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Abstract. Let X be an integral proper scheme such that 2, 3 ∈ H0(X,OX). We con-

struct cubic Jordan algebras and, in particular, Albert algebras, over X by providing the

space of trace zero elements of a quartic Jordan algebra over X with a new multiplica-

tion, generalizing a construction by B. N. Allison and J. R. Faulkner. In the process, we

construct admissible cubic algebras and pseudo-composition algebras over X. Results

on the structure of these algebras are obtained. Examples of admissible cubic algebras,

Albert algebras and pseudo-composition algebras are constructed over elliptic curves.

Introduction

In his PhD thesis [Ach1], Achhammer developed a generalized Tits process for algebras
over locally ringed spaces which, specialized to algebras over rings, generalized the classical
Tits process and, in particular, the classical first and second Tits constructions. The results
of his thesis were only partly published in [Ach2].

Independently, Albert algebras over integral schemes were investigated by Parimala-
Sridharan-Thakur [Pa-S-T1, 2]. In [Pa-S-T2], generalized first and second Tits construc-
tions for Albert algebras over a domain R with 2, 3 ∈ R× were introduced. Furthermore, a
family of non-isomorphic Albert algebras over A2

k was constructed who arise neither from a
first nor second Tits construction, proving that the situation over integral schemes (resp.,
domains) differs from the one over fields. Albert algebras over locally ringed spaces and
in particular, over curves of genus zero and one, were further studied in [Pu3, 4], with an
emphasis on those arising from a first Tits construction. In this paper we will introduce a
different construction for Albert algebras over integral schemes (resp., over domains).

How to obtain separable cubic Jordan algebras over fields of characteristic not 2 or 3 as
the space of trace zero elements of separable Jordan algebras of degree 4 was first described
by Allison-Faulkner [A-F, 5.4]. Indeed, every separable cubic Jordan algebra over a field
of characteristic not 2 or 3 can be obtained this way [A-F, 5.6]. More recently, this idea
was discussed again in a paper by Elduque-Okubo [E-O] on admissible cubic algebras: over
fields of characteristic not 2 or 3, admissible cubic algebras are related to cubic and quartic
Jordan algebras, as well as to pseudo-composition algebras. Pseudo-composition algebras
over fields were also investigated by Meyberg-Osborn [M-O] and Röhrl-Walcher [R-W]. A
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variety containing both cubic Jordan algebras and pseudo-composition algebras was studied
by Hentzel-Peresi [H-Pe].

In this paper, we generalize parts of the theory developed in [E-O] to algebras over integral
schemes X with 2, 3 ∈ H0(X,O×X), with a special emphasis on cubic and quartic Jordan
algebras over X with separable, and in particular central simple, residue class algebras of
degree 4 (although most results also hold in a more general setting). Our main interest
is to construct examples of admissible cubic algebras, cubic Jordan algebras and pseudo-
composition algebras with interesting underlying module structures. In particular, we obtain
examples of Albert algebras out of quartic Jordan algebras over X, which are the symmetric
elements of an Azumaya algebra of constant rank 64 over X, which carries a symplectic
involution. In order to keep the paper within a reasonable length, we mainly generalize the
parts of [E-O] needed for this endeavor, although most of the theory developed in [E-O] can
be easily transferred to our more general setting.

The method used in this paper suggests how to achieve a list or even a partial classifi-
cation of those admissible cubic algebras (resp., cubic Jordan algebras, pseudo-composition
algebras) over integral proper schemes X, which can be obtained from quartic Jordan al-
gebras. We give a series of examples. We restrict our investigation to OX -algebras which
are locally free of (automatically constant) finite rank as an OX -module and put a special
emphasis on algebras over elliptic curves.

One should point out that, despite the fact that cubic Jordan algebras over curves, and in
particular the exceptional ones (the Albert algebras) among them, are certainly interesting
in their own right, the methods developed here can be easily translated into the setting of
Jordan algebras over base rings. The results on the module structures which appear for
the cubic Jordan algebras over curves also serve as examples on what underlying module
structures can appear when studying admissible cubic algebras, cubic Jordan algebras, and
pseudo-composition algebras over domains. While it is unlikely that all Albert algebras
over X can be constructed with the method employed here, it is nonetheless a good way to
find many interesting examples of these algebras and their underlying vector bundles, with
relatively little computational effort.

The contents of the paper are as follows. After a preliminary section, where the termi-
nology and some basic facts are collected, we develop some general theory for admissible
algebras and quartic Jordan algebras over locally ringed spaces in Section 2, explain the
relation between them and admissible cubic algebras, and deal with the existence of idem-
potents in the algebras we study. In Section 3, pseudo-composition algebras and cubic
Jordan algebras are constructed from the trace zero elements of a quartic Jordan algebra
over an integral scheme. Azumaya algebras over X of rank 16 (with orthogonal involu-
tion) are used to construct examples of quartic Jordan algebras, admissible cubic algebras
pseudo-composition algebras and cubic Jordan algebras in Section 4 and 5. The resulting
cubic Jordan algebras have central simple residue class algebras. In Section 6, we construct
Albert algebras out of certain Azumaya algebras of rank 64 with symplectic involutions.

We then apply our results to algebras over elliptic curves, since the vector bundles of
elliptic curves are well-known, interesting, and display a particularly nice behaviour. In
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Section 7 we construct examples of admissible cubic algebras and cubic Jordan algebras
(whose residue class algebras are central simple) of rank 9 and 15 and pseudo-composition
algebras of ranks 8 and 14 over an elliptic curve. In the process, we find admissible cubic
algebras over elliptic curves whose underlying OX -module is indecomposable (Theorem 9).
Given a quartic Jordan algebra of rank 28 of the type J = H(A, τ) with τ a symplectic
involution on an Azumaya algebra A of rank 64, we construct examples of admissible cubic
algebras of rank 27, Albert algebras and pseudo-composition algebras of rank 26 over an
elliptic curve in Section 8.

We use the standard terminology from algebraic geometry, see Hartshorne’s book [H] and
the one for algebras developed in [P1]. For the standard terminology on Jordan algebras,
the reader is referred to the books by McCrimmon [McC], Jacobson [J] and Schafer [S]. In
the following, let (X,OX) be a locally ringed space such that 2, 3 ∈ H0(X,O×X), let R be a
ring such that 2, 3 ∈ R× and k a field of characteristic not 2 or 3.

1. Preliminaries

1.1. Algebras over X. For P ∈ X let OP,X be the local ring of OX at P and mP the max-
imal ideal of OP,X . The corresponding residue class field is denoted by k(P ) = OP,X/mP .
For an OX -module F the stalk of F at P is denoted by FP . F is said to have full support,
if SuppF = X; i.e., if FP 6= 0 for all P ∈ X. We call F locally free of finite rank if for each
P ∈ X there is an open neighborhood U ⊂ X of P such that F|U = Or

U for some integer
r ≥ 0. The rank of F is defined to be sup{rankOP,X

FP |P ∈ X}.
In the following, the term “OX -algebra” (or “algebra over X”) refers to a not necessarily

associative OX -algebra A which is locally free of finite rank as OX -module. A unital OX -
algebra A is called alternative if x2y = x(xy) and yx2 = (yx)x for all sections x, y of A
over the same open subset of X. A unital algebra A over OX is called separable if A(P ) is
a separable k(P )-algebra for all P ∈ X. A global section f ∈ H0(X,A) such that f2 = f

is called an idempotent of A. Every unital algebra A over a base ring R which is finitely
generated projective with full support is faithful; i.e., for r ∈ R, rA = 0 implies r = 0. If A
has full support, then A(U) is finitely generated projective and faithful, for each open set
U ⊂ X.

An associative unital OX -algebra A is called an Azumaya algebra if AP ⊗OP,X
k(P ) is a

central simple algebra over k(P ) for all P ∈ X [Kn].

1.2. Involutions. Let A be a unital, not necessarily associative, OX -algebra. An anti-
automorphism σ : A → A of order 2 is called an involution on A. Define H(A, σ) = {a ∈
A |σ(a) = a} and Skew(A, σ) = {a ∈ A |σ(a) = −a}. Then A = H(A, σ) ⊕ Skew(A, σ).
If A is an Azumaya algebra, σ is called of the first kind, if σ|OX

= id. An involution σ

of the first kind is called an orthogonal involution if the induced involutions σ(P ) on the
residue class algebras A(P ) are all orthogonal, and a symplectic involution if they are all of
symplectic type.

Let X be a k-scheme and l/k a separable quadratic field extension. Let A be an Azumaya
algebra over X ′ = X ×k l together with an involution σ. Then σ is called of the second kind
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if σ|OX′ = ι, where ι : OX′ → OX′ is the canonical extension of the non-trivial Galois
automorphism ι of l/k.

1.3. Forms of higher degree over X. Let d be a positive integer. Let M, N be two
OX -modules which are locally free of finite rank. When talking about maps of degree d, we
will always assume that d! ∈ H0(X,O×X). A map of degree d over X is a map N : M→ N
such that N(ax) = adN(x) for all sections a in OX , x in M, where the map

θ : M× · · · ×M→ N

defined by

θ(x1, . . . , xd) =
1
d!

∑
1≤i1<···<il≤d

(−1)d−lN(xi1 + · · ·+ xil
)

is a d-linear map over OX (the range of summation of l being 1 ≤ l ≤ d). Obviously,
N(x) = θ(x, . . . , x) for all sections x of M over the same open subset of X. We canonically
identify a map of degree d and its associated symmetric d-linear map θ.

If N = OX , then a map of degree d is called a form of degree d, θ is called the symmetric
d-linear form associated with N and (M, θ) a d-linear space.

A form N : M → OX of degree d on a locally free OX -module of finite rank with full
support is called nondegenerate if N(P ) : M(P ) → k(P ) is nondegenerate in the classical
sense for all P ∈ X. This means that the residue maps θ′ ⊗ k(P ) of the map

θ′ : M→HomX(M⊗ · · · ⊗M,OX)

((d− 1)-copies of M) defined by

x1 → θx1(x2 ⊗ · · · ⊗ xd) = θ(x1, x2, . . . , xd).

are injective for all P ∈ X. This is equivalent to saying that θ′ is an isomorphism of M onto
a direct sumand of HomX(M⊗ · · · ⊗M,OX). This concept of nondegeneracy is invariant
under base change.

Two d-linear spaces (Mi, θi), i = 1, 2 are called isomorphic (written (M1, θ1) ∼= (M2, θ2)
or just θ1

∼= θ2) if there exists an OX -module isomorphism f : M1 → M2 such that
θ2(f(x1), . . . , f(xd)) = θ1(x1, . . . , xd) for all sections x1, . . . , xd of M1 over the same open
subset of X.

1.4. Azumaya algebras over X. Let d! ∈ H0(X,O×X). Let A be an Azumaya algebra
over X of constant rank d2. Then there exists a nondegenerate form nA : A → OX of degree
d on A, such that nA(xy) = nA(x)nA(y) for all sections x, y over the same open set of X

and nA(1) = 1. Let θ be the d-linear form associated to nA. For i = 1, . . . , d define the form
ti : A → OX of degree i via

ti(x) =
(

d

i

)
θ(x, . . . , x, 1, . . . , 1) (i-times x).

Then nA(x) = td(x) for all sections x, y of A over the same open subset of X.
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The linear form tA : A → OX , tA(x) = t1(x) = dθ(x, 1, . . . , 1) is called the trace. Put
sA : A → OX , sA(x) = t2(x). Obviously, tA(a1) = da for all a in OX . Define A0 = ker tA.
We have A = OX 1⊕A0. Every section x of A over the same open subset of X satisfies

xd − tA(x)xd−1 + sA(x)xd−2 − t3(x)xd−3 + · · ·+ (−1)dnA(x)1 = 0.

The symmetric bilinear form tA(x, y) = tA(xy) on A is associative and nondegenerate [Pu5].

1.5. Composition algebras over X. Following [P1], a unital OX -algebra C is called a
composition algebra over X, if it has full support and if there exists a quadratic form N : C →
OX such that the induced symmetric bilinear form N(u, v) = N(u + v) − N(u) − N(v) is
nondegenerate; i.e., it determines a module isomorphism C ∼−→ C∨ = Hom(C,OX), and
such that N(uv) = N(u)N(v) for all sections u, v of C over the same open subset of X.
(This definition of associated bilinear form is equivalent to the one introduced in 1.3 since
2 ∈ H0(X,O×X).)

N is uniquely determined, called the norm of C and is denoted by NC . Composition
algebras over X exist only in ranks 1, 2, 4 or 8. A composition algebra of constant rank
2 (resp. 4 or 8) is called a quadratic étale algebra (resp. quaternion algebra or octonion
algebra). Every composition algebra has a trace TC(x) = NC(x, 1) and a canonical involution
x̄ = NC(x, 1)1−x. This involution is of the first kind, since |OX

= id. A composition algebra
over X of constant rank is called split if it contains a composition subalgebra isomorphic
to OX ⊕OX . There are several construction methods for composition algebras over locally
ringed spaces, e.g., the Cayley-Dickson process Cay(D,P, NP) introduced in [P1]. Every
quaternion algebra D over X can be built out of a locally free OX -module M of constant
rank 3 carrying a nondegenerate quadratic form q with trivial determinant. We write D =
Quat(M, q) and have D = OX ⊕M as OX -module, cf. [Pu1, 2.7].

Let D be a quaternion algebra over X. Its canonical involution is symplectic. If σ 6= is
another involution of the first kind then D ∼= Cay(T ,P, N), where T = {x ∈ D |σ(x) = x̄},
is a quadratic étale algebra over X. Thus, if D does not contain a quadratic étale subalgebra,
the canonical involution is its only involution of the first kind. Suppose D = Cay(T ,P, N)
is a Cayley-Dickson doubling. Then the hat-involution (u, v)ˆ = (ū, v) with u ∈ T , v ∈ P is
an orthogonal involution on D and H(D, ˆ) = Sym(D, ˆ) = OX ⊕ P. Up to isomorphism,
this is the only orthogonal involution on D [Pu2].

1.6. Jordan algebras over X. (cf. [Ach1, 1.7 ff.] or [Pu3, 4])
Let J be an OX -module. (J , U, 1) with 1 ∈ H0(X,J ) is a (unital quadratic) Jordan

algebra over X if:

(1) The U -operator U : J → EndOX
(J ), x → Ux is a quadratic map;

(2) U1 = idJ ;
(3) UUx(y) = Ux ◦ Uy ◦ Ux for all sections x, y in J ;
(4) Ux ◦ Uy,z(x) = Ux,Ux(z)(y) for all sections x, y, z in J ;
(5) for every commutative associative OX -algebra O′X , J ⊗O′X satisfies (3) and (4).

We write J instead of (J , U, 1).
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Jordan algebras are invariant under base change: If σ : X ′ → X is a morphism of locally
ringed spaces and (J , U, 1) a Jordan algebra over X then σ∗(J , U, 1) = (σ∗J , σ∗U, 1) is a
Jordan algebra over X ′.

Let A be a unital associative algebra over X. Then A+ = (A, U, 1) with U : A →
EndOX

(A), x → Ux(y) = xyx, 1 = 1A, is a Jordan algebra over X.
An OX -algebra J is called an Albert algebra if J (P ) = JP ⊗ k(P ) is an Albert algebra

over k(P ) for all P ∈ X.
If J is a Jordan algebra over a scheme (X,OX), then J is an Albert algebra if and

only if there is a covering Vi → X in the flat topology on X such that J ⊗ OVi
∼=

H3(Zor(OVi
)), where Zor(OVi

) denotes the octonion algebra of Zorn vector matrices overOVi

and H3(Zor(OVi
)) is the reduced Jordan algebra of 3-by-3 hermitian matrices with entries

in Zor(OVi
) and scalars OVi

on the diagonal [Ach1, 1.10]. This terminology is compatible
with the one used in [Pa-S-T1], cf. [P2, Section 2].

With the usual definition of quadratic Jordan algebras over rings [J, 1.3.4] we have: let J
be a locally free OX -module of finite rank, 1 ∈ H0(X,J ) and U : J → EndOX

(J ), x → Ux

a quadratic map. (J , U, 1) is a Jordan algebra over X if and only if (J (V ), U(V ), 1|V ) is
a Jordan algebra over OX(V ) for all open subsets V ⊂ X, if and only if (JP , UP , 1P ) is a
Jordan algebra over OP,X for all P ∈ X.

There is a canonical equivalence between the category of Jordan algebras over the affine
scheme Z = Spec R which are locally free as OX -modules and the category of Jordan
algebras over R which are finitely generated projective as R-modules given by the global
section functor J −→ H0(Z, J) and the functor J −→ J̃ .

Let X be a scheme over the affine scheme Y = Spec R and suppose H0(X,OX) = R.
Then a Jordan algebra (resp., an Azumaya algebra) J over X is defined over R provided it
is globally free as an OX -module [Pu3, Lemma 2].

Let A be an Azumaya algebra over X of constant rank d2 as in 1.4. If σ is an involution
on A of orthogonal type, then every section x of the Jordan algebra J = H(A, σ) over the
same open subset of X satisfies

xd − tA(x)xd−1 + sA(x)xd−2 − · · ·+ (−1)dnA(x)1 = 0

and t = tA is the trace of J , n = nA the norm of J .
If σ is an involution on A of symplectic type, then the Jordan algebra J = H(A, σ) has

trace t = 1
2 tA and its norm satisfies n(x)2 = nA(x). In both cases, the symmetric bilinear

trace form tJ (x, y) = t(x · y) is associative.
J is called separable, if the residue class algebra J (P ) over k(P ) is a separable algebra

for every P ∈ X. We will eventually restrict our investigations to separable Jordan algebras
which are locally free of finite constant rank over X.

Remark 1. If J is a Jordan algebra over R, finitely generated projective as R-module, such
that there exist a cubic, a quadratic and a linear form n, s and t from J to R satisfying

x3 − t(x)x2 + s(x)x − n(x)1 = 0
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for all x ∈ J , and such that for each P ∈ Spec R, there exists an element u ∈ J ⊗R k(P )
such that 1, u, u2 are linearly independent over k(P ), then the cubic, quadratic and linear
form n, s and t are uniquely determined by the equation above [Ach1, 1.12].

Given a (cubic) Jordan algebra J over X which is locally free as OX -module, therefore
the cubic, quadratic and linear maps n, r, s and t satisfying

x3 − t(x)x2 + s(x)x − n(x)1 = 0

for all sections x ∈ J are uniquely determined, if for every P ∈ X, there is an element
u ∈ J (P ) such that 1, u and u2 are linearly independent over k(P ). Thus, if J = A+ with
A an Azumaya algebra of constant rank 9 over X, or if X is a k-scheme and k is an infinite
base field, n, r, s and t are uniquely determined.

1.7. Some facts on proper schemes. Let X be a proper scheme over a perfect field
k. Then the Theorem of Krull-Schmidt holds for vector bundles over X, i.e., every vector
bundle on X can be decomposed as a direct sum of indecomposable vector bundles, unique
up to isomorphisms and order of summands. Moreover, non-isomorphic vector bundles on
X extend to non-isomorphic vector bundles on Xl = X ×k l, for every separable algebraic
field extension l/k [AEJ1, p. 1324 and p. 1325].

For a vector bundle N on Xl, the direct image π∗N of N under the projection morphism
π : Xl → X is a vector bundle on X denoted by trl/k(N ).

1.8. Elliptic curves. Results and terminology from Atiyah [At], Arason, Elman and Jacob
[AEJ1, 2] and [Pu1] are used. Let k be a perfect field of characteristic not 2 or 3 and k an
algebraic closure of k. Put X = X ×k k.

An elliptic curve X/k can be described by a Weierstraß equation of the form

y2 = x3 + b2x
2 + b1x + b0 (bi ∈ k)

with the infinite point as base point O. Let q(x) = x3 + b2x
2 + b1x + b0 be the defining

polynomial in k[x]. The k-rational points of order 2 on X are the points (a, 0), where a ∈ k

is a root of q(x). Let K = k(X) = k(x,
√

q(x)) be the function field of X. We distinguish
three different cases (see also [AEJ2]).

Case I. X has three k-rational points of order 2 which is equivalent to 2Pic(X) ∼= Z2×Z2.
Write q(x) = (x−a1)(x−a2)(x−a3) and 2Pic(X) = {OX ,L1,L2,L3} where Li corresponds
with the point (ai, 0) for i = 1, 2, 3.

Case II. X has one k-rational point of order 2 which is equivalent to 2Pic(X) ∼= Z2. Write
q(x) = (x − a1)q1(x) and 2Pic(X) = {OX ,L1} with L1 corresponding with (a1, 0). Define
l2 = k(a2) with a2 a root of q1,K2 = K ⊗k l2. Let Gal(l2/k) = {id, σ}.

Case III. X has no k-rational point of order 2 which is equivalent to 2Pic(X) = {OX}.
Define l1 = k(a1) with a1 a root of the irreducible polynomial q(x), K1 = K ⊗k l1 and
let ∆(q) = (a1 − a2)2(a1 − a3)2(a2 − a3)2 be the discriminant of q. If l1/k is Galois, let
Gal(l1/k) = {id, σ1, σ2}.

Correspondingly, X/k is called of type I, II or III.
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We denote a line bundle of order 3 on X by Ni and a line bundle of order 4 on X by
Hi. Following [AEJ1], we denote the selfdual line bundles Li ⊗OX

OXl
on Xl = X ×k l for

any field extension l/k also by Li, i = 1, 2, 3, to avoid complicated terminology. We do the
same for the line bundles Ni ⊗OX

OXl
of order 3 and Hi ⊗OX

OXl
of order 4. This abuse

of notation is justified by the fact that the natural map PicX → PicXl is injective [AEJ1,
p. 1325].

If k has characteristic zero, 3Pic (X) = {Ni | 0 ≤ i ≤ 8} where N0 = OX [At, Lemma 22].
Hence 3Pic (X) = {Ni | 0 ≤ i ≤ m} for some even integer m, 0 ≤ m ≤ 8, where N0 = OX .
Furthermore, then 4Pic(X) = {Hi | 0 ≤ i ≤ 15} where H0 = OX [At, Lemma 22] and hence

4Pic(X) = {Hi | 0 ≤ i ≤ n}, 0 ≤ n ≤ 15 where H0 = OX .
For any integer r, there exists an absolutely indecomposable vector bundle of rank r and

degree 0 on X we call Fr, which is unique up to isomorphism, such that Fr has nontrivial
global sections [At, Theorem 5]. Each Fr is selfdual. In particular, F1 = OX . Furthermore,
if M is an absolutely indecomposable vector bundle of rank r and degree 0 on X, there is
a line bundle L ∈ PicX of degree 0, such that M ∼= L ⊗ Fr. This line bundle is unique up
to isomorphism.

Recall also that for X of type III, the elliptic curve X1 = X ×k l1 is of type I and the
selfdual line bundle L1 over X1 is not defined over X. The vector bundle trl1/k(L1) is
indecomposable of rank 3 and trl1/k(L1)⊗OX1

∼= L1 ⊕ L2 ⊕ L3.
For X of type II, the elliptic curve X2 = X×k l2 is of type I and the selfdual line bundles

L2 and L3 on X2 are not defined over X. The vector bundle trl2/k(L2) ∼= trl2/k(L3) is
indecomposable of rank 2 and trl2/k(L3)⊗OX2

∼= L2 ⊕ L3.

2. From admissible cubic algebras to quartic Jordan algebras

2.1. Admissible Cubic algebras. A commutative OX -algebra A, which is locally free of
constant rank as OX -module, is called an admissible cubic algebra if A carries a cubic form
N : A → OX , called the norm of A, such that

(1) x2x2 = N(x)x

for all sections x in A over the same open subset of X. Let N(x, y, z) denote the trilinear
form associated with N .

Hence, in the setting of rings, an admissible cubic algebra A over R is a commutative
R-algebra, finitely generated projective of constant rank as R-module, together with a cubic
form N : A → R, the norm of A, such that x2x2 = N(x)x for all x ∈ A.

As in [E-O, p. 277] we obtain

(3) 4x2(xy) = 3N(x, x, y) + N(x)y

by linearizing (1) and

(4) 4N(x)x(x2y) = 3N(x2, x2, y)x2 + N(x2)y

by substituting x by x2 in (3) and using (1).

Remark 2. (i) There is a one-one correspondence between admissible cubic algebras over
the affine scheme Z = Spec R and admissible cubic algebras over R given by the global
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section functor A −→ H0(Z,A) and the functor A −→ Ã.
(ii) If A is an admissible cubic algebra over X with norm N , then AP is an admissible cubic
algebra over OP,X with norm NP for all P ∈ X and so is A(P ) over k(P ), with norm N(P ).
(iii) Let A be an admissible cubic algebra over X with norm N . Equation (1) implies that

(2) N(x2) = N(x)2

for all sections x in the same open subset U of X with x2 6= 0, if A(U) is faithful as an
OX(U)-module.
(iv) Let A be an admissible cubic algebra over a domain R. A is a projective R-module,
thus torsion free as an R-module. Hence for all x ∈ A with x2 6= 0, N(x2) = N(x)2.

2.2. Quartic Jordan algebras. Let J be a Jordan algebra over X, which is locally free
of constant rank as OX -module. Following [E-O], we call J a quartic Jordan algebra (its
multiplication will usually be denoted by a dot ·), if it is endowed with a linear form t : J →
OX (the trace of J ), a quadratic form s : J → OX , a cubic form r : J → OX and a quartic
form n : J → OX , such that the following holds:

(1) Every element x in J satisfies

x·4 − t(x)x·3 + s(x)x·2 − r(x)x + n(x)1 = 0.

(2) t(1) = 4.
(3) The Newton formulae hold for each x in J :

2s(x) = t(x)2 − t(x·2),
6r(x) = t(x)3 − 3t(x)t(x·2) + 2t(x·3).
24n(x) = t(x)4 − 6t(x)2t(x·2) + 8t(x)t(x·3) + 3t(x·2)2 − 6t(x·4).

Theorem 1. Let J be a Jordan algebra over R, finitely generated projective as R-module,
and let n, r, s and t be a quartic, cubic, quadratic and linear map from J to R such that

(1) x· 4 − t(x)x· 3 + s(x)x· 2 − r(x)x + n(x)1 = 0

for all x ∈ A. Suppose that for each P ∈ Spec R there exists an element u ∈ J ⊗R k(P ) such
that 1, u, u· 2, u· 3 are linearly independent over k(P ). Now let N , R, S and T be another
quartic, cubic, quadratic and linear map from J to R such that

x· 4 − T (x)x· 3 + S(x)x· 2 −R(x)x + N(x)1 = 0

for all x ∈ J . Then N = n, R = r, S = s and T = t.

This is proved analogously as [Ach1, 1.12].

Corollary 1. (i) Let J be a quartic Jordan algebra over X. The maps n, r, s and t in
(1) are uniquely determined, if for every P ∈ X, there is an element u ∈ J (P ) such that
1, u, u· 2, u· 3 are linearly independent over k(P ).
(ii) Let J = A+ with an Azumaya algebra A of constant rank 16 over X. If A ∼= EndX(E)
is trivial, or if X is a k-scheme and k an infinite field, then the maps n, r, s and t in (1)
are uniquely determined.
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We will mostly restrict out investigation to quartic Jordan algebras J whose trace form
t is nondegenerate over all residue class fields, i.e. whose residue class algebras J (P ) are
separable, and where all residue class algebras J (P ) have degree 4.

2.3. Let J be a quartic Jordan algebra with trace t. Let J0 = ker t. Then J = OX1⊕J0.
There is the following relation between admissible cubic algebras and quartic Jordan

algebras:

Theorem 2. J0 becomes an admissible cubic algebra over X with multiplication

xy = x · y − 1
4
t(x · y)1

and norm

N(x) = r(x) =
1
3
t(x· 3).

The symmetric bilinear form on J0 defined via

〈x|y〉 =
1
3
t(x · y)

is associative and satisfies

N(x) = 〈x|x2〉.

Proof. We proceed as in [E-O, p. 287]: the new multiplication xy is the projection
projJ0

(x · y) of the product x · y onto J0 relative to the decomposition J = OX 1⊕J0. We
get

x2x2 = r(x)x =
1
3
t(x · x·2)x

for any x in J0 and thus J0 is an admissible algebra over X with norm

N(x) = r(x) =
1
3
t(x · y)

using the Newton formulae. 〈x|y〉 is associative, since the trace form (x, y) → t(x · y) of a
quartic Jordan algebra is associative.

�

Remark 3. (i) The norm N of the admissible algebra constructed above is non-zero if and
only if there is an x ∈ J0 such that t(x·3) 6= 0.
(ii) Let J be a separable quartic Jordan algebra. Suppose N = 0 in the above construction,
then N(P ) = 0, hence r(P ) = 0 and t(P )( , ) = 0 on J0(P ) = J0 ⊗ k(P ) for all P ∈ X,
implying that the trace form t(P ) ∼= t(P )|k(P ) ⊥ t(P )|J0 is degenerate, a contradiction.
Thus N 6= 0.

However, it may happen that N is the zero map on the global sections, i.e. that N(X) :
H0(X,J0) → H0(X,OX) is zero. Then both t and r are the zero maps on the global sections
as well, see Theorem 10 (1) below.
(iii) For an admissible cubic algebra A with norm N , which does not arise as the trace zero
elements of a quartic Jordan algebra as described above, it is not clear how to define an
associative symmetric bilinear form 〈 | 〉 on A such that N(x) = 〈x|x2〉, as it was done in
[E-O, Thm. 1] for cubic admissible algebras over base fields.
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Example 1. As mentioned in [E-O, p. 305], the characteristic equation for the norm of
admissible cubic algebras appears in the theory of cubic Jordan algebras: let J be an OX -
module of constant rank and (J , ], 1) a cubic form with adjoint and base point on J (cf.
[Ach1], [P-R1]). Then, as over base fields, we have the adjoint identity

x]] = N(x)x

for all sections x in J over the same open subset of X. Define a commutative multiplication
on J using the adjoint map ] via

x2 = x],

then J is an admissible cubic algebra over X with norm N and non-zero idempotent 1.
Since S(x) = T (x]) and x·2 = x] + T (x)x− S(x)1, J becomes a cubic Jordan algebra with
unit 1, such that

x·3 − T (x)x·2 + S(x)x−N(x)1 = 0

for all sections x in J over the same open subset of X. We have

2S(x) = T (x)2 − T (x·2)

and
6N(x) = 2T (x·3)− 3T (x)T (x·2) + T (x)3.

Let J̃ be the quartic Jordan algebra J̃ = OX ⊕ J , which is the direct sum of the Jordan
algebras OX and J with trace t((a, x)) = a + T (x). An analogous argument as the one
given in [E-O] now proves that the admissible cubic algebra A we obtain by providing the
trace zero elements of J̃ with the multiplication of Theorem 2 is identical to the one just
constructed.

The proof of [E-O, Theorem 5] easily adapts to our setting and yields:

Proposition 1. Let X be an integral scheme. Let J be a quartic Jordan algebra. Let
A = J0 be the admissible algebra defined in Theorem 2.
(i) Define JA = OX ⊕A and let

(1) t(z) = 4a,
(2) s(z) = 6a2 − 3

2 〈x|x〉,
(3) r(z) = 4a3 − 3a〈x|x〉+ N(x),
(4) n(z) = a4 − 3

2a2〈x|x〉+ aN(x) + 9
16 〈x|x〉

2 − 3
4 〈x

2|x2〉
for any z = a1 + x in OX ⊕ A. Then JA, together with the commutative multiplication
defined via 1 · 1 = 1, 1 · x = x and

x · y = xy +
3
4
〈x|y〉1

for x, y in A, becomes a quartic Jordan algebra, where

z·4 − t(z)z·3 + s(z)z·2 − r(z)z + n(z)1 = 0

for any z = a1 + x in JA = OX ⊕A.
(ii) The admissible cubic algebra (JA)0 with norm N obtained using the method of Theorem
2, is the same one as A.
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2.4. Idempotents.

Lemma 1. Let R be a domain. Let A be any unital algebra, which is finitely generated
projective as R-module. Suppose that A contains an idempotent f 6= 0, 1.
(i) 1 and f are linearly independent over R.
(ii) Let A be an octonion algebra, an Azumaya algebra of constant rank greater than 1, or a
cubic or quartic Jordan algebra, with trace t and t(f) = a. If (t(1)− a)a is invertible in R,
then A ∼= R⊕R⊕A′, where A′ is the orthogonal complement of the subspace of A spanned
by 1 and f with respect to the symmetric bilinear trace form t(x, y) = t(xy) of A.

Proof. (i) Let 1a+fb = 0 for a, b ∈ R. Multiplication with f implies (a+ b)f = 0 and hence
a + b = 0, since A is a projective R-module, thus torsion free as an R-module. Now b = −a,
so 0 = 1a + fb = (1− f)a yields a = 0 since 1− f 6= 0, hence also b = 0.
(ii) By assumption, det(t|R1⊕Rf ) = t(1)a − a2 is invertible in R. Hence (R1 ⊕ Rf, t) is
nonsingular and (A, t) ∼= (R1⊕Rf, t|R1⊕Rf ) ⊥ (A, t|A) [Kn, (3.6.2), p. 17]. �

Lemma 2. Let J be a quartic Jordan algebra over X, which is locally free of finite constant
rank as OX-module.
(i) Let f ∈ H0(X,J ) be a non-trivial idempotent. Then OX f is a direct summand of J .
(ii) If f has trace 1, then e = 2f− 1

2 is a non-zero idempotent in the admissible cubic algebra
A = J0 over X.
(iii) Suppose X is an integral scheme. Then OX e is a direct summand of the admissible
cubic algebra A = J0.

Proof. Let H0(X,OX) = R.
(i) By [Lo, 0.5], R f is a direct summand of H0(X,J ) which implies the assertion.
(ii) Let e = 2f − 1

2 , then tJ (e) = 0 and e2 = e in the admissible cubic algebra A, thus e is
a non-zero idempotent in A, see [E-O, Lemma 9].
(iii) If R is a domain, then e = e2e2 = N(e)e implies N(e) = 1, hence (Re, 〈 | 〉) is nonsingular
and (H0(X,A), 〈 | 〉) ∼= (Re, 〈 | 〉|Re) ⊥ (V, 〈 | 〉|V ) with V = (Re)⊥ [Kn, p. 17, (3.6.2)]. Thus
R e is a direct summand of H0(X,A) and OX e a direct summand of A = J0. �

Corollary 2. Let J be a quartic Jordan algebra over an integral scheme X, which is locally
free of finite rank as OX-module. Let f ∈ H0(X,J ) be a non-trivial idempotent of trace 1,
2 or 3, then

J ∼= O2
X ⊕ J̃

for a suitable locally free OX-module J̃ .

Proof. For a = t(f) = 1, 2 or 3, the element t(1)a − a2 is invertible in R, hence J ∼=
OX ⊕OX ⊕ . . . by Lemma 1. �

Remark 4. (i) If H0(X,OX) is a field of characteristic not 2 or 3, and f a non-trivial
idempotent in J , then t(f) = 1, 2 or 3 [E-O, p. 296], hence J ∼= O2

X ⊕ . . . using Corollary
2.
Now suppose X is an integral scheme over k, with k a field of characteristic not 2 or 3. If
t(X) does not divide the cubic form r(X) on H0(X,J ), i.e., H0(X,J ) is a Jordan algebra
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whose reduced degree is 3 or 4 [E-O, p. 286], then there is a field extension l/k of degree
1, 2 or 4 such that H0(Xl,J ′) contains idempotents of trace 1, with Xl = X ×k l and
J ′ = J ⊗k l. [E-O, Proposition 10].
(ii) Let e be a non-zero idempotent in an admissible cubic algebra A over a domain R. Then
N(e) = 1. Hence, if A is an admissible cubic algebra over an integral scheme X and e a
non-zero idempotent in A, the existence of e forces the norm N of A to be non-zero.
(iii) Let X be an integral scheme and D a quaternion algebra over X. An element f is a
non-trivial idempotent of D if and only if nD(f) = 0 and tD(f) = 1. Moreover, D contains a
non-trivial idempotent if and only if it is split: If D is split then clearly (0, 1) is a non-trivial
idempotent in D. Conversely, if D has a non-trivial idempotent f then f gives rise to a
Peirce decomposition D = D11 ⊕ D12 ⊕ D21 ⊕ D22 with D11

∼= OX and D22
∼= OX , where

the vector bundles D12 and D21 are dual to each other and of rank 1. Also, the system of
idempotents (f , 1− f) spans a split quadratic étale subalgebra of D.

Proposition 2. Let X be a proper integral scheme over k.
(i) If D = Quat(M, NM) and M does not contain OX as a direct summand, then D does
not contain any non-trivial idempotents.
(ii) If D = Cay(k(

√
c) ⊗k OX ,P, NP) is the Cayley-Dickson doubling of a quadratic étale

algebra which is defined over k and k(
√

c)⊗k OX is not split, then D does not contain any
non-trivial idempotents.

Proof. Let D be a quaternion algebra over X and f be a non-trivial idempotent of D. Then
D is split by Remark 4 (iii). By the Krull-Schmidt Theorem, this yields a contradiction in
both cases. �

Proposition 3. Let X be a proper integral scheme over k. Let E be an indecomposable
vector bundle over X and B = EndX(E) the trivial Azumaya algebra.
(i) The global sections of the Jordan algebra J = B+ contain only trivial idempotents.
(ii) If B carries an involution σ of the first kind, then the global sections of the Jordan
algebra J = H(B, σ) contain only trivial idempotents.

Proof. For a finitely generated projective R-module E of constant rank over a ring R, the
Azumaya algebra EndR(E) does not contain non-trivial idempotents, if EndR(E) is a local
ring [La, p. 443]. Since E is indecomposable, End(E) is a local ring [AEJ1, p. 1324] and
so H0(X, EndX(E)) ∼= End(E) contains only trivial idempotents. This implies (i). Part (ii)
follows immediately observing that if there would be a non-trivial idempotent in H(B, σ)
this also would be a non-trivial idempotent in B. �

3. From admissible cubic algebras to pseudo-composition algebras and cubic

Jordan algebras

Let (V, ∗) be a commutative algebra over X, which is locally free as OX -module, together
with a symmetric bilinear form ( | ) such that

(x ∗ x) ∗ x = (x|x)x
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for all sections x in V over the same open subset of X. Then (V, ∗) is called a pseudo-
composition algebra over X. Correspondingly, a commutative algebra (V, ∗) over a ring R,
which is finitely generated projective as R-module and which carries a symmetric bilinear
form ( | ) such that (x ∗ x) ∗ x = (x|x)x for all x ∈ V , is called a pseudo-composition algebra
over R [M-O]. If V is a pseudo-composition algebra over a domain R, then

(x2|x2) = (x|x)2

for all x ∈ V with x2 6= 0, since V is projective as R-module, thus torsion free.
Using [E-O, p. 291] or adjusting the proof of [W, (3.1)] we obtain:

Theorem 3. Let J be a cubic Jordan algebra such that J (P ) has degree 3 for each P ∈
Spec R. Then the set of trace zero elements J0 becomes a pseudo-composition algebra with
multiplication given by

x ? y = xy +
2
3
sJ (x, y)1

with sJ (x, y) = 1
2 (sJ (x, y)− sJ (x)− sJ (y)) and associative symmetric bilinear form

(x|y) =
1
6
tJ (x, y)

for all x, y ∈ J0. If J is separable, then the bilinear form ( | ) is nondegenerate.

Example 2. Let M be a locally free OX -module of constant rank 3 and consider the cubic
Jordan algebra J = EndX(M)+. Since 3 is invertible in H0(X,OX), End(M) ∼= OX ⊕M′

where M′ is the subspace of the endomorphisms of trace 0 (for a proof see [At, Lemma 19],
which holds more generally) and M′ can be made into a pseudo-composition algebra.

Proposition 4. Let (V, ∗) be a pseudo-composition algebra over X of constant rank. Sup-
pose that ( | ) is associative.
(i) The algebra

J = OXe⊕ V

obtained by adjoining an identity element e with multiplication given by

(5) (ae + x) � (be + y) = (ab + 2(x|y))e + (ay + bx + x ∗ y)

for all a, b in OX and x, y in V, is a Jordan algebra of constant rank.
(ii) If for every P ∈ X, there is an element u ∈ J (P ) such that 1, u, u� 2 are linearly
independent over k(P ), then J is a cubic Jordan algebra with norm

n(ae + x) = a3 − 3a(x|x) + 2(x|x ∗ x)

and trace t(ae + x) = 3a.

Proof. We proceed analogously as described in [E-O, p. 290] (cf. also [W, (3.1)]).
(i) Linearizing the defining equality of a pseudo-composition algebra yields the equation

(x ∗ x) ∗ y + 2(x ∗ y) ∗ x = 2(x|y)x + (x|x)y

which in turn implies

((x ∗ x) ∗ y) ∗ x− (x ∗ x) ∗ (y ∗ x) = 2(x|y)x ∗ x− 2(x ∗ x|y)x
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for all x, y ∈ V. We thus obtain a Jordan algebra J = OXe ⊕ V of constant rank by
equipping J with the multiplication given by e � x = x and x � y = x ∗ y + 2(x|y)e for all
x, y in V.
(ii) For all z = ae + x in J we have

z�3 − 3az�2 + 3(a2 − (x|x))z − (a3 − 3a(x|x) + 2(x|x ∗ x))e = 0.

Hence J is a cubic Jordan algebra with the claimed norm and trace by 1.6. �

Theorem 4. Let X be an integral scheme. Let J be a quartic Jordan algebra. Suppose that
there is a non-trivial idempotent f ∈ H0(X,J ) of trace 1. Put e = 2f − 1

2 .
(i) The orthogonal complement V of eOX (relative to 〈 | 〉) in the admissible cubic algebra
J0 can be made into a pseudo-composition algebra over X with an associative bilinear form
( | ) which satisfies

(x | y) = −〈e|xy〉.

(ii) The OX-linear endomorphism ϕ : V → V, ϕ(x) = −2ex, is an automorphism of (V, ∗)
with ϕ2 = 1.

Proof. J0 can be made into an admissible cubic algebra with norm N = r over X through
the multiplication xy = x · y − 1

4 t(x · y)1 by Theorem 2.
(i) The element e = 2f − 1

2 is a non-zero idempotent in the admissible cubic algebra A = J0

such that N(e) = 1 (Lemma 2). Let V be the orthogonal complement to OX e relative to
〈 | 〉. Since N(x) = 〈x|x2〉, we get N(x, y, z) = 〈x|yz〉 by linearization. We now follow [E-O,
p. 298]: Eq. (3) yields

(6) 4x2(xy) = 3〈x2|y〉x + 〈x|x2〉y

thus

(7) 4e(ex) = 3〈e|x〉e + 〈e|e〉x

and

V = {x ∈ A | 4e(ex) = v} = {x ∈ A | (2e)((2e)x) = v}.

Define

x ∗ y = −2ex2 + 2〈e|x2〉.

As in [E-O, p. 298], we obtain

(x ∗ x) ∗ x = −〈e|x2〉,

so that (V, ∗) together with (x |x) = −〈e|x2〉 is a pseudo-composition algebra over X.
Moreover,

(x ∗ y|z) = (x|y ∗ z)

for all x, y, z ∈ V.

(ii) By [E-O, Proposition 11], the map ϕ(P ) : V(P ) → V(P ) is bijective for all P ∈ X, which
implies the first assertion. ϕ2 = 1 follows from Equation (7). �
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Proposition 5. Assume the situation of Proposition 1. Suppose that there is a non-trivial
idempotent f ∈ H0(X,J ) of trace 1. Put e = 2f − 1

2 .
(i) The OX-linear endomorphism φ : A → A defined by φ(e) = e and φ(x) = ϕ(x), is an
automorphism of (V, ∗).
(ii) The extension Φ : OX ⊕A → OX ⊕A of φ to the cubic Jordan algebra (JA, ·) defined
in Proposition 1 satisfies Φ(1) = 1 and is an automorphism of (JA, ·).

Proof. By [E-O, Proposition 11], both the map φ(P ) : V(P ) → V(P ) and the map Φ(P ) :
k(P ) ⊕ A(P ) → k(P ) ⊕ A(P ) is bijective, for all P ∈ X, which implies the first assertion.
The fact that Φ(1) = 1 follows from Equation (7). �

As in [E-O, p. 306 ff.], we can now construct a cubic Jordan algebra on of the trace zero
elements of a quartic Jordan algebra:

Theorem 5. Assume the situation of Theorem 4. Put e = 2f − 1
2 .

(i) J0 = OX e ⊕ V can be made into a Jordan algebra over X with unit element e via the
multiplication � defined as e � x = x and

x � y = −2e · (x · y) +
1
2
t(x · y)e + t(e · x · y)(

2
3
e− 1

6
)

for all x, y in V.
(ii) If for every P ∈ X, there is an element u ∈ J (P ) such that 1, u, u� 2 are linearly
independent over k(P ), then J is a cubic Jordan algebra with norm

NJ0(αe + x) = α3 + αt(e · x· 2) +
1
3
t(x· 3),

for all α in OX , x in V.

Proof. We use the same notation as in Theorem 4.
(i) Define a multiplication on J0 = OX e⊕ V via e � x = x for all x in V and via

x � x = x ∗ x + 2(x|x)e = x ∗ x + 〈φ(x)|x〉e.

The second equation holds because we have

(8) 〈x|y〉 = 2(ϕ(x)|y)

for all x, y in V, which follows from the equation

(x|y) = −〈e|xy〉 = −〈ex|y〉 =
1
2
〈ϕ(x)|y〉.

A straightforward calculation yields the claimed multiplication.
(ii) As in Proposition 4, we see that J0 is a cubic Jordan algebra over X with norm NJ0(ae+
x) = a3 − 3a(x|x) + 2(x|x ∗ x) which, expressed in terms of the multiplication of J is of the
above form. �

Every degree 3 separable Jordan algebra J over a field of characteristic not 2 or 3 can be
obtained through this process starting with the non-simple algebra B = k ⊕ J [A-F, 5.6].
The proof from [A-F, 5.6] generalizes as follows:
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Proposition 6. Let X be an integral scheme. Let J be a separable cubic Jordan algebra
with generic norm nJ , generic trace tJ and identity 1J such that J (P ) has degree 3 for all
P ∈ X. Define B = OX ⊕J as algebras, then there is a linear bijection from J to B0 such
that NB0(x) = NJ (x) for all x ∈ J .

Proof. The linear map can be globally defined as in [A-F, 5.6], the fact that it is an isomor-
phism follows from [A-F, 5.6], applied to the residue class algebras. �

Remark 5. Let X be an integral scheme over k and J a quartic Jordan algebra over X

which contains an idempotent of trace 1. Let X ′ = X ×k l for a field extension l/k. Then
J ′ = J ⊗X OX′ contains an idempotent of trace 1 and the Jordan algebras constructed on
the trace zero elements of J and J ′ as described in Theorem 5 satisfy J ′0 ∼= J0 ⊗X OX′ .

Corollary 3. Assume the situation of Theorem 4. If J is a separable Jordan algebra over
X of degree 4 and rank 28 such that J (P ) is central simple for all P ∈ X then J0 can be
made into an Albert algebra over X.

Proof. By Theorem 5, J0 can be made into a cubic Jordan algebra over X. Now [A-F,
5.4, 5.5], together with [E-O, p. 306 ff.], applied to the residue class algebras, implies the
assertion. �

It is not clear if all Albert algebras can be obtained as the trace zero elements out of a
central simple separable Jordan algebra of rank 28.

Theorem 6. Let J and J̃ be quartic Jordan algebras, which are both locally free of constant
rank as OX-module. Suppose that J̃ is a Jordan subalgebra of J .
(a) By projecting the multiplication on the trace zero elements, both J̃0 and J0 can be made
into an admissible cubic algebra over X and J̃0 is an admissible cubic subalgebra of J0.
(b) Suppose X is an integral scheme and that there is a non-trivial idempotent f ∈ H0(X, J̃ )
of trace 1.
(i) The orthogonal complements Ṽ of fOX in J̃0 (resp., V of fOX in J0) can be made into
pseudo-composition algebras and Ṽ is a pseudo-composition subalgebra of V.
(iii) If for every P ∈ X, there is an element u ∈ J̃0(P ) such that 1, u, u� 2 are linearly
independent over k(P ), then J̃0 and J0 can be made into cubic Jordan algebras and J̃0 is a
cubic Jordan subalgebra of J0.

Proof. (a) J0 can be made into an admissible cubic algebra over X through the multiplica-
tion xy = x · y− 1

4 t(x · y)1. Restricting this multiplication to J̃0 yields the multiplication of
the admissible cubic algebra J̃0.
(b) follows analogously from Theorem 5. �

Using Proposition 3 we conclude:

Corollary 4. Let X be a proper integral scheme over k.
(a) Let E be an indecomposable vector bundle over X of constant rank 4 and B = EndX(E).
(i) If B carries an orthogonal involution σ, then the elements of trace zero of the quartic
Jordan algebra J = H(B, σ) cannot be made into a cubic Jordan algebra using our construc-
tion, and there is no pseudo-composition algebra associated to J .
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(ii) The elements of trace zero of J = B+ cannot be made into a cubic Jordan algebra using
our construction, and there is no pseudo-composition algebra associated to J .
(b) Let E be an indecomposable vector bundle over X of constant rank 8 and B = EndX(E).
If B carries a symplectic involution τ , then the elements of trace zero of the quartic Jordan
algebra J = H(B, τ) cannot be made into a cubic Jordan algebra using our construction,
and there is no pseudo-composition algebra associated to J .

From now on, let k be an infinite field and X a proper integral scheme over k. In the
following, we will restrict ourselves to separable quartic Jordan algebras J over X, which
are locally free of constant rank as OX -module. We will consider the cases that J = A+ is
an Azumaya algebra of constant rank 16; that J = H(A, σ) for a symplectic involution σ on
an Azumaya algebra of constant rank 64, or for an orthogonal involution σ on an Azumaya
algebra of constant rank 16. Then t does not divide r (or else t(P ) would also divide r(P )
for P ∈ X, hence the reduced degree of the Jordan residue class algebras J (P ) would be 1
or 2 [E-O, p. 286], a contradiction).

4. Azumaya algebras of rank 16 with orthogonal involution

Let X be a proper integral scheme over k and let R = H0(X,OX). We write Ms for
M⊕ · · · ⊕M (s-copies of the OX -module M). Let E be a vector bundle over X of rank r.
Recall that if r is invertible in H0(X,OX), End(E) ∼= OX ⊕ E ′ where E ′ is the subspace of
the endomorphisms of trace 0 (for a proof see [At, Lemma 19], which holds more generally).

Let A be an Azumaya algebra over X of constant rank 16 with an orthogonal involution
τ . Then J = H(A, τ) together with the multiplication x · y = 1

2 (xy + τ(xy)) is a quartic
Jordan subalgebra of A+, which is locally free of constant rank 10 as an OX -module.

Let (Di, τi) be a quaternion algebra over X with an involution of the first kind, i = 1, 2.
Let A = D1 ⊗ D2 with involution τ = τ1 ⊗ τ2. Then τ is orthogonal, if either both τi are
canonical involutions, or if both of them are orthogonal, i.e. hat-involutions.

(A) Let both τi be canonical involutions. Write Di = Quat(Mi, Ni) with Mi = ker ti =
Skew(Di, ). Then

J = H(A, τ) ∼= OX ⊕M1 ⊗M2.

The OX -module

M1 ⊗M2

can be made into an admissible cubic algebra over X by Theorem 2. It cannot always be
made into a cubic Jordan algebra, though, see Theorem 9 below.

(A1) In particular, let D = D1 = D2 = Quat(M, NM). Analogously as in [KMRT,
(11.1)], we have

(D, )⊗ (D, ) ∼= (EndX(D), σ) ∼= (

[
OX M
M∨ EndXM

]
, σ)
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where σ is the adjoint involution with respect to the bilinear trace form T(D, ) defined by
the trace TD of D via T(D, )(x, y) = TD(x̄y), and

J = H(A, τ) ∼=

[
OX 0
0 EndXM

]
contains the non-trivial idempotent f = diag(0, id) of trace 1. Use thatM⊗M∼= M⊗M∨ ∼=
OX ⊕M′ for some OX -module M′ of rank 8. Hence the OX -module

J0
∼= M⊗M∼= OX ⊕M′

can be made into a Jordan algebra and M′ into a pseudo-composition algebra. It is straight-
forward to check that J0

∼= EndX(M)+.

(B) Let τ1 and τ2 be hat-involutions. Then Di = Cay(Ti,Pi, NPi) with Ti = OX ⊕ Li a
composition algebra of rank 2, Li ∈ Pic X of order 2, and H(Di, ˆ) = OX ⊕ Pi for i = 2, 3.
We obtain

J = H(A, τ) ∼= OX ⊕ (L1 ⊗ L2)⊕ P1 ⊕ P2 ⊕ (P1 ⊗ P2).

The OX -module

J0
∼= (L1 ⊗ L2)⊕ P1 ⊕ P2 ⊕ (P1 ⊗ P2).

can be made into an admissible cubic algebra over X, but not always into a cubic Jordan
algebra, see Example 5 below.

(B1) In particular, let D = D1 = D2 = Cay(T ,P, NP) with T = Cay(OX ,L, NL). Then,
analogously as in [KMRT, (11.1)], we have

(D, ˆ)⊗ (D, ˆ) ∼= (EndX(D), σ) ∼= (

 OX L P
L∨ OX HomX(L,P)
P∨ HomX(P,L) EndX(P)

 , σ)

where σ is the adjoint involution with respect to the involution trace form T(D,ˆ) now. We
obtain

J = H(A, τ) ∼=

 OX 0 P
0 OX 0
P∨ 0 EndX(P)

 .

f = diag(0, 1, 0) is a non-trivial idempotent in H0(X,J ) of trace 1. Thus

J0
∼= OX ⊕ P ⊕ P∨ ⊕ (P ⊗ P∨)

can be made into a cubic Jordan algebra and there also exists a pseudo-composition algebra
structure on the OX -module

P ⊕ P∨ ⊕ (P ⊗ P∨).

Question 1. Do we have J0
∼= EndX(OX ⊕ P)+?

Cases (A) and (B) cover all possible orthogonal involutions on A = D1 ⊗ D2 which are
tensor products of involutions on the Di’s.
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5. Cubic Jordan algebras obtained from Azumaya algebras of rank 16

We now construct examples of admissible cubic algebras of rank 15, cubic Jordan algebras
of rank 15, whose residue class algebras are central simple, and pseudo-composition algebras
of rank 14:

(I) For every locally free OX -module E of constant rank 4, B = EndX(E) is an Azumaya
algebra of rank 16 and J = B+ is a quartic Jordan algebra over X. We have End(E) ∼=
OX ⊕ E ′, where E ′ is the subspace of the endomorphisms of trace 0, and J0

∼= E ′ can be
made into an admissible cubic algebra over X.

(I.1) Let E be indecomposable. Then J only contains trivial idempotents by Proposition
3. Therefore J0 cannot be made into a cubic Jordan algebra. There also is no pseudo-
composition algebra attached to it.

(I.2) Let M be a locally free OX -module of constant rank 3 over X. Let E = L ⊕M with
L ∈ Pic X. We obtain

J ∼=

[
OX L∨ ⊗M

L⊗M∨ EndX(M)

]
.

Proposition 7. Let B = EndX(M⊕ L) be an Azumaya algebra of rank 16 over X, with
M an OX-module of rank 3 and L a line bundle on X. Consider the quartic Jordan algebra
J̃ = A+ = OX ⊕EndX(M). Then J̃ is a quartic Jordan subalgebra of J = B+ of rank 10.
(a) By projecting the multiplication on the trace zero elements, both J̃0 and J0 can be made
into an admissible cubic algebra over X and J̃0 is an admissible cubic subalgebra of J0.
(b) Suppose X is an integral scheme.
(i) For a non-trivial idempotent f ∈ H0(X, J̃ ), the orthogonal complements Ṽ of fOX in J̃0

(resp., V of fOX in J0) can be made into pseudo-composition algebras and Ṽ is a pseudo-
composition subalgebra of V.
(ii) J̃0 and J0 can be made into cubic Jordan algebras and J̃0 is a cubic Jordan subalgebra
of J0 which is isomorphic to EndX(M)+.

Proof. The algebra A+ = OX ⊕ End(M) is a quartic Jordan algebra over X with nonde-
generate quartic norm N(a + x) = aN0(x), where N0 is the norm of End(M). J̃ = A+ is a
subalgebra of B+: the inclusion is given by

a + M →

 M 0
0

0 0 a

 ,

for a ∈ OX , M ∈ EndX(M). There is a non-trivial idempotent f ∈ H0(X, J̃ ), f =
diag(1, 0, 0), of trace 1. Now use Theorem 6 and Proposition 6. �

Moreover, we have EndX(M) ∼= OX ⊕M′, where M′ is the subspace of the endomor-
phisms of trace 0. The subalgebra J̃0 contains the non-trivial idempotent 0 + id of trace 1.
By Proposition 7, the OX -module

J0
∼= EndX(M)⊕ (L∨ ⊗M)⊕ (L ⊗M∨)
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can be made both into an admissible cubic algebra with an admissible cubic subalgebra
defined on the vector bundle OX ⊕M′ and into a cubic Jordan algebra with cubic Jordan
subalgebra EndX(M)+. The OX -module

M′ ⊕ (L ⊗M∨)⊕ (L∨ ⊗M)

can be made into a pseudo-composition algebra with a pseudo-composition subalgebra de-
fined on the vector bundle M′.

(II) Let J = D1 ⊗D2 with Di = Quat(Mi, Ni) (i = 1, 2) two quaternion algebras over X.
Then

J ∼= OX ⊕M1 ⊕M2 ⊕ (M1 ⊗M2)

and

J0
∼= M1 ⊕M2 ⊕ (M1 ⊗M2)

is an admissible cubic algebra.

(II.1) If D1 = D2 = Quat(M, NM) then

J ∼= EndX(OX ⊕M) ∼=

[
OX M
M∨ End(M)

]
is of type (I.2). Hence

J0
∼= M⊕M⊕ End(M)

is an admissible cubic algebra, can be made into a cubic Jordan algebra with Jordan subal-
gebra EndX(M)+ and

M′ ⊕M∨ ⊕M,

can be made into a pseudo-composition algebra with a pseudo-composition subalgebra de-
fined on M′.

6. Quartic Jordan algebras of rank 28

Let A be an Azumaya algebra over X of constant rank 64 with a symplectic involution
τ . Then J = H(A, τ) together with the multiplication x · y = 1

2 (xy + τ(xy)) is a quartic
Jordan subalgebra of A+ which is locally free of constant rank 28 as an OX -module.

(A*) Let A = EndX(E) with E a locally free OX -module of rank 8. If E carries a non-
degenerate skew-symmetric bilinear form b : E → E∨, then b induces an involution σb on
A which is symplectic [Kn, p. 172 ff.]. If E is indecomposable, then the trace zero ele-
ments of J = H(A, σb) are an admissible cubic algebra, but J does not contain non-trivial
idempotents (Proposition 3).

Question 2. If E is decomposable, how could the trace zero elements of J = H(A, σb) look
like?

Let (B, τ1) be an Azumaya algebra of constant rank 16 over X with an involution of the first
kind and D = Quat(M, N) be a quaternion algebra over X with an involution of the first
kind τ2. Let A = B⊗D with involution τ = τ1⊗ τ2. Then τ is symplectic if τ1 is symplectic
and τ2 is orthogonal or vice versa.
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(B*) Let τ1 be symplectic and τ2 orthogonal. Then D ∼= Cay(T ,P, N) where T = {x ∈
D | τ2(x) = x̄} ∼= OX ⊕N and τ2 is isomorphic to the hat-involution. We have

H(A, τ) ∼= Skew(B, τ1)⊗N ⊕H(B, τ1)⊗ (OX ⊕ P).

(C*) Let τ1 be orthogonal and τ2 symplectic. Then τ2 is the canonical involution and

J = H(A, τ) ∼= Skew(B, τ1)⊗M⊕H(B, τ1)⊗OX .

Now H(B, τ1) is a Jordan algebra of degree 4 and rank 10 which is a subalgebra of J . If
it has a non-trivial idempotent of trace 1, then our construction method yields an Albert
algebra J0 and a cubic Jordan subalgebra H(B, τ1)0 of rank 9 inside J0. (The choice of
the quaternion algebra D is not relevant here, only the fact that H(B, τ1) has a non-trivial
idempotent of trace 1.) If this subalgebra is of the kind E+ for an Azumaya algebra E , J0

is a first Tits construction starting with E ; if it is of the type H(C, ∗) with C an Azumaya
algebra of rank 9 with an involution of the second kind as in [Pu4, 1.5], it is a Tits process.

We now take a closer look at tensor products of three quaternion algebras and their
involutions: Let (Di, τi) be a quaternion algebra with an involution of the first kind over X,
1 ≤ i ≤ 3. Let A = D1 ⊗ D2 ⊗ D3 with involution τ = τ1 ⊗ τ2 ⊗ τ3. Then τ is symplectic
if either all the τi are canonical involutions or if only one of them is, and the other two are
orthogonal, i.e. hat-involutions.

(D*) Let all τi be canonical. Write Di = Quat(Mi, Ni) with Mi = ker ti = Skew(Di, ).
Then

J = H(A, τ) ∼= OX ⊕ (M1 ⊗M2)⊕ (M2 ⊗M3)⊕ (M1 ⊗M3).

Thus the OX -module

(M1 ⊗M2)⊕ (M2 ⊗M3)⊕ (M1 ⊗M3)

can be made into an admissible cubic algebra over X. It cannot always be made into an
Albert algebra, though:

Example 3. Let X be an elliptic curve of type III. Let M1 = F3, M2 = trl1/k(L1) and
M3 = O3

X . Then

J0
∼= trl1/k(L1 ⊗F3)⊕ trl1/k(L1)⊕ trl1/k(L1)⊕ trl1/k(L1)

can be made into an admissible cubic algebra, but cannot be made into an Albert algebra.

Let w.l.o.g. (B, τ1) = (D1 ⊗ D2, ⊗ ) as in (D*). If the Jordan algebra H(B, τ1) ∼=
OX ⊕M1 ⊗M2 has a non-trivial idempotent of trace 1, then H(B, τ1)0 ∼= M1 ⊗M2 is a
cubic Jordan subalgebra of rank 9 in the Albert algebra J0. (Note that the third quaternion
algebra D3 is not important in this argument, it can be any such algebra.)

Question 3. Does H(B, τ1) ∼= OX ⊕ (M1 ⊗M2) have a non-trivial idempotent of trace 1
only if D1

∼= D2?

(D1*) In particular, let D = D1 = D2 = Quat(M, N) in (D*).
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Theorem 7. In the setting of (D1*), the Albert algebra J0 is a first Tits construction
J (E ,P0, NP0) starting with the Azumaya algebra EndX(M).

Moreover,
(M⊗M3)⊕ (M⊗M3)⊕M′

can be made into a pseudo-composition algebra, where EndXM∼= OX ⊕M′.

Proof. Obviously,
(D, )⊗ (D, ) ∼= (EndX(D), σ)

as in (A1) and
(A, τ) ∼= (EndX(D), σ)⊗ (D3, ).

By (C*),

J = H(A, τ) ∼= Skew(EndX(D), σND )⊗M3 ⊕H(EndX(D), σ)⊗OX

with

H(EndX(D), σ) ∼= H(D ⊗D, ⊗ ) ∼=

[
OX 0
0 EndXM

]
.

Now f = diag(0, 1)⊗1 is a non-trivial idempotent in H0(X,J ) of trace tJ (f) = 1
2 tA(f) = 1

which lies in the quartic Jordan subalgebra H(EndX(D), σ) of J . By Theorem 6, hence
H(EndX(D), σ)0 ∼= EndX(M)+ (by (A1)) is a cubic Jordan subalgebra of the Albert algebra
J0 through our construction. Thus we obtain J0 as a first Tits construction starting with
EndX(M) and

J0
∼= EndXM⊕ (M⊗M3)⊕ (M⊗M3)

can be made into an Albert algebra which contains the Jordan subalgebra EndXM+ as well
as

(M⊗M3)⊕ (M⊗M3)⊕M′

into a pseudo-composition algebra, where EndXM∼= M⊗M = OX ⊕M′.
�

Remark 6. In (D1*), the Albert algebra J0 is a first Tits construction J0
∼= J (E ,P0, NP0)

starting with E = EndX(M), where M has trivial determinant. However, not all possible
first Tits constructions starting with this algebra are obtained in (D1*). (D1*) only covers
the locally free left E-modules P0 of the kind P0

∼= M⊗F , for some selfdual F of rank 3
with trivial determinant. That means, those with P0

∼= M⊗F , for some F of rank 3 with
trivial determinant which are not selfdual, are not obtained.

(E*) Let τ1 be canonical and τ2, τ3 be hat-involutions. Then Di = Cay(Ti,Pi, ni) with
Ti = OX ⊕ Li, Li ∈ Pic X of order 2 and H(Di, ˆ) = OX ⊕ Pi for i = 2, 3. Let D1 =
Quat(M1, N1). We obtain

H(A, τ) ∼= OX⊕P2⊕P3⊕(P2⊗P3)⊕(M1⊗L2)⊕(M1⊗L2)⊗P3⊕(L2⊗L3)⊕(M1⊗L3)⊕(M1⊗P2⊗L3)

and the OX -module

P2⊕P3⊕(P2⊗P3)⊕(M1⊗L2)⊕(M1⊗L2⊗P3)⊕(L2⊗L3)⊕(M1⊗L3)⊕(M1⊗P2⊗L3)

can be made into an admissible cubic algebra over X.
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(E1*) In particular, if D2 = D3 = D = Cay(T ,P, N) with T = Cay(T ,L, NL) and τ2 = τ3,
then we have

(D, ˆ)⊗ (D, ˆ) ∼= (EndX(D), σ),

where σ is the adjoint involution with respect to the involution trace form T(D,ˆ). Now

(A, τ) ∼= (D1, )⊗ (EndX(D), σ)

is of type (C*), hence

H(A, τ) ∼= Skew(EndX(D), σ)⊗M1 ⊕H(EndX(D), σ)⊗OX

with

EndX(D) ∼=

 OX L P
L OX HomX(L,P)
P HomX(P,L) EndX(P)


and

H(EndX(D), σ) ∼=

 OX 0 P
0 OX 0
P 0 EndX(P)

 .

f = diag(0, 0, 1) is a non-trivial idempotent in H(EndX(D), σ) of trace 1 and H(EndX(D), σ)0 ∼=
OX ⊕ P ⊕ P ⊕ P ⊗ P. Thus

J0
∼= OX ⊕ (P ⊗ P)⊕ P ⊕ P ⊕ (L ⊗M1)⊕ (L ⊗M1)⊕ (L ⊗ P ⊗M1)⊕ (L ⊗ P ⊗M1)

can be made into an Albert algebra and there also exists a pseudo-composition algebra
structure on the OX -module

(P ⊗ P)⊕ P ⊕ P ⊕ (L ⊗M1)⊕ (L ⊗M1)⊕ (L ⊗ P ⊗M1)⊕ (L ⊗ P ⊗M1).

The Albert algebra J0 contains (H(EndX(D), σ))0 as a cubic Jordan subalgebra of rank 9.

Question 4. Do we have (H(EndX(D), σ))0 ∼= E+ for some Azumaya algebra E over X?
E.g., for E = EndX(OX ⊕ P)? Then J0 would be a first Tits construction and the locally
free left E-modules P0 used would be of the kind P0

∼= (OX ⊕ P) ⊗ (L ⊗M3), for some
selfdual vector bundle M1 of rank 3 with trivial determinant and a selfdual line bundle L.
These have determinant L, the same as OX ⊕ P, but might not cover all possible cases.

(E2*) Let τ1 be canonical and τ2, τ3 be hat-involutions. Suppose D = D1 = D2 =
Cay(T ,P, n) with T = Cay(OX ,L, NN ) and thatD3 = Cay(T3,P3, N3) with T3 = Cay(OX ,L3, NL3).
We obtain D ⊗D ∼= EndX(D) with

EndX(D) ∼=

 OX L P
L OX HomX(L,P)
P HomX(P,L) EndX(P)

 .

We have H(A, τ) ∼= Skew(B, τ1)⊗ L3 ⊕H(B, τ1)⊗ (OX ⊕ P3) as in (B*) with

Skew(B, τ1) ∼= L ⊕ L⊕ P ⊕ (P ⊗ L)⊕ (P ⊗ P)

and with
H(B, τ1) ∼= O2

X ⊕ P ⊕ (P ⊗ L).
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Thus
H(A, τ) ∼= OX ⊕ P ⊕ P3 ⊕ (P ⊗ P3)⊕OX ⊕ (P ⊗ L)⊕

P3 ⊕ (P ⊗ L⊗ P3)⊕ (L ⊗ L3)⊕ (L ⊗ L3)⊕ (P ⊗ L3)⊕ (L ⊗ P ⊗ L3)⊕ (P ⊗ P ⊗ L3).

A straightforward calculation shows that f ⊗ 1 = diag(1, 0, 0) ⊗ 1 ∈ EndX(D) ⊗ D3 is a
non-trivial idempotent in H0(X,J ) of trace tJ (f ⊗ 1) = 1. Thus

J0
∼= OX⊕P⊕P3⊕(P⊗P3)⊕(P⊗L)⊕P3⊕(P⊗L⊗P3)⊕(L⊗L3)⊕(L⊗L3)⊕(P⊗L3)⊕(L⊗P⊗L3)⊕(P⊗P⊗L3)

can be made into an Albert algebra. (Note that the choice of the algebra D3 does not play
a role here.) It is not clear a priori if this Albert algebra contains an Azumaya subalgebra
of rank 9.

There also exists a pseudo-composition algebra structure on the OX -module

P⊕P3⊕(P⊗P3)⊕(P⊗L)⊕P3⊕(P⊗L⊗P3)⊕(L⊗L3)⊕(L⊗L3)⊕(P⊗L3)⊕(L⊗P⊗L3)⊕(P⊗P⊗L3).

(D*) and (E*) cover all possible symplectic involutions on A = D1 ⊗D2 ⊗D3 which are
tensor products of involutions on the Di’s.

Theorem 8. Let J = H(Mat4(D), ∗) with D a quaternion algebra over X and with x∗ = x̄t.
The Albert algebra J0 as defined in Theorem 5 is reduced and isomorphic to (H3(C, ∗), ?)
where C = Cay(D, 1),

x ? y = x̃ỹ − 1
4
(t(x · y) + t(x)t(y))1

with x̃ = (x̃ij) for x = (xij), ˜(d0, d1) = (d0,−d1).

Proof. Define Ψ : J0 → (H3(C, ∗), ?) via

(dij) → (dij , εijkdk4),

where εijk is the totally anti-symmetric Levi-Civita symbol [E-O, p. 309]. Suppose that D is
a quaternion algebra. By [E-O, p. 311], Ψ(P ) is an isomorphism of algebras for all P ∈ X,
hence so is Ψ. �

An obvious consequence of this result is the fact that we will not be able to get all the re-
duced Albert algebras isomorphic to (H3(C, ∗), ?) for some octonion algebra C over X through
our construction, when starting from the quartic Jordan algebra J = H(Mat4(D), ∗). It
only produces those where the octonion algebra C is a classical Cayley-Dickson doubling.

Example 4. Given a central simple algebra B of degree 4 over a field k, define A =
B ⊗Mat2(k) ∼= Mat2(B) with symplectic involution J1((bij)) = (τ1(bij))t. Then there is a
quaternion algebra D over the algebraic closure k̄ such that H(A, J1)⊗k k̄ ∼= H(Mat4(D), ∗)
with x∗ = x̄t [J, pp. 208-209].

In our general setup, this is not true: Let X be an elliptic curve over k and let B =
End(F4) ∼= OX ⊕F3 ⊕F5 ⊕ F7. Then B carries a symplectic involution induced by a skew-
symmetric form on F4. Let A = B ⊗ Mat2(OX) ∼= Mat2(B) with symplectic involution
J1((bij)) = (τ1(bij))t. Then H(A, J1) ∼= F3 ⊕ F7 ⊕ O3

X ⊕ F3
5 (see Section 9). However,

since H(Mat4(D), ∗) ∼= O10
X ⊕M6 for any quaternion algebra D = Quat(M, N) over X, an

isomorphism as above is impossible.
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7. Azumaya algebras of rank 16 with orthogonal involution over an

elliptic curve

For the remainder of the paper, let X be an elliptic curve over a field of characteristic not
2 or 3, see 1.8. In the following, we repeatedly use [AEJ2, 2.2] and [At, Theorem 8, Lemma
21, 22].

Let A be an Azumaya algebra over X of rank 16, with an orthogonal involution τ . Then
J = H(A, τ) is a Jordan algebra of degree 4, which is locally free of rank 10. We apply the
results of Section 4.

Theorem 9. The following OX-modules can be made into an admissible cubic algebra over
X with multiplication as in Theorem 2:

(1) The indecomposable OX-module trl1/k(F3 ⊗ L1) (if X has type III);
(2) F3 ⊗ L1 ⊕ trl2/k(F3 ⊗ L2) (if X has type II);
(3) (F3 ⊗ L1)⊕ (F3 ⊗ L2)⊕ (F3 ⊗ L3) (if X has type I);
(4) F3 ⊕F3 ⊕F3;
(5) trl1/k(L1)⊕ trl1/k(L1)⊕ trl1/k(L1) (if X has type III);
(6) L3

1 ⊕ [trl2/k(L2)]3 (if X has type II);
(7) L3

1 ⊕ L3
2 ⊕ L3

3 (if X has type I).

Proof. We look at the quartic Jordan algebra J = H(A, τ), where (A, τ) = (D1⊗D2, ⊗ )
is the tensor product of two quaternion algebras Di with canonical involutions. The following
observations imply the assertion by Theorem 2 and Section 4 (A):

(1) D1 = EndX(F2), D2 = Quat(trl1/k(L1), N).
(2) D1 = EndX(F2), D2 = Cay(T , trl2/k(L2), NP) with T = Cay(OX ,L1, N1).
(3) D1 = EndX(F2), D2 = Cay(T ,L2 ⊕ L3, NP) with T = Cay(OX ,L1, N1).
(4) D1 = EndX(F2), D2 is defined over k.
(5) D1 is defined over k, D2 is as in (i).
(6) D1 is defined over k, D2 is as in (ii).
(7) D1 is defined over k, D2 is as in (iii).

�

In cases (1) to (3) of Theorem 9, both D1 and D2 only contain trivial idempotents by
Proposition 1. From the module structure it is also clear that in all cases J contains only
trivial idempotents. Note that the above list is not exhaustive, we only give some examples
of admissible cubic algebras with interesting underlying module structures.

Example 5. The pseudo-composition algebras which arise by Theorem 4 and Section 4 (A1)
when looking at the quartic Jordan algebra J = H(A, τ), where (A, τ) = (D ⊗ D, ⊗ ),
D a quaternion algebra with canonical involution, are only a subclass of those which can be
obtained out of trace zero elements of some cubic Jordan algebra EndX(M)+. To see this,
we look at EndX(M)+, where M is a vector bundle of rank 3. The following choices

(1) M = F3.
(2) M = trl1/k(L1) (if X is of type III and l1/k Galois),
(3) M = L1 ⊕ trl2/k(L2) (if X is of type II),
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(4) M = L1 ⊕ L2 ⊕ L3 (if X is of type I),
(5) M∈ Ω(3, d) absolutely indecomposable, gcd(3, d) = 1, if k has characteristic 0,
(6) M indecomposable, but not absolutely so, i.e. there is a suitable cubic field extension

l of k and a line bundle N over Y = X ×k l, such that M = trl/k(N ). Suppose l/k

is Galois with Gal(l/k) = {id, σ1, σ2}. If X has type III this includes (2).
(7) M = M1 ⊕M2 ⊗F2 for some line bundles Mi ∈ Pic X,
(8) M = E⊕trl/k(N ) is the direct sum of a line bundle E and an indecomposable vector

bundle of rank 2, i.e. l/k is a quadratic field extension with Gal(l/k) = {id, σ} and
N a line bundle over Xl = X ×k l, not defined over X; in particular, if X has type
II, this includes (3).

(9) M = M1 ⊕M2 ⊕M3 with Mi ∈ Pic X,

imply that the following OX -modules carry the structure of a pseudo-composition algebra
over X by Theorem 3:

(1) F3 ⊕F5,
(2) O2

X ⊕ trl1/k(L1)⊕ trl1/k(L1),
(3) O2

X ⊕ L2
1 ⊕ [trl2/k(L2)]2 (if X is of type II),

(4) O2
X ⊕ L2

1 ⊕ L2
2 ⊕ L2

3 (if X is of type I),
(5) N1 ⊕ · · · ⊕ Nm ⊕ trl1/k(Nm+1) · · · ⊕ trlj/k(Nj) if m < 8 (m depending on X),

where the line bundles Nm+1 over Xl1 , . . . ,Nj over Xlj are not defined over X, and
N1 ⊕ · · · ⊕ N8 if m = 8 (e.g., if k is algebraically closed) [At, Lemma 22],

(6) O2
X ⊕ trl/k(N ⊗σ1 N∨)⊕ trl/k(N ⊗σ2 N∨),

(7) OX ⊕M1 ⊗M∨
2 ⊗F2 ⊕M∨

1 ⊗M2 ⊗F2 ⊕F3,
(8) O2

X ⊕ trl/k(N ⊗ σN∨)⊕ (E ⊗ trl/k(N∨))⊕ (E∨ ⊗ trl/k(N )),
(9) O2

X ⊕M∨
1 ⊗M2 ⊕M∨

1 ⊗M3 ⊕M∨
2 ⊗M1 ⊕M∨

2 ⊗M3 ⊕M∨
3 ⊗M1 ⊕M∨

3 ⊗M2.

In particular, all the M in (1) to (4) have trivial determinant and the corresponding pseudo-
composition algebras can be obtained by choosing

(1) D = EndX(F2),
(2) D = Quat(trl1/k(L1), N),
(3) D = Cay(T , trl2/k(L2), NP) with T = Cay(OX ,L1, n1),
(4) D2 = Cay(T ,L2 ⊕ L3, NP) with T = Cay(OX ,L1, N1).

in (A1). Those obtained by choosing M with non-trivial determinant cannot be obtained
this way.

Example 6. Let X be of type II and τ1 and τ2 be hat-involutions.
(i) In the setting of Section (B), J0 cannot always be made into a Jordan algebra: let D1 =
Cay(T1, trl2/k(L2), N1) and D2 = Cay(T0 ⊗k OX ,L1 ⊕L1, N2), where T1 = Cay(OX ,L1, N)
and T0 is a quadratic étale defined over k. Then

J0
∼= L3

1 ⊕ [trl2/k(L2)]3

can be made into an admissible cubic algebra over X, but not into a Jordan algebra.
(ii) Let us consider the situation of Section 4 (B1): suppose D = Cay(T , trl2/k(L2), NP)
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with T = Cay(OX ,L1, N1) and ˆ = τ1 = τ2. Then

J = H(A, τ) ∼=

 OX 0 trl2/k(L2)
0 OX 0

trl2/k(L2) 0 EndX(trl2/k(L2))


and

J0
∼= O3

X ⊕ L2
1 ⊕ [trl2/k(L2)]2

can be made into a cubic Jordan algebra and there also exists a pseudo-composition algebra
structure on the OX -module

O2
X ⊕ L2

1 ⊕ [trl2/k(L2)]2.

It is not clear if the algebras obtained this way are isomorphic to EndX(L1 ⊕ trl2/k(L2)).

8. Cubic Jordan algebras which come from Azumaya algebras of rank 16

over an elliptic curve

Starting with an Azumaya algebra B of rank 16, we construct examples of admissible
cubic algebras and cubic Jordan algebras of rank 15 (whose residue class algebras are central
simple) and pseudo-composition algebras of rank 14 over an elliptic curve out of the quartic
Jordan algebra J = B+. We use the results of Section 5.

Theorem 10. The following OX-modules carry the structure of an admissible cubic algebra
over X:

(1)

F3 ⊕F5 ⊕F7;

(2)

H1 ⊕ · · · ⊕ Hn ⊕ trk1/k(Hn+1) · · · ⊕ trkj/k(Hj),

if char k = 0 and n < 16, with the line bundles H1, . . . ,Hn over X of order 4, and
the line bundle Hi of order 4 defined over X ×k ki for ki/k a finite algebraic field
extension (and not defined over X), 0 ≤ i ≤ j, with the integer j depending on n;
in particular we get H1 ⊕ · · · ⊕ H15 if n = 15 (e.g., if k is algebraically closed),

(3)

O3
X ⊕ trl/k(S ⊗ ω1S∨)⊕ trl/k(S ⊗ ω2S∨)⊕ trl/k(S ⊗ ω3S∨)

for a suitable quartic Galois field extension l/k with Gal(l/k) = {id, ω1, ω2, ω3} and
a line bundle S over Y = X ×k l;

(4)

OX ⊕ trl/k(M′)⊕ trl/k(M⊗ ωM∨)

for a suitable quadratic field extension l of k, Gal(l/k) = {id, ω} and an absolutely
indecomposable vector bundle M of rank 2 over Y = X ×k l, which is not defined
over X. We write End(M) ∼= OX ⊕M′. For instance, if M ∼= L ⊗ F2 for a line
bundle L over Y not defined over X, then we get the OX-module OX ⊕ trl/k(F3)⊕
trl/k(L ⊗ ωL∨)⊕ trl/k(L ⊗ ωL∨ ⊗F3).
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Proof. Let B = EndX(E) for a vector bundle E of rank 4. We use Section 5 (I) and list
possible E :

(1) If E is absolutely indecomposable and E = M⊗F4, M∈ Pic X a line bundle, then
B ∼= OX ⊕F3 ⊕F5 ⊕F7 as OX -module and

J0
∼= F3 ⊕F5 ⊕F7

as OX -module.
(2) If E is absolutely indecomposable and E ∈ Ω(4, d), gcd(4, d) = 1, then

B ∼= H0 ⊕H1 ⊕ · · · ⊕ H15

over X, thus, if n < 15,

B ∼= OX ⊕H1 ⊕ · · · ⊕ Hn ⊕ trk1/k(Hn+1) · · · ⊕ trkj/k(Hj)

for a suitable integer n depending on X, 0 ≤ n ≤ 15, and

J0
∼= H1 ⊕ · · · ⊕ Hn ⊕ trk1/k(Hn+1) · · · ⊕ trkj/k(Hj)

as OX -module, with the line bundles Hn+1, . . . ,Hj of order dividing 4 not defined
over X. If n = 15 then J0

∼= H1 ⊕ · · · ⊕ H15.
(3) E = trl/k(S) and B ∼= trl/k(S)⊗ trl/k(S∨) for a suitable quartic field extension l of k

and a line bundle S over Y = X×k l. If l/k is Galois, let Gal(l/k) = {id, ω1, ω2, ω3}.
Then

B ∼= O4
X ⊕ trl/k(S ⊗ ω1S∨)⊕ trl/k(S ⊗ ω2S∨)⊕ trl/k(S ⊗ ω3S∨)

and

J0
∼= O3

X ⊕ trl/k(S ⊗ω1 S∨)⊕ trl/k(S ⊗ ω2S∨)⊕ trl/k(S ⊗ ω3S∨)

as OX -module.
(4) E = trl/k(M) and A ∼= trl/k(M)⊗trl/k(M∨) for a suitable quadratic field extension

l of k and an absolutely indecomposable vector bundle M of rank 2 over Y = X×k l,
which is not defined over X. Since End(M) = OX ⊕M′,

B ∼= trl/k(OX ⊕M′)⊕ trl/k(M⊗ ωM∨) ∼= O2
X ⊕ trl/k(M′)⊕ trl/k(M⊗ ωM∨)

and

J0
∼= OX ⊕ trl/k(M′)⊕ trl/k(M⊗ω M∨)

as OX -module.

�

In cases (1) and (2), H0(X,J0) = 0. In none of the above cases, J0 can be made into a
cubic Jordan algebra. There also is no pseudo-composition algebra attached to it.

Theorem 11. The following OX-modules can be made into a cubic Jordan algebra over X:

(1) OX ⊕ (M1 ⊗M∨
2 ⊗F3)⊕ (M∨

1 ⊗M2 ⊗F3)⊕F3 ⊕F5 with Mi ∈ Pic X, i = 1, 2,
arbitrary line bundles,
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(2) O2
X ⊕ (M1⊗M∨

2 )⊕ (M1⊗M∨
3 ⊗F2)⊕ (M2⊗M∨

1 )⊕ (M2⊗M∨
3 ⊗F2)⊕ (M∨

1 ⊗
M3 ⊗ F2) ⊕ (M∨

2 ⊗M3 ⊗ F2) ⊕ F3, with Mi ∈ Pic X i = 1, 2, 3, arbitrary line
bundles,

(3) O3
X⊕trl/k(N⊗ ω1N∨)⊕trl/k(N⊗ ω2N∨)⊕(M⊗trl/k(N∨))⊕(trl/k(N )⊗M∨), with

M a line bundle over X, l/k a cubic Galois field extension, Gal(l/k) = {id, ω1, ω2},
and N a line bundle over Xl = X ×k l, which is not defined over X.

(4) O3
X ⊕ (M1⊗M∨

2 )⊕ (M1⊗ trl/k(N )∨)⊕ (M∨
1 ⊗M2)⊕ (M2⊗ trl/k(N )∨)⊕ (M∨

1 ⊗
trl/k(N )) ⊕ (M∨

2 ⊗ trl/k(N )) ⊕ (trl/k(N∨ ⊗ ωN )), for a separable quadratic field
extension l/k with non-trivial automorphism ω and a line bundle N over X ×k l

(5) O3
X ⊕ (M∨

2 ⊗M1) ⊕ (M∨
3 ⊗M1) ⊕ (M∨

4 ⊗M1) ⊕ (M∨
2 ⊗M1) ⊕ (M∨

2 ⊗M3) ⊕
(M∨

2 ⊗M4)⊕ (M∨
3 ⊗M1)⊕ (M∨

3 ⊗M2)⊕ (M∨
3 ⊗M4)⊕ (M∨

4 ⊗M1)⊕ (M∨
4 ⊗

M2)⊕ (M∨
4 ⊗M3).

In particular, these cubic Jordan algebras contain the subalgebra EndX(E)+ with the following
E:

(1) E = M2 ⊗F3,
(2) E = Mi ⊕ (M3 ⊗F2) with i = 1 or 2,
(3) E = trl/k(N ),
(4) E = Mi ⊕ trl/k(N ) with i = 1 or 2,
(5) E = Mi1 ⊕Mi2 ⊕Mi3 with i1, . . . , i3 ∈ {1, . . . , 4} pairwise different.

Proof. We have the situation of Section 5 (I.2):

(1) If E = M1 ⊕M2 ⊗F3, then

B ∼=

[
OX Hom(M1,M2 ⊗F3)

Hom(M2 ⊗F3,M1) End(F3)

]
and

J0
∼= OX ⊕ (M1 ⊗M∨

2 ⊗F3)⊕ (M∨
1 ⊗M2 ⊗F3)⊕F3 ⊕F5.

(2) If E = M1 ⊕M2 ⊕ (M3 ⊗F2), then

B ∼=

 OX M1 ⊗M∨
2 Hom(M3 ⊗F2,M1)

M2 ⊗M∨
1 OX Hom(M3 ⊗F2,M2)

Hom(M1,M3 ⊗F2) Hom(M2,M3 ⊗F2) End(F2)


and

J0
∼= O2

X ⊕ (M1 ⊗M∨
2 )⊕ (M1 ⊗M∨

3 ⊗F2)⊕ (M2 ⊗M∨
1 )⊕ (M2 ⊗M∨

3 ⊗F2)⊕

(M∨
1 ⊗M3 ⊗F2)⊕ (M∨

2 ⊗M3 ⊗F2)⊕F3.

(3) If E decomposes into the direct sum of a line bundle and an indecomposable (but
not absolutely indecomposable) vector bundle of rank 3 then there is a cubic field
extension l/k and a line bundle N over Xl = X ×k l which is not defined over X

such that E = M⊕ trl/k(N ) and
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B ∼=

[
OX Hom(M, trl/k(N ))

Hom(trl/k(N ),M) End(trl/k(N ))

]
,

so

J0
∼= (M⊗ trl/k(N∨))⊕ (trl/k(N )⊗M∨)⊕ (trl/k(N∨)⊗ trl/k(N )) ∼=

(M⊗ trl/k(N∨))⊕ (trl/k(N )⊗M∨)⊕OX ⊕ S

with the vector bundle S arising from the decomposition End(trl/k(N )) ∼= OX ⊕S.
If, in particular, l/k is Galois with Gal(l/k) = {id, ω1, ω2} then

EndX(trl/k(N )) ∼= O3
X ⊕ trl/k(N ⊗ ω1N∨)⊕ trl/k(N ⊗ ω2N∨).

In that case, the OX -module structure is given by

J0
∼= O3

X ⊕ trl/k(N ⊗ ω1N∨)⊕ trl/k(N ⊗ ω2N∨)⊕ (M⊗ trl/k(N∨))⊕ (trl/k(N )⊗M∨).

(4) If E is the direct sum of two line bundles and an indecomposable bundle of rank
2, which is not absolutely indecomposable, then E = M1 ⊕M2 ⊕ trl/k(N ) for a
separable quadratic field extension l/k with non-trivial automorphism ω and a line
bundle N over X ×k l. Then

B ∼=

 OX M1 ⊗M∨
2 M1 ⊗ trl/k(N )∨

M∨
1 ⊗M2 OX M2 ⊗ trl/k(N )∨

M∨
1 ⊗ trl/k(N ) M∨

2 ⊗ trl/k(N ) O2
X ⊕ trl/k(N∨ ⊗ ωN )

 .

Hence

J0
∼= O3

X ⊕ (M1 ⊗M∨
2 )⊕ (M1 ⊗ trl/k(N )∨)⊕(M∨

1 ⊗M2)⊕ (M2 ⊗ trl/k(N )∨)⊕ (M∨
1 ⊗ trl/k(N ))

⊕(M∨
2 ⊗ trl/k(N ))⊕ trl/k(N∨ ⊗ ωN ).

(5) If E is the direct sum of line bundles E = M1 ⊕M2 ⊕M3 ⊕M4 then

B ∼=


OX Hom(M1,M2) Hom(M1,M3) Hom(M1,M4)

Hom(M2,M1) OX Hom(M2,M3) Hom(M2,M4)
Hom(M3,M1) Hom(M3,M2) OX Hom(M3,M4)
Hom(M4,M1) Hom(M4,M2) Hom(M4,M3) OX


and

J0
∼= O3

X ⊕ (M∨
2 ⊗M1)⊕ (M∨

3 ⊗M1)⊕ (M∨
4 ⊗M1)

⊕(M∨
2 ⊗M1)⊕ (M∨

2 ⊗M3)⊕ (M∨
2 ⊗M4)

⊕(M∨
3 ⊗M1)⊕ (M∨

3 ⊗M2)⊕ (M∨
3 ⊗M4)

⊕(M∨
4 ⊗M1)⊕ (M∨

4 ⊗M2)⊕ (M∨
4 ⊗M3).

In all cases (1) to (5), J0 can be made into a cubic Jordan algebra which contains the
claimed cubic Jordan subalgebra by Proposition 7. �

In (1), (2) and (3), for instance, the cubic Jordan algebra J0 is not isomorphic to a
reduced cubic Jordan algebra H3(D), for some quaternion algebra D, due to its module
structure.
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Corollary 5. The following OX-modules carry the structure of a pseudo-composition algebra
of rank 14:

(1) (M1⊗M∨
2 ⊗F3)⊕ (M∨

1 ⊗M2⊗F3)⊕F3⊕F5 with Mi ∈ Pic X (i = 1, 2) arbitrary
line bundles,

(2) OX ⊕ (M1⊗M∨
2 )⊕ (M1⊗M∨

3 ⊗F2)⊕ (M2⊗M∨
1 )⊕ (M2⊗M∨

3 ⊗F2)⊕ (M∨
1 ⊗

M3 ⊗F2)⊕ (M∨
2 ⊗M3 ⊗F2)⊕F3, with Mi ∈ Pic X arbitrary line bundles,

(3) O2
X⊕trl/k(N⊗ ω1N∨)⊕trl/k(N⊗ ω2N∨)⊕(M⊗trl/k(N∨))⊕(trl/k(N )⊗M∨), with

M a line bundle over X, l/k a cubic Galois field extension, Gal(l/k) = {id, ω1, ω2}
and N a line bundle over Xl = X ×k l, which is not defined over X.

(4) O2
X ⊕ (M1⊗M∨

2 )⊕ (M1⊗ trl/k(N )∨)⊕ (M∨
1 ⊗M2)⊕ (M2⊗ trl/k(N )∨)⊕ (M∨

1 ⊗
trl/k(N )) ⊕ (M∨

2 ⊗ trl/k(N )) ⊕ (trl/k(N∨ ⊗ω N )), for a separable quadratic field
extension l/k with non-trivial automorphism ω and a line bundle N over X ×k l

(5) O2
X ⊕ (M∨

2 ⊗M1) ⊕ (M∨
3 ⊗M1) ⊕ (M∨

4 ⊗M1) ⊕ (M∨
2 ⊗M1) ⊕ (M∨

2 ⊗M3) ⊕
(M∨

2 ⊗M4)⊕ (M∨
3 ⊗M1)⊕ (M∨

3 ⊗M2)⊕ (M∨
3 ⊗M4)⊕ (M∨

4 ⊗M1)⊕ (M∨
4 ⊗

M2)⊕ (M∨
4 ⊗M3).

By Proposition 7, all of the above contain a pseudo-composition subalgebra of rank 8.
Without exhausting all possible cases, we now look at some interesting examples of the

setting described in Section 5 (II):

Theorem 12. The following OX-modules carry the structure of an admissible cubic algebra
over X:

(1) trl1/k(L1)⊕F3 ⊕ trl1/k(L1 ⊗F3);

(2) L1 ⊕ trl2/k(L2)⊕F3 ⊕ (L1 ⊗F3)⊕ trl2/k(L2 ⊗F3);

(3) L1 ⊕ L2 ⊕ L3 ⊕F3 ⊕ (L1 ⊗F3)⊕ (L2 ⊗F3)⊕ (L3 ⊗F3).

Proof. Let J = D1⊗D2 with Di (i = 1, 2) a quaternion algebra over X as in Section 5 (II).
Then J0 can be provided with a multiplication which makes it an admissible cubic algebra
(Theorem 2).

(1) If D1 = EndX(F2) and D2 = Quat(trl1/k(L1), N), then

J ∼= OX ⊕ trl1/k(L1)⊕F3 ⊕ trl1/k(L1 ⊗F3)

and

J0
∼= trl1/k(L1)⊕F3 ⊕ trl1/k(L1 ⊗F3).

(2) If D1 = EndX(F2) and D2 = Cay(T , trl2/k(L2)) with T = Cay(OX ,L1, NL1), then

J ∼= OX ⊕ L1 ⊕ trl2/k(L2)⊕F3 ⊕ (L1 ⊗F3)⊕ trl2/k(L2 ⊗F3)

and

J0
∼= L1 ⊕ trl2/k(L2)⊕F3 ⊕ (L1 ⊗F3)⊕ trl2/k(L2 ⊗F3)
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(3) If D1 = EndX(F2) and D2 = Cay(T ,L2⊗T , N0) with T = Cay(OX ,L1, NL1), then

J ∼= OX ⊕ L1 ⊕ L2 ⊕ L3 ⊕F3 ⊕ (L1 ⊗F3)⊕ (L2 ⊗F3)⊕ (L3 ⊗F3)

and

J0
∼= L1 ⊕ L2 ⊕ L3 ⊕F3 ⊕ (L1 ⊗F3)⊕ (L2 ⊗F3)⊕ (L3 ⊗F3).

�

Note that in all of the above cases, H0(X,J0) = k, and J0 cannot be made into a cubic
Jordan algebra. There also is no pseudo-composition algebra attached to it.

9. Quartic Jordan algebras of rank 28 over an elliptic curve

Given a quartic Jordan algebra of rank 28 of the type J = H(A, τ) with τ a symplectic
involution on an Azumaya algebra A of rank 64, we construct examples of admissible cubic
algebras of rank 27, Albert algebras and pseudo-composition algebras of rank 26 over an
elliptic curve. We use the results of Section 6.

Example 7. (a) We start with the set-up described in Section 6 (A*): If a locally free
OX -module E of constant rank 8 carries a nondegenerate skew-symmetric bilinear form b,
the Azumaya algebra EndX(E) has a symplectic involution σb(f) = b̂−1 ◦ f∨ ◦ b̂. If r is
even and L is a line bundle of order 2, then L⊗Fr carries a nondegenerate skew-symmetric
bilinear form [AEJ1, p. 1350]. Let L be a line bundle of order 2. Then EndX(L⊗F8) carries
a symplectic involution σb induced by a skew-symmetric bilinear form on L ⊗ F8. We have

EndX(L ⊗ F8) ∼= OX ⊕F3 ⊕F5 ⊕F7 ⊕F9 ⊕F11 ⊕F15

as OX -module. By counting the ranks of the indecomposable bundles, it follows that J =
H(EndX(L ⊗ F8), σb) is isomorphic to

OX ⊕F3 ⊕F9 ⊕F15,

OX ⊕F5 ⊕F7 ⊕F15,

or to
OX ⊕F7 ⊕F9 ⊕F11.

Which case appears is not clear. In any case, the Jordan algebra J can only have trivial
idempotents. Hence J0 cannot be made into an Albert algebra and there also is no pseudo-
composition algebra attached to it.
(b) The trivial Azumaya algebra

EndX(F2 ⊕F2 ⊕F4) ∼=

 EndX(F2) EndX(F2) Hom(F2,F4)
EndX(F2) EndX(F2) Hom(F2,F4)
Hom(F4,F2) Hom(F4,F2) End(F4)


∼= O5

X ⊕ F9
3 ⊕ F5

5 ⊕ F7 carries a symplectic involution σb induced by the skew-symmetric
bilinear form b = b1 ⊗ b2 ⊗ b3, with b1, b2 and b3 skew-symmetric forms on F2. Then
(EndX(F2), σbi

) ∼= (EndX(F2), ) for i = 1, 2 and

(EndX(F2 ⊕F2 ⊕F4), σb) ∼= (EndX(F2), )⊗ (EndX(F2), )⊗ (EndX(F2), ).



34 S. PUMPLÜN

We obtain

H(EndX(F2 ⊕F2 ⊕F4), σb) ∼= OX ⊕ (F3 ⊗F3)⊕ (F3 ⊗F3)⊕ (F3 ⊗F3) ∼= O4
X ⊕F3

3 ⊕F3
5 .

As described in (D1*), we have

(D, )⊗ (D, ) ∼= (EndX(D), σ)

with D = EndX(F2), and

J = H(EndX(F2 ⊕F2 ⊕F4), σb) ∼= Skew(EndX(D), σ)⊗F3 ⊕H(EndX(D), σ)⊗OX .

Moreover, f = diag(0, 1) is a non-trivial idempotent in H0(X,J ) of trace 1. Therefore the
OX -module

J0
∼= O3

X ⊕F3
3 ⊕F3

5

can be made into an Albert algebra and

O2
X ⊕F3

3 ⊕F3
5

into a pseudo-composition algebra. Indeed, the Albert algebra J0 is a (classical) first Tits
construction starting with EndX(F3) ∼= OX ⊕F3 ⊕F5 (Theorem 7). It is not isomorphic to
H3(C, ∗) due to its module structure.

Example 8. As in Section 6 (B*), let D = Mat2(OX) with the transpose (hence orthogonal)
involution t. Let B = EndX(F4), then B carries a symplectic involution τ1 induced by the
skew-symmetric form on F4, and

H(B, τ1) ∼= OX ⊕F5, Skew(B, τ1) ∼= F3 ⊕F7

(by looking at the module structure this is the only possibility). Let

(A, τ) = (EndX(F4), τ1)⊗ (D, t) ∼= (Mat2(EndX(F4)), J1)

with J1(D) = (τ1(dij))t, if D = (dij). We have

H(A, J1) ∼= Skew(B, τ1)⊕H(B, τ1)⊕H(B, τ1)⊕H(B, τ1).

Therefore
H(A, J1) ∼= O3

X ⊕F3 ⊕F7 ⊕F3
5 .

It is not clear if there exist idempotents of trace 1 in J = H(A, τ) ∼= H(A, J1), the obvious
idempotent 1⊗ diag(1, 0) in B ⊗Mat2(OX) has trace 2.

Example 9. As in Section 6 (C*), let τ1 be orthogonal and τ2 be the canonical involution
on D = Mat2(OX). Let B = EndX(OX ⊕ F3) then B carries an orthogonal involution τ1

induced by a symmetric bilinear form on OX ⊕F3. We obtain

B ∼=

[
OX Hom(OX ,F3)

Hom(F3,OX) End(F3)

]
∼= O2

X ⊕F3
3 ⊕F5.

and
H(A, τ) ∼= Skew(B, τ1)3 ⊕H(B, τ1).

Suppose b = b1 ⊗ b2 with b1, b2 two skew-symmetric forms on F2. Then

(B, τ1) ∼= (EndX(F2), )⊗ (EndX(F2), ).
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Thus H(B, τ1) ∼= OX ⊕F3 ⊗F3 and Skew(B, τ1) ∼= F3 ⊕F3. Hence

J = H(A, τ) ∼= (F3
3 ⊕F3

3 )⊕ (O2
X ⊕F3 ⊕F5).

As in Example 7, (B, τ1) ∼= (EndX(D), σ) with D = EndX(F2),

H(EndX(D), σ) ∼=

[
OX 0
0 EndXF3

]
⊂ J

and f = diag(0, 1) is a non-trivial idempotent in J of trace 1. Therefore the OX -module

OX ⊕F7
3 ⊕F5

can be made into an Albert algebra and

F7
3 ⊕F5

into a pseudo-composition algebra. Again, the Albert algebra J0 is a first Tits construction
starting with EndX(F3) (Theorem 7).

(An analogous argument works for B = EndX(Li ⊕ Lj ⊗F3).)

In Examples 7 (b) and 9, the Albert algebras J0 are not isomorphic to an Azumaya
algebra of the kind H3(C, ∗) due to their module structure.

We conclude with examples arising from the scenario in Section 6 (D*) and (E*). We
point out that the algebras covered in case (5) of the following theorem overlap with the
ones from Example 9.

Theorem 13. Let L be a line bundle over X. The following OX-modules carry the structure
of an Albert algebra over X, which can be obtained by a first Tits construction:

(1) O3
X ⊕F3

3 ⊕F3
5 , starting with EndX(F3),

(2) OX ⊕F3⊕F5⊕ trl1/k(L1⊗F3)⊕ trl1/k(L1⊗F3) starting with EndX(F3) (if X has
type III),

(3) OX ⊕ F3 ⊕ F5 ⊕ [L1 ⊗ F3]2 ⊕ [trl2/k(L2 ⊗ F3)]2 starting with EndX(F3) (if X has
type III),

(4) OX ⊕ F3 ⊕ F5 ⊕ [(L1 ⊗ F3) ⊕ (L2 ⊗ F3) ⊕ (L3 ⊗ F3)]2 starting with EndX(F3) (if
X has type I),

(5) OX ⊕F7
3 ⊕F5, starting with EndX(F3)

(6) OX ⊕F3
3 ⊕F5 ⊕ [(F3 ⊗ L)⊕ (F3 ⊗ L∨)]2, starting with EndX(F3)

(7) O9
X ⊕ [trl1/k(L1 ⊗σ1 L1)]3 ⊕ [trl1/k(L1 ⊗σ2 L1)]3 starting with EndX(trl1/k(L1)) (if

X has type III and l1/k is Galois),
(8) O3

X ⊕ trl1/k(L2)⊕ trl1/k(L3)⊕ [trl1/k(L1 ⊗F3)]2 starting with EndX(trl1/k(L1)) (if
X has type III and l1/k is Galois),

(9) O3
X ⊕ trl1/k(L2) ⊕ trl1/k(L3) ⊕ [trl1/k(L1)]6, starting with EndX(trl1/k(L1)) (if X

has type III and l1/k is Galois),
(10) O3

X⊕trl1/k(L2)⊕trl1/k(L3)⊕[trl1/k(L1)⊕trl1/k(L1⊗L)⊕trl1/k(L1⊗L∨)]2, starting
with EndX(trl1/k(L1)) (if X has type III and l1/k is Galois), ,

(11) O9
X ⊕ [trl2/k(L2)]6 ⊕ L6

1, starting with EndX(L1 ⊕ trl2/k(L2)) (if X has type II),
(12) O3

X ⊕ [trl2/k(L2)]2 ⊕L2
1 ⊕ [L1 ⊗F3]2 ⊕ [trl2/k(L2 ⊗F3)]2, starting with EndX(L1 ⊕

trl2/k(L2)) (if X has type II),
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(13) O3
X ⊕ [trl2/k(L2)]2 ⊕ L8

1 ⊕ [trl2/k(L2)]6, starting with EndX(L1 ⊕ trl2/k(L2)) (if X

has type II),
(14) O3

X⊕[trl2/k(L2)]4⊕L4
1⊕[L1⊗L]2⊕[L1⊗L∨]2⊕[trl2/k(L2⊗L)]2⊕[trl2/k(L2⊗L∨)]2,

starting with EndX(L1 ⊕ trl2/k(L2)) (if X has type II),
(15) O9

X ⊕ L6
1 ⊕ L6

2 ⊕ L6
3, starting with EndX(L1 ⊕ L2 ⊕ L3) (if X has type I),

(16) O3
X ⊕L2

1⊕L2
2⊕L2

3⊕ [(L1⊗F3)⊕ (L2⊗F3)⊕ (L3⊗F3)]2, starting with EndX(L1⊕
L2 ⊕ L3) (if X has type I),

(17) O3
X ⊕ L8

1 ⊕ L8
2 ⊕ L8

3, starting with EndX(L1 ⊕ L2 ⊕ L3) (if X has type I),
(18) O3

X⊕L4
1⊕L4

2⊕L4
3⊕[L1⊗L]2⊕[L2⊗L]2⊕[L3⊗L]2⊕[L1⊗L∨]2⊕[L2⊗L∨]2⊕[L3⊗L∨]2,

starting with EndX(L1 ⊕ L2 ⊕ L3) (if X has type I),
(19) O15

X ⊕ L12
i , starting with D = D3 = Cay(T , µ), where T = Cay(OX ,Li, ni),

(20) O5
X ⊕ L4

i ⊕ F2
3 ⊕ [Li ⊗ F3]4, starting with D = D3 = Cay(T , µ), where T =

Cay(OX ,Li, ni),
(21) O11

X ⊕ L16
i , starting with D = D3 = Cay(T , µ), where T = Cay(OX ,Li, ni),

(22) O9
X⊕L6

1⊕[trl2/k(L2)]6, starting with D = D3 = Cay(T , µ), where T = Cay(OX ,L1, n1),
(if X has type II),

(23) O7
X ⊕ L8

i ⊕ [L ⊕ L∨]2 ⊕ [Li ⊗ L]4 ⊕ [Li ⊗ L∨]4,
(24) O7

X ⊕ L8
i ⊕ [Lj ⊕ L∨j ]2 ⊕ [Li ⊗ Lj ]4 ⊕ [Li ⊗ L∨j ]4 for i 6= j (if X has type I or II).

(25) O9
X ⊕ [trl1/k(L1)]6 starting with some D defined over k (if X has type III),

(26) O9
X ⊕ L6

1 ⊕ [trl2/k(L2)]6 starting with some D defined over k (if X has type II),
(27) O15

X ⊕ L12
1 , starting with some D defined over k,

(28) O15
X ⊕L6 ⊕ [L∨]6, starting with some D defined over k, with L any line bundle over

X,
(29) O9

X ⊕F6
3 , starting with some D defined over k,

(30) O9
X ⊕ L6

1 ⊕ L6
2 ⊕ L6

3, starting with D as in (15) (if X has type I),
(31) O3

X ⊕ L2
1 ⊕ L2

2 ⊕ L2
3 ⊕ [(L1 ⊗ F3) ⊕ (L2 ⊗ F3) ⊕ (L3 ⊗ F3)]2, starting with D as in

(15) (if X has type I),
(32) O3

X ⊕ L4
1 ⊕ L4

2 ⊕ L4
3 ⊕ [(L1 ⊗ Li) ⊕ (L2 ⊗ Li) ⊕ (L3 ⊗ Li)]2, starting with D as in

(15) (if X has type I),
(33) O3

X ⊕ L8
1 ⊕ L8

2 ⊕ L8
3, starting with D as in (15) (if X has type I),

(34) O3
X⊕L4

1⊕L4
2⊕L4

3⊕[(L1⊗L)⊕(L2⊗L)⊕(L3⊗L)⊕(L1⊗L∨)⊕(L2⊗L∨)⊕(L3⊗L∨)]2,
starting with D as in (15) (if X has type I),

(35) O27
X ,

(36) O9
X ⊕ L6 ⊕ L∨6 ⊕ [L ⊗ L]3 ⊕ [L∨ ⊗ L∨]3, for some line bundle L over X,

(37) O3
X ⊕L2 ⊕L∨2 ⊕ (L⊗L)⊕ (L∨ ⊗L∨)⊕F2

3 ⊕ [L⊗F3]2 ⊕ [L∨ ⊗F3]2 for some line
bundle L over X,

(38) O3
X⊕L2⊕L∨2⊕(L⊗L)⊕(L∨⊗L∨)⊕ [trl1/k(L1)]2⊕ [trl1/k(L⊗L1)]2⊕ [trl1/k(L∨⊗

L1)]2,
(39) O3

X ⊕L2⊕L∨2⊕ (L⊗L)⊕ (L∨⊗L∨)⊕L2
1⊕ [trl2/k(L2)]2⊕ [L⊗L1]2⊕ [L∨⊗L1]2⊕

[trl2/k(L ⊗ L2)]2 ⊕ [trl2/k(L∨ ⊗ L2)]2,
(40) O5

X ⊕ L4 ⊕ L∨4 ⊕ (L ⊗ L) ⊕ (L∨ ⊗ L∨) ⊕ L2
1 ⊕ L2

2 ⊕ L2
3 ⊕ [L ⊗ L1]2 ⊕ [L ⊗ L2]2 ⊕

[L ⊗ L3]2 ⊕ [L∨ ⊗ L1]2 ⊕ [L∨ ⊗ L2]2 ⊕ [L∨ ⊗ L3]2,
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(41) O11
X ⊕ L10 ⊕ L∨10 ⊕ (L ⊗ L)⊕ (L∨ ⊗ L∨).

Proof. Let D = Quat(M, N) and D3 = Quat(M3, N3) be two quaternion algebras with
canonical involution. Let A = D ⊗ D ⊗ D3 with involution τ = ⊗ ⊗ . By Section 6
(D1*), the quartic Jordan algebra J = H(A, τ) contains a non-trivial idempotent of trace
1. Thus J0

∼= EndX(M)⊕M⊗M3⊕M⊗M3 can be made into an Albert algebra, which is
a first Tits construction starting with EndX(M) by Theorem 7. We consider the following
cases, which yield the corresponding assertions:

(1) D = D3 = EndX(F2).
(2) D = EndX(F2) and D3 = Quat(trl1/k(L1), N).
(3) D = EndX(F2) and D3 = Cay(T , trl2/k(L2), NP) with T = Cay(OX ,L1, n1).
(4) D = EndX(F2) and D3 = Cay(T , µ) with T = Cay(OX ,Li, ni).
(5) D = EndX(F2) and D3 defined over k.
(6) D = EndX(F2) and D3 = EndX(OX ⊕ L) split (L any line bundle).
(7) D = D3 = Quat(trl1/k(L1), N).
(8) D = Quat(trl1/k(L1), N) and D3 = EndX(F2).
(9) D = Quat(trl1/k(L1), N) and D3 defined over k.

(10) D = Quat(trl1/k(L1), N) and D3 = EndX(OX ⊕ L) split (L any line bundle).
(11) D = D3 = Cay(T , trl2/k(L2), NP) with T as in (3).
(12) D = Cay(T , trl2/k(L2), NP) as in (11) and D3 = EndX(F2).
(13) D = Cay(T , trl2/k(L2), NP) as in (11) and D3 defined over k.
(14) D = Cay(T , trl2/k(L2), NP) as in (11) and D3 = EndX(OX ⊕ L) split (L any line

bundle).
(15) D = D3 = Cay(T ,P, NP) with T as in (3) and P = L2 ⊗ T , i.e. P ∼= L2 ⊕ L3 as

OX -module.
(16) D = Cay(T ,P, NP) as in (15) and D3 = EndX(F2).
(17) D = Cay(T ,P, NP) as in (15) and D3 defined over k.
(18) D = Cay(T ,P, NP) as in (15) and D3 = EndX(OX ⊕ L) split (L any line bundle).
(19) D = D3 = Cay(T , µ) with T = Cay(OX ,Li, ni).
(20) D = Cay(T , µ) with T as in (19) and D3 = EndX(F2).
(21) D = Cay(T , µ) with T as in (19) and D3 defined over k.
(22) D = Cay(T , µ) with T as in (19), but with i = 1, and D3 = Cay(T , trl2/k(L2), NP)

as in (3).
(23) D = Cay(T , µ) with T as in (19) and D3 = EndX(OX⊕L) split (L any line bundle).
(24) D = Cay(T , µ) with T as in (19), and D = Cay(T ′, µ′) with T = Cay(OX ,Lj , nj)

with i 6= j.
(25) D defined over k and D3 = Quat(trl1/k(L1), N).
(26) D defined over k and D3 = Cay(T , trl2/k(L2), NP) with T = Cay(OX ,L1, n1).
(27) D defined over k and D3 = Cay(T , µ) with T = Cay(OX ,Li, ni).
(28) D defined over k and D3 = EndX(OX ⊕ L) split (L any line bundle).
(29) D defined over k and D3 = EndX(F3).
(30) D as in (15) and D = D3.
(31) D as in (15) and D3 = EndX(F3).
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(32) D as in (15) and D3 = Cay(T , µ) with T = Cay(OX ,Li, ni).
(33) D as in (15) and D3 defined over k.
(34) D as in (15) and D3 = EndX(OX ⊕ L) split (L any line bundle).
(35) D defined over k and D3 defined over k.
(36) D = D3 = EndX(OX ⊕ L) split (L any line bundle).
(37) D = EndX(OX ⊕ L) split as in (36) and D3 = EndX(F3).
(38) D = EndX(OX ⊕ L) split as in (36) and D3 = Quat(trl1/k(L1), N).
(39) D = EndX(OX ⊕ L) split as in (36) and D3 = Cay(T , trl2/k(L2), NP) with T =

Cay(OX ,L1, n1).
(40) D = EndX(OX ⊕ L) split as in (36) and D3 = Cay(T ,P, NP) with T as in (3) and

P = L2 ⊗ T , i.e. P ∼= L2 ⊕ L3 as OX -module.
(41) D = EndX(OX ⊕ L) split as in (36) and D3 defined over k.

�

This list covers all possible cases for (D1*). We obtain first Tits constructions starting
with an Azumaya algebra EndX(M), where the vector bundle M (of rank 3) has trivial
determinant. However, the locally free right modules used are of the kind M⊗ F with
F a selfdual vector bundle of rank 3 and trivial determinant. We point out that those
cases, where the locally free right modules used in the first Tits construction are of the kind
M⊗F∨ with F a non-selfdual vector bundle of rank 3 and of trivial, are not covered here.

All the first Tits constructions starting, more generally, with an Azumaya algebra EndX(M)
for any vector bundle M of rank 3, are listed in [Pu4, Section 8].

Corollary 6. The following OX-modules can be made into a pseudo-composition algebra of
rank 26 over X:

(1) O2
X ⊕F3

3 ⊕ F 3
5 ,

(2) F3 ⊕F5 ⊕ trl1/k(L1 ⊗F3)⊕ trl1/k(L1 ⊗F5) (if X has type III and l1/k is Galois),
(3) F3 ⊕F5 ⊕ [L1 ⊗F3]2 ⊕ [trl2/k(L2 ⊗F3)]2, (if X has type II),
(4) F3 ⊕F5 ⊕ [L1 ⊗F3 ⊕ L2 ⊗F3 ⊕ L3 ⊗F3]2,
(5) F7

3 ⊕F5,
(6) F3

3 ⊕F5 ⊕ [F3 ⊗ L⊕ F3 ⊗ L∨]2,
(7) O8

X ⊕ [trl1/k(L2)]3 ⊕ [trl1/k(L3)]3 (if X has type III and l1/k is Galois),
(8) O2

X⊕trl1/k(L2)⊕trl1/k(L3)⊕[trl1/k(L1⊗F3)]2 (if X has type III and l1/k is Galois),
(9) O2

X ⊕ trl1/k(L2)⊕ trl1/k(L3)⊕ [trl1/k(L1)]6 (if X has type III and l1/k is Galois),
(10) O2

X ⊕ trl1/k(L2) ⊕ trl1/k(L3) ⊕ [trl1/k(L1) ⊕ trl1/k(L1 ⊗ L) ⊕ trl1/k(L1 ⊗ L∨)]2, (if
X has type III and l1/k is Galois),

(11) O8
X ⊕ [trl2/k(L2)]6 ⊕ L6

1 (if X has type II),
(12) O2

X ⊕ [trl2/k(L2)]2 ⊕ L2
1 ⊕ [L1 ⊗F3]2 ⊕ [trl2/k(L2 ⊗F3)]2 (if X has type II),

(13) O2
X ⊕ [trl2/k(L2)]2 ⊕ L8

1 ⊕ [trl2/k(L2)]6, starting with EndX(L1 ⊕ trl2/k(L2)) (if X

has type II),
(14) O2

X⊕[trl2/k(L2)]4⊕L4
1⊕[L1⊗L]2⊕[L1⊗L∨]2⊕[trl2/k(L2⊗L)]2⊕[trl2/k(L2⊗L∨)]2,

(if X has type II),
(15) O8

X ⊕ L6
1 ⊕ L6

2 ⊕ L6
3, (if X has type I),
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(16) O2
X ⊕ L2

1 ⊕ L2
2 ⊕ L2

3 ⊕ [L1 ⊗F3 ⊕ L2 ⊗F3 ⊕ L3 ⊗F3]2, (if X has type I),
(17) O2

X ⊕ L8
1 ⊕ L8

2 ⊕ L8
3, (if X has type I),

(18) O2
X⊕L4

1⊕L4
2⊕L4

3⊕[L1⊗L]2⊕[L2⊗L]2⊕[L3⊗L]2⊕[L1⊗L∨]2⊕[L2⊗L∨]2⊕[L3⊗L∨]2,
(if X has type I),

(19) O14
X ⊕ L12

i ,
(20) O4

X ⊕ L4
i ⊕F2

3 ⊕ [Li ⊗F3]4,
(21) O10

X ⊕ L16
i ,

(22) O8
X ⊕ L6

1 ⊕ [trl2/k(L2)]6, (if X has type II),
(23) O6

X ⊕ L8
i ⊕ [L ⊕ L∨]2 ⊕ [Li ⊗ L]4 ⊕ [Li ⊗ L∨]4,

(24) O6
X ⊕ L8

i ⊕ [Lj ⊕ L∨j ]2 ⊕ [Li ⊗ Lj ]4 ⊕ [Li ⊗ L∨j ]4 for i 6= j (if X has type I or II),
(25) O8

X ⊕ [trl1/k(L1)]6 starting with some D defined over k (if X has type III),
(26) O8

X ⊕ L6
1 ⊕ [trl2/k(L2)]6 starting with some D defined over k (if X has type II),

(27) O14
X ⊕ L12

1 , starting with some D defined over k,
(28) O14

X ⊕L6 ⊕ [L∨]6, starting with some D defined over k, with L any line bundle over
X,

(29) O8
X ⊕F6

3 , starting with some D defined over k,
(30) O8

X ⊕ L6
1 ⊕ L6

2 ⊕ L6
3, starting with D as in (15) (if X has type I),

(31) O2
X ⊕ L2

1 ⊕ L2
2 ⊕ L2

3 ⊕ [L1 ⊗ F3 ⊕ L2 ⊗ F3 ⊕ L3 ⊗ F3]2, starting with D as in (15)
(if X has type I),

(32) O2
X ⊕L4

1 ⊕L4
2 ⊕L4

3 ⊕ [L1 ⊗Li ⊕L2 ⊗Li ⊕L3 ⊗Li]2, starting with D as in (15) (if
X has type I),

(33) O2
X ⊕ L8

1 ⊕ L8
2 ⊕ L8

3, starting with D as in (15) (if X has type I),
(34) O2

X ⊕L4
1 ⊕L4

2 ⊕L4
3 ⊕ [L1 ⊗L⊕L2 ⊗L⊕L3 ⊗L⊕L1 ⊗L∨ ⊕L2 ⊗L∨ ⊕L3 ⊗L∨]2,

starting with D as in (15) (if X has type I),
(35) O26

X .
(36) O8

X ⊕ L6 ⊕ L∨6 ⊕ [L ⊗ L]3 ⊕ [L∨ ⊗ L∨]3, for some line bundle L over X,
(37) O2

X ⊕ L2 ⊕ L∨2 ⊕ L ⊗ L ⊕ L∨ ⊗ L∨ ⊕ F2
3 ⊕ [L ⊗ F3]2 ⊕ [L∨ ⊗ F3]2 for some line

bundle L over X,
(38) O2

X⊕L2⊕L∨2⊕L⊗L⊕L∨⊗L∨⊕[trl1/k(L1)]2⊕[trl1/k(L⊗L1)]2⊕[trl1/k(L∨⊗L1)]2,
(39) O2

X ⊕L2 ⊕L∨2 ⊕L⊗L⊕L∨ ⊗L∨ ⊕L2
1 ⊕ [trl2/k(L2)]2 ⊕ [L⊗L1]2 ⊕ [L∨ ⊗L1]2 ⊕

[trl2/k(L ⊗ L2)]2 ⊕ [trl2/k(L∨ ⊗ L2)]2,
(40) O4

X ⊕L4 ⊕L∨4 ⊕L⊗ L⊕ L∨ ⊗L∨ ⊕L2
1 ⊕L2

2 ⊕L2
3 ⊕ [L⊗ L1]2 ⊕ [L⊗ L2]2 ⊕ [L⊗

L3]2 ⊕ [L∨ ⊗ L1]2 ⊕ [L∨ ⊗ L2]2 ⊕ [L∨ ⊗ L3]2,
(41) O10

X ⊕ L10 ⊕ L∨10 ⊕ L⊗ L⊕ L∨ ⊗ L∨.

Proof. The cases studied in Theorem 13 yield the assertion. �

Theorem 14. The following OX-modules can be made into an admissible cubic algebra over
X:

(1) trl1/k(L1 ⊗F3)⊕ [trl1/k(L1)]3 ⊕F3
3 ,

(2) trl1/k(L1⊗F3)⊕trl1/k(L1)⊕trl1/k(L1⊗L)⊕trl1/k(L1⊗L∨)⊕F3⊕(F3⊗L)⊕(F3⊗L∨),
(3) L1 ⊗F3 ⊕ trl2/k(L2 ⊗F3)⊕ [L1 ⊕ trl2/k(L2)]3 ⊕F3

3 ,
(4) (L1 ⊗F3)⊕ (L2 ⊗F3)⊕ (L3 ⊗F3)⊕ [L1 ⊕ L2 ⊕ L3]3 ⊕F3

3 ,
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(5) (L1 ⊗ F3)⊕ trl2/k(L2 ⊗ F3)⊕ L1 ⊕ trl2/k(L2)⊕ (L1 ⊗ L)⊕ trl2/k(L2 ⊗ L)⊕ (L1 ⊗
L∨)⊕ trl2/k(L2 ⊗ L∨).

Proof. Let Di = Quat(Mi, Ni) be quaternion algebras with canonical involution. Let A =
D1 ⊗D2 ⊗D3 with involution τ = ⊗ ⊗ . The OX -module

J0 = M1 ⊗M2 ⊕M2 ⊗M3 ⊕M1 ⊗M3

can be made into an admissible cubic algebra over X. We compute J = H(A, τ) using
Section 6 (D*) in the following cases:

(1) D1 = EndX(F2), D2 = Quat(trl1/k(L1), N) and D3 defined over X.
(2) D1 = EndX(F2), D2 = Quat(trl1/k(L1), N) and D3 = EndX(OX ⊕ L) split (L any

line bundle).
(3) D1 = EndX(F2), D2 = Cay(T , trl2/k(L2), NP) as in Theorem 13 (3) and D3 defined

over X.
(4) D1 = EndX(F2), D2 = Cay(T ,P, NP) with T and P = L2 ⊗ T as in Theorem 11

(15), D3 defined over X.
(5) D1 = EndX(F2), D2 = Cay(T , trl2/k(L2), NP) as in Theorem 13 (3) and D3 =

EndX(OX ⊕ L) split (L any line bundle).

�

In cases (1) to (4) of Theorem 14, the quartic Jordan algebra J does not contain idem-
potents of trace 1 by Corollary 2. If, in case (5), L = L1, it is not clear from the module
structure if the algebra contains idempotents of trace 1, for all other L it cannot.

Theorem 15. The following OX-modules carry the structure of an Albert algebra over X:

(1) O9
X ⊕ L6

1 ⊕ [trl2/k(L2)]6 (if X has type II),
(2) O3

X ⊕ L2
1 ⊕ [trl2/k(L2)]2 ⊕ [L1 ⊗F3]2 ⊕ [trl2/k(L3 ⊗F3)]2 (if X has type II),

(3) O3
X⊕L4

1⊕ [trl2/k(L2)]4⊕ [(L1⊗L)⊕(L1⊗L∨)]2⊕ [trl2/k(L3⊗L)⊕ trl2/k(L3⊗L∨)]2

(if X has type II)
(4) O3

X ⊕ L8
1 ⊕ [trl2/k(L2)]8 (if X has type II),

(5) O7
X ⊕ L4

1 ⊕ [trl2/k(L2)]8 (if X has type II),
(6) O15

X ⊕ L12
i ,

(7) O5
X ⊕ L4

i ⊕ [Li ⊗F3]4 ⊕F2
3 ,

(8) O7
X ⊕ L8

i ⊕ [Li ⊗ L]4 ⊕ [Li ⊗ L∨]4 ⊕ [L ⊕ L∨]2,
(9) O11

X ⊕ L16
i , starting with EndX(OX ⊕ L2

i ),
(10) O9

X ⊕ L6
1 ⊕ L6

2 ⊕ L6
3 (if X has type I),

(11) O3
X ⊕ L2

1 ⊕ L2
2 ⊕ L2

3 ⊕ [L1 ⊗F3]2 ⊕ [L2 ⊗F3]2 ⊕ [L3 ⊗F3]2 (if X has type I),
(12) O3

X⊕L4
1⊕L4

2⊕L4
3⊕[L1⊗L]2⊕[L2⊗L]2⊕[L3⊗L]2⊕[L1⊗L∨]2⊕[L2⊗L∨]2⊕[L3⊗L∨]2

(if X has type I),
(13) O3

X ⊕ (L ⊗ L)⊕ (L∨ ⊗ L∨)⊕ [L ⊕ L∨]2 ⊕F2
3 ⊕ [(L ⊗ F3)⊕ (L∨ ⊗F3)]2,

(14) O3
X⊕(L⊗L)⊕(L∨⊗L∨)⊕[L⊕L∨]2⊕[trl1/k(L1)]2⊕[trl1/k(L⊗L1)⊕trl1/k(L∨⊗L1)]2,

(if X has type III),
(15) O3

X ⊕ (L⊗ L)⊕ (L∨ ⊗L∨)⊕ [L⊕ L∨]2 ⊕ [L1 ⊕ trl2/k(L2)]2 ⊕ [L⊗ L1 ⊕ trl2/k(L⊗
L2)⊕ L∨ ⊗ L1 ⊕ trl2/k(L∨ ⊗ L2)]2 (if X has type II).
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Proof. Let D1 = Quat(M1, N1), D = Cay(T ,P, N) with T = Cay(T ,L, NL). By Section 6
(E1*), the quartic Jordan algebra J = H(A, τ) = (D1, )⊗ (D, ˆ)⊗ (D, ˆ) contains a non-
trivial idempotent of trace 1. Thus J0 can be made into an Albert algebra. We consider
the following cases, which yield the corresponding assertions by Theorem 2 and Section 6
(E1*):

(1) D = D1 = Cay(T , trl2/k(L2), NP) as in Theorem 14 (3).
(2) D1 = EndX(F2), D as in (1).
(3) D1 = EndX(OX ⊕ L) for any line bundle L, D as in (1).
(4) D1 defined over k, D as in (1).
(5) D1 = Cay(T , µ) with T = Cay(OX ,L1, n1), D as in (1).
(6) D = D1 = Cay(T , µ) with T = Cay(OX ,Li, ni).
(7) D1 = EndX(F2), D as in (6).
(8) D1 = EndX(OX ⊕ L) for any line bundle L, D as in (6).
(9) D1 defined over k, D as in (6).

(10) D = D1 = Cay(T ,P, NP) with T as in (1) and P = L2 ⊗ T , i.e. P ∼= L2 ⊕ L3 as
OX -module.

(11) D1 = EndX(F2), D as in (10).
(12) D1 = EndX(OX ⊕ L) for any line bundle L, D as in (10).
(13) D = EndX(OX ⊕ L) for any line bundle L, D1 = EndX(F2).
(14) D1 = Quat(trl1/k(L1), N) and D as in (13).
(15) D1 = Cay(T , trl2/k(L2), NP) as in Theorem 14 (3), D as in (13).

�

This list is not complete. Note that cases (3) and (5) of Theorem 15 do not appear
in Theorem 13. It is not clear, whether the Albert algebras obtained here are first Tits
constructions.

Theorem 16. Let D3 be a quaternion algebra which is the Cayley Dickson doubling Cay(T3,P, NP)
of a quadratic étale algebra T3

∼= OX ⊕ N . The following OX-modules carry the structure
of an Albert algebra over X:

(1) OX ⊕N 2 ⊕ [L1 ⊗N ]2 ⊕ [trl2/k(L2)⊗N ]2 ⊕ (P2
3 ⊕ [trl2/k(L2)⊗P3]2)⊕ [trl2/k(L2)]2

if X has type II,
(2) OX ⊕ (N 2 ⊕ [L1 ⊗N ]4 ⊕ [L2 ⊗N ]2 ⊕ [L3 ⊗N ]2)⊕ (P2

3 ⊕ [L2 ⊗P3]2 ⊕ [L3 ⊗P3]2)⊕
[L2]2 ⊕ [L3]2 if X has type I.

This list is not exhaustive.

Proof. By Section 6 (E2*), these cases arise with D3
∼= OX ⊕N ⊕P3 D chosen as follows:

(1) D ∼= OX ⊕ L1 ⊕ trl2/k(L2)
(2) D ∼= OX ⊕ L1 ⊕ L2 ⊕ L3

�

Our construction method, even when starting with the rather obvious (sometimes trivial)
choices for a quartic Jordan algebra as done here and in the previous sections, already yields
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many examples of how the underlying OX -module structure of an Albert algebra can look
like.

One of the major difficulties is that we do not know enough yet on quartic Jordan algebras
over X. In particular, it does not seem to be clear how Azumaya algebras of constant rank
64 with a symplectic involution over an elliptic curve can look like, other than the obvious
choices considered here.

Hopefully, more sophisticated choices of quartic Jordan algebras will lead to more inter-
esting examples of cubic Jordan algebras over X.
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