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Abstract. We change the order of the factors in the classical Cayley-Dickson doubling

process and investigate the eight-dimensional algebras obtained when doubling a quater-

nion algebra using this twisted multiplication. We also allow the scalar c used in the

doubling process to be an invertible element in the quaternion algebra. By changing the

place of c inside the multiplication we then obtain different families of algebras. We give

conditions when these algebras are division over a given base field.

1. Introduction

In this paper, we study families of unital eight-dimensional algebras over a field F . To
obtain these families, we permute the factors inside the multiplication obtained by the
Cayley-Dickson doubling process. Moreover, we allow the scalar c used in the doubling
process to be an invertible element in the quaternion algebra D we double. The idea of
constructing algebras by choosing the scalar in the Cayley-Dickson doubling outside of F
was already employed in [Al-H-K], [W], [As-Pu] and [Pu]. All our algebras contain quater-
nion algebras as subalgebras and have a nonassociative quaternion subalgebra if there is a
separable quadratic field extension L ⊂ D such that c ∈ L \ F .

The types of algebras we study are thus modified Cayley-Dickson doublings of a quater-
nion algebra D. We call them twisted Dickson algebras. The base-free approach makes it
easy to describe them. Depending on whether c lies in F or not, they have different struc-
tures. If c ∈ D× \ F then A is not third power-associative, i.e. the equation uu2 = u2u is
not true for all u ∈ A. Different placements of c inside the product yield different families of
algebras. A is a division algebra if D is a division algebra and if ND/F (c) 6∈ ND/F (D×)2. If
c ∈ F×, we obtain division algebras if the quaternion algebra D used in the doubling process
is a division algebra and c 6∈ ±ND/F (D×). We thus get division algebras over suitable fields.
However, our algebras are not division algebras if F = R. Properties and isomorphisms of
some of these algebras are studied. We conclude with an outlook on how to use twisted
Cayley-Dickson doublings to obtain sixteen-dimensional division algebras.

There has always been an interest in real division algebras, cf. for instance [B-O1, 2], [R],
[Do-Z1, 2], [M-B],[K], [D-D-H], [B-B-O], [D1, 2], [C-V-K-R], [J-P] and [Die], to name just
a few. Our motivation to search for classes of division algebras over fields other than the
reals is their potential use in space-time block coding. Space-time coding is used for reliable

Date: 18.7.2010.

1991 Mathematics Subject Classification. Primary: 17A35.

Key words and phrases. Cayley-Dickson doubling, division algebra.

1



2 S. PUMPLÜN

high rate transmission over wireless digital channels with multiple antennas at both the
transmitter and receiver ends. From the mathematical point of view, designing space-times
codes means to design families of n × n matrices over the complex numbers using the left
representation of an algebra. Central simple associative division algebras over number fields,
in particular cyclic division algebras, have been used highly successfully to systematically
build space-time block codes (cf. for instance [E-S-K], [S-R-S], [H-L-R-V], [Be-Og1, 2, 3],
[O-R-B-V]). These codes, made of n×n matrices over the complex numbers, display excellent
performance if measured by error probability.

Nonassociative division algebras over number fields can be used in code design and thus
become interesting in this setting as well [Pu-U].

2. Preliminaries

2.1. Nonassociative algebras. Let F be a field. By “F -algebra” we mean a finite dimen-
sional unital nonassociative algebra over F .

A nonassociative algebra A is called a division algebra if for any a ∈ A, a 6= 0, the left
multiplication with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are
bijective. A is a division algebra if and only if A has no zero divisors [Sch, pp. 15, 16].

For an F -algebra A, associativity in A is measured by the associator [x, y, z] = (xy)z −
x(yz). The left nucleus of A is defined as Nl(A) = {x ∈ A | [x,A,A] = 0}, the middle nucleus
of A is defined as Nm(A) = {x ∈ A | [A, x,A] = 0} and the right nucleus of A is defined as
Nr(A) = {x ∈ A | [A,A, x] = 0}. Their intersection N(A) = {x ∈ A | [x,A,A] = [A, x,A] =
[A,A, x] = 0} is the nucleus of A. The nucleus is an associative subalgebra of A (it may be
zero), and x(yz) = (xy)z whenever one of the elements x, y, z is in N(A).

The commuter of A is defined as Comm(A) = {x ∈ A |xy = yx for all y ∈ A} and the
center of A is C(A) = {x ∈ A |x ∈ Nuc(A) and xy = yx for all y ∈ A}.

Recall that over a field F of characteristic 2, we can define the quaternion algebra [a, b)
via [a, b) = 〈i, j | i2 + i = a, j2 = b, ij = ji + j〉 with a ∈ F and b ∈ F×. Obviously,
[a, b) = Cay(L, b) with L = F (i) where i2 + i = a is a separable quadratic field extension [S,
p. 314].

Let S be a quadratic étale algebra over F (i.e., a separable quadratic F -algebra in the
sense of [Knu, p. 4]) with canonical involution σ : S → S, also written as σ =−, and with
nondegenerate norm NS/F : S → S, NS/F (s) = ss = ss. With the diagonal action of F ,
F × F is a quadratic étale algebra with canonical involution (x, y) 7→ (y, x). A quadratic
étale algebra S which is isomorphic to the algebra F × F is called split.

2.2. Nonassociative quaternion division algebras. Let F be a field. A nonassociative
quaternion algebra is a four-dimensional unital F -algebra A whose nucleus is a separable
quadratic field extension of F . Let S be a quadratic étale algebra over F with canonical
involution σ =−. For every b ∈ S \ F , the vector space

Cay(S, b) = S ⊕ S
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becomes a nonassociative quaternion algebra over F with unit element (1, 0) and nucleus S
under the multiplication

(u, v)(u′, v′) = (uu′ + bv′v, v′u+ vu′)

for u, u′, v, v′ ∈ S. Given any nonassociative quaternion algebra A over F with nucleus S,
there exists an element b ∈ S \ F such that A ∼= Cay(S, b) [As-Pu, Lemma 1].

Nonassociative quaternion algebras are neither power-associative nor quadratic. Cay(S, b)
is a division algebra if and only if S is a separable quadratic field extension of F [W, p. 369].
Two nonassociative quaternion algebras A = Cay(K, b) and A′ = Cay(L, c) can only be
isomorphic if L ∼= K. Moreover,

Cay(K, b) ∼= Cay(K, c) iff g(b) = NK/F (d)c

for some automorphism g ∈ Aut(K) and some non-zero d ∈ K [W].
Nonassociative quaternion division algebras canonically appeared as the most interesting

case in the classification of the algebras of dimension 4 over F which contain a separable
field extension K of F in their nucleus [W] (see also Althoen-Hansen-Kugler [Al-H-K] for
F = R). They were first discovered by Dickson [Di] in 1935 and Albert [A] in 1942 as early
examples of real division algebras.

2.3. The Cayley-Dickson doubling process. Let D be a quaternion algebra over F . Let
σ = : D → D be the canonical involution of D. Let c ∈ D be an invertible element. Then
the eight-dimensional F -vector space A = D ⊕D can be made into a unital algebra over F
via the multiplication

(u, v)(u′, v′) = (uu′ + cv̄′v, v′u+ vū′)

for u, u′, v, v′ ∈ D. The unit element is given by 1 = (1, 0).
A is called the Cayley-Dickson doubling of D (with scalar c) and denoted by Cay(D, c).

An algebra obtained from a Cayley-Dickson doubling of D with a scalar c ∈ F× is an
octonion algebra. If c ∈ D× is not contained in F , we also distinguish between the other
two possible multiplications

(u, v)(u′, v′) = (uu′ + v̄′cv, v′u+ vū′)

resp.

(u, v)(u′, v′) = (uu′ + v̄′vc, v′u+ vū′)

onD⊕D and denote the corresponding algebras by Caym(D, c), resp. Cayr(D, c). Cay(D, c),
Caym(D, c) and Cayr(D, c) are called Dickson algebras over F and were studied in [Pu].
Dickson algebras are not third power-associative. The Cayley-Dickson doubling Cay(D, c),
resp. Caym(D, c) or Cayr(D, c), of a quaternion division algebra D is a division algebra
with nucleus, commutator and center F , for any choice of invertible c ∈ D not in F [Pu].

3. Twisted Cayley-Dickson doublings

Let D be a noncommutative unital algebra over F with an involution σ = : D → D. Let
c ∈ D be an invertible element. The F -vector space D⊕D can be made into a unital algebra
A over F by modifying the multiplication which is used in the Cayley-Dickson doubling of
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D. Since D is not commutative, we have the several possibilities. Each such algebra is
denoted by Cayt(D, c) with t = t(i), t = t(i, j) or t = (i, j, k) depending on which and how
many of the four products appearing in the multiplication of the Cayley-Dickson doubling
have been permuted, e.g:

A = Cayt(1)(D, c) has multiplication

(u, v)(u′, v′) = (u′u+ c(v′v), v′u+ vu′),

A = Cayt(1,2)(D, c) has multiplication

(u, v)(u′, v′) = (u′u+ c(vv′), v′u+ vu′),

A = Cayt(1,2,3,4)(D, c) has multiplication

(u, v)(u′, v′) = (u′u+ c(vv′), uv′ + u′v),

where u, u′, v, v′ ∈ D. An algebra obtained from such a modified Cayley-Dickson doubling
of D with a scalar c ∈ D× is called a twisted Dickson algebra over F .

We can immediately say that for c ∈ F×,

Cayt(1,4)(D, c) = Cayt(2,3)(D
op, c), Cayt(1,3)(D, c) = Cayt(2,4)(D

op, c),

Cayt(1,2)(D, c) = Cayt(3,4)(D
op, c), Cayt(1,2,3)(D, c) = Cayt(4)(D

op, c),

Cayt(1,2,4)(D, c) = Cayt(3)(D
op, c), Cayt(1,3,4)(D, c) = Cayt(2)(D

op, c),

Cayt(1)(D, c) = Cayt(2,3,4)(D
op, c),

so unless c ∈ D× \ F , it suffices to study the algebras Cayt(2,3)(D, c), Cayt(2,4)(D, c),
Cayt(3,4)(D, c), Cayt(2,3,4)(D, c), Cayt(2)(D, c) and Cayt(3)(D, c).

If c ∈ D× \ F , we can change the place of c inside the multiplication to obtain more
families of algebras. For instance,

rCayt(1)(D, c) has multiplication

(u, v)(u′, v′) = (u′u+ (v′v)c, v′u+ vu′),

rCayt(1,2)(D, c) has multiplication

(u, v)(u′, v′) = (u′u+ (vv′)c, v′u+ vu′),

for u, u′, v, v′ ∈ D, and so on. Each such algebra is denoted by rCayt(D, c) with t = t(i),
t = t(i, j) or t = (i, j, k) depending on which and how many of the four factors have been
permuted. Moreover, we can place c in the middle and define, for instance:

mCayt(1)(D, c) has multiplication

(u, v)(u′, v′) = (u′u+ v′(cv), v′u+ vu′),

mCayt(1,2)(D, c) has multiplication

(u, v)(u′, v′) = (u′u+ v(cv′), v′u+ vu′),
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for u, u′, v, v′ ∈ D. Each such algebra is denoted by mCayt(D, c) with t = t(i), t = t(i, j) or
t = (i, j, k) depending on which and how many of the four factors have been permuted.

Each of the algebras Cayt(D, c), mCayt(D, c), lCayt(D, c) has unit element 1 = (1, 0). If
D is associative, we can omit the parentheses in the first term. If D is not associative, for
each case there are two more possible ways to put the parentheses in the second term which
only becomes relevant when we construct algebras of dimension 16.

Remark 1. Let A = Cayt(D, c), A =r Cayt(D, c) or A =m Cayt(D, c).
(i) D is a subalgebra of A for t = t(i), i = 2, 3, 4, t = t(i, j), i, j ∈ {2, 3, 4} and t = t(2, 3, 4).
(ii) Dop is a subalgebra of A for t = t(1), t = t(1, j) and j ∈ {2, 3, 4} and t = t(1, j, k),
j, k ∈ {2, 3, 4}, j 6= k.
(iii) If there is a unital subalgebra (B, σ) of (D,σ) with involution such that c ∈ B× then
the twisted Dickson algebra Cayt(B, c) (resp., rCayt(B, c) or mCayt(B, c)) is a subalgebra
of A.
If B = K is a separable quadratic field extension and c ∈ F× then Cay(K, c) is a quaternion
subalgebra. If c ∈ K \ F , it is a nonassociative quaternion subalgebra.
(iv) If c ∈ D× \ F and σ(c) 6= c then A is not third power-associative: Suppose A =
Cayt(D, c) (the other cases are proved analogously). For l = (0, 1) we have l2 = (c, 0) and
ll2 = (0, σ(c)) while l2l = (0, c), hence A is not power-associative. Every quadratic unital
algebra is clearly power-associative, so A is also not quadratic.

In this paper we will mainly focus on the case that D is a quaternion algebra over F ,
c ∈ D×, and study the corresponding eight-dimensional twisted Dickson algebras. Unless
stated otherwise, let D be a quaternion algebra over F with canonical involution : D → D.

Remark 2. The algebras Cayt(2,3)(D, c) could be viewed as a generalization of a nonassocia-
tive quaternion algebra. Their multiplication corresponds to the one given for a nonassocia-
tive quaternion algebra in [W]. Since Cayt(1,2,3,4)(D, c) = Cay(Dop, c), mCayt(1,2,3,4)(D, c) =
Caym(Dop, c), and rCayt(1,2,3,4)(D, c) = Cay(Dop, c), the algebras Cayt(1,2,3,4)(D, c),

mCayt(1,2,3,4)(D, c) and rCayt(1,2,3,4)(D, c), withD a quaternion algebra, were already treated
in [Pu] and are division algebras for all choices of c ∈ D× \ F , if D is a division algebra.

Theorem 3. Let D be a quaternion division algebra. The twisted Cayley-Dickson doubling
Cayt(D, c), mCayt(D, c), resp. rCayt(D, c) is a division algebra for any choice of c ∈ D×

such that ND/F (c) 6∈ ND/F (D×)2.

Note that this is never the case for F = R.

Proof. We show that A = Cayt(2,3)(D, c) has no zero divisors: suppose

(0, 0) = (r, s)(u, v) = (ru+ csv̄, rv + sū)

for r, s, u, v ∈ D. This is equivalent to

ru+ csv̄ = 0 and rv + sū = 0.

Assume s = 0, then ru = 0 and rv = 0. Hence either r = 0 and so (r, s) = 0 or r 6= 0 and
u = v = 0.
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So let s 6= 0. Then s ∈ D× and sū = −rv yields u = −v̄ r̄ s̄−1 and substituted in to the
first equation this gives −rv̄ r̄ s̄−1 + csv̄ = 0. It follows that

(∗) csv̄ = rv̄ r̄ s̄−1

and applying the norm ND/F we obtain that

ND/F (c)ND/F (s)2ND/F (v) = ND/F (r)2ND/F (v).

If v = 0 then ru = 0 and sū = 0, thus u = 0 and (u, v) = 0. If v 6= 0 then ND/F (v) 6= 0
and we get ND/F (c) = ND/F ( r

s )2, a contradiction to our initial assumption that ND/F (c) 6∈
ND/F (D×)2, unless r = 0. However, if r = 0 (and s 6= 0 as assumed above) then the initial
two equalities give u = 0 and v = 0, so that (u, v) = (0, 0).

The proof is analogous for all twisted algebras of the type Cayt(D, c): for the other
multiplications, the order of the factors in (∗) changes, which however does not affect the
proof.

The proof for the other algebras is analogous to the one for A = Cayt(D, c), since the
different placement of c in the first equation is not relevant in the different steps. �

Corollary 4. Let D be a quaternion division algebra.
(i) Let c ∈ D× \F and A = Cayt(D, c), A =m Cayt(D, c) or A =r Cayt(D, c). If ND/F (c) 6∈
F×2, then A is a division algebra.
(ii) Cayt(D, c) is a division algebra for any choice of c ∈ F× such that c 6∈ ±ND/F (D×).

Note that c 6∈ ±ND/F (D×) is never the case for F = Q [L, Theorem 1.4, p. 378].

Example 5. Let F = Q and D = (a, b)Q a division algebra.
Suppose a, b > 0. Then for every c = x1i + x2j with (x1, x2) 6= (0, 0) we know that

ND/F (c) = −(ax2
1 + bx2

2) < 0 is not a square in Q, thus Cayt(D, c), mCayt(D, c) and

rCayt(D, c) are division algebras over Q for any choice of t.
For a, b < 0, D is always a division algebra and Cayt(D, c), mCayt(D, c) and rCayt(D, c)

are division algebras for any t and all c = x0 +x1i+x2j+x3k, such that the positive rational
number ND/Q(c) = x2

0 − ax2
1 − bx2

2 + abx2
3 is not a square in Q.

If D = (−1, p)Q, p 6≡ 1(4) an odd prime, D is a division algebra and we may for instance
choose c = x2i + x3k with x2, x3 ∈ Q, (x1, x2) 6= (0, 0). Then ND/Q(c) = −p(x2

2 + x2
3) < 0,

hence Cayt(D, c), mCayt(D, c) and rCayt(D, c) are division algebras for any choice of t.
If D = (−2, p)Q, p ≡ 1, 3 (8) an odd prime, D is a division algebra and we may again

choose c = x2i+x3k with x2, x3 ∈ Q, (x1, x2) 6= (0, 0). Then ND/Q(c) = −(px2
2 +2px2

3) < 0,
hence Cayt(D, c), mCayt(D, c) and rCayt(D, c) are division algebras for any choice of t.

We obtain the following more general rule:

Lemma 6. Let F be an ordered field such that −1 is not a square and (a, b)F a division
algebra over F with a < 0 and b > 0. Then Cayt(D, c), mCayt(D, c) and rCayt(D, c) are
division algebras for any choice of t, for every c = x2i+ x3k ∈ D with (x1, x2) 6= (0, 0).

Proof. We have ND/F (c) = −b(x2
2 − ax2

3) < 0. �



DIVISION ALGEBRAS FROM TWISTED CAYLEY-DICKSON DOUBLINGS 7

Remark 7. Let D = (a, b)F be a division algebra. For e ∈ F×, Cay(D, e) is an octonion
division algebra over F if and only if e 6∈ ND/F (D×). So let c ∈ F then c 6∈ ±ND/F (D×) iff
Cay(F, a, b,−c) and Cay(F, a, b, c) are octonion division algebras.

Lemma 8. Let A = Cayt(D, c), A =m Cayt(D, c) or A =r Cayt(D, c) be a twisted Dickson
algebra and c ∈ D×. Then Comm(A) = F .

Proof. Let A = Cayt(D, c). Let us consider the classical Cayley-Dickson doubling as a
reference point: For C = Cay(D, c) we have (u, v) ∈ Comm(C) iff (u, v)(r, s) = (r, s)(u, v)
for all r, s ∈ D iff

(1) ru+ cv̄s = ur + cs̄v and (2) vr + sū = su+ vr̄

for all r, s ∈ D. Now let A = Cayt(D, c), so we have to twist the components in the above
multiplication and thus in (1) and (2) accordingly. Nonetheless, for s = 0 we will always get
ru = ur for all r ∈ D, therefore u ∈ F . For u ∈ F , (1) yields

(1′) cv̄s = cs̄v

if the second term in the muliplication was left unchanged and

(1′) csv̄ = cvs̄

otherwise. Both times, s = 1 implies that v ∈ F as well. Now for v ∈ F , (2) yields

(2′) vr = vr̄

if the fourth term in the muliplication was left unchanged and

(2′) rv = r̄v

otherwise, both times implying that v = 0. Obviously, F ⊂ Comm(A), so we have proved
the assertion.
For A =m Cayt(D, c) or A =r Cayt(D, c) again consider the classical Cayley-Dickson dou-
bling as a reference point: For C = Cay(D, c) we have (u, v) ∈ Comm(C) iff (u, v)(r, s) =
(r, s)(u, v) for all r, s ∈ D iff

(1) ru+ cv̄s = ur + cs̄v and (2) vr + sū = su+ vr̄

for all r, s ∈ D. Now we have to twist the components in the above multiplication and thus
in (1) and (2) accordingly and also adjust the placement of c. Nonetheless, for s = 0 we will
always get ru = ur for all r ∈ D, therefore u ∈ F . For u ∈ F , (1) yields

(1′) v̄cs = s̄cv resp. v̄sc = s̄vc

if the second term in the muliplication was left unchanged and

(1′) scv̄ = vcs̄ resp. sv̄c = vs̄c

otherwise. Both times, s = 1 implies that v ∈ F as well. Now for v ∈ F , (2) yields

(2′) vr = vr̄

if the fourth term in the muliplication was left unchanged and

(2′) rv = r̄v
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otherwise, both times implying that v = 0. Obviously, F ⊂ Comm(A), so we have proved
the assertion. �

4. Properties if t = t(1), t = t(2), t = t(1, 2), t = t(3, 4), t = t(1, 3, 4) or t = t(2, 3, 4).

We have a closer look at eighteen of our families. In this section, let

A = Cayt(D, c), A =m Cayt(D, c) or A =r Cayt(D, c)

where D is a quaternion division algebra and c ∈ D× \F . Unless explicitly stated otherwise,
in this section we assume that

t = t(1), t = t(2), t = t(1, 2), t = t(3, 4), t = t(1, 3, 4) or t = t(2, 3, 4).

Theorem 9. D is the only quaternion subalgebra of A.

Proof. Let A = Cayt(D, c). We distinguish two cases.
(i) Let F have characteristic not 2. Suppose there is a quaternion subalgebra B = (e, f)F in
A. Then there is an element X ∈ A, X = (u, v) with u, v ∈ D such that X2 = e ∈ F× and
an element Y ∈ A, Y = (w, z) with w, z ∈ D such that Y 2 = f ∈ F× and XY + Y X = 0.
The first equation would be equivalent to

(1) u2 + cND/F (v) = e and (2) vu+ vσ(u) = 0

if we were looking at the classical doubling process. The twisted versions will obviously
switch around the order of the corresponding factors. This, however, will not affect equation
(1). Thus in all cases we have that if v = 0, then u2 = e and X = (u, 0) ∈ (D, 0).
Now if t = t(1), t = t(2), or t = t(1, 2), equation (2) stays as above, too, and the same
proof as in [Pu, Theorem 6] implies the assertion (we repeat it here for the sake of the
reader): if v 6= 0 then v is invertible and σ(u) = −u. This implies u2 = −ND/F (u), thus
e+ND/F (u) = cND/F (v) i.e. ND/F (v−1)(e+ND/F (u)) = c which is a contradiction since
the right hand side lies in D and not in F , while the left hand side lies in F .
Analogously, the second equation implies w2 = f and Y = (w, 0), w ∈ D. Hence (0, 0) =
XY + Y X = (uw + wu, 0) means uw + wu = 0 and so the standard basis 1, X = u, Y =
w,XY = uw for the quaternion algebra (e, f)F lies in D and we obtain D = (e, f)F .

If t = t(3, 4), t = t(1, 3, 4), t = t(2, 3, 4), equation (2) stays changes to

(2′) uv + σ(u)v = 0.

Hence if v 6= 0 then v is invertible and σ(u) = −u and again the same proof as in [Pu,
Theorem 6] implies the assertion.
(ii) Let F have characteristic 2. Suppose there is a quaternion subalgebra B = [e, f) in A.
Then there is an element X ∈ A, X = (u, v) with u, v ∈ D such that X2 +X = e ∈ F and
an element Y ∈ A, Y = (w, z) with w, z ∈ D such that Y 2 = f ∈ F× and XY = Y X + Y .
Analogously as in the above proof, the second equation Y 2 = f ∈ F× implies w2 = f and
Y = (w, 0), w ∈ D, if t = t(1), t = t(2), t = t(1, 2), t = t(3, 4), t = t(1, 3, 4), or t = t(2, 3, 4).

The first equation implies

(3) u2 + cND/F (v) + u = e and (4) vu+ vσ(u) + v = 0
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if we were looking at the classical and not at a twisted doubling process. The twisted versions
will obviously switch around the order of the corresponding factors in (4). Equation (3) is
not affected. Now if t = t(1), t = t(2) or t = t(1, 2), equation (4) stays the same, too,
and the same proof as in [Pu, Theorem 6] implies the assertion (we repeat it for the sake of
completeness): If v 6= 0 then v is invertible and σ(u)+u+1 = 0. This implies u = −(σ(u)+1),
thus σ(u2)+σ(u)+cND/F (v) = e i.e. we get σ(u2+u)+cND/F (v) = u2+u+cND/F (v) which
yields σ(u2 +u) = u2 +u. Hence u2 +u ∈ F. This implies that cND/F (v) = e− (u2 +u) ∈ F ,
a contradiction.

If t = t(3, 4), t = t(1, 3, 4), or t = t(2, 3, 4), equation (4) changes to

(4′) uv + σ(u)v + v = 0.

Thus if v 6= 0 then v is invertible and σ(u) + u+ 1 = 0. This implies u = −(σ(u) + 1), thus
the same contradiction that plugged into (3) we obtain that cND/F (v) = e− (u2 + u) ∈ F .

Hence v = 0 which implies u2 + u = e and X = (u, 0) ∈ D. Now XY = Y X + Y means
uw = wu+ w and the standard basis 1, X = u, Y = w for the quaternion algebra [e, f) lies
in D. We obtain D = [e, f).
The proofs for the other algebras are analogous. �

Theorem 10. If c ∈ D×\F is contained in a separable quadratic field extension L of F and
Cay(K, e) is a nonassociative quaternion subalgebra of A, then K = L and there is z ∈ D×

such that e = cND/F (z).
If c ∈ D× \ F is instead contained in a purely inseparable quadratic field extension K of F ,
then A has no nonassociative quaternion subalgebras.
If Cay(K ′, e) is a subalgebra of A, where K ′ is a purely inseparable quadratic field extension
of F , then K ′ = K.

Proof. Suppose that Cay(K, e) is a nonassociative quaternion subalgebra of A = Cayt(D, c).
(i) Let F have characteristic not 2 and let K = F (

√
f). Then there is an element Y ∈ A,

Y = (w, z) with w, z ∈ D such that Y 2 = f ∈ F×. As in the proof of Theorem 9, this
implies Y = (w, 0) and w2 = f , w ∈ D, so (K, 0) ⊂ (D, 0).

There also is an element Z = (w, z) ∈ A, w, z ∈ D, such that Z2 = (e, 0) and (x, 0)(w, z) =
(w, z)(σ(x), 0) for all x ∈ K. This is equivalent to

(5)w2 + cN(z) = e, (6) z(w + σ(w)) = 0 and (7) xw = wσ(x)

for all x ∈ K if we look at the classical and not at a twisted doubling process. The twisted
versions will switch around the order of the corresponding factors in (6) and (7), while (5)
remains the same, so that we alternatively deal with the equations

(6′) (w + σ(w))z = 0 and/or (7′) wx = σ(x)w

for all x ∈ K.
If z = 0 then w2 = e ∈ K. Write D = Cay(K, b) for a suitable b ∈ F×, then w = x0 + jx1

with j2 = b and w2 = e implies that x1 = 0 or σ(x0) = −x0. The latter implies the
contradiction that w2 = x2

0 + σ(x1)x1b = −NK/F (x0) + NK/F (x1)b = e ∈ F , hence we get
x1 = 0. Thus w ∈ K× and Z = (w, 0) which again yields a contradiction, since we also
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require equation (7) respectively (7’) to hold.
Therefore z 6= 0 and thus σ(w) = −w. The first equation yields −ND/F (w) + cND/F (z) =
e ∈ K \ F . Since ND/F (z) 6= 0 the left-hand side of the equation is an element of L \ F ,
hence L = K. Now xw = wσ(x) means xw = −σ(w)σ(x) = σ(wx), therefore xw ∈ F for all
x ∈ K, and the same conclusion follows if we have (7’) instead. For x = 1 we obtain w ∈ F ,
a contradiction to the requirement that σ(w) = −w, unless w = 0. We conclude that the
first equation implies that cz̄z = e.

By 2.2,
Cay(L, cND/F (z)) ∼= Cay(L, c) iff ND/F (z)g(c) = NL/F (d)c

for an automorphism g ∈ Aut(L) and a non-zero d ∈ L, so if we know that there is d ∈ L
such that NL/F (d) = ND/F (z) then the nonassociative quaternion algebra Cay(L, c) in A is
unique up to isomorphism.
(ii) Let F have characteristic 2. K is a separable quadratic field extension of F. Hence there
is an element X = (w, z) ∈ A, w, z ∈ D, such that X2 + X = f ∈ F×. As in the proof of
Theorem 3 this implies X = (w, 0) and w2 + w = f , w ∈ D, so K ⊂ (D, 0).

There also is an element Z = (w, z) ∈ A such that Z2 = (e, 0) and (x, 0)(w, z) =
(w, z)(σ(x), 0) for all x ∈ K. The rest of the assertion follows analogously as in (i).

If c lies in a purely inseparable quadratic field extension, however, the conclusion that
−ND/F (w) + cND/F (z) = e ∈ K \ F , with the left-hand side a non-zero element of L,
hence L = K, yields a contradiction. Thus in this case A has no nonassociative quaternion
subalgebras.
If Cay(K ′, e) is a subalgebra of A, where K ′ is a purely inseparable quadratic field extension
of F , it follows that K ′ = K.
The statements are proved analogously for the other algebras. �

We choose the algebras A = Cayt(2,3)(D, c) and A = Cayt(2,3,4)(D, c) to investigate their
nuclei.

Lemma 11. Let A = Cayt(2,3)(D, c).
(i) Let c ∈ F×. Then Nucl(A) = {(w, 0) |w ∈ D} ∼= D, Nucm(A) = F ⊕ F and Nucr(A) =
F ⊕ F .
(ii) Let c ∈ D× \ F . Then K ⊂ Nucl(A) = {(w, 0) |w ∈ D and wc = cw}, where K is a
quadratic field extension of F contained in D with c ∈ K, Nucm(A) = F and Nucr(A) =
F ⊕ F .
(iii) Nuc(A) = F and C(A) = F.

Proof. (i) and (ii) are proved together: We have

(w, z)((r, s)(u, v)) = (wru+ wcsv̄ + czv̄ r̄ + czus̄, wrv + wsū+ zū r̄ + zvs̄ c̄)

and

((w, z)(r, s))(u, v) = (wru+ czs̄u+ cwsv̄ + czr̄ v̄, wrv + czs̄u+ wsū+ zr̄ ū).

(w, z) ∈ Nucl(A) iff for all u, v, r, s ∈ D, (w, z)((r, s)(u, v)) = ((w, z)(r, s))(u, v). I.e., iff

wcsv̄ + czv̄ r̄ + czus̄ = czs̄u+ cwsv̄ + czr̄ v̄



DIVISION ALGEBRAS FROM TWISTED CAYLEY-DICKSON DOUBLINGS 11

and
wsū+ zū r̄ + zvs̄ c̄ = czs̄v + wsū+ zr̄ ū.

For s = 1 and v = 0 this yields z = 0 so (w, z) ∈ Nucl(A) iff z = 0 and for all u, v, r, s ∈ D,
wcsv̄ = cwsv̄. Thus (wc− cw)sv̄ = 0 for all s, v ∈ D and for s = v = 1, wc = cw. If c ∈ F×,
this holds for all w ∈ D. If c 6∈ F , it holds for all w ∈ K, where K is a quadratic subfield of
D containing F .
A straightforward calculation as the above shows that if (r, s) ∈ Nucm(A) then r, s ∈ F .
Thus the equivalence (r, s) ∈ Nucm(A) iff (w, z)((r, s)(u, v)) = ((w, z)(r, s))(u, v) for all
u, v, w, z ∈ D becomes

wcv̄s = cwv̄s and zvc̄s = czvs,

which is equivalent to (wc − cw)v̄s = 0 and (zvc̄ − czv)s = 0 for all v, w, z ∈ D. Suppose
c ∈ F×, then this is satisfied for all v, w, z ∈ D and so Nucm(A) = F ⊕ F . If c 6∈ F

then we obtain for v = 1: (wc − cw)s = 0 and (zc̄ − cz)s = 0 for all w, z ∈ D. Since
c 6∈ Comm(D) = F , (wc− cw) 6= 0 for some w, hence s = 0.
(u, v) ∈ Nucr(A) iff (w, z)((r, s)(u, v)) = ((w, z)(r, s))(u, v) for all r, s, w, z ∈ D implies
v ∈ F for s = z = 1 and w = 0. With v ∈ F it is equivalent to

wcsv + czus̄ = czs̄u+ cwsv

and
zū r̄ + zs̄ c̄v = czs̄v + zr̄ ū.

For r = 0 and s = z = 1 we get v = 0 if c 6∈ F . This implies u ∈ F .
Suppose now that c ∈ F×. Then an easy calculation also shows that u ∈ F .

(iv) is obvious now. �

Note that A = Cayt(2,3)(D, c) can be viewed as a right K-vector space for all c ∈ D× and
any quadratic subfield K in D and since L ⊂ Nucl(A) for all c ∈ L ⊂ D× it can be used in
the design of space-time block codes.

Lemma 12. Let A = Cayt(2,3,4)(D, c) be a twisted Dickson algebra.
(i) Nucl(A) = {(w, 0) |w ∈ F} ∼= F,

(ii) if c ∈ F× or if D is division and c ∈ D× \ F , then Nucm(A) = {(w, 0) |w ∈ F} ∼= F,

(iii) Nucr(A) = {(w, 0) |w ∈ F} ∼= F .
(iv) C(A) = F.

Proof. (i) We have

(w, z)((r, s)(u, v)) = (wru+ wcsv̄ + czv̄ r̄ + czs̄u, wrv + wūs+ ū r̄z + vs̄ c̄z)

and

((w, z)(r, s))(u, v) = (wru+ czs̄u+ cwsv̄ + cr̄ zv̄, wrv + czs̄v + ūws+ ū r̄z).

(w, z) ∈ Nucl(A) iff for all u, v, r, s ∈ D, (w, z)((r, s)(u, v)) = ((w, z)(r, s))(u, v). I.e., iff

wcsv̄ + czv̄ r̄ + czs̄u = czs̄u+ cwsv̄ + cr̄ zv̄

and
wūs+ vs̄ c̄z = czs̄v + ūws.
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For s = 0 and v = 1 the first equation yields z ∈ F . Now the second equation with z ∈ F ,
s = 1 and v = 0 yields w ∈ F . For z, w ∈ F , the first equation is always satisfied, the second
yields zvs̄c̄ = zcs̄v for all s, v ∈ D. Suppose c ∈ D× \F . Then this gives z(c̄− c) = 0, hence
z = 0 for s = v = 1.

If c ∈ F×, the first equation yields z = 0.
(iii) A straightforward calculation as the above shows that if (r, s) ∈ Nucm(A) then r ∈ F .
Thus the equivalence (r, s) ∈ Nucm(A) iff (w, z)((r, s)(u, v)) = ((w, z)(r, s))(u, v) for all
u, v, w, z ∈ D becomes

wūs+ vs̄c̄z = czs̄v + ūws and wcsv̄ = cwsv̄.

If c ∈ F×, the second equation with w = 0, z = 1 yields s ∈ F and then with v = 0
immediately s = 0. So suppose c ∈ D× \ F . Then the second equation with v = 0 gives
s = 0 if D is a division algebra.
(iv) is similar.

�

As a direct consequence of the Lemmas 11 (i), (ii) and 12 we obtain:

Corollary 13. For all quaternion algebras B,D over F and elements c ∈ D×, b ∈ B×,

Cayt(2,3)(D, c) 6∼= Cayt(2,3,4)(B, b)

and

Cayt(2,3)(D, c)
op 6∼= Cayt(2,3,4)(B, b).

Computing the nuclei also for the other algebras is one possibility to see if the algebras
within two families are isomorphic or not. We omit this here to keep the paper within
reasonable length.

5. Isomorphisms

5.1. LetB andD be two quaternion algebras over F and g : D → B an algebra isomorphism.
Let m ∈ F×. Then the map

(u, v)→ (g(u),m−1g(v))

induces the following algebra isomorphisms:

Cayt(D, c) ∼= Cayt(B,m
2g(c)),

rCayt(D, c) ∼= rCayt(B,m
2g(c)),

mCayt(D, c) ∼= mCayt(B,m
2g(c)).

For D = B, g(u) = aua−1 for a suitable a ∈ D× by the Theorem of Skolem-Noether [KMRT,
(1.4), p. 4], therefore

Cayt(D, c) ∼= Cayt(D,m
2aca−1),

rCayt(D, c) ∼= rCayt(D,m
2aca−1),

mCayt(D, c) ∼= mCayt(D,m
2aca−1).
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Example 14. For charF 6= 2 and c = c0 + c1i+ c2j + c3k ∈ D× \ F ,

Cayt((a, b)F , c) ∼= Cayt((e
2a, f2b)F , c0 + ec1i+ fc2j + efc3k),

mCayt((a, b)F , c) ∼= mCayt((e
2a, f2b)F , c0 + ec1i+ fc2j + efc3k),

rCayt((a, b)F , c) ∼= rCayt((e
2a, f2b)F , c0 + ec1i+ fc2j + efc3k),

since (a, b)F
∼= (e2a, f2b)F via g(i) = ei, g(j) = fj for e, f ∈ F× and

Cayt((a, b)F , c) ∼= Cayt((b, a)F , c0 + abc2i+ abc1j + a2b2c3k),

mCayt((a, b)F , c) ∼= mCayt((e
2a, f2b)F , c0 + ec1i+ fc2j + efc3k),

rCayt((a, b)F , c) ∼= rCayt((e
2a, f2b)F , c0 + ec1i+ fc2j + efc3k),

since (a, b)F
∼= (b, a)F via g(i) = abj, g(j) = abi.

For charF = 2, D = Cay(L, b) = [a, b) for some separable quadratic field extension L/F

and c = m+ nj ∈ D = Cay(L, b) invertible, m,n ∈ L,

Cayt(D,m+ nj) ∼= Cayt(D,m+ fnj),

mCayt(D,m+ nj) ∼= mCayt(D,m+ fnj),

rCayt(D,m+ nj) ∼= rCayt(D,m+ fnj),

for all f ∈ F×, since D = Cay(L, b) ∼= Cay(L, f2b) via g(w, z) = (w, fz) for f ∈ F×.

We focus again on t = t(1), t = t(2), t = t(1, 2), t = t(3, 4), t = t(1, 3, 4) or t = t(2, 3, 4).

Theorem 15. Let D and B be two quaternion division algebras.
(a) Suppose and c ∈ D× \ F , d ∈ B× \ F , t = t(1), t = t(2), t = t(1, 2), t = t(3, 4),
t = t(1, 3, 4) or t = t(2, 3, 4) and that one of the following holds:
(i) Cayt(D, c) and Cayt(B, d) are two division algebras such that Cayt(D, c) ∼= Cayt(B, d).
(ii) rCayt(D, c) and rCayt(B, d) are two division algebras such that rCayt(D, c) ∼=r Cayt(B, d).
(iii) mCayt(D, c) and mCayt(B, d) are two division algebras such that mCayt(D, c) ∼=
mCayt(B, d). Then D ∼= B and either both c and d lie in two isomorphic separable qua-
dratic field extensions or they both lie in two isomorphic purely inseparable quadratic field
extensions contained in D, resp. B. If c ∈ L and d ∈ L′ lie in two isomorphic separable
quadratic field extensions L and L′ then there is an element s ∈ D× such that

g(c) = ND/F (s)d

with g : L→ L′ an isomorphism.
(b) Let c, d ∈ F×. If Cayt(2,3)(D, c) ∼= Cayt(2,3)(B, d) then D and B are isomorphic.

Proof. (a) Every isomorphism maps a quaternion subalgebra of Cay(D, c) to a quaternion
subalgebra of Cay(B, d), hence D ∼= B in (i), (ii), (iii) by Theorem 9.

By Theorem 10, both c ∈ D× and d ∈ B× either both lie in two separable isomorphic
quadratic field extensions contained in D, resp. B (in which case both algebras have a nonas-
sociative quaternion subalgebra) or both lie in two isomorphic purely inseparable quadratic
field extensions contained in D, resp. B (in which case both algebras have no nonassociative
quaternion subalgebra).
Let us look at (i). Suppose both c ∈ D× and d ∈ B× lie in two separable quadratic
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field extensions L ⊂ D resp. L′ ⊂ B. Then the isomorphism Cay(D, c) ∼= Cay(B, d) im-
plies that L ∼= L′ and that there are z ∈ D×, z′ ∈ B× such that Cay(L, cND/F (z)) ∼=
Cay(L′, dNB/F (z′)) (Theorem 10). Now

Cay(L, cND/F (z)) ∼= Cay(L′, dNB/F (z′)) implies g(cND/F (z)) = NL′/F (e′)dNB/F (z′)

with g : L→ L′ an isomorphism and some non-zero e′ ∈ L′, i.e.

ND/F (z)g(c) = NB/F (z′)NL′/F (e′)d.

SinceD ∼= B and L ∼= L′, there is an element t ∈ D× such thatND/F (t) = NB/F (z′)NL′/F (e′)
and an element s ∈ D× such that

g(c) = ND/F (s)d.

If both c ∈ D× and d ∈ B× lie in a purely inseparable quadratic field extension K ⊂ D resp.
K ′ ⊂ B then the isomorphism Cay(D, c) ∼= Cay(B, d) implies that K ∼= K ′ by Theorem 10.

The proof is the same for (ii) and (iii).
(b) Any isomorphism maps the left nucleus of Cayt(2,3)(D, c) onto the left nucleus of Cayt(2,3)(B, d),
hence D ∼= B by Lemma 11. �

For the rest of this section, let D be a quaternion division algebra and suppose that
c, d ∈ D× \ F .

Lemma 16. Let G : Cayt(D, c)→ Cayt(D, d), G :m Cayt(D, c)→m Cayt(D, d) or
G :r Cayt(D, c) →r Cayt(D, d) be an algebra isomorphism. Suppose G((0, 1)) = (0, s) with
s ∈ D×, i.e. that G maps Dl to Dl′. Then there is a ∈ D× such that:
(i) dND/F (s) = aca−1 if G : Cayt(D, c)→ Cayt(D, d) or G :r Cayt(D, c)→r Cayt(D, d),
(ii) σ(s)ds = aca−1 if G :m Cayt(D, c)→m Cayt(D, d) and t = t(1), t(3, 4), or t(1, 3, 4)
(iii) sdσ(s) = aca−1 if G :m Cayt(D, c) →m Cayt(D, d) and t = t(1, 2), t(2) or t(2, 3, 4).
Moreover,

G((u, v)) = (aua−1, sava−1)

if t = t(1), t = t(2) or t = t(1, 2) and

G((u, v)) = (aua−1, ava−1s)

if t = t(3, 4), t = t(1, 3, 4) or t = t(2, 3, 4).

Proof. By the uniqueness of the quaternion algebra D, we have G((D, 0)) = (D, 0), so that
G((u, 0)) = (aua−1, 0) for some a ∈ D×. In particular, we get (aca−1, 0) = G((c, 0)) =
G((0, 1)(0, 1)) = G((0, 1))G((0, 1)). If G((0, 1)) = (0, s) with s ∈ D× then G((0, v)) =
G((v, 0))G((0, 1)) = (ava−1, 0)(0, s) = (0, sava−1), so that

G((u, v)) = (aua−1, sava−1)

if t = t(1), t = t(2) or t = t(1, 2) and G((0, v)) = G((v, 0))G((0, 1)) = (ava−1, 0)(0, s) =
(0, ava−1s), so that

G((u, v)) = (aua−1, ava−1s)

else. Moreover, we have (aca−1, 0) = (0, s)(0, s) = (dσ(s)s, 0) and thus

dND/F (s) = aca−1
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if G : Cayt(D, c) → Cayt(D, d) or G :r Cayt(D, c) →r Cayt(D, d) and (aca−1, 0) =
(0, s)(0, s) = (σ(s)ds, 0) and thus

σ(s)ds = aca−1

if G :m Cayt(D, c) →m Cayt(D, d) and t = t(1), t(3, 4), or t(1, 3, 4) or (aca−1, 0) =
(0, s)(0, s) = (sdσ(s), 0) and thus

sdσ(s) = aca−1

if t = t(1, 2), t(2) or t(2, 3, 4). �

Theorem 17. (a) Suppose t = t(2), t = t(1, 2), t = t(3, 4) or t = t(1, 3, 4). Then
Cayt(D, c) ∼= Cayt(D, d) if and only if there are a ∈ D×, m ∈ F×, such that d = m2aca−1.
The isomorphisms are then given by the maps

G((u, v)) = (aua−1,m−1ava−1).

Suppose t = t(1) or t = t(2, 3, 4). Then Cayt(D, c) ∼= Cayt(D, d) if and only if there are
a, s ∈ D× such that dND/F (s) = c. The isomorphisms are then given by the maps

G((u, v)) = (aua−1, sava−1)

if t = t(1) and by
G((u, v)) = (aua−1, ava−1s)

if t = t(2, 3, 4).
(b) Suppose t = t(2), t = t(1, 2), t = t(3, 4) or t = t(1, 3, 4). Then rCayt(D, c) ∼= rCayt(D, d)
if and only if there are a ∈ D×, m ∈ F×, such that d = m2aca−1. The isomorphisms are
then given by the maps

G((u, v)) = (aua−1,m−1ava−1).

Suppose t = t(1) or t = t(2, 3, 4). Then rCayt(D, c) ∼= rCayt(D, d) if and only if there are
a, s ∈ D× such that dND/F (s) = c. The isomorphisms are then given by the maps

G((u, v)) = (aua−1, sava−1)

t = t(1) and by
G((u, v)) = (aua−1, ava−1s)

if t = t(2, 3, 4).

Proof. (a) Let G : Cayt(D, c) → Cayt(D, d) be an algebra isomorphism which maps Dl to
Dl′. Since G is multiplicative we have

(1) G((u, v)(u′, v′)) = G(u, v)G(u′, v′).

For t = t(1), equation (1) is equivalent to

(2) acv̄′va−1 = dā−1v̄′va−1N(a)N(s),
(3) savū′a−1 = zavū′āN(a)−1

for all u, u′, v, v′ ∈ D. Using that dNL/F (s) = aca−1 by Lemma 16, both equations are
true for all a, z ∈ D× with dND/F (s) = aca−1, they are the same as if we use the classical
Cayley-Dickson doubling, cf. [Pu, Theorem 14].
For t(2) or t(1, 2), only the first equation changes and becomes

(2) acvv̄′a−1 = dsavv̄′ās̄N(a)−1
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for all u, u′, v, v′ ∈ D. This is equivalent to

vv̄′ = a−1s̄−1avv̄′ās̄N(a)−1,

i.e.

avv̄′a−1 = s̄−1(avv̄′a−1)s̄,

for all u, u′, v, v′ ∈ D and implies that sw = ws for all w ∈ D, hence s ∈ Comm(D) = F .
This makes (1) true. Put m = s−1.

Let t = t(3, 4) or t = t(1, 3, 4). Equation (1) is then equivalent to

(2) acv̄′va−1 = ds̄ā−1v̄′āava−1s and
(3) aū′va−1s = ā−1ū′va−1zN(a)

for all u, u′, v, v′ ∈ D. Equation (3) is always true. With ds̄ = aca−1s−1, (2) is the same as

v̄′va−1 = a−1s−1ā−1v̄′va−1sN(a)

for all u, u′, v, v′ ∈ D. This is equivalent to

w = a−1s−1ā−1wsN(a)

for all w ∈ D, i.e. to

s(ā−1w) = (ā−1w)s

for all w ∈ D and we conclude that we need s ∈ Comm(D) = F in order for (1) to hold.
For t = t(2, 3, 4), equation (1) is equivalent to

(2) acvv̄′a−1 = dava−1ss̄ā−1v̄′ā and
(3) aū′va−1s = ā−1ū′va−1zN(a)

for all u, u′, v, v′ ∈ D. (3) is always true. Using that dNL/F (s) = aca−1, (2) is equivalent to

vv̄′a−1 = vv̄′a−1

and thus also true for all a, s ∈ D× with dNL/F (s) = aca−1.
It remains to show that for G : Cayt(D, c) → Cayt(D, d) indeed G((0, 1)) = (0, s).

Suppose that G((0, 1)) = (t, s) with t, s ∈ D and t 6= 0. Then (aca−1, 0) = G((c, 0)) =
G((0, 1))G((0, 1)) = (t, s)(t, s) = (t2 + dσ(s)s, s(t+ σ(t))) implies that

t2 + dσ(s)s = 0 and s(t+ σ(t)) = 0.

If s = 0 then t 6= 0 and G is not injective, since G((0, 1)) = (t, 0) = G((a−1ta, 0)). Thus
s 6= 0 and σ(t) = −t.
Assume t = t(2). G is multiplicative, hence we have

G((0, v)) = G((v, 0))G((0, 1)) = (ava−1, 0)(t, s) = (ava−1t, sava−1)

and

G((u, v)) = G((u, 0)) +G((v, 0)) = (aua−1 + ava−1t, sava−1)

for all u, v ∈ D. Use G((u, v)(u′, v′)) = G((u, v))G((u′, v′)): The first entry yields

(aua−1 + ava−1t)(au′a−1 + av′a−1t) + c(sava−1)(σ(a−1σ(v)σ(a)σ(s)))

= auu′a−1 + acvσ(v′)a−1 + a(v′u+ vσ(u′))a−1t
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for all u, v, u′, v′ ∈ D. Put v = 0 to obtain uv′a−1t = v′ua−1t and since t 6= 0 thus uv′ = v′u

for all u, v′ ∈ D, a contradiction.
Assume t = t(1). G is multiplicative, hence we have

G((0, v)) = G((v, 0))G((0, 1)) = (ava−1, 0)(t, s) = (tava−1, sava−1)

and

G((u, v)) = G((u, 0)) +G((v, 0)) = (aua−1 + tava−1, sava−1)

for all u, v ∈ D. Use G((u, v)(u′, v′)) = G((u, v))G((u′, v′)): The first entry yields

(aua−1 + tava−1)(au′a−1 + tav′a−1) + c(σ(a−1σ(v)σ(a)σ(s)))(sava−1)

= auu′a−1 + acσ(v′)va−1 + ta(v′u+ vσ(u′))a−1

for all u, v, u′, v′ ∈ D. Put v = 0 to obtain

aua−1tav′ = tav′u.

for all u, v′ ∈ D, for v′ = 1, thus u(a−1ta) = (a−1ta)u for all u, v′ ∈ D, hence a−1ta ∈ F×

so that t ∈ F×, implying uv′ = v′u for all u, v′ ∈ D, a contradiction.
Assume t = t(1, 2). G is multiplicative, hence we have

G((0, v)) = G((v, 0))G((0, 1)) = (ava−1, 0)(t, s) = (tava−1, sava−1)

and

G((u, v)) = G((u, 0)) +G((v, 0)) = (aua−1 + tava−1, sava−1)

for all u, v ∈ D. Use G((u, v)(u′, v′)) = G((u, v))G((u′, v′)): The first entry yields

(au′a−1 + tav′a−1)(aua−1 + tava−1) + c(sava−1)(σ(a−1σ(v)σ(a)σ(s)))

= au′ua−1 + acvσ(v′)a−1 + ta(v′u+ vσ(u′))a−1

for all u, v, u′, v′ ∈ D. Put v = 0 to obtain tav′u = tav′u for all u, v′ ∈ D, thus v′u = v′u

for all u, v′ ∈ D since t 6= 0, a contradiction.
The proof for the other cases works analogously. To prove that t = 0 it suffices again to
look at the first equation above.
(b) Let G :r Cayt(D, c)→ rCayt(D, d) be an algebra isomorphism which maps Dl to Dl′.
Since G is multiplicative we have

(1) G((u, v)(u′, v′)) = G(u, v)G(u′, v′).

An analogous proof as the one for t = t(1), t = t(2) or t = t(1, 2) in Proposition (a) also
works for G :r Cayt(D, c)→r Cayt(D, d). Next let t = t(3, 4) or t = t(1, 3, 4). Then equation
(1) is equivalent to

(2) av̄′vca−1 = s̄ā−1v̄′āava−1sd and
(3) aū′va−1s = ā−1ū′va−1sN(a)

for all u, u′, v, v′ ∈ D. Equation (3) is true. With dND/F (s) = aca−1, (2) is the same as

av̄′v = s̄ā−1v̄′va−1s̄−1aND/F (a),
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for all u, u′, v, v′ ∈ D, i.e. to wz̄ = z̄w for all w ∈ D implying s ∈ F×.
Let t = t(2, 3, 4). Then equation (1) is equivalent to two equations (2’) and (3’) as before,
with equation (3’) being equation (3) in (a), so always true. Equation (2’) is

avv̄′ca−1 = ava−1ss̄ā−1v̄′ād

and holds for all a, s ∈ D× with dND/F (s) = aca−1. The remaining assertions now follows
analogously as in (a). The converse is now a straightforward calculation in all cases. �

Corollary 18. Let A = Cayt(D, c) or A =r Cayt(D, c).
(i) Suppose t = t(2), t = t(1, 2), t = t(3, 4) or t = t(1, 3, 4). The automorphisms of A are
given by the maps

G((u, v)) = (aua−1,m−1ava−1)

where a ∈ D×, m ∈ F×, such that ca = m2ac.
(ii) Suppose t = t(1) or t = t(2, 3, 4). The automorphisms of A are given by the maps

G((u, v)) = (aua−1, sava−1)

if t = t(1) and by

G((u, v)) = (aua−1, ava−1s)

if t = t(2, 3, 4), with a, s ∈ D× such that ND/F (s) = 1.

Corollary 19. Let B, D be two quaternion division algebras, c, d ∈ D× \ F . Let s, t be
elements of {t(1), t(2), t(1, 2), t(3, 4), t(1, 3, 4), t(2, 3, 4)}.
(i) If Cayt(D, c) ∼=r Cays(B, d) then B ∼= D.
(ii) If mCayt(D, c) ∼= Cays(B, d) then B ∼= D.
(iii) If Cayt(D, c) ∼=r Cays(B, d) then B ∼= D.
Moreover, the isomorphisms imply either both c and d lie in two isomorphic separable qua-
dratic field extensions L and L′ or they both lie in two isomorphic purely inseparable qua-
dratic field extensions K and K ′.

This follows from the above results. Concerning the question if there are isomorphisms
between the different classes of twisted Cayley-Dickson doublings, we conjecture that given a
quaternion division algebraD, c, d ∈ D×\F , and s, t elements of {t(1), t(2), t(1, 2), t(3, 4), t(1, 3, 4),
t(2, 3, 4)}, it can be shown that

Cayt(D, c) 6∼=r Cays(D, d),

mCayt(D, c) 6∼= Cays(D, d)

and

mCayt(D, c) 6∼=r Cays(D, d).

The proof should work analogously to the one of Theorem 17.
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6. Division algebras of dimension 16

We briefly point out that we can also obtain results on division algebras of dimension 16:

Theorem 20. Let C be an octonion division algebra over F with canonical involution σ = .
Let A = Cayt(C, c), A =m Cayt(C, c) or A =r Cayt(C, c).
(i) A is a division algebra for any choice of c ∈ C× \ F such that NC/F (c) 6∈ NC/F (C×)2.
(ii) A is a division algebra for any choice of c ∈ C× \ F such that NC/F (c) 6∈ F×2.
(iii) A is a division algebra for any choice of c ∈ F× such that c 6∈ ±NC/F (C×).

Proof. (i) and (iii): We show that A = Cayt(2,3)(C, c) has no zero divisors: suppose

(0, 0) = (r, s)(u, v) = (ru+ c(sv̄), rv + sū)

for r, s, u, v ∈ C. This is equivalent to

ru+ c(sv̄) = 0 and rv + sū = 0.

Assume s = 0, then ru = 0 and rv = 0. Hence either r = 0 and so (r, s) = 0 or r 6= 0 and
u = v = 0 (this is the same for all possible t).

So let s 6= 0. Then s ∈ C× and sū = −rv. Thus us̄ = −v̄r̄, (us̄)s̄ = us̄2 = (−v̄r̄)s̄ (since
A is flexible), thus u = − 1

N(s)2 ((v̄r̄)s̄)s2 plugged into ru+ c(sv̄) = 0 implies that

1
N(s)2

r(((v̄r̄)s̄)s2) = c(sv̄).

Applying the norm ND/F we obtain that

N(r)2N(v) = N(c)N(s)2N(v).

If v = 0 then ru = 0 and sū = 0, thus u = 0 and (u, v) = 0. If v 6= 0 then ND/F (v) 6= 0
and ND/F (c) = ND/F ( r

s )2, a contradiction to our initial assumption that c ∈ C× \ F and
NC/F (c) 6∈ NC/F (C×)2, resp. c ∈ F× such that c 6∈ ±NC/F (C×), unless r = 0. However, if
r = 0 (and s 6= 0 as assumed above) then the initial two equalities give u = 0 and v = 0, so
that (u, v) = (0, 0).

The other cases (i.e., different t) are treated similarly, the argument remains the same.
The proof for A =m Cayt(C, c) and A =r Cayt(C, c) is along the same lines, the placement

of c is not relevant for the argument.
(ii) follows from (i). �

Example 21. Let F = Q and C = Cay(Q, a, b, e) an octonion algebra.
For all a, b, e < 0, C is a division algebra and Cayt(C, c), mCayt(C, c) and rCayt(D, c)

are division algebras for all t and all c = x0 + x1i + x2j + x3k + x4l + x5il + x6jl + x7kl,
such that the positive rational number

ND/F (c) = x2
0 − ax2

1 − bx2
2 + abx2

3 − ex2
4 + aex2

5 + bex2
6 − abex2

7

is not a square. E.g., let C = Cay(Q,−1,−1,−1). If c is not a sum of 8 squares then
Cayt(C, c), mCayt(C, c) and rCayt(D, c) are division algebras for all t.

The structure of these algebras remains similar as well, for instance:
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Theorem 22. Let F have characteristic not 2 and let C be an octonion division algebra,
c ∈ C \ F invertible. Let t = t(1), t = t(2), t = t(1, 2), t = t(3, 4), t = t(1, 3, 4) or
t = t(2, 3, 4). Then C is the only octonion subalgebra of the algebras A = Cayt(C, c),
respectively A =r Cayt(C, c).
If there is a quaternion algebra D such that the Dickson algebra Cay(D, d) is a subalgebra
of Cay(C, c), respectively Cayr(D, d) of Cayr(C, c), then D is a subalgebra of C, c ∈ D, and
there is z ∈ C× such that d = cNC/F (z).

The proof is analogous to the one of Theorems 9 and 10.

Corollary 23. Let F have characteristic not 2 and let C, H be two octonion division
algebras, c ∈ C \F , d ∈ H \F . Let t = t(1), t = t(2), t = t(1, 2), t = t(3, 4), t = t(1, 3, 4) or
t = t(2, 3, 4). If Cayt(C, c) ∼= Cayt(H, d) or rCayt(C, c) ∼=r Cayt(H, d) then C ∼= H.

References

[A] Albert, A. A., On the power-aassociativity of rings. Summa Braziliensis Mathematicae 2, 21 – 33,

1948.

[Al-H-K] Althoen, C., Hansen, K. D., Kugler, L. D., C-Associative algebras of dimension 4 over R. Algebras,

Groups and Geometries 3, pp. 329 – 360, 1986.

[As-Pu] Astier, V., Pumplün, S., Nonassociative quaternion algebras over rings. Israel J. Math. 155, 125

– 147, 2006.

[B-B-O] Benkart, G. M., Britten, D. J., Osborn, J. M., Real flexible division algebras. Canad. J. of Math.

34 (3), 550 – 588, 1982.

[B-O1] Benkart, G. M., Osborn, J. M., The derivation algebra of a real division algebra. Amer. J. of

Math. 103 (6), 1135 – 1150, 1981.

[B-O2] Benkart, G. M., Osborn, J. M., An investigation of real division algebras using derivations. Pacific

J of Math. 96 (2), 265 – 300, 1981.

[Be-Og1] G. Berhuy, F. Oggier, On the existence of perfect space-time codes. Transactions on Information

Theory 55 (5) May 2009, 2078 – 2082.

[Be-Og2] G. Berhuy, F. Oggier, Introduction to central simple algebras and their applications to wireless

communication.

http://www.foutier.ujf-grenoble.fr/ berhuy/fichiers/BOCSA.pdf

[Be-Og3] G. Berhuy, F. Oggier, Space-time codes from crossed product algebras of degree 4. S. Boztaş and
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