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Nœtherian or Artinian is finite-dimensional.

AMS Classification: 17D92

Key words: Artinian algebra; Bernstein algebra; Finitely generated algebra;
Jordan algebra; Locally nilpotent algebra; Nœtherian algebra; Train algebra

0 Introduction

Train algebras were initiated by Etherington [10] as an algebraic framework for treating

problems in population genetics. Train algebras of rank 3 have been studied from several

points of view (see, for instance, [1],[7–11],[17]). In particular, Abraham [1] proved that a

finite-dimensional train algebra of rank not greater than 3 is a special train algebra (that is,

the barideal is nilpotent and its principal powers are ideals), and that 3 is the best possible

rank. In parallel to train algebras, there is another important class of algebras with genetical
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significance, called Bernstein algebras, and which have been the subject of intense researches

(see, for instance, [12], [18], [19]).

On the other hand, it is well known that one of the most satisfactory segments of the

theory of associative, Jordan and alternative algebras is the structure theory of algebras

with various finiteness conditions, and there is at present a substantial bibliography in this

direction. Concerning Bernstein algebras, Peresi [21] and Krapivin [16] have shown indepen-

dently that the barideal of a finitely generated nuclear algebra is nilpotent. Consequently,

such algebras must be finite-dimensional, as was directly established by Suazo [23] using a

different approach. Recently, Boudi and the present author [5] have undertaken a system-

atic study of Bernstein algebras satisfying chain conditions. Among many other results in

that paper, it was especially proved that for a Bernstein algebra which is Jordan or nuclear,

each of the Nœtherian and Artinian hypotheses implies finite-dimensionality of the algebra

and so nilpotency of the barideal. Thus, in the light of those results, it is quite legitimate

to investigate the counterpart of train algebras of rank 3 with finiteness conditions. In this

context, we will prove that train algebras of rank 3 which are finitely generated, Nœtherian

or Artinian are finite-dimensional, and therefore special train algebras.

1 Preliminaries

In order to keep the paper reasonably self-contained, we summarize in this section the basic

notions that will be used in this work. Let K be an infinite field of characteristic different

from 2 and 3, and let A be an algebra over K, not necessarily associative, commutative

or finite-dimensional. If A has a non-zero algebra homomorphism ω : A −→ K, then the

ordered pair (A,ω) is called a baric algebra and ω is its weight function. For each e ∈ A with

ω(e) 6= 0, we have A = Ke ⊕ N , where N = ker(ω) is a two-sided ideal of A, called the

barideal of A. By a baric ideal of A we mean a two-sided ideal I of A with I ⊆ N , while a

baric subalgebra of A is a subalgebra B of A with B 6⊆ N .

A train algebra of rank r is a commutative baric algebra (A,ω) satisfying the equation

xr + γ1ω(x)xr−1 + · · ·+ γr−1ω(x)r−1x = 0 (1.1)

for all x ∈ A, where γ1, . . . γr−1 ∈ K, r is the minimal integer for which such an equation

holds and x1 = x, . . . , xi = xi−1x are the principal powers of x. Equation (1.1) is called the

train equation of A. Applying ω to (1.1) provides 1 + γ1 + · · ·+ γn−1 = 0.

For r = 3, the train equation is

x3 − (1 + γ)ω(x)x2 + γω(x)2x = 0, (1.2)

with γ ∈ K. A well-known result of Etherington [11] guarantees the existence of at least a
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non-zero idempotent in a train algebra of rank 3 with γ 6= 1
2
, and this produces a Peirce

decomposition of the algebra [7]. This property is not in general true when γ = 1
2
.

A Bernstein algebra is a commutative baric algebra satisfying the identity (x2)2 = ω(x)2x2.

Recall that a commutative algebra is a Jordan algebra if the identity x(x2y) = x2(xy) holds

in A. A remarkable result of Walcher [24] says that a Bernstein algebra is Jordan if and only

if x3 = ω(x)x2. Thus, Bernstein-Jordan algebras are special instances of train algebras of

rank 3 with γ = 0.

We let now A be an arbitrary algebra over K. We say that A is nilpotent (respectively,

right nilpotent if the descending chain of ideals (respectively, right ideals) defined recursively

by A1 = A and An =
∑

i+j=n
AiAj (respectively, A<1> = A and A<i> = A<i−1>A) ends up in

zero. Clearly, if A is nilpotent, then A is right nilpotent. Conversely, if A is commutative, then

A2n ⊆ A<n> by [27, Proposition 1]. Therefore, if A is a right nilpotent commutative algebra,

it is nilpotent too. We define the plenary powers of A by A(1) = A2 and A(n) = (A(n−1))2.

The algebra A is said to be solvable when A(n) = 0 for some n, and the smallest such n is

the index of solvability of A.

Let EndK(A) be the algebra of endomorphisms of the linear space A. The linear mappings

La : A −→ A and Ra : A −→ A defined by La(x) = ax and Ra(x) = xa generate a

subalgebra of EndK(A), denoted by M∗(A). The subalgebra of EndK(A) generated by those

operators and the identity endomorphism idA will be denoted by M(A). If B is a subalgebra

of A, we design by MA
∗ (B) the subalgebra of M∗(A) generated by all operators Lb and Rb,

where b ∈ B.

For any subset X ⊆ A, we write < X > for the subspace of A spanned by X.

Returning to baric algebras, recall that a special train algebra is a commutative baric

algebra for which the barideal N = ker(ω) is nilpotent and its principal powers N<i> are

ideals of A. It is well known that in a train algebra (A,ω) of rank 3, the N<i> are ideals of A

(see [1]). Thus, a train algebra of rank 3 is a special train algebra if and only N is nilpotent.

Since N satisfies the equation x3 = 0, it follows from [22] (see also [6, Proposition] and [27,

page 114]) that N is locally nilpotent, namely, every finitely generated subalgebra of N is

nilpotent. Other characterizations of baric, train and Bernstein algebras can be found in [18]

and [25].

A commutative baric algebra (A,ω) is said to be Nœtherian (Artinian) if it satisfies the

ascending chain condition a.c.c. (descending chain condition d.c.c.) on ideals, that is, every

ascending (descending) sequence of ideals becomes ultimately stationary. Before passing to

the next section, we should like to point out that if A is a train algebra of rank 2, its train

equation x2 = ω(x)x shows that A is a Bernstein-Jordan algebra. Hence, in view of [23,

Corollary 1] and [5, Theorem 2.3], A is finite-dimensional whenever it is finitely generated,

Nœtherian or Artinian.
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2 Finitely generated train algebras of rank 3

Let (A,ω) be a train algebra of rank 3 satisfying the train equation (1.2), and set N =

ker(ω). Choose an element e ∈ A with ω(e) = 1, so that c0 := e2 − e ∈ N . Using the

linearization process, one obtain from (1.2) the following relations

(ex)y + (ey)x + e(xy)− (1 + γ)xy = 0, (2.1)

c0x + 2e(ex)− (1 + 2γ)ex + γx = 0, (2.2)

ec0 = γc0 (2.3)

for all x and y in N (see [1, page 56] or [25, page 64] for details).

The ideal N satisfies the identity x3 = 0 and so also the Jacobi identity

(xy)z + (yz)x + (zx)y = 0. (2.4)

Let us verify by induction that the plenary powers N (k) of N are also ideals of A, like the prin-

cipal powers N<k>. The case k = 1 is clear. If x, y ∈ N (k) and z ∈ N , then x(zy), y(zx), (ex)y

and (ey)x belong to N (k)N (k) by the induction hypothesis. It follows from (2.4) and (2.1)

that z(xy) and e(xy) are in N (k+1), as desired.

On the other hand, by [11, (7.8)] (see also [25, (4.13)]), A satisfies the following plenary

train equation

(x2)2 − (1 + 2γ)ω(x)2x2 + 2γω(x)3x = 0. (2.5)

A powerful ingredient to use here is the closed relationship between train algebras of rank

3 with γ 6= 1
2

and Bernstein-Jordan algebras. Given a train algebra (A,ω) of rank 3 with

γ 6= 1
2
, the vector space A equipped with the new multiplication

x ∗ y = (1− 2γ)−1
(
xy − γ(ω(y)x + ω(x)y)

)
(2.6)

and with the same weight function ω is a Bernstein-Jordan algebra, denoted by (Ã, ω). This

construction was first introduced by Guzzo and Vicente [13] and subsequently explored by

Mallol, Benavides and Varro [3] in the more general setting of baric algebras. The advantage

of employing this tool lies in the fact that the algebras A and Ã have many properties in

common. In this spirit, train algebras of rank 3 with γ 6= 1
2

are, in some way, the ‘dual’ of

Bernstein-Jordan algebras.

In connection with the goal of this section, Correa [6, Theorem] proved that the barideal

ker(ω) of a finitely generated Bernstein-Jordan algebra (A,ω) is nilpotent. An equivalent

formulation obtained separately by Suazo [23, Corollary 1] says that, under the above cir-

cumstances, such an algebra is finite-dimensional. The following theorem extends this result

to arbitrary train algebras of rank 3.
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Theorem 2.1 Every finitely generated train algebra of rank 3 is finite-dimensional.

Proof. In case γ 6= 1
2
, it is readily seen from (2.6) that the subalgebras of the Bernstein-

Jordan algebra Ã are precisely those of A. Therefore, Ã is also finitely generated, and so

finite-dimensional by [23, Corollary 1].

Let us now focus our attention on the case γ = 1
2
. First, we are going to show that

N is finitely generated as an algebra. Let {a1, . . . , an} be a system of generators of A and

write ai = αie + bi, where αi ∈ K and bi ∈ N . Let y in N ; then y can be expressed as

y = f(a1, . . . , an), where f is a non-associative polynomial. It is a simple matter to check

that y takes the form

y = f(α1e, . . . , αne) +
s∑

i=1

gi(e, b1, . . . , bn), (2.7)

where each gi is a non-associative monomial such that gi(e, b1, . . . , bn) admits at least one

factor among b1, . . . , bn.

According to (1.2) and (2.5), we have e3 = 3
2
e2− 1

2
e and (e2)2 = 2e2−e. Hence, the subspace

< e, e2 > is the subalgebra of A generated by e. As a consequence, f(α1e, . . . , αne) = λe+µe2

for some λ, µ ∈ K. Now, since ω(y) = 0 and ω(gi(e, b1, . . . , bn)) = 0, we have λ + µ = 0, so

that

y = µc0 +
s∑

i=1

gi(e, b1, . . . , bn). (2.8)

We denote by B the subalgebra of A generated by the set {c0, b1, . . . , bn, eb1, . . . , ebn}. We

claim that N = B. Indeed, in view of (2.8), it is enough to show that for any monomial g =

g(X0, X1, . . . , Xn), the element g := g(e, b1, . . . , bn) lies in B whenever some bk appears in its

expression, equivalently, whenever the monomial g does not depend only on the indeterminate

X0. For abbreviation, such elements g with the above condition will be called b-elements.

We shall carry out an induction on the length d(g) of the monomial g. If d(g) = 1, there is

nothing to verify, since g = bk for some k ∈ {1, . . . , n}. Now let d(g) = l ≥ 2, and assume

our assertion valid for all b-elements h with length d(h) < l. Decompose g = g1g2, and so

g = g1g2, where g1 and g2 are monomials of lesser lengths. If g1 and g2 are b-elements, then

by the induction assumption g1, g2 ∈ B and hence g ∈ B. In the opposite situation, we may

suppose that g2 is a b-element and g1 is not. Then g1 ∈< e, e2 >=< e, c0 >, and g2 ∈ B

by the induction hypothesis. Accordingly, to establish that g1g2 ∈ B, it remains to prove

that eg2 ∈ B, since c0g2 ∈ B. For this purpose, if d(g2) = 1, we have g2 = bk for some

k ∈ {1, . . . , n}, and so eg2 = ebk ∈ B. If d(g2) ≥ 2, we have g2 = h1h2, where the hi are

monomials with d(hi) < d(g2) < l (i = 1, 2), and hence eg2 = e(h1h2). Once again, two

possibilities are presented:

(a) If h1 and h2 are b-elements, they belong to B by the induction hypothesis, and

therefore h1h2 ∈ B. Furthermore, since the ehi are also b-elements with lengths < l, then by

induction ehi ∈ B, which yields (eh1)h2 ∈ B and (eh2)h1 ∈ B. From this and (2.1) we find
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that

eg2 = e(h1h2) =
3

2
(h1h2)− (eh1)h2 − (eh2)h1 ∈ B.

(b) If h2 is a b-element and h1 is not, then h1 = e + αc0 for some α ∈ K, so that,

eg2 = e(h1h2) = e(eh2) + αe(c0h2). (2.9)

As above, the induction hypothesis implies that h2 ∈ B and eh2 ∈ B, which furnishes via

(2.1),

e(c0h2) =
3

2
(c0h2)− (ec0)h2 − (eh2)c0 ∈ B, (2.10)

because ec0 = 1
2
c0 ∈ B. Also, in virtue of (2.2), we get

e(eh2) =
1

2
(2eh2 − 1

2
h2 − c0h2) ∈ B. (2.11)

Combining (2.9), (2.10) and (2.11), we conclude that eg2 ∈ B. This completes the induction

proof, and in consequence, N = B, as claimed. It follows that N is finitely generated as

an algebra, and since N is locally nilpotent, it is nilpotent. Finally, a standard argument

concludes that A finite-dimensional.

Applying the well-known result of Abraham [1], we can formulate the following immediate

consequence.

Corollary 2.2 Every finitely generated train algebra of rank 3 is a special train algebra.

The next example is devoted to discussing free train algebras defined by Holgate [15] with

regard to our Theorem 2.1.

Example 2.3 In [15] Holgate constructed free train algebras in the following manner. Let

Fk be the free commutative non-associative algebra with k generators a1, . . . , ak and without

unity. We can endow Fk with a weight function ω by assigning weight 1 to each symbol ai.

Let Rk,r(γ1, . . . , γr−1) be the ideal of Fk generated by all elements xr + γ1ω(x)xr−1 + · · · +
γr−1ω(x)r−1x, x ∈ Fk, where γ1, . . . , γr−1 are some fixed scalars with 1+γ1 + · · ·+γr−1 = 0.

Then the factor algebra Fk/Rk,r(γ1, . . . , γr−1), denoted by Fk,r(γ1, . . . , γr−1), or simply, Fk,r,

is a train algebra of rank r satisfying the train equation (1.1). Furthermore, every train

algebra with train equation (1.1) is a homomorphism image of Fk,r. This algebra Fk,r is

called the free train algebra with k generators satisfying the train equation (1.1). As special

cases, it is proved in [15, Theorem 2] that Fk,r is finite-dimensional if k = 1 and r = 2

or 3. Actually, in view of our Theorem 2.1 and the observation closing Section 1, we may

generalize Holgate’s result to Fk,r for an arbitrary number k of generators (where r = 2 or

3).

On the other hand, it is also established in [15, page 317] that the free train algebra F1,4

with one generator and satisfying the train equation x4−ω(x)x3 = 0 is infinite-dimensional.

Hence, the rank 3 in Theorem 2.1 is now shown to be best possible.
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3 Nœtherian and Artinian train algebras of rank 3

Our objective in this section is to investigate train algebras of rank 3 that are Nœtherian

or Artinian. As already seen in the latter section, the case γ 6= 1
2

will be deduced from the

corresponding Bernstein-Jordan version, while the case γ = 1
2

will require more efforts. Before

embarking on the main result, we need some preparation. Let N be an arbitrary commutative

algebra satisfying the identity x3 = 0. It is well known that N is a Jordan algebra (see [2,

Lemma 1] or [27, page 114]). In addition, Zel’manov and Skosyrskii [26, Corollary, page 448]

proved that if N has no elements of order ≤ 5 in its additive group, then N is solvable; but the

index of solvability is not known. Later, Hentzel, Jacobs, Peresi and Sverchkov established

in [14, Theorem 6] that the barideal ker(ω) of any Bernstein algebra (A,ω) is solvable and

(ker(ω))(4) = 0 in characteristic different from 2 and 3. Bernad, Gonzalez and Martinez [4,

Theorem 2.11] improved subsequently the above result by showing that (ker(ω))(3) = 0. On

the other hand, as already mentioned, the barideal of a Bernstein-Jordan algebra satisfies

the identity x3 = 0. But it is not known if an arbitrary commutative algebra N satisfying

this identity can be embedded as the barideal of a Bernstein-Jordan algebra. However, with

the help of [14], one may state the following lemma which indicates that N is in fact solvable

of index at most 4.

Lemma 3.1 Let N be a commutative nil-algebra of index 3. Then N is solvable and N (4) =

0.

Proof. From [14, Lemma 3] we know that (N2)<5> = 0. Given x, y, z, t ∈ N2, the Jacobi

identity yields

(xy)(zt) = −z (t(xy))− t (z(xy)) ∈ (N2)<4>.

Hence, N (3) = (N2N2)(N2N2) ⊆ (N2)<4>. Now, since N (3) ⊆ N (2) ⊆ N (1) = N2, we get

N (4) = N (3)N (3) ⊆ (N2)<4>N2 = (N2)<5> = 0.

Another crucial instrument we require here before approaching Theorem 3.3 is the follow-

ing auxiliary result, which is of some interest in its own right.

Lemma 3.2 Let N be a commutative nil-algebra of index 3. If N/N2 is finite-dimensional,

then so is N .

Proof (Sketch). It is similar to the proof of [5, Theorem 2.2], where N was the barideal of

a Bernstein-Jordan algebra. There is no point to repeat the details here, but we are going

to explain briefly the basic ideas of the proof. First, let G be a subspace of N such that

N = N2 ⊕ G, and let F be the subalgebra of N generated by G. Since F is a finitely

generated algebra satisfying the identity x3 = 0, F is nilpotent and so finite-dimensional.

The second step is to show by induction on i ≥ 0 that

N (i) = N (i+1) + F (i). (3.1)
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For this induction, we utilize some technical arguments involving the fact that the powers

N (i) are ideals of N and a theorem of Zhevlakov which states that the multiplication algebra

MN
∗ (F ) is nilpotent [27, Theorem 1, page 87] (see details in [5, Theorem 2.2]). Now, since

N = N (1) + F , it follows from (3.1) that N = N (i) + F for all i ≥ 1. Putting i = 4, we infer

from Lemma 3.1 that N = F .

Having in our disposal enough machinery, we are now ready to prove the next result.

Theorem 3.3 Let A be a train algebra of rank 3. Then the following conditions are equiva-

lent:

(i) A is Nœtherian (resp. Artinian);

(ii) A satisfies a.c.c. (resp. d.c.c.) on baric ideals;

(iii) A is finite-dimensional.

Proof. It is sufficient to prove the implication (ii) ⇒ (iii), for which we begin by the case

γ 6= 1
2
. In account of (2.6), if x and y are in N = ker(ω), their product in the attached

Bernstein-Jordan algebra (Ã, ω) is x ∗ y = (1− 2γ)−1
(
xy−γω(y)x

)
. So, a subspace I of A is

a baric ideal of (A,ω) if and only if I is a baric ideal of (Ã, ω). It follows that (Ã, ω) satisfies

again a. c. c. (d. c. c.) on baric ideals. By [5, Proposition 2.1, Theorem 2.3], we conclude

that A is finite-dimensional.

Let now treat the situation where γ = 1
2
, and fix an element e ∈ A of weight 1. We first

consider the case when N2 = 0. In this case, the identity (2.2) is reduced to 2e(ex) −
2ex + 1

2
x = 0 for all x ∈ N , which means (Le − 1

2
idN)2 = 0. Obviously, the subspace

M := ker(Le − 1
2
idN) is a baric ideal of A, and every subspace S of M is also a baric

ideal of A. Therefore, M must be finite-dimensional by hypothesis. On the other hand,

the baric algebra A/M satisfies clearly a. c. c. (d. c. c.) on baric ideals. In addition, since

(Le − 1
2
idN)2 = 0, we have (Le − 1

2
idN)(N) ⊆ M , that is, Le(x) = 1

2
x (moduloM) for all

x ∈ N . Hence, each subspace of N/M is a baric ideal of A/M . This entails that N/M is

finite-dimensional, and so also is N .

We now turn to the case N2 6= 0. Since N2 is a baric ideal of A, then the baric algebra A/N2

satisfies a. c. c. (d. c. c.), and hence finite-dimensional by the first case. Finally, we make

appeal to Lemma 3.2 which ends the proof that A is finite-dimensional.

In closing this article, we have:

Corollary 3.4 Every train algebra of rank 3 that is Nœtherian or Artinian is a special train

algebra.
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