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Introduction

Central extensions play an important role in the theory of Lie algebras, and it is
therefore not surprising that there are many results on central extensions of various classes
of Lie algebras, too many for any meaningful survey. Recently, several authors have
considered central extensions of Lie superalgebras. Scheunert and Zhang [24] develop a
theory of central extensions of arbitrary Lie superalgebras over a field, while others have
looked at central extensions of specific classes of Lie superalgebras: Iohara and Koga
[14] (basic classical Lie superalgebras extended by a commutative associative algebra),
Mikhalev and Pinchuk [18] (Lie superalgebras sl(m,n;A) for A an associative algebra)
and Duff [9, Ch.V] (orthosymplectic Lie superalgebras over commutative superrings). See
also 1.17 for more hints to the literature.

The aim of this paper is to provide an introduction to the theory of universal central
extensions of Lie superalgebras, with emphasis on the general part of the theory, rather
than on specific examples. We have tried to state the theory in what seemed to us the
appropriate generality, in particular since this could be done without any extra “cost”.
Thus, we consider Lie superalgebras over a commutative superring, i.e., allow scalars of
even or odd parity. In a theory where vectors may have even or odd parity, it seems to
be more natural to allow scalars of both parity. Another instance is the definition of a
universal central extension itself, which some authors require to be a perfect although this
follows from the universal mapping property.

In §1 we first present all the necessary definitions, 1.1 – 1.3. We then develop the general
theory of universal extensions. In particular, we give two characterizations of universal
central extensions in Th. 1.8 (being simply connected respectively centrally closed) and
show that a Lie superalgebra has a universal central extension if and only if it is perfect
(Th. 1.8 and Th. 1.14). That perfectness is sufficient for the existence of a universal central
extension is a result whose proof we have postponed as long as possible, so that the reader
can see how far the theory can be developed by just using the universal property. We
prove the existence of a universal central extension in Th. 1.14 by providing a concrete
model. Our model is the super version of the universal central extension of a perfect Lie
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algebra, due to van der Kallen [28]. This construction provides a Lie superalgebra uce(L)
for any Lie superalgebra L, and the assignment L → uce(L) is a covariant functor uce on
the category of Lie superalgebras. Other models are discussed in 1.17.

The emphasis on the functor uce is one of the novelties of our presentation. It makes it
easy to see that automorphisms and derivations lift to central extensions. This is shown
in §2. As an application we revisit a theme of Benkart and Moody [2]: what is the central
extension of a semidirect product L = K oM of two Lie (super)algebras K and M? In
Th. 2.7 we describe uce(K oM) and show that uce(K oM) = uce(K)o uce(M) if an only
if uce(M) operates trivially on the second homology H2(K) of K. This result clarifies [2,
Th. 3.8].

Most of the results in the paper are known for Lie algebras, although some of the
published proofs are different. Some hints to the literature are provided in the notes 1.17
and 2.8 at the end of §1 and §2 respectively. These notes should not be considered as a
complete overview of the theory of central extensions.

1. Universal central extensions of Lie superalgebras:
Some general results

1.1. Terminology and notation. In this subsection we review some terminology
and establish the notation used in the paper. We mainly follow [8, Ch. 1], [16, Ch. 1]
and [17, Ch. 3], although with some modifications, for example in our definition of a
commutative Z2-graded ring, see (1) below.

We write Z2 = {0̄, 1̄} and use its standard field structure. We put (−1)0̄ = 1 and
(−1)1̄ = −1. Most objects will be Z2-graded, say M = M0̄⊕M1̄. In this case, elements in
M0̄ ∪M1̄ are called homogenous. For a homogenous m ∈ Mε̄, ε̄ ∈ Z2, its degree is denoted
by |m| = ε̄ ∈ Z2. We adopt the convention that whenever the degree function occurs in a
formula, the corresponding elements are supposed to be homogeneous.

An arbitrary (not necessarily associative) ring S is called Z2-graded if S = S0̄ ⊕ S1̄ as
abelian group and SᾱSβ̄ ⊂ Sᾱ+β̄ for ᾱ, β̄ ∈ Z2. A Z2-graded ring is called unital if there
exists 1 ∈ S0̄ such that 1s = s for all s ∈ S, and it is called commutative (sometimes also
called supercommutative) if

st = (−1)|s||t|ts for s, t ∈ S and s2
1̄ = 0 for s1̄ ∈ S1̄. (1)

Obviously the second condition in (1) is not necessary if S does not have 2-torsion. Note the
difference between a commutative ring and a commutative Z2-graded ring. Also compare
the definition of a commutative Z2-graded ring with that of a Lie superalgebra in 1.2.
We will call S a base superring if S is a commutative unital associative Z2-graded ring.
Unless specified otherwise, S will always denote such a base superring and all structures
considered here will be defined over S in a sense to be explained in the following.

A S-supermodule is a left module M over (the associative ring) S whose underlying
abelian group is Z2-graded, i.e., M = M0̄⊕M1̄, such that SᾱMβ̄ ⊂ Mᾱ+β̄ for ᾱ, β̄ ∈ Z2. It
is convenient to consider S-supermodules also as S-bimodules by defining the right action
as

ms = (−1)|s||m|sm (2)

for s ∈ S and m ∈ M . Alternatively, one can define S-supermodules as S-bimodules
satisfying (2).

2



Let M and N be two S-supermodules, and let ᾱ ∈ Z2. A homomorphism of degree ᾱ
from M to N is a map f : M → N satisfying

(i) f(Mβ̄) ⊂ Nᾱ+β̄ for all β̄ ∈ Z2,
(ii) f is additive and f(ms) = f(m)s for m ∈ M and s ∈ S.

Note that then sf(m) = (−1)|s||f |f(sm). We denote by HomS(M, N)ᾱ the abelian group
of homomorphisms of degree ᾱ and put HomS(M,N) = HomS(M, N)0̄ ⊕ HomS(M, N)1̄.
This becomes a S-supermodule by defining (sf)(m) = sf(m).

Let M be a S-supermodule. A submodule of M is a submodule N of the S-module
M which respects the Z2-grading, i.e., N = (N ∩ M0̄) ⊕ (N ∩ M1̄). In particular, N
is a S-supermodule. The quotient of M by a submodule is again a S-supermodule with
respect to the canonical S-module structure and Z2-grading. The tensor product of two S-
supermodules M and N in the category of S-bimodules is a S-supermodule ([5, III, §11.5]).
We will often write ⊗ for ⊗S if S is clear from the context. Recall that ms⊗ n = m⊗ sn
for m ∈ M , s ∈ S and that the S-action on M ⊗N is given by s.(m⊗ n) = (sm)⊗ n and
(m⊗ n).s = m⊗ (ns).

Given a third S-supermodule P , a S-bilinear map of degree γ̄ is a map b: M ×N → P
satisfying

(i) b(Mᾱ, Nβ̄) ⊂ Pᾱ+β̄+γ̄ for all ᾱ, β̄ ∈ Z2,
(ii) b is additive in each argument,
(iii) b(ms, n) = b(m, sn) and b(m,ns) = b(m,n)s for all m ∈ M , n ∈ N and s ∈ S.

We note that then also sb(m,n) = (−1)|s||b|b(sm, n) holds. The tensor product M ⊗S N
has the universal property that there is an isomorphism between S-bilinear maps of degree
γ̄ and HomS(M ⊗S N, P )γ̄ by mapping b to the homomorphism m⊗ n 7→ b(m,n).

A S-superalgebra, also called a superalgebra over S, is a S-supermodule A = A0̄ ⊕ A1̄

together with a S-bilinear map A × A → A, called product, of degree 0̄. In particular
A is a Z2-graded ring. A S-superextension is an associative, unital and commutative
S-superalgebra. In particular, a S-superextension can serve as a new base superring.

Let T be a S-superextension, and let M be a S-supermodule. Then T ⊗S M has a
canonical left T -module structure which can be used to make T ⊗S M a T -supermodule.
If A is a S-superalgebra then T ⊗S A becomes a T -superalgebra, called the base superring
extension by

(t⊗ a)(t′ ⊗ a′) = (−1)|a||t
′|tt′ ⊗ aa′. (3)

If A is a commutative S-superalgebra or a S-superextension, then T⊗S A is a commutative
T -superalgebra respectively a T -superextension. An example of a Z-superextension is the
algebra of dual numbers Z[ε] = Z⊕Zε where ε is a homogenous element satisfying ε2 = 0.
It gives rise to the S-superalgebra of dual numbers S[ε] = S ⊗Z Z[ε]. We have

S[ε]0̄ =
{

S0̄ ⊕ S0̄ε if |ε| = 0̄,
S0̄ ⊕ S1̄ε if |ε| = 1̄,

and S[ε]1̄ =
{

S1̄ ⊕ S1̄ε if |ε| = 0̄,
S1̄ ⊕ S0̄ε if |ε| = 1̄.

(4)

A related example is the Grassmann algebra over S, defined as GS = S ⊗Z GZ where
GZ = Z[ξi; i ∈ I] is the exterior algebra over Z in a finite or countable number of odd
generators ξi satisfying ξ2

i = 0 and ξiξj + ξjξi = 0 for i, j ∈ I.

1.2. Lie superalgebras. A S-superalgebra L with product [..] is a Lie S-superalgebra
if for all x, y, z ∈ L

[xy] = −(−1)|x||y|[yx], (1)
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[x[yz]] = [[xy]z] + (−1)|x||y|[y[xz]] and (2)
[w0̄w0̄] = 0 for all w0̄ ∈ L0̄ . (3)

Note that (3) is not needed if 1
2 ∈ S. Also, under the presence of (1) it is easily seen that

(2) is equivalent to the more symmetrical identity

(−1)|x||z|[x[yz]] + (−1)|y||x|[y[zx]] + (−1)|z||y|[z[xy]] = 0 . (4)

For ease of reading we will sometimes denote the product of a Lie superalgebra by [x, y]
instead of [xy].

Lie superalgebras over fields have been extensively studied, and the reader is referred
to the basic references [15] and [23]. Lie superalgebras over superextensions naturally
arise in the setting of root graded Lie superalgebras, see for example [12]. Any associative
superalgebra A becomes a Lie superalgebra with respect to the new product given by the
commutator [a, b] = ab−(−1)|a||b|ba. For example, for any S-supermodule M , EndS(M) =
HomS(M, M) is an associative S-superalgebra with respect to composition and hence
becomes a Lie superalgebra over S with respect to the commutator.

Let L be a Lie superalgebra over S. We note that then L0̄ is a Lie algebra over S0̄ and L1̄

is a module for L0̄. The centre of L is defined as Z(L) = {z ∈ L : [zx] = 0 for all x ∈ L}.
The derived algebra [LL] is the S-span (equivalently, the Z-span) of all products [xy],
x, y ∈ L. One calls L perfect if L = [LL]. A subalgebra (respectively an ideal) of L is a
S-submodule I satisfying [I, I] ⊂ I) (respectively [L, I] ⊂ I). Both Z(L) and [LL] are
ideals of L. If I is an ideal of L, the quotient L/I inherits a canonical Lie superalgebra
structure such that the natural projection map becomes a homomorphism, as defined
below. If T is a S-superextension, the base superring extension T ⊗S L, cf. 1.1.3, is a
Lie superalgebra over T . For example, this applies to the Grassmann algebra GS and
yields that GS ⊗S L is a Lie superalgebra over GS , in particular the so-called Grassmann
envelope G(L) := (GS⊗S L)0̄ = (G0̄⊗L0̄)⊕ (G1̄⊗L1̄) is a Lie algebra over S0̄. It is easily
seen that this characterizes Lie superalgebras: a superalgebra L is a Lie superalgebra if
and only if its Grassmann envelope G(L) is an ordinary Lie algebra.

If L′ is another Lie superalgebra over S, a homomorphism from L to L′ is a map
f ∈ HomS(L,L′)0̄ satisfying f [x, y] = [f(x), f(y)] for all x, y ∈ L. We point out that,
by definition, homomorphism are always even maps. We denote by LieS the category
of all Lie superalgebras over S with homomorphisms as just defined. The notions of
epimorphisms, isomorphisms and automorphisms have the obvious meaning. We denote
by Aut(L) the group of automorphisms of L. For a homogenous d ∈ EndS L the following
two conditions are equivalent:

(i) d([x, y]) = [d(x), y] + (−1)|d||x|[x, d(y)] for x, y ∈ L,
(ii) Id + εd is an automorphism of the base superring extension S[ε]⊗S L where S[ε] is

the S-superalgebra of dual numbers with |ε| = |d|, cf. 1.1.4.
We denote by (DerS L)ᾱ ⊂ EndS L, ᾱ ∈ Z2, the set of such maps and put DerS L =
(DerS L)0̄⊕ (DerS L)1̄. Elements of DerS L will be called derivations. It is easily seen that
DerS L is a subalgebra of the Lie superalgebra EndS(M). Each ad x: L → L : y 7→ [xy]
is a derivation, a so-called inner derivation, and IDerL = {ad x : x ∈ L} is an ideal of
DerS L.

For a Lie superalgebra M and a homomorphism g: M → DerS L one defines the semidi-
rect product L oM as usual: its underlying S-supermodule is L ⊕M and its product is
determined by [m,x] = g(m)(x) for m ∈ M, x ∈ L and the requirement that L and M are
subalgebras. If g = 0 we call LoM = L×M a direct product.
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1.3. Extensions of Lie superalgebras. An extension of a Lie superalgebra L is a
short exact sequence in the category LieS :

0 −→ I
e−→K

f−→L −→ 0 . (1)

Since e: I → e(I) = Ker f is an isomorphism we will usually identify I and e(I). An
extension of L is then the same as an epimorphism f : K → L. A homomorphism from an
extension f : K → L to another extension f ′: K ′ → L is a Lie superalgebra homomorphism
g: K → K ′ satisfying f = f ′ ◦ g; in other words, we have a commutative diagram

K g - K ′

@
@@R

f
¡

¡¡
ª

f ′

L

(2)

and hence in particular,

Ker g ⊂ g−1(Ker f ′) = Ker f and K ′ = g(K) + Ker f ′. (3)

An extension (1) is called split if there exists a Lie superalgebra homomorphism s: L → K,
called splitting homomorphism, such that f ◦ s = IdL. In this case, K = I ⊕ s(L) where
I = Ker f and s : L → s(L) is an isomorphism with inverse s−1 = f |s(L). Moreover,
K = Ios(L) is a semidirect product. Conversely, any semidirect product K = IoL gives
rise to a canonical split extension 0 → I → K → L → 0, where I → K : i 7→ i ⊕ 0 and
K → L : i⊕ l 7→ l. In this way, semidirect products and split exact sequences correspond
to each other. We point out that in general an extension need not be split; there need not
even exist a S-supermodule homomorphism s: L → K such that f ◦ s = IdL. We will say
the extension (1) splits uniquely if there exists a unique s: L → K with f ◦ s = IdL.

A central extension of L is an extension (1) such that Ker f ⊂ Z(K). We note that
for a split central extension (1) with splitting homomorphism s the Lie superalgebra K is
a direct product K = Ker f × s(L). A central extension K of L is called a covering if K
is perfect. In that case, also L is perfect.

A central extension u: L → L is called a universal central extension if there exists a
unique homomorphism from u: L → L to any other central extension f : K → L of L. It
is obvious from the universal property that

two universal central extensions of L are isomorphic as extensions, (4)

and hence in particular their underlying Lie superalgebras are isomorphic. We will prove
two characterizations of universal central extensions in Theorem 1.8, after we have estab-
lished some auxiliary results of independent interest. In particular, we will see that L has
a universal central extension if and only if L is perfect (1.8 and 1.14).

1.4. Lemma (central trick). Let f : K → L be a central extension.
(a) If f(x) = f(x′) and f(y) = f(y′) then [x, y] = [x′, y′].
(b) If g and g′ are homomorphisms from some Lie superalgebra P to K such that f◦g =

f ◦ g′, then g|[P, P ] = g′|[P, P ]. In particular, there exists at most one homomorphism
from a covering P → L to the central extension f : K → L.

Proof. In (a) we have x′ = x + z and y′ = y + z′ for some z, z′ ∈ Ker f ⊂ Z(K). This
immediately gives the claim. For the proof of (b) we use (a): g([x, y]) = [g(x), g(y)] =
[g′(x), g′(y)] = g′([x, y]).
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1.5. Lemma. Let f : K → L be a central extension of a perfect L.
(a) K = [K, K] + Ker f , and f : [K, K] → L is a covering.
(b) Z(K) = f−1(Z(L)) and f(Z(K)) = Z(L).

(c) If g: L → M is a central extension, then so is g ◦ f : K
f−→ L

g−→ M .
(d) If f ′: K ′ → L is a covering and g: K → K ′ a homomorphism from the extension

f : K → L to the extension f ′: K ′ → L, cf. 1.3.2,

K g - K ′

@
@@R

f
¡

¡¡
ª

f ′

L

then g: K → K ′ is a central extension. In particular, g is surjective.

Proof. (a) We have f([K,K]) = L, so f |[K, K] is a central extension of L. Moreover,
f([K, K]) = L also implies that K = [K,K]+Ker f , from which it then easily follows that
[K, K] is perfect.

(b) Let z ∈ K. Then z ∈ f−1(Z(L)) ⇔ [z,K] ⊂ Ker f . In particular, Z(K) ⊂
f−1(Z(L)). To prove the other inclusion, let z ∈ f−1(Z(L)). Then [z, K] ⊂ Z(K), and
so [z, K] = [z , [K, K] + Ker f ] = [z , [K, K]] = [[z, K], K] + [K, [z,K]] = 0, i.e., z ∈ Z(K).
The second formula in (b) is then immediate using surjectivity of f .

(c) follows from Ker(g ◦ f) = f−1(Ker g) ⊂ f−1(Z(L)) = Z(K).
(d) By 1.3.3 we have K ′ = [K ′,K ′] = [g(K), g(K)] = g([K, K]), and Ker g ⊂ Ker f is

central.

1.6. Corollary. Let L be an arbitrary Lie superalgebra. If L/Z(L) is perfect, then
Z(L/Z(L)) = 0.

Proof. We apply the second formula of Lemma 1.5(b) to the central extension f : L →
L/Z(L), where f is the canonical map.

In particular for a perfect L the corollary says that L/Z(L) is the “smallest” central
quotient, sometimes informally referred to as the bottom algebra.

1.7. Pullback Lemma. Let f : L → M be a homomorphism of Lie superalgebras, and
suppose g: N → M is a central extension. Then P = {(l, n) ∈ L ×N : f(l) = g(n)} is a
Lie superalgebra (a subalgebra of the direct product L×N), and pr1: P → L : (l, n) 7→ l is
a central extension. The extension pr1: P → L splits (uniquely) if and only if there exists
a (unique) Lie superalgebra homomorphism h: L → N such that g ◦ h = f .

It is useful to visualize the situation of the lemma by the following commutative dia-
gram, where pr2 is the canonical projection map

P
pr2 - N

pr1

? ?

g

L f - M

(1)

Proof. It is easily seen that P is a Lie superalgebra and that pr1: P → L is a central
extension. A map s: L → P splits the extension pr1 if and only if there exists a Lie
superalgebra homomorphism h: L → N such that s(l) = (l, h(l)) ∈ P for all l ∈ L,
equivalently, g ◦ h = f . Uniqueness of s is clearly equivalent to uniqueness of h.

6



1.8. Theorem (Characterization and properties of universal central exten-
sions). For a Lie superalgebra L the following are equivalent:

(i) L is simply connected, i.e., every central extension L′ → L splits uniquely;
(ii) L is centrally closed, i.e., Id: L → L is a universal central extension.

If u: L → M is a central extension, then (i) and (ii) are also equivalent to
(iii) u: L → M is a universal central extension of M .

In this case,
(a) both L and M are perfect, and
(b) Z(L) = u−1(Z(M)), u(Z(L)) = Z(M).

Proof. (i) ⇔ (ii): (i) holds if and only if for every central extension f : L′ → L there
exists a unique homomorphism g: L → L′ such that f ◦ g = IdL. By definition of a
universal central extension, this is equivalent to (ii).

(i) ⇒ (iii): Let g: N → M be a central extension, and let pr1: P → L be the central
extension constructed in Lemma 1.7. By assumption, pr1 splits uniquely. Hence again by
1.7, there exists a unique homomorphism h: L → N such that g ◦ h = u.

Suppose (iii) holds. We will first show (a). By Lemma 1.5 we know that u: [L,L] → M
is a covering. Hence, by the universal property of u there exists a unique homomorphism
f : L → [L,L] such that u ◦ f = u. Now let ι: [L,L] → L be the canonical injection. Then
ι ◦ f : L → L is a homomorphism with u ◦ (ι ◦ f) = u. The universal property of u, applied
to the central extension u, then shows that ι ◦ f = IdL. But then L = ι(f(L)) ⊂ [L, L],
and so L = [L,L]. By surjectivity of u, also M is perfect.

We can now easily prove (iii) ⇒ (i). Indeed, if f ′: L′ → L is a central extension,
Lemma 1.5(c) implies that u ◦ f ′ is a central extension of M . Since u is a universal central
extension, there exists a unique homomorphism g: L → L′ such that u = u ◦ f ′ ◦ g. By
Lemma 1.4(b), this implies f ′ ◦ g = IdL.

The assertion (b) is a special case of Lemma 1.5(b).

1.9. Corollary. Let f : K → L and g: L → M be central extensions. Then g◦f : K →
M is a universal central extension if and only if f : K → L is a universal central extension.

Proof. The conditions (i) and (ii) of Th. 1.8 are independent of the maps f or g ◦ f
and involve only the Lie superalgebra K. Hence, if g ◦ f is a central extension, g ◦ f is
universal if and only if f is so. However, if f is universal, K is perfect by 1.8(a) and so
g ◦ f is indeed a central extension by Lemma 1.5(c).

1.10. Corollary. Let L and L′ be perfect Lie superalgebras with universal central
extensions u: L → L and u′: L′ → L′ respectively. Then

L/Z(L) ∼= L′/Z(L′) ⇔ L ∼= L′. (1)

If the equivalent conditions in (1) are fulfilled, one calls L and L′ isogenous. It can
sometimes be easier to describe isogeny classes of a category of Lie superalgebras, rather
than isomorphism classes. For example, this concept has been very useful in the early
stages of the theory of root graded Lie algebras ([1, 4, 21]).

Proof. We claim that in the diagram
L u - L π - L/Z(L)

Φ

? ?

ϕ

L′ u′ - L′ π′ - L′/Z(L′)
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Φ exists and is an isomorphism if and only ϕ exists and is an isomorphism.
By Cor. 1.9, both π ◦ u: L → L/Z(L) and π′ ◦ u′: L′ → L′/Z(L′) are universal central

extensions. Hence, if ϕ: L/Z(L) → L′/Z(L′) is an isomorphism, their universal central
extensions are isomorphic too (1.3.4). Conversely, suppose that Φ: L → L′ is an iso-
morphism. Since L/Z(L) is centreless by Cor. 1.6, it follows from Lemma 1.5(b) that
Z(L) = Ker(π ◦ u) and, analogously, Z(L′) = Ker(π′ ◦ u′). Therefore Ker(π′ ◦ u′ ◦ Φ) =
Φ−1(Ker(π′ ◦ u′) = Φ−1(Z(L′)) = Z(L) = Ker(π ◦ u). Since both π ◦ u and π′ ◦ u′ ◦ Φ are
surjective, ϕ exists and is an isomorphism.

1.11. The functor uce. Let L be a Lie superalgebra over S. We denote by B = BL

the S-submodule of the S-supermodule L⊗SL spanned by all elements of type (x, y, z ∈ L)

x⊗ y + (−1)|x||y|y ⊗ x,

(−1)|x||z|x⊗ [yz] + (−1)|y||x|y ⊗ [zx] + (−1)|z||y|z ⊗ [xy] and
w0̄ ⊗ w0̄ for w0̄ ∈ L0̄,

and put
uce(L) = (L⊗S L)/B and 〈x, y〉 = x⊗ y + B ∈ uce(L).

By construction, the following identities then hold in uce(L), where x, y, z ∈ L :

〈x, y〉 = −(−1)|x||y|〈y, x〉, (1)
〈x, [y, z]〉 = 〈[x, y], z〉+ (−1)|x||y|〈y, [x, z]〉, (2)
〈w0̄, w0̄〉 = 0 for w0 ∈ L0̄. (3)

The Lie product on L gives rise to a S-linear map L ⊗ L → L : x ⊗ y 7→ [xy] of degree 0̄
which vanishes on B and hence descends to a S-linear map of degree 0̄

u = uL: uce(L) → L : 〈x, y〉 7→ [xy]. (4)

Note that
Ker u = {∑

i 〈xi, yi〉 ∈ uce(L) :
∑

i [xi, yi] = 0} = H2(L), (5)

the second homology group of L with trivial coefficients. The supermodule uce(L) becomes
a S-superalgebra with respect to the product

[l1 l2] = 〈u(l1), u(l2)〉, (6)

where li ∈ uce(L). Hence u is a homomorphism. In particular, we have

[〈x, y〉 , 〈x′, y′〉] = 〈[x, y], [x′, y′]〉 for x, y, x′, y′ ∈ L. (7)

We claim that uce(L) is a Lie superalgebra over S. Indeed, since the defining identities
1.2.1 and 1.2.2 of a Lie superalgebra are linear in each argument, it is sufficient to verify
them for elements of the spanning set {〈x, y〉 : x, y ∈ L}. For these they follow from (1),
(2) and (7). The remaining identity 1.2.3 follows from (3). It is now immediate from (6)
that

u: uce(L) → [LL] is a central extension of [L,L]. (8)
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Let f : L → M be a homomorphism of Lie superalgebras over S. Let BM ⊂ M ⊗S M
be defined analogously to BL ⊂ L ⊗S L. The canonical map f ⊗S f maps BL into BM ,
hence induces a S-linear map

uce(f): uce(L) → uce(M) : 〈x, y〉 7→ 〈f(x), f(y)〉 . (9)

We note that by construction the diagram

uce(L) uce(f) - uce(M)

uL

? ?

uM

L f - M

(10)

commutes. To check that uce(f) is a homomorphism, it suffices to show that

uce(f)([〈x, y〉 , 〈x′, y′〉]) = [ uce(f)(〈x, y〉) , uce(f)(〈x′, y′〉) ]

for x, y, x′, y′ ∈ L. But this is immediate from (7) and (9). It is now easily verified that

uce: LieS → LieS is a covariant functor.

Since uce is a covariant functor, an automorphism f of L gives rise to the automorphism
uce(f) of uce(L). The commutativity of the diagram (10) implies that uce(f) leaves H2(L)
invariant. Thus, we obtain a group homomorphism

Aut(L) −→ {g ∈ Aut(uce(L)) : g(H2(L)) = H2(L)} : f 7→ uce(f), (11)

see also 2.2 and 2.3. The following lemma shows that the functor uce is natural in the
sense that it commutes with base superring extensions.

1.12. Lemma. Let L be a Lie superalgebra over S and let T be a superextension of
S. Then

uce(T ⊗S L) ∼= T ⊗S uce(L) (1)

where T ⊗S L and T ⊗S uce(L) are the base superring extensions as defined in 1.1.3. If T
is flat over S, e.g. a Grassmann algebra, then

H2(T ⊗S L) ∼= T ⊗S H2(L). (2)

Proof. By construction, we have the exact sequence of Lie superalgebras over S,

0 → BL → L⊗S L → uce(L) → 0 .

Since T ⊗S − is a right exact functor, this yields the exact sequence

T ⊗S BL → T ⊗S (L⊗S L) → T ⊗S uce(L) → 0 . (3)

We now note that
T ⊗S (L⊗S L) → (T ⊗S L)⊗T (T ⊗S L)
t⊗S (x⊗S y) 7→ (t⊗S x)⊗T (1⊗S y)
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is an isomorphism of T -supermodules, see [5, II, §5.1 Prop. 3], which maps T ⊗S BL

onto BT⊗SL. This, together with (3), implies (1). The isomorphism (2) follows from the
commutative diagram

0 - T ⊗S H2(L) ιT - T ⊗S uce(L) uT - T ⊗S [L,L] - 0

?

∼=

?

∼=

0 - H2(T ⊗S L) - uce(T ⊗S L)
uT⊗SL- [T ⊗S L, T ⊗S L] - 0

with exact rows. The top row is obtained by tensoring the exact sequence

0 −→ H2(L) ι−→ uce(L) u−→ [L,L] −→ 0 (4)

with T and using that T ⊗− S is exact by flatness of T . The bottom row is (4) for L
replaced by T ⊗S L. The horizontal maps are the canonical ones.

1.13. Proposition. Let f : L → M be a homomorphism of Lie superalgebras and
suppose g: M ′ → M is a central extension. Then there exists a homomorphism f: uce(L) →
M ′ satisfying g ◦ f = f ◦ u, i.e., the following diagram commutes:

uce(L) f - M ′

u

? ?

g

L f - M

(1)

The map f is uniquely determined on the derived algebra [uce(L), uce(L)] by the commuta-
tivity of (1).

Proof. We choose a section s: M → M ′ of g in the category of Z2-graded sets, i.e., a
map s such that g ◦s = IdM and s(Mε̄) ⊂ M ′

ε̄ for ε̄ ∈ Z2. While s may not be linear, we at
least have as(m)−s(am) ∈ Z(M ′), s(ma)−s(m)a ∈ Z(M ′) and s(m+n)−s(m)−s(n) ∈
Z(M ′) for all homogeneous a ∈ S and m, n ∈ M . This is enough to ensure that the map
L×L → M ′ : l1× l2 7→ [(s◦f)(l1), (s◦f)(l2)] is S-bilinear of degree 0̄. Using the universal
property of the tensor product, we thus obtain a S-linear map

L⊗ L → M ′ : l1 ⊗ l2 7→ [s(f(l1)), s(f(l2))].

Using that M ′ is a Lie superalgebra and s[m,n]− [s(m), s(n)] ∈ Z(M ′), one verifies that
this map annihilates BL. Thus we obtain a S-linear map

f: uce(L) → M : 〈l1, l2〉 7→ [s(f(l1)), s(f(l2))] (2)

of degree 0̄ which turns out to be a superalgebra homomorphism:

f[〈l1, l2〉, 〈l3, l4〉] = f〈[l1, l2], [l3, l4]〉 = [ s[f(l1), f(l2)] , s[f(l3), f(l4)] ]
= [ [s(f(l1)), s(f(l2))] , [s(f(l3)), s(f(l4))] ]
= [ f(〈l1, l2〉) , f(〈l3, l4〉) ].

Moreover, (g ◦ f)〈l1, l2〉 = g[s(f(l1)), s(f(l2))] = [g(s(f(l1))), g(s(f(l2)))] = [f(l1), f(l2)]
= (f ◦ u)〈l1, l2〉 implies g ◦ f = f ◦ u. The uniqueness assertion follows from 1.4(b).

In the following theorem we summarize some of the results obtained so far.
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1.14. Theorem. Let L be a perfect Lie superalgebra over S. Then

0 −→ H2(L) −→ uce(L) u−→ L −→ 0 (1)

is a universal central extension of L. Moreover, the following holds:
(a) If L is centreless, then H2(L) = Z(uce(L)).
(b) If T is a superextension of S, then T ⊗S uce(L) is a universal central extension of

the Lie T -superalgebra T ⊗S L. Moreover, H2(T ⊗S L) ∼= T ⊗S H2(L) in case T is a flat
S-module.

Proof. If L is perfect then so is uce(L). In any diagram 1.13.1 the map f is then uniquely
determined. Applying this to the special case f = Id, we see that (1) is a universal central
extension. If L is centreless, H2(L) = Z(uce(L)) by 1.5(b). The statement in (b) follows
from 1.12.

1.15. Gradings. Let L be a Lie superalgebra over a base superring S, and let Γ
be an abelian group written additively. A Γ -grading of L is a family (Lγ : γ ∈ Γ ) of
S-submodules Lγ ⊂ L such that

L =
⊕

γ∈Γ

Lγ and [Lγ , Lδ] ⊂ Lγ+δ for all γ, δ ∈ Γ. (1)

Recall that S-submodules respect the Z2-grading of L = L0̄ ⊕ L1̄, hence Lγ = (Lγ ∩
L0̄)⊕ (Lγ ∩L1̄) for γ ∈ Γ . A homomorphism from a Γ -graded L to another Γ -graded Lie
superalgebra L′ is a homomorphism f : L → L′ respecting the Γ -grading, i.e., f(Lγ) ⊂ L′γ
for all γ ∈ Γ .

Let L be a Γ -graded Lie superalgebra. A graded submodule of L is a submodule
M respecting the Γ -grading. For example, both Z(L) and [L,L] are graded ideals of L.
Following [30], a covering f : K → L is called a Γ -cover if K is a Γ -graded Lie superalgebra
and f is a homomorphism of Γ -graded superalgebras. It follows from the result below that
the universal central extension of a perfect Γ -graded L is a Γ -cover, but this is in general
not so for an arbitrary covering of L.

1.16. Proposition. Let L =
⊕

γ∈Γ Lγ be a Γ -graded Lie superalgebra. Then uce(L)
is also Γ -graded,

uce(L) =
⊕

γ∈Γ

uce(L)γ , where uce(L)γ =
∑

δ∈Γ

〈Lδ, Lγ−δ〉 , (1)

the canonical map u: uce(L) → L is a homomorphism of Γ -graded Lie superalgebras and
hence a Γ -cover if L is perfect. Moreover, H2(L) is a graded submodule.

If f : K → L is a covering, and hence K = uce(L)/C for some central ideal C, then f
is a Γ -cover if and only if C is a Γ -graded submodule. In this case, we have

K0 =
∑

0 6=γ∈Γ

[Kγ ,K−γ ] ⇐⇒ L0 =
∑

0 6=γ∈Γ

[Lγ , L−γ ] . (2)

We note that the condition in (2) is one of the defining properties of root graded Lie
algebras ([4]).
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Proof. The submodule BL (cf. 1.11) is a graded submodule of the Γ -graded S-
supermodule L ⊗S L, hence uce(L) = (L ⊗S L)/BL is Γ -graded too, i.e., we have the
decomposition uce(L) =

⊕
γ∈Γ uce(L)γ with the description of uce(L)γ as stated in (1).

By definition, u(uce(L)γ) ⊂ Lγ which, by 1.11.6, implies that uce(L) is Γ -graded. The
statements concerning u, H2(L) and the characterization of Γ -coverings are then easily
seen. In (2) the implication ⇒ is immediate from f(Kγ) = Lγ for all γ ∈ Γ . Conversely,
if the right side of (2) holds, then K0 = [K0,K0] + A where A =

∑
0 6=γ [Kγ ,K−γ ] satisfies

f(A) = L0, whence K0 ⊂ A + Ker f . Since Ker f is central, we have [K0, K0] ⊂ [A,A],
and it suffices to show that A is a subalgebra which is immediate from the Jacobi identity:
[K0, [Kγ ,K−γ ]] = [[K0,Kγ ], K−γ ] + [Kγ , [K0,K−γ ]] ⊂ [Kγ ,K−γ ].

1.17. Notes. Our terminology follows the one for Lie algebras, however with some
exceptions. For example, a split extension is called inessential in [6, I, §1.7 and 1.8]. Also,
some authors, e.g. Garland [13] or Moody-Pianzola [19], require of a universal central
extension u: L → L that L be perfect, in addition to the universal mapping property. As
we have seen in 1.8, this is however not necessary.

It seems to be customary to attribute the theory of universal central extensions to
Garland’s paper [13], although [28, §1] by van der Kallen is an earlier and more general
reference. The setting of [28] is Lie algebras over rings. There the reader will find the
important central trick (1.4) which goes back to the pioneering work of Steinberg on central
extensions of algebraic groups [25, 26, 27]. Moreover, the Lie algebra version of our model
of a universal central extension (Th. 1.14) and parts of Lemma 1.5 and Th. 1.8 are already
given in Prop. 1.3 of [28] in the setting of Lie algebras. Van der Kallen’s construction
was later generalized by Ellis in [10, 11] who introduced a so-called non-abelian tensor
product L⊗Lie M of two Lie algebras L and M . It satisfies L⊗Lie L = uce(L).

Garland studies universal central extensions of Lie algebras over fields in §1 of [13]. In
particular, he constructs a model of a universal central extension of a perfect Lie algebra
L, using (in our notation) the “universal” 2-cocycle L × L → uce(L) : (x, y) 7→ 〈x, y〉.
His model is different from the one in [28] (but they are of course isomorphic, cf. 1.3.4).
He also proves that a covering of L is universal if and only if it is simply connected (cf.
Th. 1.8).

Yet another model of a universal central extension (a quotient of the derived algebra
of a free Lie algebra mapping onto L) is given in §7.9 of Weibel’s book [29]. This model
is the direct analogue of the standard construction of a universal central extension of a
perfect group. Weibel’s theory works for Lie algebras over rings.

Central extensions in the category of certain topological Lie algebras, such as Fréchet
Lie algebras, are studied in the recent preprint [20] of Neeb. In particular, Neeb introduces
a topological version of van der Kallen’s model.

As for Lie algebras, a central extension of a Lie S-superalgebra L with kernel C can be
constructed on L⊕ C by using a (suitably defined) 2-cocycle τ : L× L → C: the product
on L⊕C is given by [x1⊕c1 , x2⊕c2]L⊕C = [x1, x2]L⊕τ(x1, x1). It is proven in §IV of the
paper [24] by Scheunert and Zhang that if S is a field, this sets up a bijection between the
isomorphism classes of central extensions of L in the sense of 1.3.2 and the cohomology
group H2(L,C) of L with values in the trivial L-module C. In the setting of Lie algebras
this is classical result, see for example [7, Exp. 5] or [29, 7.6] where this is proven for
Lie algebras over rings and extensions 1.3.1 with an abelian I. The paper [24] also gives
the super version of Garland’s model of a universal central extension and shows that a
covering of a Lie superalgebra is universal if and only if it is simply connected. It should
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be mentioned that [24] considers ε-Lie algebras, sometimes also called colour or color Lie
algebras, which are generalizations of Lie superalgebras.

2. Lifting automorphisms and derivations

2.1. Notation. Let f : L′ → L be a covering. The commutative diagram 1.11.10 then
becomes the following diagram where we abbreviated L′ = uce(L′), f = uce(f), L = uce(L),
u′ = uL′ and u = uL:

L′ f - L

u′

? ?

u

L′ f - L

(1)

Since both u′ and f are central extensions, we conclude from Corollary 1.9 that f ◦u′: L′ →
L is a universal central extension of L. Moreover, f is a homomorphism from this universal
central extension to the universal central extension u: uce(L) → L. Therefore, by 1.3.4, f
is an isomorphism, and we obtain a covering u′ ◦ f−1: L → L′ with kernel

C := Ker(u′ ◦ f−1) = f(Ker u′) = f(H2(L′)). (2)

2.2. Theorem (lifting of automorphisms). We use the setting and notation of
2.1. In particular, f : L′ → L is a covering.

(a) Let h ∈ Aut(L). Then there exists h′ ∈ Aut(L′) such that the diagram

L′ f - L

h′

? ?

h

L′ f - L

(1)

commutes if and only if the automorphism uce(h) of L, cf. 1.11.11, satisfies uce(h)(C) = C.
In this case, h′ is uniquely determined by (1) and h′(Ker f) = Ker f .

(b) With the notation of (a), the map h 7→ h′ is a group isomorphism

{h ∈ Aut(L) : uce(h)(C) = C} −→ {g ∈ Aut(L′) : g(Ker f) = Ker f}. (2)

Proof. (a) If h′ exists, it is a homomorphism from the covering h ◦ f to the covering f
and therefore by 1.4(b) uniquely determined by the commutativity of (1). Applying the
uce-functor to (1), yields the commutative diagram

L′ f - L

uce(h′)

? ?

uce(h)

L′ f - L

(3)
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whence, by 2.1.2 and 1.11.11, uce(h)(C) = (uce(h) ◦ f)(H2(L′)) = (f ◦ uce(h′))(H2(L′)) =
f(H2(L′) = C. For the proof of the other direction, note that u = f ◦ u′ ◦ f−1 by 2.1.1.
Hence, the commutative diagram 1.11.10 becomes

L
u′◦f−1 - L′ f - L

uce(h)

?

|
|
↓ ?

h

L
u′◦f−1 - L′ f - L

(4)

If uce(h)(C) = C, the kernel of the epimorphism u′ ◦ f−1 ◦ uce(h) is C. By 2.1.2 we
therefore obtain an automorphism h′: L′ → L′ such that (1) = right half of (4) commutes.
Commutativity of (1) then implies that h′(Ker f) = Ker f .

(b) By (a), the map is well-defined. It is a group monomorphism by uniqueness in (a).
Any automorphism g of L′ with g(Ker f) = Ker f descends to an automorphism h: L → L
such that f ◦ g = h ◦ f . Hence, by (a), g = h′ and uce(h)(C) = C.

2.3. Corollary. If L is perfect, the map

Aut(L) → {g ∈ Aut(uce(L)) : g(H2(L)) = H2(L)} : f 7→ uce(f) (1)

is a group isomorphism. In particular, Aut(L) ∼= Aut(uce(L)) if L is centreless.

Proof. We apply Th. 2.2 to the covering u: uce(L) → L. In this case C = 0 so that
(1) follows from 2.2.2. If L is centreless, H2(L) = Z(uce(L)) by 1.5(b). Since every
automorphism leaves the centre invariant, the second claim is a special case of (1).

2.4. Lifting derivations to uce(L). In this subsection we will describe the analogue
of 1.11.11 for derivations. Thus let L be a Lie superalgebra over S and let d ∈ DerS L be a
derivation of L. The S-linear map L⊗S L → L⊗S L : x⊗y 7→ d(x)⊗y +(−1)|d||x|x⊗d(y)
leaves BL ⊂ L⊗ L invariant and hence induces a S-linear map

uce(d): uce(L) → uce(L) : 〈x, y〉 7→ 〈d(x), y〉+ (−1)|d||x|〈x, d(y)〉 (1)

rendering the following diagram commutative

uce(L) uce(d) - uce(L)

u

? ?

u

L d - L

In particular uce(d) leaves Ker u = H2(L) invariant. A straightforward verification also
shows that uce(d) is a derivation of uce(L) and that

uce: DerS L → {e ∈ Der(uce(L)) : e(H2(L)) ⊂ H2(L)} : d 7→ uce(d) (2)

is a Lie superalgebra homomorphism. Its kernel is contained in the subalgebra of those
derivations vanishing on [L,L]. It is also easily seen that uce(adL[x, y]) = adL〈x, y〉 whence

uce(adL u(z)) = adL z for z ∈ L, and uce(adL[L,L]) = IDer(uce(L)). (3)

Functoriality of uce for derivations is expressed in the following lemma.
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2.5. Lemma Let f : K → L be a homomorphism of Lie S-superalgebras, and let dK ∈
DerS K and dL ∈ DerS L be related by f in the sense that f ◦dK = dL ◦ f , e.g., dK = ad x
and dL = ad f(x). Then, with the definitions 1.11.9 and 2.4.1, we have

uce(f) ◦ uce(dK) = uce(dL) ◦ uce(f) . (1)

Proof. Since f has degree 0̄, we can assume that dK and dL are homogenous of the
same degree. It suffices to establish (1) when evaluated on 〈k, k′〉 ∈ uce(K) where k, k′ ∈ K
are homogenous. We have(

uce(f) ◦ uce(dK)
)
(〈k, k′〉) = uce(f)

(
〈dK(k), k′〉+ (−1)|dK ||k|〈k, dK(k′)〉

)

= 〈f(dK(k)), f(k′)〉+ (−1)|dK ||k|〈f(k), f(dK(k′))〉
= 〈dL(f(k)), f(k′)〉+ (−1)|dL||f(k)|〈f(k), dL(f(k′))〉
= uce(dL)

(
〈f(k), f(k′)〉

)
=

(
uce(dL) ◦ uce(f)

)
(〈k, k′〉)

We now have the analogous result to Th. 2.2 and Cor. 2.3.

2.6. Theorem (lifting of derivations). Let f : L′ → L be a covering. As in 2.1.2
we denote C = uce(f)(H2(L′)) ⊂ H2(L).

(a) A derivation d of L lifts to a derivation d′ of L′ satisfying d′ ◦ f = f ◦ d if and
only if the derivation uce(d) of uce(L) satisfies uce(d)(C) ⊂ C. In this case, d′ is uniquely
determined and leaves Ker f invariant. In particular, any inner derivation adx, x ∈ L,
lifts uniquely to the inner derivation adx′ where x′ ∈ L′ satisfies f(x′) = x.

(b) Using the notation of (a), the map

{d ∈ DerS L : uce(d)(C) ⊂ C} → {e ∈ DerS L′ : e(Ker f) ⊂ Ker f} : d 7→ d′

is an isomorphism of Lie superalgebras mapping IDerL onto IDerL′.
(c) In particular, for the covering u: uce(L) → L we obtain that the map

uce: DerS L → {e ∈ DerS uce(L) : e(H2(L)) ⊂ H2(L)}
of 2.4.2 is an isomorphism preserving inner derivations. If L is centreless, we even have
DerS L ∼= DerS uce(L).

Proof. With the exception of the statements concerning inner derivations, a proof of
this result can be given along the lines of the proof of the corresponding statements on
automorphisms in 2.2 and 2.2.1. Alternatively, one can use that d is a derivation if and
only if Id + εd is an automorphism of the base superring extension S[ε]⊗S L, cf. 1.2. The
claims on inner derivations are easily checked, cf. 2.4.3. Details will be left to the reader.

2.7. Theorem. Let 0 - K f- L g-¾
s

M - 0 be a split exact sequence of
perfect Lie superalgebras. We abbreviate the notations introduced in 1.11 as follows

K = uce(K), L = uce(L), M = uce(M),
ϕ = uce(f), γ = uce(g), σ = uce(s),

and thus have the following commutative diagram
K

ϕ - L
γ -¾
σ

M - 0

?
uK

?
uL

?
uM

0 - K f - L g -¾
s

M - 0 .

For m ∈ M define h(m) = uce
(
ad s(uM (m)) |K ) ∈ DerS K, cf. 2.4, and let KoM be the

semidirect product corresponding to the homomorphism h: M → DerS K.
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(a) Then L is a semidirect product,

L = ϕ(K)o σ(M), (1)

where ϕ(K) ∼= K/ Ker ϕ with

Kerϕ = h(M)(H2(K)) ⊂ H2(K), (2)
σ(M) ∼= M, and (3)
H2(L) = ϕ(H2(K))⊕ σ(H2(M)). (4)

Moreover, the maps

ϕo σ : KoM → L : k ⊕m 7→ ϕ(k)⊕ σ(m) and
(f ◦ uK)o (s ◦ uM ) : KoM → L : k ⊕m 7→ (f ◦ uK)(k)⊕ (s ◦ uM )(m)

are epimorphisms such that

KoM
ϕoσ - L

@
@@R

(f◦uK)o(s◦uM )
¡

¡¡
ª

uL

L

(5)

commutes.
(b) The following are equivalent:

(i) (f ◦uK)o (s◦uM ) : KoM → L is a central extension, and hence a covering;
(ii) h(M)(H2(K)) = 0;
(iii) ϕo σ is an isomorphism, and hence KoM is a universal central extension

of L;
(iv) ϕ is injective.

In particular, for a direct product L = K ×M we have

uce(K ×M) ∼= uce(K)× uce(M) (6)

Proof. In the proof we will interpret f and s as identifications, and therefore have
L = K oM .

(a) Let m ∈ M , k, k′ ∈ K. Then 〈m, [k, k′]〉 = 〈[m, k] , k′〉 + (−1)|m||k|〈k , [m, k′]〉
holds in L. This, together with perfectness of K, implies 〈M, K〉 ⊂ 〈K, K〉, and hence
L = 〈K,K〉 + 〈M, M〉. We have 〈K, K〉 = ϕ(K) and 〈M, M〉 = σ(M) by definition of ϕ
and σ respectively. Since g ◦ s = IdM we have γ ◦ σ = IdM. Hence L = Ker γ ⊕ σ(M) is a
semidirect product and σ is an isomorphism from M to σ(M). Since clearly 〈K, K〉 ⊂ Ker γ
it now follows from L = 〈K, K〉 + 〈M, M〉 that Ker γ = 〈K, K〉 = ϕ(K). This implies (1)
and (3). We will postpone the proof of (2) and move on to (4). Because of (1), any element
of L has the form ϕ(k) ⊕ σ(m) for suitable k ∈ K and m ∈ M. Such an element lies in
H2(L) if and only if 0 = uLϕ(k) = uK(k) and 0 = uLσ(m) = uM (m) which implies (4).

Since both ϕ and σ are epimorphisms, ϕo σ will be a homomorphism (and hence an
epimorphism) if, for m ∈ M and k ∈ K,

ϕ(m.k) = [σ(m) , ϕ(k)] (7)
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where we abbreviated m.k = h(m)(k). We abbreviate l = s(uM (m)) = uM (m) =
uL(σ(m)). It follows from 2.4.3 and 2.6(b) that the inner derivation adL σ(m) is the
unique lift of adL l ∈ DerS L:

adL σ(m) = uce(adL l) . (8)

Note that the derivations dK = (adL l)|K and dL = adL l are related by f so that
Lemma 2.5 applies. We can now prove (7):

ϕ(m.k) = uce(f)
(
uce(adL l|K).k

)
(by definition of ϕ and h)

= uce(adL l)(uce(f)(k)) (by Lemma 2.5)
= [σ(m) , ϕ(k)] (by (8)).

We apply uL to (7) and obtain

uK(m.k) = (uL ◦ ϕ)(m.k) = [uL(σ(m)), uL(ϕ(k))] = [uM (m), uK(k)].

This relation easily implies that also uK o uK is an epimorphism. Commutativity of (5)
holds by definition.

We now come to the proof of (2). Since ϕ(H2(K)) ⊂ H2(L)by(by(4)) ⊂ Z(L) we have

M.H2(K) ⊂ Kerϕ . (9)

For the proof of the other inclusion we first note that

Kerϕ ⊂ H2(K) (10)

since 0 = uL(ϕ(Ker ϕ)) = f(uK(Ker ϕ)) = uK(Ker ϕ). This together with (9) implies that
M.H2(K) is h(M) invariant. Hence the action of M on K descends to an action of M on
K̄ = K/M.H2(K). Denote by ϕ̄: K̄ → ϕ(K) the canonical map induced by ϕ. Identifying
Kerϕ = Ker(ϕo σ) we obtain an induced epimorphism ψ = ϕ̄o σ

KoM
ϕoσ - L

@
@@R ¡

¡¡µψ

K̄oM

with kernel Ker ϕ/M.H2(K). We claim that ψ is a central extension. Indeed, for arbitrary
k ∈ K, m ∈ M and x̄ ∈ Kerϕ/M.H2(K) we have, with obvious notation, [k̄ ⊕ m, x̄] =
[k, x] + m̄.x = 0 by (10). Since L is centrally closed and K̄ o M is perfect, ψ is an
isomorphism, and hence Kerϕ = M.H2(K).

(b) The kernel of (f ◦ uK)o (s ◦ uM ) = uK o uM is H2(K)⊕ H2(M). Here H2(M) is
always central in KoM since H2(M) is central in M and h(H2(M)) = 0. Since H2(K) is
central in K we have (i) ⇔ (ii). The equivalences (ii) ⇔ (iii) ⇔ (iv) are immediate from
(2).

In the case of a direct product we have h = 0, so K oM = K × M. Clearly (ii) is
fulfilled, proving that ϕ× σ: K×M → L is an isomorphism. Thus (6) holds.

17



Remark. In general, the condition (b.ii) is not fulfilled. For example, let K = slN (Cq),
N ≥ 3, where Cq is a quantum torus defined with respect to a n× n-matrix, n ≥ 2. If Cq

has a nontrivial centre, it follows from the results in [3] that Der K operates nontrivially
on H2(K). Because of (b.iv) this also means that ϕ: K → L is in general not injective.

Since K is a perfect centreless Lie algebra, this example contradicts [2, Th. 3.8] which
in the notation from above claims that the universal central extension of a semidirect
product K oDer K is always isomorphic to uce(K)o uce(Der K). Note however that the
main application of [2, Th. 3.8] in [2], the preceding result [2, Th. 3.7], remains valid since
the condition (b.ii) can easily be verified in the setting of [2, Th. 3.7].

Formula (2) for the kernel of ϕ has been suggested by Georgia Benkart and Bob Moody.

2.8. Notes. That automorphisms lift uniquely to the universal central extension of a
perfect Lie algebra, cf. 2.3, is already contained in [28, 3.1]. Using a different model of
the universal central extension, this is also proven in Pianzola’s recent preprint [22]. The
corresponding result for derivations of Lie algebras, cf. 2.6, can be found in [2, Th. 2.2].

Let 0 −→ K −→ L
g−→ M −→ 0 be a not necessarily split exact sequence of Lie

superalgebras, cf. 2.7. By functoriality we then obtain an epimorphism uce(g): uce(L) −→
uce(M). In the setting of Lie algebras the kernel of the map uce(g) was determined by
Ellis, see the remark after Prop. 9 of [11]: it is (L⊗Lie K)o (K⊗Lie L) where ⊗Lie denotes
the non-abelian tensor product of Lie algebras.
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