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Abstract. Calculation of the universal enveloping TROs of con-
tinuous JBW∗-triples, and application of the techniques used to
supplement the structural results of Ruan for W∗-TROs.

1. Introduction

In 2004, Ruan [20] presented a classification scheme and proved var-
ious structure theorems for weakly closed ternary rings of operators
(W∗-TROs) of particular types. A W∗-TRO of type I, II, or III was
defined according to the Murray-von Neumann type of its linking von
Neumann algebra. W∗-TROs of type II were further designated as ei-
ther of type II1,1, II1,∞, II∞,1 or II∞,∞. Representation theorems for
W∗-TROs of various types were given in Ruan’s paper (see Theorem 2.1
below), but with the possible exception of type II1,1 (however, see the
end of subsection 2.1).

The purpose of this paper is to shed some light on the structure
of W*-TROs (Proposition 4.1), and in particular, those of type II1,1

(Corollary 4.3), by using ideas from [7], together with the well estab-
lished structure theory of JBW*-triples (cf. [14,15]). A W∗-TRO is an
example of a JBW∗-triple.

Let us recall the structure of all JBW*-triples U : there is a surjective
linear isometric triple isomorphism

(1.1) U 7→ ⊕αL∞(Ωα, Cα)⊕ pM ⊕H(N, β),

where each Cα is a Cartan factor, M and N are continuous von Neu-
mann algebras, p is a projection in M , and β is a *-antiautomorphism
of N of order 2 with fixed points H(N, β).

A basic tool in our approach is the universal enveloping TRO T ∗(X)
of a JC∗-triple X as developed in [4] and its sequels [6, 7]. By [6,
Theorem 4.9],

T ∗(L∞(Ω)⊗ C) = L∞(Ω)⊗ T ∗(C),
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and consequently (see Proposition 2.2 below), identifying L∞(Ω, C)
with L∞(Ω)⊗ C,

(1.2) T ∗(X) ' ⊕αL∞(Ωα, T
∗(Cα))⊕ T ∗(pM)⊕ T ∗(H(N, β)).

The TROs T ∗(C) where C is a Cartan factor have been determined
in [4], and independently and simultaneously in the finite dimensional
cases in [3]. Both [4] and [3] make very strong use of [18].

Our main new results are the determination of the TROs T ∗(pM)
and T ∗(H(N, β)). In Theorem 3.2 it is shown that T ∗(pM) = pM ⊕
M tpt, and in Theorem 3.4, that T ∗(H(N, β)) = N .

Only one of these results is needed in the proof of Proposition 4.1
but each is of interest in its own right. In addition, alternate proofs of
portions of Proposition 4.1, which use both of these results, are pro-
vided in section 5 as an illustration of the power of universal enveloping
TROs. It is planned to use this technique in future research.

A representation result, obtained simultaneously and independently
by different methods in 2013, and stated in the following theorem, plays
a key role in some of our proofs,

Theorem 1.1. (a) (Bunce-Timoney [7, Lemma 5.17]) A W∗-TRO is
TRO-isomorphic to the direct sum eW ⊕Wf , where W is a von Neu-
mann algebra and e, f are centrally orthogonal projections in W .

(b) (Kaneda [17, Theorem]) A W∗-TRO X can be decomposed into
the direct sum of TROs XL, XR, XT , and there is a complete isometry
of X into a von Neumann algebra M which maps XL (resp. XR, XT )
into a weak*-closed left ideal (resp. right ideal, two-sided ideal)

2. Preliminaries

A ternary ring of operators (hereafter TRO) is a norm closed com-
plex subspace of B(K,H) which contains xy∗z whenever it contains
x, y, z, where K and H are complex Hilbert spaces. A TRO which is
closed in the weak operator topology is called a W∗-TRO. A TRO-
homomorphism is a linear map ϕ between two TROs respecting the
ternary product: ϕ(xy∗z) = ϕ(x)ϕ(y)∗ϕ(z).

The definition of JB∗-triple will not be given here (see for exam-
ple [4, 8, 14, 15]), since only its concrete realizations, which are called
JC∗-triples, will be involved, namely, norm closed complex subspaces
of B(K,H) which contain xy∗z + zy∗x whenever they contain x, y, z.
A JC∗-homomorphism is a linear map ϕ between two JC∗-triples re-
specting the triple product: {x, y, z} := (xy∗z + zy∗x)/2, that is,
ϕ{x, y, z} = {ϕ(x), ϕ(y), ϕ(z)}. Such maps are called triple homo-
morphisms to distinguish them from TRO-homomorphisms.

A JC-algebra is a norm closed real subspace of B(H) which is stable
for the Jordan product x ◦ y = (xy + yx)/2. A JC∗-algebra is a norm
closed complex Jordan *-subalgebra of B(H).
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Corresponding to an orthonormal basis of a complex Hilbert space
H, let J be the unique conjugate linear isometry which fixes that basis
elementwise. The transpose xt ∈ B(H) of an element x ∈ B(H) is then
defined by xt = Jx∗J

2.1. Ruan Classification Scheme. If R is a von Neumann algebra
and e is a projection inR, then V := eR(1−e) is a W*-TRO. Conversely
if V ⊂ B(K,H) is a W*-TRO, then with V ∗ = {x∗ : x ∈ V } ⊂
B(H,K), M(V ) = XX∗

sot ⊂ B(H), N(V ) = X∗X
sot ⊂ B(K), let

RV =

[
M(V ) V
V ∗ N(V )

]
⊂ B(H ⊕K)

denote the linking von Neumann algebra of V . Then there is a SOT-
continuous TRO-isomorphism V ' eRe⊥, where e =

[
1H 0
0 0

]
and e⊥ =[

0 0
0 1K

]
.

In particular, if V = pM where p is a projection in a von Neumann
algebra M , then

RV =

[
pMp pM
Mp c(p)M

]
⊂ B(H ⊕H),

where c(p) denotes the central support of p (see [4, p. 965]).
A W∗-TRO V is of type I,II, or III according as RV is a von Neumann

algebra of the corresponding type. A W∗-TRO of type II is said to be
of type IIε,δ, where ε, δ ∈ {1,∞}, if M(V ) is of type IIε and N(V ) is
of type IIδ.

Ruan’s main representation theorems from [20] are summarized in
the following theorem.

Theorem 2.1. (Ruan [20]) Let V be a W∗-TRO.

i: If V is a W*-TRO of type I, then V is TRO-isomorphic to
⊕αL∞(Ωα, B(Kα, Hα)). ([20, Theorem 4.1])

ii: If V is a W*-TRO of one of the types I∞,∞, II∞,∞ or III,
acting on a separable Hilbert space, then V is a stable W*-
TRO, and hence TRO-isomorphic to a von Neumann algebra.
([20, Corollary 4.3])

iii: If V is a W*-TRO of type II1,∞ (respectively II∞,1), then V is
TRO-isomorphic to B(H,C)⊗M (respectively B(C, H)⊗N),
where M (respectively N) is a von Neumann algebra of type
II1. ([20, Theorem 4.4])

According to Ruan [20, page 862], “The structure of a type II1,1 W*-
TRO is a little bit more complicated.” Nevertheless, using techniques
developed for approximately finite dimensional (AFD) von Neumann
algebras of type II1, he is able to prove ([20, Theorem 5.4]) that every
injective W*-TRO of type II1,1 acting on a separable Hilbert space is
rectangularly AFD (approximately finite dimensional). Together with
other results from [20, Sections 3,4], he proves that any W*-TRO acting
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on a separable Hilbert space is injective if and only if it is rectangularly
AFD ([20, Theorem 5.5]).

2.2. Horn-Neher Classification Scheme.
A complex JBW∗-triple is a complex JB∗-triple which is also a dual

Banach space. The structure of JBW∗-triples is fairly well understood.
Every JBW∗-triple is a direct sum of a JBW∗-triple of type I and a
continuous JBW∗-triple (defined below). JBW∗-triples of type I have
been defined and classified in [14] and continuous JBW∗-triples have
been classified in [15]. JBW∗-triples of type I will not be defined here.
Their classification theorem from [14] states: A JBW∗-triple of type
I is an `∞-direct sum of JBW∗-triples of the form A ⊗ C, where A is
a commutative von Neumann algebra and C is a Cartan factor. (For
Cartan factors of types 1-6, see [8, Theorem 2.5.9 and page 168]. A
Cartan factor of type 1 is by definition B(H,K), where H and K are
complex Hilbert spaces. No other information about Cartan factors is
needed in this paper)

A JBW ∗-triple A is said to be continuous if it has no type I direct
summand. In this case it is known that, up to isometry, A is a JW ∗-
triple, that is, a subspace of the bounded operators on a Hilbert space
which is closed under the triple product xy∗z + zy∗x and closed in the
weak operator topology. More importantly, it has a unique decompo-
sition into weak∗-closed triple ideals, A = H(W,α)⊕pV, where W and
V are continuous von Neumann algebras, p is a projection in V , α is a
∗-antiautomorphism of W order 2 and H(W,α) = {x ∈ W : α(x) = x}
(see [15, (1.20) and section 4]). Notice that the triple product in pV
is given by (xy∗z + zy∗x)/2 and that H(W,α) is a JBW∗-algebra with
the Jordan product x ◦ y = (xy + yx)/2.

A continuous JBW∗-triple of the form pM (which is a W∗-TRO), is
said to be of associative type, and is classified into four types in [15] as
follows.

• IIa1 if M is of type II1 and p is (necessarily) finite.

• IIa∞,1 if M is of type II∞ and p is a finite projection.

• IIa∞ if M is of type II∞ and p is a properly infinite projection.

• IIIa if M is of type III and p is a (necessarily) properly infinite
projection.

A continuous JBW∗-triple of the form H(W,α) (which is a JBW∗-
algebra), is said to be of hermitian type, and is classified into three
types in [15] as follows.

• IIherm1 if W is of type II1.

• IIherm∞ if W is of type II∞.

• IIIherm if W is of type III.
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2.3. Universal Enveloping TROs. If E is a JC*-triple, denote by
C∗(E) and T ∗(E) the universal C*-algebra and the universal TRO of E
respectively (see [4, Theorem 3.1,Corollary 3.2, Definition 3.3]). Recall
that the former means that C∗(E) is a C*-algebra, there is an injec-
tive JC*-homomorphism αE :→ C∗(E) with the properties that αE(E)
generates C∗(E) as a C*-algebra and for each JC*-homomorphism
π : E → A, where A is a C*-algebra, there is a unique *-homomorphism
π̃ : C∗(E)→ A such that π̃ ◦ αE = π. The latter means that T ∗(E) is
a TRO, there is an injective TRO-homomorphism αE :→ T ∗(E) with
the properties that αE(E) generates T ∗(E) as a TRO and for each
JC*-homomorphism π : E → T , where T is a TRO, there is a unique
TRO-homomorphism π̃ : T ∗(E)→ T such that π̃ ◦ αE = π.

In several places in the papers [4, 6, 7], reference is made to the fact
that the universal TRO construction commutes with finite direct sums
of JC*-triples. More generally:

Proposition 2.2. If Ei (i ∈ I) is a family of JC∗-triples, then

T ∗(⊕iEi) = ⊕iT ∗(Ei).

Proof. Let E = ⊕iEi. It will be shown that (R, β) := (⊕iT ∗(Ei),⊕αEi)
satisfies the properties enjoyed by (T ∗(E), αE), that is, R is a TRO and
β : E → R is an injective triple isomorphism such that

(a) β(E) generates R as a TRO;

(b) for each triple homomorphism π : E → T , where T is a TRO,
there is a (necessarily unique) TRO homomorphism π̃ : R → T such
that π̃ ◦ β = π.

It is clear that R is a TRO, β is an injective triple isomorphism, and
β(E) generates R as a TRO. Let π : E → R be a triple homomorphism.
Then πi := π|Ei is a triple homomorphism from Ei to T , so there exists
a TRO homomorphism π̃i : T ∗(Ei)→ T such that π̃i ◦ αEi = πi.

Consider the TRO homomorphism σ := ⊕iπ̃i : R→ ⊕iπi(Ei). Since
the Ei are pairwise orthogonal ideals in E, the π(Ei) are pairwise or-
thogonal (triple) ideals in T and ⊕iπi(Ei) ⊂ T , that is, σ has range in
T . Moreover, it is easily verified that σ ◦β = π so that π̃ may be taken
to be σ. �

The property of being universally reversible (cf. [7]) will be impor-
tant for our proofs. A JC-algebra A ⊂ B(H)sa is called reversible if

a1, . . . , an ∈ A⇒ a1 · · · an + an · · · a1 ∈ A.

A is universally reversible if π(A) is reversible for each representation
(=Jordan homomorphism) π : A→ B(K)sa. A JC∗-algebra A ⊂ B(H)
is called reversible if

a1, . . . , an ∈ A⇒ a1 · · · an + an · · · a1 ∈ A.
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and A is universally reversible if π(A) is reversible for each represen-
tation (=Jordan ∗-homomorphism) π : A → B(K). Since JC-algebras
are exactly the self-adjoint parts of JC∗-algebras, a JC∗-algebra A is
reversible (respectively, universally reversible) if and only if the JC-
algebra Asa is reversible (respectively, universally reversible).

A JC∗-triple A ⊂ B(H,K) is called reversible if a1, . . . , a2n+1 ∈ A⇒
a1a

∗
2a3 · · · a2n−1a

∗
2na2n+1 + a2n+1a

∗
2na2n−1 · · · a3a

∗
2a1 ∈ A.

and A is universally reversible if π(A) is reversible for each representa-
tion (=triple homomorphism) π : A→ B(H ′, K ′).

It is easy to check that if a JC∗-algebra is universally reversible as a
JC∗-triple, then it is universally reversible as a JC∗-algebra.

Given a JC-algebra A , there is a universal C∗-algebra B of A, analo-
gous to the definition of C∗(E) given above for JC∗-triples E, with the
following properties: there is a Jordan homomorphism π from A into
Bsa such that B is the C∗-algebra generated by π(A) and for every Jor-
dan homomorphism π1 from A into Csa for some C∗-algebra C, there is
a ∗-homomorphism π2 : B → C such that π1 = π2 ◦ π. (see [13, section
4]). It is clear that B = C∗(E) where E is the complexification of A.

For the convenience of the reader, the following theorem is stated.

Theorem 2.3. ([13, Theorem 4.4]) Let A be a universally reversible
JC-algebra, B a C∗-algebra , and θ : A → Bsa an injective homomor-
phism such that B is the C∗-algebra generated by θ(A). If B admits
an antiautomorphism ϕ such that ϕ ◦ θ = θ, then θ extends to a ∗-
isomorphism of C∗(A) onto B.

3. The universal enveloping TROs of pM and of H(N, β)

The proofs of the theorems in this section are very short since several
results from [7] are used, as well as one each from [4] and [12].

3.1. The universal enveloping TRO of pM .

Lemma 3.1. Let W be a continuous von Neumann algebra, and let e
be a projection in W . Then the TRO eW does not admit a nonzero
TRO homomorphism onto C.

Proof. Suppose, by way of contradiction, that f is a nonzero TRO
homomorphism of eW onto C. Since f(e) = f(ee∗e) = f(e)|f(e)|2,
either f(e) = 0 or |f(e)| = 1. The former case can be ruled out since
for x ∈ W , f(ex) = f((e1)(e1)∗(ex)) = |f(e)|2f(ex) and f would be
zero. If then f(e) = λ with |λ| = 1, then replacing f by λf it can be
assumed that f(e) = 1.

For x, y ∈ W , f((exe)(eye)) = f(exee∗eye) = f(exe)f(e)f(eye) =

f(eye)f(eye) and f((exe)∗) = f(ex∗e) = f(e(exe)∗e) = f(exe) so that
f |eWe is a ∗-homomorphism onto C and since f(e) = 1 = ‖f‖, f |eWe
is a state of eWe. Moreover f |eWe, being a ∗-homomorphism is order
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preserving and has the value 0 or 1 on each projection of eWe. It
follows trivially that f is completely additive on projections and is
therefore a normal functional by a theorem of Dixmier [21, 1.13.2, and
page 30]. Now apply the theorem of Plymen ([19]) to the effect that
a continuous von Neumann algebra admits no dispersion-free normal
state. (A state is dispersion-free if it preserves squares of self-adjoint
elements.) �

Theorem 3.2. Let W ⊂ B(H) be a continuous von Neumann algebra,
and let e be a projection in W . Then T ∗(eW ) = eW ⊕W tet, where xt

be any transposition on B(H).

Proof. By [7, Proposition 3.9], eW is universally reversible and so by
[7, Theorem 4.11], it does not admit a TRO homomorphism onto a
Hilbert space of dimension greater than 2. The proof is completed by
applying Lemma 3.1 and [7, Theorem 5.4]. �

3.2. The universal enveloping TRO of H(N, β). Let E be a JC∗-
algebra. Similar to the construction of C∗(E) when E is considered as a
JC∗-triple, there is a C∗-algebra C∗J(E) and a Jordan ∗-homomorphism
βE : E → C∗J(E) such that C∗J(E) is the C∗-algebra generated by
βE(E) and every Jordan ∗-homomorphism π : E → B, where B is
a C∗-algebra, extends to a ∗-homomorphism of C∗J(E) into B. (see
[4, Remark 3.4])

Lemma 3.3. If E is a JC∗-algebra, then C∗J(E) is ∗-isomorphic to
C∗(E).

Proof. By definition of C∗J(E), there exists a ∗-homomorphism α̃E :
C∗J(E)→ C∗(E) such that α̃E ◦βE = αE. By definition of C∗(E), there

exists a ∗-homomorphism β̃E : C∗(E)→ C∗J(E) such that β̃E◦αE = βE.

By definition of C∗J(E), there exists a ∗-homomorphism (β̃E ◦ αE)˜ :

C∗J(E)→ C∗J(E) such that (β̃E ◦ αE)˜ ◦ βE = β̃E ◦ αE. By definition of
C∗(E), there exists a ∗-homomorphism (α̃E ◦ βE)˜ : C∗(E) → C∗(E)
such that (α̃E ◦ βE)˜ ◦ αE = α̃E ◦ βE.

By diagram chasing (α̃E ◦ βE)˜ = α̃E ◦ β̃E and (β̃E ◦αE)˜ = β̃E ◦ α̃E.
(It is enough to check this on the generating sets αE(E) and βE(E).)

It follows that α̃E ◦ β̃E = idC∗(E) and β̃E ◦ α̃E = idC∗J (E) so that α̃E is

a ∗-isomorphism with inverse β̃E. �

Theorem 3.4. If N is a continuous von Neumann algebra, then

T ∗(H(N, β)) = N.

Proof. Let E = H(N, β). By [4, Proposition 3.7], T ∗(E) = C∗J(E). By
Lemma 3.3, C∗J(E) ' C∗(E). By [7, Proposition 2.2], E is universally
reversible. In Theorem 2.3, let A = Esa, B = N , α = β and θ(x) = x
for x ∈ A. By [12, Corollary 2.9], N is the C∗-algebra generated by
θ(A), so that Theorem 2.3 applies to finish the proof. �
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Remark 3.5. [12, Corollary 2.9], which was used in the proof of The-
orem 3.4, is a corollary to [12, Theorem 2.8], which states that if N
is a von Neumann algebra admitting a ∗-antiautomorphism α and if
H(N,α)sa has no type I1 part, then N is generated as a von Neumann
algebra by H(N,α)sa. The author of [12] was apparently unaware that
[12, Corollary 2.9] was proved in the case of a continuous factor by
Ayupov in 1985 [1], and the theorem in this case appeared as Theorem
1.5.2 in the book [2] in 1997.

4. Structure of W*-TROs via JC*-triples

Now suppose that X is a W*-TRO, and consider the space X with
the JC*-triple structure given by {xyz} = (xy∗z + zy∗x)/2, so that X
becomes a JBW*-triple. As noted in (1.1), there is a surjective linear
isometry

(4.1) X 7 → ⊕αL∞(Ωα, Cα)⊕ pM ⊕H(N, β),

where each Cα is a Cartan factor, M and N are continuous von Neu-
mann algebras, p is a projection in M , β is a *-antiautomorphism of
N of order 2 with fixed points H(N, β).

The author acknowledges that in the following proposition, (a) is
only a mild improvement of the results of Theorem 1.1, and Corol-
lary 4.2 was proved by Ruan [20] without the separability assumption.
However, the approach is different and has promise for future research
(see section 5).

Proposition 4.1. Let V be a W∗-TRO.
(a) If V has no type I part, then it is TRO-isomorphic to eA⊕ Af ,

where A is a continuous von Neumann algebra.
(b) If V acts on a separable Hilbert space, then it is TRO-isomorphic

to
⊕αL∞(Ωα, B(Hα, Kα))⊕ eA⊕ Af

where A is a continuous von Neumann algebra.

Proof. For any W∗-TRO, by (4.1), write V = V1 ⊕ V2 ⊕ V3, where Vi
are weak*-closed orthogonal triple ideals of V with V1 triple isomorphic
to a JBW∗-triple ⊕αL∞(Ωα, Cα) of type I, V2 triple isomorphic to a
right ideal pM in a continuous von Neumann algebra M , and V3 triple
isomorphic to H(N, β) for some continuous von Neumann algebra N
admitting a ∗-antiautomorphism β of order 2.

Since the triple ideals coincide with the TRO ideals (see [4, Lemma
2.1]), in particular each Vi is a sub-W∗-TRO of V .

Consider first V2. By Theorem 1.1(a), V2 is TRO-isomorphic to
eA⊕ Af , for some von Neumann algebra A. In particular, V2 is triple
isomorphic to eA ⊕ f tAt = (e ⊕ f t)(A ⊕ At) and to pM , so by [15],
A⊕At has the same type as M . It follows that A is a continuous von
Neumann algebra.



UNIVERSAL ENVELOPING TROS AND STRUCTURE OF W∗-TROS 9

Next it is shown that V3 = 0. V3 is triple isomorphic to H(N, β) and
TRO-isomorphic to eA⊕ Af , for a von Neumann algebra A.

Thus the continuous JBW∗-triple H(N, β) of hermitian type is triple
isomorphic to the JBW∗-triple (e ⊕ f t)(A ⊕ At), which is necessarily
continuous and hence of associative type. By the uniqueness of the
representation theorem for continuous JBW∗-triples ([15, Section 4]),
H(N, β) = 0. (For alternate proofs of the descriptions of V2 and V3

just given, using techniques from the theories of Jordan triples and
universal enveloping TROs, see section 5.)

Finally, consider V1. It will be shown that if V has no type I part,
then V1 = 0, which would prove (a); and if V acts on a separable
Hilbert space, then V1 is of the form ⊕αL∞(Ωα, B(Hα, Kα)), up to
TRO-isomorphism, which would prove (b) and complete the proof of
the theorem.

There are weak*-closed TRO ideals Vα such that V1 = ⊕αVα with
Vα triple isomorphic to L∞(Ωα, Cα) provided that Vα 6= 0, which is
assumed henceforth. It is shown in [16, Lemma 2.4 and Proof of The-
orem 1.1] that no Cartan factor of type 2,3,4,5,6 can be isometric to a
TRO. It follows easily that L∞(Ωα, Cα) cannot be isometric to a TRO
unless Cα is a Cartan factor of type 1. Therefore each Cα is a Cartan
factor of type 1, and therefore Vα is either zero, or triple isomorphic to
L∞(Ωα, B(Hα, Kα)) for suitable Hilbert spaces Hα and Kα.

Next consider Vα for a fixed α. To simplify notation let U denote Vα
and W denote L∞(Ω, B(H,K)). By [6, Theorem 4.9],

T ∗(W ) = L∞(Ω, B(H,K)⊕B(H,K)t)

= L∞(Ω, B(H,K))⊕ L∞(Ω, B(H,K)t)

and αW (x)(ω) = x(ω)⊕ x(ω)t, for x ∈ T ∗(W ) and ω ∈ Ω.
By Theorem 1.1(a), U is TRO-isomorphic to eA⊕Af , for some von

Neumann algebra A. Since T ∗(U) is TRO-isomorphic to T ∗(W ), by
Theorem 3.2,

(4.2) eA⊕Atet⊕Af⊕f tAt TRO' L∞(Ω, B(H,K))⊕L∞(Ω, B(H,K)t).

The right side of (4.2) is a JBW∗-triple of type I and thus by [9, The-
orem 5.2] or [5, Theorem 4.2], eA is a JBW∗-triple of type I, which
implies that A is a von Neumann algebra of type I.

Summarizing up to this point, V is arbitrary, and V = V1⊕ V2 + V3,
where

(4.3) V1
TRO' ⊕αeαAα ⊕ Aαfα,

V2
TRO' eA⊕ Af, V3 = 0,

where each Aα is a von Neumann algebra of type I, and A is a contin-
uous von Neumann algebra.

Now suppose that V has no type I part. Then M(V ) has no type
I part and the same holds for M(Vα). But M(Vα) is *-isomorphic to



10 BERNARD RUSSO

eαAαeα ⊕ c(fα)Aα, which is a von Neumann algebra of type I, hence
Vα = 0. But it was assumed that Vα 6= 0 so this contradiction shows
that V1 = 0 and (a) is proved.

To prove (b) consider again V1, and focus on a component on the
right side of (4.3) for a fixed α, which is denoted, again for notation’s
sake, by eB ⊕Bf where B is a von Neumann algebra of type I. Write
B = ⊕γ∈ΓL

∞(Σγ, B(Hγ)), e = ⊕γeγ, and f = ⊕γfγ so that

eB = ⊕γ∈ΓeγL
∞(Σγ, B(Hγ)),

Bf = ⊕γ∈ΓL
∞(Σγ, B(Hγ))fγ.

The reduction theory of von Neumann algebras ([10, Part II]) will
now be used to conclude this proof, so assume that B acts on a sepa-
rable Hilbert space. For a fixed γ ∈ Γ,

L∞(Σγ, B(Hγ)) =

∫ ⊕
Σγ

B(Hγ) dµγ(σγ),

L2(Σγ, Hγ) =

∫ ⊕
Σγ

Hγ dµγ(σγ),

B =
∑⊕

γ∈Γ

∫ ⊕
Σγ
B(Hγ) dµγ(σγ),

eγ =

∫ ⊕
Σγ

eγ(σγ) dµγ(σγ),

and

eB =
∑⊕

γ∈Γ

∫ ⊕
Σγ
eγ(σγ)B(Hγ) dµγ(σγ).

For notation’s sake, for a fixed γ ∈ Γ, let σ = σγ, µ = µγ, e = eγ,
Σ = Σγ, H = Hγ, and suppose H is a separable Hilbert space. For
each n ≤ ℵ0, let Σn = {σ ∈ Σ : e(σ) has rank n}, en = e|Σn , and let
Kn be a Hilbert space of dimension n. Then∫ ⊕

Σ
e(σ)B(H) dµ(σ) =

∑⊕
n≤ℵ0

∫ ⊕
Σn
en(σ)B(H) dµ(σ).

For each σ ∈ Σn, let Gσ = {all unitaries U : en(σ)H → Kn}, let
G = ∪σ∈ΣnGσ, and then set

E = {(σ, U) ∈ Σn ×G : U ∈ Gσ}.
By the measurable selection theorem [10, Appendix V], there exists
a µ-measurable subset Σ′n ⊂ Σn of full measure and a µ-measurable
mapping η of Σ′n into G, such that η(σ) ∈ Gσ for every σ ∈ Σ′n.

It is easy to verify that for each σ ∈ Σ′n, Tn,σ : en(σ)x 7→ η(σ)en(σ)x
is a TRO-isomorphism of en(σ)B(H) onto B(H,Kn) and that {Tn,σ :
σ ∈ Σ′n} is a µ-measurable field of TRO-isomorphisms.
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Hence
∫ ⊕

Σn
Tn,σ dµ(σ) is a TRO-isomorphism of

∫ ⊕
Σn
en(σ)B(H) dµ(σ)

onto
∫ ⊕

Σn
B(H,Kn) dµ(σ), that is∫ ⊕

Σn

en(σ)B(H) dµ(σ)
TRO' L∞(Σn, B(H,Kn)).

Going back to the earlier notation, since

eB =
∑⊕

γ∈Γ

∫ ⊕
Σγ
eγ(σγ)B(Hγ) dµγ(σγ).

it follows that

eB
TRO'

∑⊕
γ∈Γ

∑
n≤ℵ0 L

∞(Σγ,n, B(Hγ, Kn)).

By the same arguments, it is clear that also

Bf
TRO'

∑⊕
γ∈Γ′

∑
n≤ℵ0 L

∞(Σ′γ,n, B(Kn, H
′
γ)).

Recalling that B was one of the Aα in (4.3), this completes the proof
of (b). �

Corollary 4.2 (Ruan). A W∗-TRO of type I, acting on a separable
Hilbert space, is TRO-isomorphic to ⊕αL∞(Ωα, B(Hα, Kα)).

Corollary 4.3. A W∗-TRO of type II1,1 is TRO-isomorphic to eA ⊕
Af , where e, f are centrally orthogonal projections in a von Neumann
algebra A of type II1.

5. Alternate proofs

Presented here are alternate approaches to the proofs of the asser-
tions concerning V2 and V3 in the proof of Proposition 4.1(a), along the
lines of the proof of the assertion concerning V1. The purpose for doing
this is that, despite the fact that the proofs are longer, they illustrate
the power of the techniques used from [4] and [7].

Consider first V2. In what follows, it is assumed that V has no
type I part. Recall that V2 is triple isomorphic to a right ideal pM
in a continuous von Neumann algebra M . For notation’s sake, denote
V2 by V and pM by W . By Theorem 3.2, T ∗(W ) = W ⊕ W t and
αW (x) = x ⊕ xt. By [7, Proposition 3.9]), and [7, Theorem 4.11])
W does not admit a triple homomorphism onto a Hilbert space of
dimension greater than 2, and therefore the same holds for V .

Next it is shown that W does not admit a triple homomorphism
onto C, and it follows that V does not admit a triple homomorphism,
and a priori, a TRO-homomorphism onto C, thus guaranteeing, by
[7, Theorem 5.4]), that T ∗(V ) = V ⊕ V t and αV (x) = x⊕ xt.

Suppose then, that f : pM → C is a nonzero triple homomorphism,
that is, for x, y, z ∈M ,

(5.1) f{px, py, pz} = f

(
pxy∗pz + pzy∗px

2

)
= f(px)f(py)f(pz).
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Putting x = y = z = 1 in (5.1) yields f(p) = |f(p)|2f(p), so either
f(p) = 0 or |f(p)| = 1. Suppose f(p) = 0. Then setting y = 1 in (5.1)
yields

f(pxpz + pzpx) = 0, (x, z ∈M)

and setting z = 1 in (5.1) yields

f(pxy∗p+ py∗px) = 0, (x, y ∈M),

which implies
f(pxp+ px) = 0 (x ∈M).

Thus
0 = f(pxy∗p) + f(py∗px) = −f(pxy∗)− f(pxy∗p)

and in particular

0 = f(py∗p) + f(py∗p) = −f(py∗)− f(py∗p)

so that f(py∗) = 0 for y ∈M , that is, f = 0.
Assume now without loss of generality, that f(p) = 1. Writing

(pxp)(pyp) = (pxp)p∗(pyp), then for x, y ∈M ,

f((pxp) ◦ (pyp)) = f{pxp, p, pyp} = f(pxp)f(pyp)

so that f is a Jordan ∗-homomorphism of pMp onto C. It follows that f
is a normal dispersion-free state on a continuous von Neumann algebra,
and hence must be zero (see the proof of Lemma 3.1).

Thus T ∗(V ) = V ⊕ V t, αV (x) = x ⊕ xt and there is a weak*-
continuous TRO-isomorphism of T ∗(V ) onto T ∗(W ), by [11, Propo-
sition 2.4]. Thus V is TRO-isomorphic to a weak*-closed ideal I in
W ⊕W t. Writing I = (I ∩W )⊕ (I ∩W t), then I ∩W is a weak*-closed
ideal in W , let’s call it I1, and I ∩W t is a weak*-closed ideal in W t,
let’s call it I2. As noted in [15], there are projections p1 ≤ p, p2 ≤ pt

such that I1 = p1M and I2 = M tp2.
More precisely,

(5.2) I = I1⊕ I2 = (p1⊕ 0)(M ⊕M t)⊕ (M ⊕M t)(0⊕ p2) = eA⊕Af,
where A = M ⊕M t is a continuous von Neumann algebra, e = p1 ⊕ 0
and f = 0⊕ p2.

With regard to Corollary 4.3, suppose now that V is of type II1,1.
It will be shown that A can be chosen to be of type II1. Since

RV

∗−iso.' RI1 ⊕RI2 =

[
eAe eA
Ae c(e)A

]
⊕
[
c(f)A Af
fA fAf

]
,

it follows that c(f)A and c(e)A are each of type II1.
Since p1M = p1(c(p1)M) and M tp2 = (M tc(p2))p2, if A = M⊕M t is

replaced by Ã = c(p1)M⊕c(p2)M t, then Ã is a continous von Neumann
algebra, eA⊕ Af = eÃ⊕ Ãf , and

RV

∗−iso.'
[
eÃe eÃ

Ãe Ã

]
⊕
[
Ã Ãf

fÃ fÃf

]
,
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so that Ã is of type II1.

Consider next V3. V3 is triple isomorphic to H(N, β) for some con-
tinuous von Neumann algebra N which admits a ∗-anti-automorphism
β of order 2. For notation’s sake, denote V3 by V and H(N, β) by W .

Note first that V is a universally reversible TRO. This follows by
the same arguments which were used in the discussion of V2 in this
subsection. Indeed, by [7, Proposition 2.2] and the paragraph preceding
it, W is a universally reversible JC∗-triple, and therefore so is V . As
before, V does not admit a triple homomorphism onto a Hilbert space
of dimension different from 2.

On the other hand, V has no nonzero TRO-homomorphism onto C,
since such a homomorphism would extend to a ∗-homomorphism of the
linking von Neumann algebra RV of V onto M2(C), whose restriction
ρ to the upper left corner of RV would be a dispersion-free state on a
continuous von Neumann algebra. It is easily seen that ρ is completely
additive on projections, hence normal and hence cannot exist (see the
proof of Lemma 3.1).

So T ∗(V ) = V ⊕V t, αV (x) = x⊕xt, and V ⊕V t is TRO-isomorphic
to T ∗(W ) = N , by Theorem 3.4. By [11, Proposition 2.4], the TRO-
isomorphism is weak*-continuous. Hence the weak*-closed TRO ideal
V in V ⊕ V t is mapped onto a weak*-closed TRO ideal in N , which is
necessarily a two-sided ideal in N , say zN for some central projection
z in N . From (5.2) it follows that V2 ⊕ V3 is TRO-isomorphic to

[(e⊕ 0)(A⊕N)]⊕ [(A⊕N)(f ⊕ 0)⊕ [(0⊕ z)(A⊕N)],

so that V2 ⊕ V3 is the direct sum of a weakly closed left ideal and a
weakly closed right ideal in a continuous von Neumann algebra, which
is tantamount to proving that V3 = 0.

This last argument shows that (a) implies (b) in Theorem 1.1.
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