3)(ii), with any simple nondegenerate Lie algebra L

containing abelian minimal inner ideals, we can associate an invariant, namely, the
isomorphism class of the division Jordan pairs defined by its minimal idempotents,
equivalently (see [15], 1.12), the isotopism class of its division Jordan algebras: for
any minimal idempotent (e, f) of L, L

(e,f)
2 becomes a division Jordan algebra for

the product defined by x · y := 1
2 [[x, f ], y].

We will write DJP(L) to denote the division Jordan pair defined by any min-
imal idempotent of L, and DJA(L) for the corresponding division Jordan algebra.
Since DJP(L) and DJA(L) are uniquely determined by isomorphism and isotopism

14
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respectively, these notations make sense.

3.5 Definition. Let L be a nondegenerate Lie algebra. We define the socle
of L, denoted by Soc(L), as the sum of all minimal inner ideals of L.

By [3], 1.12, a minimal inner ideal of a nondegenerate Lie algebra L is either
abelian or a simple ideal which contains no proper inner ideals. This result implies
that there are two different types of nondegenerate simple Lie algebras which
coincide with their socles:

(a) those having abelian minimal inner ideals (these algebras have a 5-grading,
or even a 3-grading, and are the sum of their abelian minimal inner ideals),
and

(b) those containing no proper inner ideals, and therefore no short Z-gradings.

3.6 Theorem. Let L be a nondegenerate Lie algebra containing minimal
inner ideals. Then,

(i) Soc(L) is a direct sum of simple ideals each of which is a simple nondegenerate
Lie algebra equal to its socle.

(ii) For any ideal I of L, I is nondegenerate and Soc(I) = Soc(L) ∩ I.

(iii) Soc(L) = [Soc(L), Soc(L)] = Soc([L,L]).

(iv) If B is an abelian inner ideal of L, then either B contains a minimal inner
ideal of L, or B ⊂ AnnL(Soc(L)).

(v) Soc(L) is an essential ideal if and only if any nonzero ideal of L contains a
minimal inner ideal.

Proof. (i) If B be a minimal inner ideal of L, B generates an ideal which is
simple as a Lie algebra (3.1). Moreover, since by (2.5)(iii) the minimal inner ideals
of an ideal I are those minimal inner ideals of L contained in I, it follows from
(3.2) that Soc(L) =

∑
IdL(Bα), where Bα ranges over all minimal inner ideals of

L. Define two minimal inner ideals to be equivalent if they generate the same ideal,
and fix a minimal ideal Bλ for each class of equivalence. Then Soc(L) = ⊕ IdL(Bλ)
is a direct sum of simple nondegenerate Lie algebras equal to their socles.

(ii) By (1.4), I is nondegenerate. Now, since the minimal inner ideals of I

are precisely the minimal inner ideals of L contained in I (2.5)(iii), we have that
Soc(I) ⊂ Soc(L) ∩ I. For the reverse inclusion note that, by (i), Soc(L) ∩ I =
⊕Mα, where the Mα are the simple ideals of Soc(L) contained in I, and hence
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Soc(L) ∩ I ⊂ Soc(I), again by (2.5)(iii).

(iii) Note first that Soc(L) = [Soc(L), Soc(L)] by (i). Now we have by (ii),

Soc([L, L]) = [L,L] ∩ Soc(L) = [L,L] ∩ [Soc(L), Soc(L)] = [Soc(L), Soc(L)].

(iv) Let B be an abelian inner ideal of L. If ad2
b(Soc(L)) = 0 for every b ∈ B,

then B ⊂ AnnL(Soc(L)) by formula (2). Suppose otherwise that ad2
b(M) 6= 0 for

some simple component M of Soc(L) and some b ∈ B. By (2.3), ad2
b(M) ⊂ B∩M

is an abelian inner ideal, and since M is not abelian, ad2
b(M) is a proper inner ideal

of M , so M is a sum of abelian minimal inner ideals, by (3.2). Then, ad2
b(C) 6= 0

for some abelian minimal inner ideal C of L, and by (2.5), ad2
b(C) is an abelian

minimal inner contained in B.

(v) Let L be nondegenerate. By (1.5), Soc(L) is an essential ideal of L if
and only if AnnL(Soc(L)) = 0. Moreover, by (ii), for any ideal I of L, Soc(I) =
Soc(L)∩I, and hence either I contains a minimal inner ideal or I ⊂ AnnL(Soc(L)).

Recall that a Lie algebra L is said to be Artinian (cf. [3]) if it satisfies the
descending chain condition on inner ideals.

3.7 Corollary. Let L be a nondegenerate Artinian Lie algebra. Then L has
essential socle, and Soc(L) is a direct sum of a finite number of simple ideals.

Proof. Since L is Artinian, any nonzero ideal of L contains a minimal inner
ideal. Hence Soc(L) is essential, by (3.6)(v). Suppose now that Soc(L) contains an
infinite number of simple ideals, {Mi}∞i=1. Then we have the strictly descending
chain of ideals ∞⊕

i=1

Mi ⊃
∞⊕

i=2

Mi ⊃
∞⊕

i=3

Mi ⊃ . . . ,

which yields a contradiction.

3.8 Remark. Nondegenerate Artinian Lie algebras do not need to coin-
cide with their socles, even if they are finite dimensional (see [22], p.152). In
fact, by [22], Theorem 3, a finite dimensional nondegenerate Lie algebra over an
algebraically closed field F of characteristic p > 5 is a classical semisimple Lie
algebra (and therefore, it coincides with its socle) if and only if it is perfect, i.e.,
L = [L,L]. On the other hand, if the field is of characteristic 0, nondegenerate
finite dimensional Lie algebras are semisimple and hence they do coincide with
their socles.
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A natural question is to know what type of the socle does a nondegenerate
Lie algebra L have, that is, if L has or does not have abelian minimal inner ideals
(see (3.5)). For a finite dimensional (or, more generally, Artinian) Lie algebra, the
existence of abelian minimal inner ideals is equivalent to the existence of nonzero
ad-nilpotent elements (this is in fact a direct consequence of the Kostrikin’s result
already cited.) In the following examples, we consider the question about the
existence of abelian minimal inner ideals in some well-known types of Lie algebras.

3.9 Examples. (i) Let L be a simple Lie algebra which is finite dimensional
over an an algebraically closed field F . If F is of characteristic zero, then the
abelian minimal inner ideals are exactly the root spaces corresponding to long
roots relative to some Cartan subalgebra (therefore, they have dimension one).
Indeed, if L = H⊕ (⊕α∈φLα) is the root space decomposition relative to a Cartan
subalgebra H, it is easy to see that Lα is an abelian minimal inner ideal of L for
any long root of α ∈ φ. Now, given such an abelian minimal inner ideal Lα, if I is
another abelian minimal inner ideal of L, by (3.3) there is an automorphism ϕ of
L such that ϕ(Lα) = I. Hence L = ϕ(L) = ϕ(H)⊕ (⊕α∈φϕ(Lα)), and I = ϕ(Lα)
is a root space (corresponding to a long root).

(ii) Let F be a field of characteristic 0, and let L be a locally finite split
simple Lie algebra (recall that L is split if there is a maximal abelian subalgebra
H such that the endomorphisms adh for h ∈ H are simultaneously diagonalizable;
and L is locally finite if every finite dimensional subspace of L generates a finite
dimensional subalgebra of L). As in case (i), the abelian minimal inner ideals
are exactly the root spaces corresponding to long roots of some root system φ (we
have to take care because one can have different types of locally finite root systems
for the same algebra. Moreover, if the dimension of L is countable, there exists a
root base and an attached Dynkin diagram, but isomorphic root systems can have
different Dynkin diagrams).

Indeed, take a root decomposition L = H ⊕ (⊕α∈φLα) of L. Let ∆ be a
generalized base of φ (its elements are linearly independent and φ ⊂ spanZ∆).
According to [20], the root system φ is the directed union of the finite irreducible
root subsystems φM of simple type, where M is any finite subset of ∆ and φM =
(spanF M) ∩ φ, therefore L is the directed union of the subalgebras LφM (whose
roots systems are φM ). There are four types of locally finite root systems up to
isomorphism for each infinite cardinality, and we can have roots of at most two
different lengths (see [20]), which are called short or long depending on how long
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they are.

If α̃ is a long root of φ, α̃ is a long root of φM for every finite subset M ⊂ ∆
such that α̃ ∈ φM , so that [Lα̃, [Lα̃, LφM

]] ⊂ Lα̃ by (i), and obviously Lα̃ is
an abelian minimal inner ideal of L (notice that every x ∈ L is in some LφM

).
Conversely, for any abelian minimal inner ideal I of L, we can argue as in (i) and
use (3.3) to show that I is a root space Lα (corresponding to a long root).

(iii) Among the real simple finite dimensional Lie algebras, those which con-
tain abelian minimal inner ideals are exactly the non-compact ones (see [10] for
definitions and basic properties).

If L has an abelian minimal inner ideal and we take a minimal idempotent
(e, f), and h = [e, f ], L is 5-graded with Li the eigenspace of ad h with eigenvalue
i, i = 0,±1,±2, hence K(h, h) = tr ad2 h = 8dim L2 +2dim L1 > 0 (K the Killing
form) and K is not negative definite (L is non-compact).

Conversely, let L be a non-compact real simple Lie algebra. Let = R + M
be a Cartan decomposition of L (K|R is negative definite and K|M is positive
definite). Let UM denote a maximal abelian subalgebra of M and U a maximal
abelian subalgebra of L containing UM. Since U is a Cartan subalgebra of L,
UC = U ⊗R C is a Cartan subalgebra of LC = L⊗R C. Let φ be the root system of
LC relative to UC, and let φM = {α ∈ φ | α(UM) 6= 0} be the roots which do not
vanish identically on UM. The set φM is non-empty because L is non-compact
(M 6= 0). Now, for any α ∈ φM (recall that also ᾱ ∈ φM), it is not difficult to
check that h := hα +hᾱ ∈ L (hα ∈ LC, but not necessarily belongs to L) and that
h diagonalices L and all its eigenvalues are integers, hence L is short Z-graded and
Ln (where n is the greatest eigenvalue) is a proper inner ideal (h ∈ L0).

Notice that the abelian minimal inner ideals can have dimension greater than
1, in contrast to cases (i) or (ii) (for instance, in sln(H) the minimal inner ideals are
four-dimensional). In general, L contains a reduced nonzero element if and only if
(see [4]) there is a long root α in φM such that the multiplicity of the restricted
root is equal to 1 (this last condition is very easy to check from its corresponding
Satake diagram).

Relevant examples of infinite dimensional Lie algebras coinciding with their
socles are found within the class of finitary Lie algebras:

3.10 Recall that a Lie algebra over a field F is said to be finitary if it is
isomorphic to a subalgebra of the Lie algebra fgl(X) of all finite rank operators
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on a vector space X over F .

3.11 Proposition. Let L be a finitary central simple Lie algebra over a field
F of characteristic zero. Then L is nondegenerate and coincides with its socle.

Proof. If L is finite dimensional, then L is nondegenerate by [3], p.64, and
clearly contains minimal inner ideals. Suppose that L has infinite dimension. By
[1], Theorem 4.4, L is a direct limit of finite dimensional simple Lie algebras Lα.
Since the Lα are nondegenerate, so is the whole L. The existence of (not necessarily
abelian) minimal inner ideals in L can be verified by using Baranov’s classification
of infinite dimensional finitary simple Lie algebras over a field of characteristic 0
[1], Theorem 1.1, and the description of their proper inner ideals given in [7].

4. Lie socle versus Jordan socle

We see in this section that the notion of socle we have just introduced extends
a previous one [6] defined by means of the Jordan socles of the Jordan pairs
associated with ideals with 3-gradings. We begin by recalling the notion of socle
of a nondegenerate Jordan pair V .

4.1 Following [17], the socle of a nondegenerate Jordan pair V is defined as
Soc(V ) = (Soc(V +),Soc(V −)), where Soc(V σ) is the sum of all the minimal inner
ideals of V contained in V σ. Among other properties, Soc(V ) is an ideal which
is a direct sum of simple ideals, and it satisfies the descending chain condition on
principal inner ideals.

4.2 Proposition. Let L = L−n ⊕ . . . ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ . . . ⊕ Ln be a
nondegenerate Lie algebra with a (2n + 1)-grading, and let V = (Ln, L−n) be its
associated Jordan pair.

(i) If B is a minimal inner ideal of L and πi denotes the projection onto Li, then
π±n(B) is either zero or a minimal inner ideal of L contained in L±n.

(ii) Soc(V ±) = Soc(L) ∩ V ±.

Proof. (i) As it was mentioned in (1.7), V is nondegenerate. Moreover,
because of the grading, both Ln and L−n are inner ideals of L. Let us suppose that
πn(B) 6= 0 and let x ∈ B be such that πn(x) 6= 0. Then, 0 6= [πn(x), [πn(x), L]] =
[πn(x), [πn(x), L−n]] = πn[x, [x, L−n]] = πn(B), because [x, [x, L−n]] is a nonzero
inner ideal of L contained in B so it is equal to B by minimality of B, hence by
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(2.5(i)), πn(B) is a minimal inner ideal of L contained in Ln. Similarly, π−n(B)
is either zero or a minimal inner ideal of L contained in L−n.

(ii) By (2.2), any minimal inner ideal B ⊂ L±n of V is an (abelian) minimal
inner ideal of L, so Soc(V ±) ⊂ Soc(L) ∩ V ±. Conversely, if x ∈ Soc(L) ∩ V σ, x

can be expressed as a sum of elements x1 + . . . + xm, where each xi belongs to a
minimal inner ideal Bi of L. Therefore, x = πn(x) = πn(x1) + . . . + πn(xn) where
each πn(xi) is either zero or belongs to the minimal inner ideal πn(Bi) of L and
therefore of V . We have shown that Soc(L) ∩ V σ ⊂ Soc V .

4.3 Corollary. Let L be a nondegenerate Lie algebra. Then Soc(L) satisfies
the descending chain condition on principal inner ideals. Indeed, a von Neumann
regular element e ∈ L belongs to Soc(L) if and only if L satisfies the descending
chain condition for all inner ideals ad2

x(L), x ∈ ad2
e(L).

Proof. Let e ∈ L be von Neumann regular. Extend e to an idempotent (e, f)
as in (2.9)(i). If e ∈ Soc(L), then V = V (e, f) is a nondegenerate Jordan pair
coinciding with its socle by (4.2)(ii), and hence V satisfies the descending chain
condition on principal inner ideals by [17], Corollary 1. Therefore, Soc(L) satisfies
the descending chain condition for all inner ideals ad2

x(L), x ∈ ad2
e(L).

Assume, conversely, that L satisfies the descending chain condition for all
inner ideals ad2

x(L), x ∈ ad2
e(L) = V +. By [17], Corollary 1, x ∈ Soc(V +) ⊂

Soc(L), by (4.2)(ii).

4.4 Let (L, π) = L−1 ⊕ L0 ⊕ L1 be a nondegenerate Lie algebra with a 3-
grading, where the π = (π1, π0, π−1) denote the projections onto the subspaces
L1, L0, L−1. Following [5], the socle of (L, π) is defined as the ideal of L gener-
ated by Soc(L1) + Soc(L−1), where (Soc(L1),Soc(L−1)) is the socle of the Jordan
pair π(L) = (L1, L−1), and it is denoted by Socπ(L) to show which grading we
are taking. We have that Socπ(L) = Soc(π1(L)) ⊕ [Soc(π1(L)), Soc(π−1(L))] ⊕
Soc(π−1(L)), [5], 4.3. Moreover, Socπ(L) can be decomposed as a direct sum of
simple ideals,

Socπ(L) =
⊕

S(i) =
⊕

TKK(π(S(i))),

where the π(S(i)) are the simple components of Soc(π(L)).

In general, the definition of the socle of a nondegenerate Lie algebra with a
3-grading depends on the 3-grading, as can be seen in the example given in [6],
3.3. Nevertheless, it is independent of the grading of L when this is effective in
the sense that there is no nonzero ideal contained in the zero part of L. Motivated
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by this fact, a notion of socle was introduced in [6] for nondegenerate Lie algebras
which do not necessarily have a 3-grading:

4.5 Given a nondegenerate Lie algebra L, the Jordan socle of L, denoted by
JSoc(L), is defined as the sum of the socles of (I, π), where I is any ideal of L

having a 3-grading and π denotes any of its possible 3-gradings:

JSoc(L) =
∑

(I,π)

Socπ(I).

The Jordan socle of a nondegenerate Lie algebra L is an ideal of L. If
JSoc(L) 6= 0 then it is a direct sum of simple ideals each of which is the TKK-
algebra of a simple Jordan pair with minimal inner ideals. Therefore, JSoc(L) ∼=
TKK(V ), where V is a nondegenerate Jordan pair coinciding with its socle.

The relationship between the socle and the Jordan socle of a nondegenerate
Lie algebra is shown in the following proposition.

4.6 Proposition. Let L be a nondegenerate Lie algebra. Then the Jordan
socle of L is equal to the sum of the simple components of Soc(L) which have a
3-grading. Hence, if L has an effective 3-grading π, then Soc(L) = Socπ(L) =
JSoc(L).

Proof. Let I = I−1⊕I0⊕I1 be an ideal of L with a 3-grading, with associated
Jordan pair V = (I1, I−1). By (4.2)(i), Soc(I1) + Soc(I−1) ⊂ Soc(I) ⊂ Soc(L).
Hence, JSoc(L) ⊂ Soc(L). Conversely, let M = M−1 ⊕ M0 ⊕ M1 be a simple
component of Soc(L) with a 3-grading. Since M contains proper inner ideals
(M1, M−1 are proper inner ideals because M has a nontrivial 3-grading), it follows
from (3.2) and the structure of minimal inner ideals (2.4), that M is a sum of
abelian minimal inner ideals. Let 0 6= x ∈ M1. Then ad3

x = 0 and there exists
an abelian minimal inner ideal B of L contained in M such that ad2

x(B) 6= 0.
Hence, by (2.5)(ii), ad2

x(B) ⊂ ad2
x(M−1) is a minimal inner ideal of V . Then,

M = JSoc(M) ⊂ JSoc(L).

5. Relationship between Lie socle and associative socle

In this section we relate the socle of a semiprime associative algebra R, with
or without involution, to the socles of the related nondegenerate Lie algebras.

5.1 Let R be a (not necessarily unital) associative algebra with associated Lie
algebra R(−). We will also consider the Lie algebras R′ = [R, R], R = R(−)/Z(R)

21
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and R
′
= R′/R′ ∩Z(R), where Z(R) stands for the center of R. Note that R

′
can

be regarded as an ideal of R. The following result is a generalization of [2], 2.2,
or [11], p.5.

5.2 Lemma. If R is semiprime and a ∈ R is such that [a, [a,R]] ⊂ Z(R),
then a ∈ Z(R). Therefore, the Lie algebras R and R

′
are nondegenerate.

Proof. Let us see that [a, [a, R]] = 0, and then apply [11], Sublemma p.5, to
get that a ∈ Z(R). Indeed, ad3

a = 0, so for any x ∈ R,

0 = ad3
a(x[a, x]) = ad2

a([a, x][a, x]) + ad2
a(x[a, [a, x]]).

Since [a, [a, x]] ∈ Z(R), ad2
a(x[a, [a, x]]) = (ad2

a(x))2. On the other hand, we
have ad2

a([a, x][a, x]) = ada([a, [a, x]][a, x]) + ada([a, x][a, [a, x]]) = 2(ad2
a(x))2, us-

ing again that [a, [a, x]] ∈ Z(R). Therefore,

0 = ad3
a(x[a, x]) = 3(ad2

a(x))2,

so ad2
a(x) is an element in Z(R) whose square is zero, so that ad2

a(x) = 0 by
semiprimeness of R. This proves that R is nondegenerate, and also that R

′
is

nondegenerate because it is isomorphic to an ideal of R (1.4).

5.3 If R is semiprime, the sum of all minimal right ideals of R is equal to the
sum of all its minimal left ideals. This set is an ideal which is called the socle of R

and denoted by Soc(R). In order to relate Soc(R) to the socles of the nondegen-
erate Lie algebras R and R

′
, it is very useful the following characterization of the

rank-one elements of R, i.e., those elements generating minimal right (equivalently,
left) ideals. We begin by recalling the definition of local algebra at an element.

5.4 Let a ∈ R. The a-homotope of R , which is denoted by R(a), is the
(associative) algebra defined by the same linear structure as R and the new product
x ·a y = xay, for all x, y ∈ R. The set ker(a) = {x ∈ R : axa = 0} is an ideal of
R(a), and the factor algebra R(a)/ ker(a) is called the local algebra of R at a and
is be denoted by Ra.

5.5 Lemma. [8], Proposition 2.1. Let R be semiprime. For any nonzero
element x in R the following conditions are equivalent:

(i) xR is a minimal right ideal of R.

(ii) xRx is a minimal inner ideal of the Jordan algebra R(+).

22
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(iii) Rx is a division algebra.

5.6 Let x ∈ R be an element such that x2 = 0 and set B = xRx. For any
b ∈ B and a ∈ R, we have

[[b, a], b] = 2bab, (7)

hence B is an inner ideal of R(−), clearly abelian. Moreover, since B = [xR, x], B

is also an inner ideal of R′.

Suppose now that R is semiprime. It follows from (7) that B is minimal as
a Jordan inner ideal if and only if it is minimal as a Lie inner ideal. Moreover,
B ∩ Z(R) = 0 and hence B = B/B ∩ Z(R) ∼= (B + Z(R))/Z(R) can be regarded
as an inner ideal of R, contained in R

′
. Therefore we have

5.7 Proposition. Let R be semiprime, and let 0 6= x ∈ R be an element
such that x2 = 0. Then the following conditions are equivalent:

(i) x is a rank-one element of R.

(ii) xRx is an (abelian) minimal inner ideal of R(−).

(iii) xRx is a minimal inner ideal of R.

(iv) xRx is a minimal inner ideal of R
′
.

Moreover, if y is another nonzero element of R of square zero, then

(v) (x, y) is a minimal idempotent of the Jordan pair (R,R) if and only if it is a
minimal idempotent of R

′
.

5.8 Theorem. If R is simple and R′ is not contained in Z(R), then R
′

is a simple nondegenerate Lie algebra. Moreover, R
′
contains an abelian minimal

inner ideal if and only if R coincides with its socle and it is not a division algebra.

Proof. R
′
is nondegenerate by (5.2), and simple by [11], 1.12. Suppose now

that R has minimal right ideals and it is not a division algebra, i.e., R has a capacity
greater than one. Then R contains a rank-one element x such that x2 = 0, and
hence, by (5.7), R

′
contains an abelian minimal inner ideal.

Suppose conversely that R
′
contains an abelian minimal inner ideal, say V =

V/R′ ∩ Z(R), where V is a proper inner ideal (otherwise, V = R
′

would not be
abelian, by simplicity of R

′
). Then V is abelian by [2], 3.13, and for any v ∈ V ,

there exists z ∈ Z(R) such that (v − z)2 = 0 by [2], 3.14. Since V 6= 0, V is not
contained in Z(R), so there exists a nonzero element a ∈ R (a = v − z) such that
a2 = 0. Put W = aRa. We have by (5.6) that W is a nonzero inner ideal of R

′
.

23
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But R
′

coincides with its socle, and hence, by (3.6)(iv), W contains a minimal
inner ideal of R

′
, necessarily of the form xRx with x2 = 0. It follows from (5.7)

that R coincides with its socle, and it is not a division algebra.

5.9 Let R be a simple associative algebra coinciding with its socle. By [12],
1.2.1, we can regard R as the algebra FY (X) of the continuous linear operators of
finite rank a : X → X relative to a dual pair P = (X, Y, g) over a division algebra
∆, this division algebra ∆ being uniquely determined by R, in fact, ∆ ∼= Ra for any
rank-one element a in R (cf. (5.5)). In this way, we can describe R

′
as the special

linear algebra (see [6], 5.9) of finite rank continuous operators fsl(P)/fsl(P) ∩ Z,
where Z stands for the center of the associative algebra FY (X). Suppose that
R is not a division algebra, equivalently, R

′
= fsl(P)/fsl(P) ∩ Z contains abelian

minimal inner ideals.

5.10 Proposition. Let R
′
= fsl(P)/fsl(P) ∩ Z be as in (5.9). We have

(i) DJP(R
′
) is isomorphic to the division Jordan pair V = (∆, ∆).

(ii) The centroid is Γ(R
′
) = Z(∆)1

R
′ .

Proof. (i) Take x1, x2 ∈ X, y1, y2 ∈ Y such that g(xi, yj) = δij (which is
possible since R is not a division algebra) and set e = y∗1x2, f = y∗2x1 (where y∗x
is the operator of X defined by y∗x(x′) = g(x′, y)x for all x′ ∈ X). It is routine
to see that (e, f) is a minimal idempotent of the Jordan pair (R,R), in fact,

(eRe, fRf) = (y∗1∆x2, y∗2∆x1) ∼= (∆, ∆)

via the Jordan pair isomorphism (α, β) 7→ (y∗1αx2, y∗2βx1), for all α, β ∈ ∆. Since
e2 = f2 = 0, (e, f) is also a minimal idempotent of R

′
, by (5.7)(v).

(ii) We first observe that there is a natural imbedding of Z(∆) into Γ(R
′
),

and that the mapping γ → (γ, γ) defines, by restriction, an isomorphism of Γ(R
′
)

into the centroid Γ(V (e, f)), for any minimal idempotent (e, f). Finally, by [19],
3.5 and 5.8, Γ(∆, ∆) = {(lα, lα) : α ∈ Z(∆)}, where lα denotes the dilatation of
ratio α.

Given an ideal I of R, set I ′ = [I, I], I = I/Z(I) and I
′
= I ′/I ′ ∩ Z(I) as in

(5.1). Note that if R is semiprime, Z(I) = Z(R) ∩ I and hence I can be regarded
as an ideal of R, and I

′
as an ideal of R

′
.

5.11 Corollary. If R is semiprime, then Soc(R) is contained in Soc(R
′
).
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Proof. Since R
′

is nondegenerate by (5.2), Soc(R
′
) makes sense. We have

Soc(R) =
⊕

Mi where each Mi is a simple ideal coinciding with its socle. There-
fore, we only need to verify that M

′
i ⊂ Soc(R

′
) for each index i. There are two

possibilities:

(a) Mi is a division algebra. Then, by [2], 3.15, M
′
i is either zero or a simple ideal

not containing non trivial inner ideals. In any case, M
′
i ⊂ Soc(R

′
).

(b) Mi contains a rank-one element of square zero. Then we have by (5.8) that
M
′
i is a simple nondegenerate algebra containing an abelian minimal inner

ideal, so that M
′
i ⊂ Soc(R

′
).

5.12 Remark. There exist simple associative algebras R with zero socle
such that R

′
coincides with its socle. Indeed, if we consider any simple algebra R

without zero divisors which is not a division algebra, Soc(R) = 0, but R
′
is inner

simple by [2], 3.13 and 3.14, so Soc(R
′
) = R

′
.

Assume now that R has an involution ∗ and denote by K = Skew(R, ∗) the
Lie algebra of the skew-symmetric elements of R. We also consider the Lie algebras
K ′ = [K,K], K = K/K∩Z(R) and K

′
= K ′/K ′∩Z(R). Notice that K

′ ∼= [K, K].

5.13 Lemma. Let R be a simple algebra endowed with an involution ∗.
(i) If a ∈ K satisfies [a, [a,K]] ⊂ Z(R), then a ∈ Z(R).

(ii) The Lie algebra K is nondegenerate.

(iii) If either Z(R) = 0 or the dimension of R over Z(R) is greater than 16, then
K
′
is a simple nondegenerate Lie algebra.

Proof. (i) Let a ∈ K be such that [a, [a,K]] ⊂ Z(R). If [a, [a,K]] were
nonzero, we could take 0 6= k ∈ K ∩ Z(R) and write R = K ⊕ kK, getting
[a, [a, R]] ⊂ Z(R), which would imply that a ∈ Z(R) by (5.2), and hence that
[a, [a, K]] = 0, a contradiction. So [a, [a,K]] = 0. If the involution ∗ is of the first
kind, it follows from [2], 2.10, that a = 0, while if ∗ is of the second kind, we have
by [2], 2.13, that a ∈ Z(R). Now (ii) is a direct consequence of (i), and (iii) follows
from (ii) and [2, 4.2].

5.14 Let R be an associative algebra with involution ∗. An element a ∈ R

is called isotropic if a∗a = 0. The involution ∗ is isotropic if R contains nonzero
isotropic elements.

By the classification of simple associative algebras with nonzero socle and their
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involutions (see, for example, [12]), such an algebra R is isomorphic to the algebra
FX(X) of all continuous linear operators of finite rank of a left vector space X

endowed with a nonsingular Hermitian or skew-Hermitian form h over a division
algebra ∆ with involution, the involution ∗ being then the adjoint involution with
respect to h. Note that

(i) a ∈ (FX(X), ∗) is isotropic if and only if its image a(X) is a totally isotropic
subspace.

(ii) We may assume, without loss of generality, that either h is symmetric (in this
case ∆ is a field with the identity as involution), or h is skew-Hermitian. In
the first case we say that ∗ is orthogonal, and skew-Hermitian in the second
case.

5.15 Lemma. Let R be an associative algebra with involution ∗, and let a be
an isotropic element of R. Then aKa∗ is an abelian inner ideal of K. Moreover,
if R is semiprime and a is a rank-one element of R, then aKa∗ is either zero or
an abelian minimal inner ideal of K

′
.

Proof. It is routine to verify that if a is an isotropic element, then aKa∗ is an
abelian inner ideal of K. Assume now that R is semiprime and a is an isotropic
rank-one element of R. If b is a nonzero element of aKa∗, we have by minimality
of aR that given x ∈ aKa∗ there exists c ∈ R such that x = bc. Since x∗ = −x,
we also have that x = −(bc)∗ = −c∗b∗ = c∗b. Moreover, since the socle of R is a
von Neumann regular ideal, there exists y ∈ K such that x = xyx (indeed, there
exists y′ ∈ R such that x = xy′x, so consider y = 1

2 (y′ − y′∗) ∈ K, which satisfies
x = xyx). Therefore, x = xyx = bcyc∗b = 1

2 [b, [cyc∗, b]] ∈ ad2
b(K), because b2 = 0

and (cyc∗)∗ = cy∗c∗ = −cyc∗ ∈ K. This proves that aKa∗ is either zero or a
minimal inner ideal of K. Since Z(R) contains no nonzero nilpotent elements
(by semiprimeness), aKa∗ ∩ Z(R) = 0, and hence, if aKa∗ 6= 0 then it can be
identified with an abelian minimal inner ideal of K. Finally, K and K

′
share the

same minimal inner ideals, by (2.5)(iii) and (3.6)(iii).

5.16 Theorem. Let R be a simple associative algebra with involution ∗.
Suppose that either Z(R) = 0 or the dimension of R over Z(R) is greater than 16.
Then K

′
is a simple nondegenerate Lie algebra. Moreover, K

′
contains an abelian

minimal inner ideal if and only if R coincides with its socle and ∗ is isotropic.

Proof. That K
′

is simple and nondegenerate was already commented in
(5.13)(iii). Suppose now that R = Soc(R) and it has nonzero isotropic elements.
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As pointed out in (5.14), we may assume that R = FX(X), where X is a left vec-
tor space endowed with a nonsingular symmetric or skew-Hermitian form h over
a division algebra ∆ with involution, and ∗ is the adjoint involution with respect
to h. Moreover, X has nonzero isotropic vectors. We deal separately with the two
cases, the skew-Hermitian and the orthogonal one.

(a) If ∗ is skew-Hermitian, then aKa∗ 6= 0 for any rank-one element a ∈
FX(X). Let x be a nonzero isotropic vector of X. Then a = x∗x (defined by
ay = h(y, x)x for all y ∈ X) belongs to K = Skew(FX(X), ∗) and satisfies a2 = 0.
Hence, by (5.15), aKa∗ is an abelian minimal inner ideal of K

′
.

(b) If ∗ is orthogonal, then aKa∗ = 0 for any rank-one element a ∈ FX(X),
so we have by [7], (3.6) and (3.7), that K = K ′ = K

′
contains abelian minimal

inner ideals.

Suppose, conversely, that L := K
′

contains an abelian minimal inner ideal,
i.e., L contains a minimal idempotent (u, v) that induces a 5-grading in L with
L

(u,v)
2 = ad2

u L and L
(u,v)
−2 = ad2

v L, the Jordan pair V (u, v) = (L(u,v)
2 , L

(u,v)
−2 ) being

a division Jordan pair (2.9). By [24], 4.5, the grading of L is induced by a unique
grading of R. But the length of the grading in L may be less than the length of
the grading in R; for example, if R = FX(X) with orthogonal involution and X

contains nonzero isotropic vectors, then L, which is equal to the finitary orthogonal
Lie algebra fo(X, h), has a 3-grading (see [5], (5.8)(2)), but this grading is induced
by a 5-grading of R. Thus, again, we have to consider two possibilities.

(i) If the length of the gradings in R and L do not coincide, the example
above is the only possible one as stated [24], Theorem 5.4: R has nonzero socle
with orthogonal involution.

(ii) If R and L have gradings of the same length, we have that L
(u,v)
2 =

Skew(R2, ∗) and L
(u,v)
−2 = Skew(R−2, ∗), because Z(R) ∩ R2 = Z(R) ∩ R−2 = 0

(Z(R) does not contain nonzero nilpotent elements). The Jordan division pair
V (u, v) coincides with (Skew(R2, ∗),Skew(R−2, ∗)) = (H(R2,−∗),H(R−2,−∗)),
hence Soc(H(R2,−∗),H(R−2,−∗)) 6= 0, which implies that the associative pair
(R2, R−2) has nonzero socle [8], (4.1)(i). Because of the grading, for any x ∈ R2,
xRx = xR−2x, and hence, by the local characterization of rank-one elements (5.5),
R coincides with its socle.

Therefore, R coincides with its socle in both cases. Let us now show that ∗
is isotropic.
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Let V = V/Z(R) ∩ [K,K] be an abelian minimal inner ideal of L. Then V is
a proper inner ideal of [K, K] and hence [V, V ] = 0 by [2], 4.21 and 4.26. If the
involution ∗ is of the first kind (over its centroid), v3 = 0 for every v ∈ V [2], 4.23.
Taking a nonzero vector v ∈ V , we have that either v or v2 is a nonzero isotropic
vector of R. Suppose then that ∗ is of the second kind. We have by [2], 4.26, that
for any v ∈ V there exists α ∈ Z(R) such that (v − α)2 = 0. Write α = αs + αk,
where αs ∈ Sym(Z(R), ∗) and αk ∈ Skew(Z(R), ∗). Then (v − (αs + αk))2 = 0
and ((v − (αs + αk))2)∗ = (−v − (αs − αk))2 = 0. Hence

0 = (v − (αs + αk))2 − (v + (αs − αk))2 = −4αsv + 4αsαk = −4αs(v − αk),

which implies αs = 0 or v = αk. If the latter holds for any v ∈ V , then V ⊂
Z(R), and hence V = 0, which is a contradiction. Thus there exist v ∈ V and
α ∈ Z(R) ∩K such that v − α is a nonzero isotropic element of R.

5.17 Let R be as in (5.16). As already commented, we may assume that
R = FX(X), where X is a left vector space endowed with a nonsingular symmetric
or skew-Hermitian form h over (∆,−), a division algebra with involution, and
where ∗ is the adjoint involution with respect to h. Moreover, K

′
contains abelian

minimal inner ideals if and only if ∗ is isotropic, equivalently, (X, h) has nonzero
isotropic vectors. Let us now compute the Jordan division pair DJP(K

′
) and the

centroid of K
′

in each one of the cases: the skew-Hermitian and the orthogonal
one.

5.18 Proposition. Let R and K be as in (5.17). Then.

(i) If h is skew-Hermitian, then DJP(K
′
) ∼= (Sym(∆,−),Sym(∆,−)), and the

centroid Γ(K
′
) = Sym(Z(∆),−)1

K
′ .

(ii) If h is symmetric (∆ is a field, say F ), then DJP(K
′
) is the division Clifford

pair (see [6], 5.7, for definition) defined by an anisotropic symmetric bilinear
form on a vector space over F , and Γ(K

′
) = F1

K
′ .

Proof. (i) Let (x, y) be a hyperbolic pair in X, i.e., h(x, x) = h(y, y) = 0,
h(x, y) = 1, and consider the operators e := x∗x, f := y∗y ∈ K ′. It is easy to see
that (x∗x, y∗y) is a minimal idempotent of the Jordan pair (K, K), in fact,

(eKe, fKf) = (x∗ Sym(∆,−)x, y∗ Sym(∆,−)y) ∼= (Sym(∆,−), Sym(∆,−))

via the Jordan pair isomorphism (α, β) 7→ (x∗αx, y∗βy), for all α, β ∈ Sym(∆,−).
Since e2 = −e∗e = 0 and f2 = −f∗f = 0, it follows from (7) and (5.15) that
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there is a (e, f) remaining a minimal idempotent in K
′
. To prove that Γ(K

′
) =

Sym(Z(∆),−)1
K
′ we follow the path sketched in the proof of (5.9)(ii): observe

that there is a natural imbedding of Sym(Z(∆),−) into Γ(K
′
), and that, for any

minimal idempotent (e, f) of K
′
, the mapping γ → (γ, γ) defines, by restriction, an

isomorphism of Γ(K
′
) into the centroid Γ(V (e, f)) = Γ(Sym(∆,−),Sym(∆,−)),

by (i). Finally, apply [19], 3.6, to get Γ(Sym(∆,−), Sym(∆,−)) = {(lα, lα) : α ∈
Sym(Z(∆)}.

(ii) If h is symmetric (over a field F ), then K
′

= K ′ = K is the so-called
finitary orthogonal algebra fo(X,h). Since X contains nonzero isotropic vectors,
we can decompose X = H ⊕ H⊥, where H = Fx ⊕ Fy is the hyperbolic plane
defined by a hyperbolic pair (x, y). There are two possibilities:

(1) H⊥ is anisotropic. In this case, we have by [7], 3.7(iv), that [x,H⊥] :=
{x∗z − z∗x : z ∈ H⊥} is an abelian minimal inner ideal of fo(X, h). Moreover, for
z ∈ H⊥ and [x, z] := x∗z−z∗x, we have that ([x, z],−2h(z, z)−1[y, z]) is a minimal
idempotent of fo(X,h) with associated division Jordan pair

DJP(fo(X, h)) = ([x,H⊥], [y, H⊥]) ∼= C(H⊥, h)

(where C(H⊥, h) denotes the division Clifford Jordan pair defined by h on H⊥)
via the Jordan pair isomorphism given by ([x, z], [y, v]) 7→ (z,−v) (z, v ∈ H⊥),
which can be verified using the identity (cf. [7], (12))

ad2
[x,z](a) = [[x, z], [[x, z], a]] = 2h(ax, z)[x, z]− h(z, z)[x, ax], (8)

for all a ∈ fo(X,h). Since Γ((H⊥, h)) = {(lα, lα) : α ∈ F} by [19], 3.2, we obtain
as in the previous cases that Γ(fo(X, h)) ∼= F .

(2) H⊥ is isotropic. Then H⊥ contains a hyperbolic pair (v, z). It is easy to
see that ([x, z], [y, v]) is a minimal idempotent of fo(X, h), with associated division
Jordan pair isomorphic to (F, F ) (equal to the Clifford Jordan pair defined by the
one-dimensional vector space F with the quadratic form defined by the product).
As before, Γ(fo(X,h)) ∼= F .

6. Simple nondegenerate Lie algebras with abelian minimal inner ideals

Simple nondegenerate Lie algebras containing abelian minimal inner ideals
are described in this section. Among them, those which are finitary central simple
over a field of characteristic 0 are characterized by the property that the division
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Jordan algebras associated with them are PI. Recall that a Jordan algebra J is
called a PI-algebra if it satisfies an identity that is not satisfied by all special
Jordan algebras. Note that the PI-property is invariant under isotopism.

6.1 Theorem. Let L be a Lie algebra over a field of characteristic zero
or greater than 7. Then L is simple, nondegenerate and contains abelian minimal
inner ideals if and only if it is isomorphic to one of the following algebras:

(i) A (finite dimensional over its centroid) simple exceptional Lie algebra of type
G2, F4, E6, E7 or E8 containing a nonzero ad-nilpotent element.

(ii) A Lie algebra of the form R
′

= [R, R]/Z(R) ∩ [R,R], where R is a simple
associative algebra coinciding with its socle which is not a division algebra,
and where [R,R] is not contained in Z(R).

(iii) A Lie algebra of the form K
′
= [K,K]/Z(R) ∩ [K, K], for K = Skew(R, ∗)

where R is a simple associative algebra with isotropic involution ∗ which co-
incides with its socle, and where either Z(R) = 0 or the dimension of R over
Z(R) is greater than 16.

Proof. We begin by checking case by case that any of the Lie algebras listed
above is simple, nondegenerate and contains abelian minimal inner ideals: (i)
any simple exceptional Lie algebra L is finite dimensional over its centroid C

and for the algebraic closure C of C, C ⊗ L is nondegenerate (see, for instance,
[22], Theorem 3). Since we are assuming that L contains nonzero ad-nilpotent
elements, we can find one of index 3, say b ∈ L (Kostrikin’s result, [3], 1.5), and
hence, by (2.3), L contains the nonzero abelian inner ideal B = ad2

b(L). Since B

is invariant under the centroid, it contains an (abelian) minimal inner ideal of L,
by finite dimensionality of L. The cases (ii) and (iii) follow from (5.8), and (5.16),
respectively.

Suppose, conversely, that L is a simple nondegenerate Lie algebra containing
an abelian minimal inner ideal, equivalently a minimal idempotent. Then L has
a 5-grading by (2.9)(ii). Hence, by [26], Theorem 1, L is one of the following:
(i) a simple exceptional Lie algebra, (ii) L = R

′
= [R, R]/Z(R) ∩ [R,R], where

R is a simple associative algebra such that [R,R] is not contained in Z(R), or
(iii) L = K

′
= [K,K]/Z(R) ∩ [K,K], where K = Skew(R, ∗) and R is a simple

associative algebra, ∗ is an involution of R, and either Z(R) = 0 or the dimension
of R over Z(R) is greater than 16. (Actually, the list of simple Lie algebras
with gradings given in [26], Theorem 1, contains two additional algebras: the
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Tits-Kantor-Koecher algebra of a nondegenerate symmetric bilinear form and D4.
However, because of we are not interested in describing the gradings, both algebras
can be included in case (iii): K

′
= K ′ = K = Skew(R, ∗), where R is a simple

algebra with orthogonal involution.) Returning to our list, use the same references
as in the previous paragraph to get the existence of nonzero ad-nilpotent elements
in (i), the coincidence of R with its socle in (ii) and (iii), and the fact that ∗ is
isotropic in (iii).

Baranov’s classification of infinite dimensional finitary central simple Lie al-
gebras over a field F of characteristic 0 (see [1], Theorem 1.1) can be reformulated
as follows.

6.2 Let F be a field of characteristic 0. Then any infinite dimensional finitary
central simple Lie algebra over F is isomorphic to one of the following algebras:

(i) a finitary special linear algebra fsl(P), where P is an infinite dimensional pair
of dual vector spaces over a finite dimensional division F -algebra ∆.

(ii) [Skew(FX(X), ∗), Skew(FX(X), ∗)], where X is an infinite dimensional vec-
tor space with a nonsingular (skew-Hermitian or symmetric) form h over
a division algebra with involution (∆,−) which is finite dimensional over
F = Sym(Z(∆),−).

We have seen in (3.11) that a finitary central simple Lie algebra L over a
field of characteristic 0 is nondegenerate and coincides with its socle. More-
over, if L = fsl(P) as in (i), then L actually contains abelian minimal inner
ideals (5.8), and DJA(L) is isomorphic to the Jordan algebra ∆+ (5.9). If L =
[Skew(FX(X), ∗), Skew(FX(X), ∗)] as in (ii), then L contains abelian minimal in-
ner ideals if and only if (X, h) is isotropic (5.16). If this is the case, we have by
(5.17) that DJA(L) is either isomorphic to the Jordan algebra Sym(∆,−) or to
a Jordan algebra of Clifford type. Since finite dimensional algebras and Clifford
algebras are PI, we have shown that the division Jordan algebra associated to a
finitary central simple Lie algebra over a field of characteristic 0 containing abelian
minimal inner ideals is PI. The converse is also true as it is proved in the following
theorem.

6.3 Theorem. Let L be a central simple nondegenerate Lie algebra over
a field F of characteristic 0 containing abelian minimal inner ideals. Then the
division Jordan algebra DJA(L) associated to L is PI if and only if L is finitary
over F .
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Draper, Fernández, Garćıa and Gómez, The socle of a Lie algebra

Proof. It only remains to prove that as soon as DJA(L) is PI, L is finitary
over F . Without loss of generality we may assume that L is infinite dimensional
over its centroid Γ(L) = F . Then, by (6.1), L is isomorphic to one of the following
algebras:

(1) R
′
= [R,R]/Z(R) ∩ [R,R], where R is a simple associative algebra coin-

ciding with its socle and which is not a division algebra, and where [R,R] is not
contained in Z(R).

(2) K
′

= [K,K]/Z(R) ∩ [K, K], where K = Skew(R, ∗) and R is a simple
associative algebra with isotropic involution ∗ which coincides with its socle, and
where either Z(R) = 0 or the dimension of R over Z(R) is greater than 16.

Let L = R
′
be as in (1). By (5.9), L = fsl(P)/fsl(P)∩Z, where P = (X, Y, g) is

a pair of dual vector spaces over a central division F -algebra ∆, and DJA(R
′
) is the

Jordan algebra ∆(+). Since ∆(+) is PI by hypothesis, ∆ is a PI associative algebra
and hence ∆ is finite dimensional over its center F by Kaplansky’s theorem. Then
the dual pair P is necessarily infinite dimensional over ∆ (because L is infinite
dimensional over F ), and hence fsl(P) ∩ Z = 0. So L is the special finitary linear
algebra fsl(P).

Suppose now that L = K
′
as in (2) (R = FX(X), where X is a left vector space

X endowed with a nonsingular isotropic symmetric or skew-Hermitian form h over
a division algebra with involution (∆,−), and where ∗ is the adjoint involution
with respect to h). If h is skew-Hermitian, we have by (5.17)(i) that DJA(L) is the
Jordan algebra Sym(∆,−) and Γ(L) = Sym(Z(∆),−)1L. Since Sym(∆,−) is PI,
the division algebra ∆ is also PI by Amitsur’s theorem [12], 6.5.1, and hence ∆ is
finite dimensional over F by Kaplansky’s theorem. Then X is infinite dimensional
over ∆ and L is the finitary Lie algebra [Skew(FX(X), ∗),Skew(FX(X), ∗)]. If h

is symmetric, then K
′
= K ′ = K and L is the finitary orthogonal algebra fo(X, h).

Let L be a Lie algebra over a field F . Following [6], an element a ∈ L is said
to be reduced (over F ) if ad2

a(L) = Fa. Note that any nonzero reduced element
a ∈ L determines the (abelian) minimal inner ideal Fa.

6.4 Lemma. Let L be a simple Lie algebra over a field F . If L contains a
reduced nonzero element, then L is central.

Proof. Since L is simple, every nonzero map γ ∈ Γ(L) is one-to-one. Let
γ ∈ Γ(L) and take a nonzero reduced element a ∈ L. Then ad2

a(L) = Fa implies
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that γ(a) = αa for some α ∈ F . Hence γ(x) = αx for all x ∈ L, because
0 6= a ∈ ker(γ − lα), with γ − lα ∈ Γ(L).

As a consequence of (6.3) we obtain the following characterization of the
finitary simple Lie algebras over an algebraically closed field of characteristic 0,
thus positively answering a question posed in [6].

6.5 Corollary. Let F be an algebraically closed field of characteristic 0. For
a simple Lie algebra L over F the following conditions are equivalent:

(i) L is finitary over F .

(ii) L is nondegenerate and contains a nonzero reduced element over F .

Proof. If L is finitary, then L is nondegenerate by (3.11) and contains a
nonzero reduced element by (3.9)(i) (finite dimensional case) and [6], 4.6 (infinite
dimensional case). Suppose then that L is a simple nondegenerate Lie algebra
containing a nonzero reduced element of F . It follows from (6.4) that L is central,
and since DJA(L) is isomorphic to F , we have by (6.3) that L is finitary.
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