
TENSOR PRODUCTS OF NONASSOCIATIVE CYCLIC ALGEBRAS

S. PUMPLÜN

Abstract. We study the tensor product of two not necessarily associative cyclic al-

gebras. The condition for the tensor product of an associative cyclic algebra and a

nonassociative cyclic algebra to be division generalizes the classical one for two associa-

tive cyclic algebras by Albert or Jacobson, if the base field contains a suitable root of

unity. Stronger conditions are obtained in special cases.

Introduction

Nonassociative cyclic algebras of degree n are canonical generalizations of associative
cyclic algebras of degree n and were first introduced over finite fields by Sandler [14]. Nonas-
sociative quaternion algebras (the case n = 2) constituted the first known examples of a
nonassociative division algebra (Dickson [3]). Properties of nonassociative cyclic algebras
were investigated over arbitrary fields by Steele [16], [17], see also [12].

In the following we study the tensor product A = D0 ⊗F0 D1 of two (not necessarily
associative) cyclic algebras D0 and D1 over a field F0 and give conditions for A to be a
division algebra. These algebras are used for space-time block coding [9], [10], [11], and are
behind the iterated codes by Markin and Oggier [7].

After recalling some results needed in the paper in Section 1, we generalize the definition
of iterated algebras Itm

R (D, τ, d) from [9], [11] to allow nonassociative cyclic algebras D =
(K/F, σ, c) in their construction in Section 2.

In Section 3, results by Petit [8] are used to show that iterated algebras Itm
R (D, τ, d) can be

defined using polynomials in skew-polynomial rings over D when D is associative (Theorem
8).

The main result is established in Section 4: if D = (L/F0, σ, c) ⊗F0 F is an associative
division algebra then

(L/F0, σ, c)⊗F0 (F/F0, τ, d) ∼= Sf
∼= Itm

R (D, τ, d),

where the twisted polynomial f(t) = tm−d ∈ D[t; τ̃−1], τ̃ an automorphism of D canonically
extending τ , is used to construct the algebra Sf (Theorem 13).

Section 5 contains the main results: if D0 is an associative cyclic algebra over F0 such
that D = D0 ⊗F0 F is a division algebra, and D1 = (F/F0, τ, d) a nonassociative cyclic
algebra of degree m, then D0 ⊗F0 D1 is a division algebra if and only if f(t) = tm − d is
irreducible in D[t; τ̃−1] (Theorem 17).
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This generalizes the classical condition for the tensor product of two associative cyclic
algebras [4, Theorem 1.9.8], see Theorem 15. Some more detailed conditions are obtained
for special cases. Section 6 concludes with some remarks on the tensor product of two
nonassociative cyclic algebras.

1. Preliminaries

1.1. Nonassociative algebras. Let F be a field and let A be a finite-dimensional F -vector
space. We call A an algebra over F if there exists an F -bilinear map A×A→ A, (x, y) 7→ x·y,
denoted simply by juxtaposition xy, the multiplication of A. An algebra A is called unital
if there is an element in A, denoted by 1, such that 1x = x1 = x for all x ∈ A. We will only
consider unital algebras.

An algebra A 6= 0 is called a division algebra if for any a ∈ A, a 6= 0, the left multiplication
with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are bijective. A is a
division algebra if and only if A has no zero divisors [15, pp. 15, 16].

For an F -algebra A, associativity in A is measured by the associator [x, y, z] = (xy)z −
x(yz). The middle nucleus of A is defined as Nucm(A) = {x ∈ A | [A, x,A] = 0} and the
nucleus of A is defined as Nuc(A) = {x ∈ A | [x,A,A] = [A, x,A] = [A,A, x] = 0}. It
is an associative subalgebra of A containing F1 and x(yz) = (xy)z whenever one of the
elements x, y, z is in Nuc(A). The commuter of A is defined as Comm(A) = {x ∈ A |xy =
yx for all y ∈ A} and the center of A is C(A) = {x ∈ A |x ∈ Nuc(A) and xy = yx for all y ∈
A}.

For two nonassociative algebras C and D over F ,

Nuc(C)⊗F Nuc(D) ⊂ Nuc(C ⊗F D).

Thus we can consider the tensor product A = C ⊗F D as a right R-module over any ring
R ⊂ Nuc(C)⊗F Nuc(D).

1.2. Associative and nonassociative cyclic algebras. Let K/F be a cyclic Galois ex-
tension of degree n with Galois group Gal(K/F ) = 〈σ〉.

An associative cyclic algebra (K/F, σ, c) of degree n over F , c ∈ F×, is an n-dimensional
K-vector space

(K/F, σ, c) = K ⊕ eK ⊕ e2K ⊕ · · · ⊕ en−1K,

with multiplication given by the relations

en = c, le = eσ(l),

for all l ∈ K. (K/F, σ, c) is division for all c ∈ F×, such that cs 6∈ NK/F (K×) for all s which
are prime divisors of n, 1 ≤ s ≤ n− 1.

For c ∈ K\F , we define a unital nonassociative algebra (K/F, σ, c) (Sandler [14]) as the
n-dimensional K-vector space

(K/F, σ, c) = K ⊕ eK ⊕ e2K ⊕ · · · ⊕ en−1K,
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where multiplication is given by the following rules for all a, b ∈ K, 0 ≤ i, j, < n, which then
are extended linearly to all elements of A:

(eia)(ejb) =

ei+jσj(a)b if i+ j < n,

e(i+j)−ndσj(a)b if i+ j ≥ n.

We call D = (K/F, σ, c) with c ∈ K \ F a nonassociative cyclic algebra of degree n. D
has nucleus K and center F . D is not (n + 1)th power associative since (en−1e)e = eσ(a)
and e(en−1e) = ea. The map MD : D −→ K, MD(x) = det(Lx), is a polynomial map in c

of degree n− 1 with coefficients in F which is semi-multiplicative, i.e.

MD(ax) = NK/F (a)MD(x) = MD(xa)

for all a ∈ K, x ∈ D. If D is a division algebra then MD(x) 6= 0 for all x ∈ D×, cf. [17,
Section 4.2] or [12].

If [K : F ] is prime, D always is a division algebra. If [K : F ] is not prime, D is a division
algebra for any choice of c such that 1, c, . . . , cn−1 are linearly independent over F [17].

For n = 2, (K/F, σ, c) = Cay(K, c) is an associative (if c ∈ F ) or nonassociative (if
c ∈ K \ F ) quaternion algebra over F , cf. [2], [13] or [18].

From now on, when we say D = (K/F, σ, c) is a cyclic algebra, we mean an associative
or nonassociative cyclic algebra over F without always explicitly stating that we also allow
c ∈ K×. We call {1, e, e2, . . . , en−1} the standard basis of (K/F, σ, c).
D = (K/F, σ, c) is a K-vector space of dimension n (since K = Nuc(D) if the algebra is

nonassociative) and, after a choice of a K-basis, we can embed the K-vector space EndK(D)
into Matn(K). The left multiplication of elements ofD with y = y0+ey1+· · ·+en−1yn−1 ∈ D
(yi ∈ K) induces the K-linear embedding λ : D → Matn(K).

2. Iterated algebras

Let D = (K/F, σ, c) be a cyclic algebra of degree n over F . If D is associative, let ND/F

denote the reduced norm of D. If D is nonassociative, we consider the semi-multiplicative
polynomial map MD instead. For x = x0 + ex1 + e2x2 + · · · + en−1xn−1 ∈ D (xi ∈ K,
1 ≤ i ≤ n), and any τ ∈ Aut(K), L = Fix(τ), define the L-linear map τ̃ : D → D via

τ̃(x) = τ(x0) + eτ(x1) + e2τ(x2) + · · ·+ en−1τ(xn−1).

If c ∈ L then

τ̃(xy) = τ̃(x)τ̃(y) and λ(τ̃(x)) = τ(λ(x))

for all x, y ∈ D, where for any matrix X = λ(x) representing left multiplication with x,
τ(X) means applying τ to each entry of the matrix.
D′ = (K/F, σ, τ(c)) is a cyclic algebra, call its standard basis 1, e′, . . . , e′n−1. For y =

y0+ey1+· · ·+en−1yn−1 ∈ D define yD′ = y0+e′y1+· · ·+e′n−1
yn−1 ∈ D′. By [9, Proposition

1], if both D and D′ are associative, we know that ND/F (τ̃(y)) = τ(ND′/F (yD′)). The proof
of this result carries over verbatim to nonassociative D and D′:
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Proposition 1. Suppose τ commutes with σ and that D is nonassociative. Let D′ =
(K/F, σ, τ(c)) be a nonassociative cyclic algebra with standard basis {1, e′, . . . , e′n−1}. For
y = y0 + ey1 + · · ·+ en−1yn−1 ∈ D define yD′ = y0 + e′y1 + · · ·+ e′n−1yn−1 ∈ D′. Then

MD(τ̃(y)) = τ(MD′/F (yD′)).

If c ∈ L, then

MD(τ̃(y)) = τ(MD(y)).

We will use the following notation from now on: Let F and L be fields and let K be a
cyclic field extension of both F and L such that

(1) Gal(K/F ) = 〈σ〉 and [K : F ] = n,
(2) Gal(K/L) = 〈τ〉 and [K : L] = m,
(3) σ and τ commute: στ = τσ.

Define F0 = F ∩ L. Let D = (K/F, σ, c) be a nonassociative cyclic algebra over F .
For associative D, Itm

R (D, τ, d) was defined in [10]. We generalize the definition in [9],
[10], [11] to be able to include nonassociative cyclic algebras D:

Definition 1. Pick d ∈ F×, c ∈ F0. For x = (x0, x1, . . . , xm−1), y = (y0, y1, . . . , ym−1),
with xi, yi ∈ D, define a product on the F -vector space

Itm
R (D, τ, d) = D ⊕D ⊕D ⊕ · · · ⊕D (m-copies)

as the matrix multiplication

xy = (M(x)yT )T ,

where

M(x) =



x0 dτ̃(xm−1) dτ̃2(xm−2) · · · dτ̃m−1(x1)
x1 τ̃(x0) dτ̃2(xm−1) · · · dτ̃m−1(x2)
x2 τ̃(x1) τ̃2(x0) · · · dτ̃m−1(x3)
...

...
...

. . .
...

xm−1 τ̃(xm−2) τ̃2(xm−3) · · · τ̃m−1(x0)

 .

The algebra Itm
R (D, τ, d) is called an iterated algebra.

Itm
R (D, τ, d) is a nonassociative algebra over F0 of dimension m2n2 with unit element

(1, 0, . . . , 0) and contains D as a subalgebra. The multiplication is well-defined as d ∈
Nuc(D) = K. Put f = (0, 1D, 0 . . . , 0). Then f i is well-defined for 1 ≤ i ≤ m and
f2 = (0, 0, 1D, 0 . . . , 0), . . . , fm−1 = (0, . . . , 0, 1D) and fm−1f = (d, 0, . . . , 0) = ffm−1. We
call

{1, e, e2, . . . , en−1, f, fe, fe2, . . . , fm−1en−1}

the standard basis of the K-vector space Itm
R (D, τ, d).

Example 2. (i) The multiplication in It2R(D, τ, d) = D ⊕D is given by

(u, v) · (u′, v′) = (

[
u dτ̃(v)
v τ̃(u)

] [
u′

v′

]
)T = (uu′ + dτ̃(v)v′, vu′ + τ̃(u)v′).
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for u, u′, v, v′ ∈ D.
(ii) Let A = It3R(D, τ, d) and f = (0, 1, 0). Here, f2 = (0, 0, 1) and f2f = (d, 0, 0) = ff2.

The multiplication in A is given by

(u, v, w)(u′, v′, w′) = (

u dτ̃(w) dτ̃2(v)
v τ̃(u) dτ̃2(w)
w τ̃(v) τ̃2(u)


 u′

v′

w′

)T

= (uu′ + dτ̃(w)v′ + dτ̃2(v)w′, vu′ + τ̃(u)v′ + dτ̃2(w)w′, wu′ + τ̃(v)v′ + τ̃2(u)w′)

for u, v, w, u′, v′, w′ ∈ D.

From now on, let

A = Itm
R (D, τ, d).

Lemma 3. (i) The cyclic algebra (K/L, τ, d) over L, viewed as an algebra over F0, is a
subalgebra of A, and is nonassociative if d ∈ F \ F0.
(ii) Let m be even. Then It2R(D, τ, d) is isomorphic to a subalgebra of A.

Proof. (i) This is easy to see by restricting the multiplication of A to K ⊕ · · · ⊕K.
(ii) Suppose that m = 2s for some integer s. Then It2R(D, τ, d) is isomorphic to D ⊕ fsD,
which is a subalgebra of A under the multiplication inherited from A. �

In particular, the quaternion algebra (K/L, τ, d) = Cay(K, d) over L, viewed as algebra
over F0, is a subalgebra of It2R(D, τ, d), which is nonassociative and division if d ∈ F \ F0.

We can embed EndK(A) into the module Matnm(K). Left multiplication Lx with x ∈ A
is a right K-endomorphism, so that we obtain a well-defined additive map

L : A→ EndK(A) ↪→ Matnm(K), x 7→ Lx 7→ L(x) = X

which is injective if A is division.
Take the standard basis {1, e, . . . , en−1, f, fe, . . . , fm−1en−1} of the K-vector space A.

Then

xy = (λ(M(x))yT )T ,

where

(1) λ(M(x)) =


λ(x0) dτ(λ(xm−1)) · · · dτm−1(λ(x1))
λ(x1) τ(λ(x0)) · · · dτm−1(λ(x2))

...
...

. . .
...

λ(xm−1) τ(λ(xm−2)) · · · τm−1(λ(x0))


is obtained by taking the matrix λ(xi), xi ∈ D, representing left multiplication in D of each
entry in the matrix M(x).
λ(M(x)) represents the left multiplication by the element x in A. Define

MA : A→ K, MA(x) = det(λ(M(x))).

Theorem 4. (i) Let x ∈ A be nonzero. If x is not a left zero divisor in A, then MA(x) 6= 0.
(ii) A is a division algebra if and only if MA(x) 6= 0 for all x 6= 0.
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Proof. (i) The proof is obvious and analogous to the one of [11, Theorem 9].
(ii) If A is a division algebra then Lx is bijective for all x 6= 0 and thus λ(M(x)) invertible,
i.e. MA(x) 6= 0. Conversely, if MA(x) 6= 0 for all x 6= 0 then for all x, y ∈ A, x 6= 0, y 6= 0,
also xy = (λ(M(x))yT )T 6= 0. �

3. Division algebras obtained from skew-polynomial rings

In the following, we use results from [4] and [8]. Let D be a unital division ring and σ a
ring isomorphism of D. The twisted polynomial ring D[t;σ] is the set of polynomials

a0 + a1t+ · · ·+ ant
n

with ai ∈ D, where addition is defined term-wise and multiplication by

ta = σ(a)t (a ∈ D).

That means,

atnbtm =
n∑

j=0

aσj(b)tm+j and tna = σn(a)tn

for all a, b ∈ D [4, p. 2]. R = D[t;σ] is a left principal ideal domain and there is a right
division algorithm in R [4, p. 3], i.e. for all g, f ∈ R, g 6= 0, there exist unique r, q ∈ R such
that deg(r) < deg(f) and

g = qf + r.

R = D[t;σ] is also a right principal ideal domain [4, p. 6] with a left division algorithm in
R [4, p. 3 and Prop. 1.1.14]. (We point out that our terminology is the one used by Petit
[8] and Lavrauw and Sheekey [6]; it is different from Jacobson’s [4], who calls what we call
right a left division algorithm and vice versa.)

Thus R = D[t;σ] is a (left and right) principal ideal domain (PID).
An element f ∈ R is irreducible in R if it is no unit and it has no proper factors, i.e there

do not exist g, h ∈ R with deg(g),deg(h) < deg(f) such that f = gh [4, p. 11].

Definition 2. (cf. [8, (7)]) Let f ∈ D[t;σ] be of degree m and let modrf denote the
remainder of right division by f . Then the vector space Rm = {g ∈ D[t;σ] |deg(g) < m}
together with the multiplication

g ◦ h = gh modrf

becomes a unital nonassociative algebra Sf = (Rm, ◦) over F0 = {z ∈ D | zh = hz for all h ∈
Sf}.

The multiplication is well-defined because of the right division algorithm and F0 is a
subfield of D [8, (7)].

Since σ is a ring isomorphism, we also have a left division algorithm and can use it to
define a second algebra construction (cf. [8]): Let f ∈ D[t;σ] be of degree m and let modlf

denote the remainder of left division by f . Then Rm together with the multiplication

g ◦ h = gh modlf
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becomes a nonassociative algebra fS = (Rm, ◦), which, however, turns out to be anti-
isomorphic to a suitable algebra Sg for some g ∈ R′ and some twisted polynomial ring
R′.

Remark 5. (i) When deg(g)deg(h) < m, the multiplication of g and h in Sf is the same
as the multiplication of g and h in R [8, (10)]. For f(t) = tm − d0 ∈ R, multiplication in Sf

is defined via

(ati)(btj) =

aσi(b)ti+j if i+ j < m,

aσi(b)t(i+j)−md0 if i+ j ≥ m,

and multiplication in fS is defined via

(ati)(btj) =

aσi(b)ti+j if i+ j < m,

aσi(b)d0t
(i+j)−m if i+ j ≥ m,

for all a, b ∈ D and then linearly extended. The algebra fS with f(t) = tm − d0 ∈ R and
[K : F ] = m is treated in [17]. If D = K is a cyclic Galois field extension of F of degree m
with Gal(K/F ) = 〈σ〉, this is the opposite algebra of the cyclic algebra (K/F, σ, d), cf. [17,
3.2.14].
(ii) Given a cyclic Galois field extension K/F of degree m with Gal(K/F ) = 〈σ〉, the cyclic
algebra (K/F, σ, d) is the algebra Sf with f(t) = tm − d ∈ R = K[t;σ−1] [8, p. 13-13].
(iii) Let D be a finite-dimensional central division algebra over F and σ an automorphism
of D of order m. In [4], the associative algebras

E(f) = {g ∈ D[t;σ] |deg(g) < m, f right divides fg}

for f = tm − d ∈ D[t;σ], were investigated. E(f) is division iff f is irreducible.

Theorem 6. (cf. [8, (2), p. 13-03, (9), (15),(17), (18), (19)]) Let f = tm −
∑m−1

i=0 dit
i ∈

R = D[t;σ].
(i) If Sf is not associative then

Nucl(Sf ) = Nucm(Sf ) = D

and

Nucr(Sf ) = {g ∈ R | fg ∈ Rf} = E(f).

(ii) If f is irreducible then Nucr(Sf ) is an associative division algebra.
(iv) Let f ∈ R be irreducible and Sf a finite-dimensional F0-vector space or a finite-
dimensional right Nucr(Sf )-module. Then Sf is a division algebra.
(v) f(t) = t2 − d1t − d0 is irreducible in D[t;σ] if and only if σ(z)z − d1z − d0 6= 0 for all
z ∈ D.
(vi) f(t) = t3 − d2t

2 − d1t− d0 is irreducible in D[t;σ] if and only if

σ(z)2σ(z)z − σ2(z)σ(z)d2 − σ(z)2σ(d1)− σ2(d0) 6= 0

and

σ(z)2σ(z)z − d2σ(z)z − d1z − d0 6= 0



8 S. PUMPLÜN

for all z ∈ D.
(vii) Suppose m is prime and C(D) ∩ Fix(σ) contains a primitive mth root of unity. Then
f(t) = tm − d is irreducible in D[t;σ] if and only if

d 6= σm−1(z) · · ·σ(z)z and σm−1(d) 6= σm−1(z) · · ·σ(z)z

for all z ∈ D.

Theorem 7. (i) D[t;σ] is anti-isomorphic to Dop[t;σ−1], i.e. there is a linear isomorphism
H : D[t;σ] → Dop[t;σ−1], H(

∑
ait

i) =
∑
σ−i(ai)ti such that H(fg) = H(g)H(f). In

particular,
(D[t;σ])op ∼= Dop[t;σ−1].

(ii) If f ∈ D[t;σ] is irreducible then so is H(f) ∈ Dop[t;σ−1].
(iii) Let S′g denote the algebra given by some g ∈ R′ = Dop[t;σ−1] and f ∈ R. Then fS

and S′H(f) are anti-isomorphic algebras, so ( fS)op ∼= S′H(f).

Proof. (i) Denote by ◦ the multiplication in the opposite algebra Dop. We have

H(a)H(b) = H((
∑

i

ait
i)(

∑
j

bit
i)) = H(

∑
i,j

aiσ
i(bj)ti+j)

=
∑
i,j

σ−i−j(ai) ◦ σ−i−j(σi(bj))ti+j =
∑
i,j

σ−i−j(σi(bj))σ−i−j(ai)ti+j

=
∑
i,j

σ−j(bj)σ−j(σ−i(ai))ti+j =
∑
i,j

H(b)j σ
−j(H(a)i)ti+j = H(b) ◦H(a).

(ii) is obvious.
(iii) is [8, (1)], see also [6, Cor. 4] if D is a field. �

The iterated algebras Itm
R (D, τ, d) with D an associative cyclic algebra, originally intro-

duced for space-time coding, can be obtained from skew-polynomial rings:

Theorem 8. Let F and L be fields, F0 = F ∩ L, and let K be a cyclic field extension of
both F and L such that

(1) Gal(K/F ) = 〈σ〉 and [K : F ] = n,
(2) Gal(K/L) = 〈τ〉 and [K : L] = m,
(3) σ and τ commute: στ = τσ.

Let D = (K/F, σ, c) be an associative cyclic division algebra over F of degree n, c ∈ F0 and
d ∈ D×. Then

Itm
R (D, τ, d) = Sf

where R = D[t; τ̃−1] and f(t) = tm − d.

Proof. Let f = (0, 1D, 0, . . . , 0) ∈ A = Itm
R (D, τ, d). The multiplication on

A = D ⊕ fD ⊕ f2D ⊕ · · · ⊕ fm−1D

is given by

(f ix)(f jy) =

f i+j τ̃ j(x)y if i+ j < m

f (i+j)−mτ̃ j(x)yd if i+ j ≥ m
for all x, y ∈ D [11] which corresponds to the multiplication of the algebra Sf . �
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Theorems 6, 7 (iii) and 8 imply:

Corollary 9. Assume the setup of Theorem 8.
(i) If d 6∈ F0 then

Nucl(Itm
R (D, τ, d)) = Nucm(Itm

R (D, τ, d)) = D

and

Nucr(Itm
R (D, τ, d)) = {g ∈ R | fg ∈ Rf}.

(ii) Itm
R (D, τ, d) is a division algebra if and only if f(t) is irreducible in D[t; τ̃−1].

(iii) Suppose that m is prime and in case m 6= 3, additionally that F0 contains a primitive
mth root of unity. Then Itm

R (D, τ, d) is a division algebra if and only if

d 6= zτ̃(z) · · · τ̃m−1(z) and τ̃m−1(d) 6= zτ̃(z) · · · τ̃m−1(z)

for all z ∈ D.

Lemma 10. Assume the setup of Theorem 8 and d ∈ F .
(i) If τ(dn) 6= dn for all z ∈ D, then d 6= zτ̃(z) · · · τ̃m−1(z) for all z ∈ D.
(ii) If τm−1(dn) 6= dn for all z ∈ D, then τm−1(d) 6= zτ̃(z) · · · τ̃m−1(z) for all z ∈ D.

The proof generalizes the idea of the proof of [7, Proposition 13]:

Proof. (i) If d = zτ̃(z) · · · τ̃m−1(z) for some z ∈ D, then for Z = λ(z) this means

Zτ(Z) · · · τm−1(Z) = dIn

and therefore det(Z) det(τ(Z)) · · · det(τm−1(Z)) = dn. Since the left-hand-side is fixed by
τ i, this implies that τ i(dn) = dn for 1 ≤ i < m, in particular, τ(dn) = dn.
(ii) If τm−1(d) = zτ̃(z) · · · τ̃m−1(z) for some z ∈ D then analogously,

Zτ(Z) · · · τm−1(Z) = τm−1(d)In

and therefore det(Z) det(τ(Z)) · · · det(τm−1(Z)) = τm−1(d)n = τm−1(dn). Since the left-
hand-side is fixed by τ , this implies that τm−1(dn) = dn. �

Corollary 11. Assume the setup of Theorem 8 and d ∈ F×.
(i) Suppose that m is prime and F0 contains a primitive mth root of unity. If τ(dn) 6= dn

and τm−1(dn) 6= dn for all z ∈ D, then Itm
R (D, τ, d) is a division algebra.

(ii) Suppose m = 3. If τ(dn) 6= dn and τ2(dn) 6= dn for all z ∈ D, then It3R(D, τ, d) is a
division algebra.

4. The tensor product of two not necessarily associative cyclic algebras

Let L/F0 be a cyclic Galois field extension of degree n with Gal(L/F0) = 〈σ〉, and F/F0

be a cyclic Galois field extension of degree m with Gal(F/F0) = 〈τ〉. Let L and F be linearly
disjoint over F0 and let K = L ⊗F0 F = L · F be the composite of L and F over F0, with
Galois group Gal(K/F0) = 〈σ〉 × 〈τ〉, where σ and τ are canonically extended to K.
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In the following, let D0 = (L/F0, σ, c) and D1 = (F/F0, τ, d) be two cyclic algebras over
F0, i.e. c ∈ L× and d ∈ F×. Let

A = (L/F0, σ, c)⊗F0 (F/F0, τ, d).

Then K is a subfield of A of degree mn over F0 and K = L⊗F0 F ⊂ Nuc(A).

Remark 12. (i) Assume w.l.o.g. that D0 is associative and D1 is nonassociative. Then
D0 ⊗F0 F = Nuc(D0)⊗F0 Nuc(D1) ⊂ Nuc(A) implies that the tensor product A cannot be
a nonassociative cyclic algebra.
(ii) Gal(K/F0) is a cyclic group if and only if m and n are coprime. For two linearly disjoint
cyclic fields F and L whose degrees over F0 are not coprime and nonassociative cyclic algebras
(L/F0, σ, c) and (F/F0, τ, d), thus their tensor product A = (L/F0, σ, c)⊗F0 (F/F0, τ, d) has
K ⊂ Nuc(A), which is not a cyclic field, and hence A is not a nonassociative cyclic algebra.
If m and n are coprime, K is a cyclic field extension of degree mn contained in Nuc(A). It
is not clear if in that case A could be isomorphic to a nonassociative cyclic algebra itself.

Let {1, e, e2, . . . , en−1} be the standard basis of the L-vector space D0 and {1, f, f2, . . . ,

fm−1} be the standard basis of the F -vector space D1. A is a K-vector space with basis

{1⊗ 1, e⊗ 1, . . . , en−1 ⊗ 1, 1⊗ f, e⊗ f, . . . , en−1 ⊗ fm−1}.

Identify

A = K ⊕ eK ⊕ · · · ⊕ en−1K ⊕ fK ⊕ efK ⊕ · · · ⊕ en−1fm−1K.

Note that D0 ⊗F0 F = (K/F, σ, c). An element in λ(A) has the form

(2)



Y0 dτ(Yn−1) dτ2(Yn−2) . . . dτm−1(Y1)
Y1 τ(Y0) dτ2(Yn−1) . . . dτm−1(Y2)
...

...
...

Yn−2 τ(Yn−3) τ2(Yn−4) . . . dτm−1(Yn−1)
Yn−1 τ(Yn−2) τ2(Yn−3) . . . τm−1(Y0)


with λ(d) ∈ λ(D0 ⊗F0 F ), Yi ∈ λ(D0 ⊗F0 F ). That means, Yi ∈ Matn(K), and when the
entries in Yi are restricted to elements in L, Yi ∈ λ(D0) (multiplication with d in the upper
right triangle of the matrix means simply scalar multiplication with d).

Theorem 13. (i) For c ∈ L× and d ∈ F×, (L/F0, σ, c)⊗F0(F/F0, τ, d) ∼= Itm
R (D0⊗F0F, τ, d).

(ii) Suppose that D = (L/F0, σ, c)⊗F0 F is an associative cyclic division algebra. Then

Sf
∼= (L/F0, σ, c)⊗F0 (F/F0, τ, d)

where R = D[t; τ̃−1] and f(t) = tm − d.

Proof. (i) The matrices in (2) also represent left multiplication with an element in the algebra
Itm

R ((K/F, σ, c), τ, d), see (1). Thus the multiplications of both algebras are the same.
(ii) If D0 ⊗F0 F is an associative division algebra then Sf

∼= Itm
R ((K/F, σ, c), τ, d) with

R = (D0 ⊗F0 F )[t; τ̃−1] and f(t) = tm − d by Theorem 8. �
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Corollary 14. (i) Itm
R (D0 ⊗F0 F, τ, d) ∼= Itn

R(D1 ⊗F0 L, σ, c).
(ii) The cyclic algebras

(K/L, τ, d) and (K/F, σ, c)

viewed as algebras over F0, are subalgebras of

(L/F0, σ, c)⊗F0 (F/F0, τ, d)

of dimension m2n, resp. n2m.
(iii) If (F/F0, τ, d) is nonassociative then the subalgebra (K/L, τ, d) is nonassociative and
thus division if m is prime or, if m is not prime, if 1, d, . . . , dm−1 are linearly independent
over L.
If (L/F0, σ, c) is nonassociative then the subalgebra (K/F, σ, c) is nonassociative and thus
division if n is prime or, if n is not prime, if 1, c, . . . , cn−1 are linearly independent over F .
(iv) If m = st and Fs = Fix(τs) then

(L/F0, σ, c)⊗F0 (F/Fs, τ
s, d)

is isomorphic to a subalgebra of

(L/F0, σ, c)⊗F0 (F/F0, τ, d) = Itm
R (D0 ⊗F0 F, τ, d).

Proof. (i) This follows directly from Theorem 13 and the fact that

(L/F0, σ, c)⊗F0 (F/F0, τ, d) ∼= (F/F0, τ, d)⊗F0 (L/F0, σ, c).

(ii) This is Lemma 3 and [11], Lemma 5 (which also holds if D0 ⊗F0 F is not division),
together with (i).
(iii) This follows from (ii), since (F/F0, τ, d) is nonassociative if and only if d ∈ F \F0. This
means d ∈ K \ L. The same argument holds for nonassociative (L/F0, σ, c).
(iv) This follows from [17], Theorem 3.3.2, see also [16]. �

5. Conditions on the tensor product to be a division algebra

5.1. To see when the tensor product of two associative algebras is a division algebra we
have the classical result by Jacobson [4, Theorem 1.9.8], see also Albert [1, Theorem 12, Ch.
XI]:

Theorem 15. Let (F/F0, τ, d) be a cyclic associative division algebra of prime degree p.
Suppose that D0 is a central associative algebra over F0 such that D = D0 ⊗F0 F is a
division algebra. Then D0 ⊗F0 (F/F0, τ, d) is a division algebra if and only if

d 6= τ̃p(z) · · · τ̃(z)z

for all z ∈ D.

Note that here

d 6= τ̃p(z) · · · τ̃(z)z is equivalent to d 6= zτ̃(z) · · · τ̃m−1(z)

since d ∈ F0. This classical result has the following generalizations in the nonassociative
setting:
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Theorem 16. Let (F/F0, τ, d) = Cay(F, d) be a nonassociative quaternion algebra. Let
D0 = (L/F0, σ, c) be an associative cyclic algebra over F0 of degree n, such that D =
D0 ⊗F0 F = (K/F, σ, c) is a cyclic division algebra. Then

(L/F0, σ, c)⊗F0 (F/F0, τ, d)

is a division algebra if and only if

d 6= zτ̃(z)

for all z ∈ D.

Proof. This is Theorem 13 together with [9], Theorem 3.2 or alternatively, together with
Theorem 6 (i). �

In the following, we use that tm−d ∈ D[t; τ̃−1] is irreducible if and only if tm−d ∈ Dop[t; τ̃ ]
is irreducible. Theorem 13 together with Theorem 6 and Lemma 10 yields a generalization
of [4, Theorem 1.9.8]:

Theorem 17. Let (F/F0, τ, d) be an associative or nonassociative cyclic algebra of degree
m. Let D0 = (L/F0, σ, c) be an associative cyclic algebra over F0 of degree n, such that
D = D0 ⊗F0 F = (K/F, σ, c) is a division algebra.
(a) (L/F0, σ, c)⊗F0 (F/F0, τ, d) is a division algebra if and only if one of the following holds:
(i) f(t) = tm − d ∈ D[t; τ̃−1] is irreducible.
(ii) m is prime, F0 contains a primitive mth root of unity,

d 6= zτ̃(z) · · · τ̃m−1(z) and τ̃m−1(d) 6= zτ̃(z) · · · τ̃m−1(z)

for all z ∈ D.
(iii) m = 3 and

d 6= zτ̃(z)τ̃(z)2 and τ̃2(d) 6= zτ̃(z)τ̃(z)2

for all z ∈ D.
(b) Suppose one of the following holds:
(i) m is prime, F0 contains a primitive mth root of unity, τ(dn) 6= dn and τm−1(dn) 6= dn

for all z ∈ D.
(ii) m = 3, τ(dn) 6= dn and τ2(dn) 6= dn for all z ∈ D.
(iii) m = 2 and τ(dn) 6= dn for all z ∈ D.
Then

(L/F0, σ, c)⊗F0 (F/F0, τ, d)

is a division algebra.

We also obtain the following condition using that Itm
R (D0 ⊗F0 F, τ, d) ∼= (L/F0, σ, c)⊗F0

(F/F0, τ, d) by Theorem 13:

Corollary 18. Let A = (L/F0, σ, c)⊗F0 (F/F0, τ, d) where D0 = (L/F0, σ, c) is associative,
D = D0 ⊗F0 F . Suppose that m is prime, m 6= 3 and F0 contains a primitive mth root of
unity, or that m = 3. If dn 6= aτ(a) · · · τm−1(a) and τm−1(dn) 6= aτ(a) · · · τm−1(a) for all
a ∈ F×, then A is a division algebra.
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Proof. Since c ∈ F0 we have ND/F (τ̃(x)) = τ(ND/F (x)) for all x ∈ D. Assume d =
zτ̃(z) · · · τ̃m−1(z) and τm−1(d) = zτ̃(z) · · · τ̃m−1(z), then

ND/F (d) = ND/F (z)ND/F (τ̃(z)) · · ·ND/F (τ̃n−1(z)) = ND/F (z)τ(ND/F (z)) · · · τm−1(ND/F (z))

and, analogously,

ND/F (τm−1(d)) = ND/F (z)τ(ND/F (z)) · · · τm−1(ND/F (z)).

Put a = ND/F (z) to obtain the assertion from Theorem 17. �

In special cases, Theorem 16 yields straightforward conditions for the tensor product to
be a division algebra, e.g. for the tensor product of two quaternion algebras (one of them
associative and one not):

Theorem 19. Let F0 be of characteristic not 2. Let (a, c)F0 be a quaternion algebra over
F0 which is a division algebra over F = F0(

√
b), and (F0(

√
b)/F0, τ, d) a nonassociative

quaternion algebra. Then the tensor product

(a, c)F0 ⊗F0 (F0(
√
b)/F0, τ, d)

is a division algebra over F0.

Proof. Here, K = F0(
√
a,
√
b) with Galois group G = Gal(K/F0) = {id, σ, τ, στ}, where

σ(
√
a) = −

√
a, σ(

√
b) = σ(

√
b),

τ(
√
a) =

√
a, τ(

√
b) = −

√
b,

L = F0(
√
a) and D = (a, c)F0 ⊗ F . For z = z0 + iz1 + jz2 + kz3 ∈ D, zi ∈ F0(

√
b), i2 = a,

j2 = c, we get

zτ̃(z) = (z0τ(z0) + az1τ(z1) + cz2τ(z2)− acz3τ(z3))

+i(z0τ(z1) + z1τ(z0)− cz2τ(z3) + cz3τ(z2))

+j(z0τ(z2) + z2τ(z3) + az1τ(z3)− az3τ(z1))

+k(z0τ(z3) + z3τ(z2) + z1τ(z2)− z2τ(z1)).

Since (F0(
√
b)/F0, τ, d) is nonassociative, d ∈ F0(

√
b)\F0. Hence if we assume that d = zτ̃(z)

for some z ∈ D then

d = z0τ(z0) + aσ(z1)τ(z1) + cσ(z2)τ(z2)− acσ(z3)τ(z3)

= NF/F0(z0) + aNF/F0(z1) + cNF/F0(z2)− acNF/F0(z3) ∈ F0,

a contradiction. Thus, by Theorem 16, the tensor product

(a, c)F0 ⊗F0 (F0(
√
b)/F0, τ, d)

is a division algebra. �
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Theorem 20. Let F0 be of characteristic not 2, F = F0(
√
b). Let D0 = (L/F0, σ, c) be a

cyclic algebra over F0 of degree 3 such that D = D0 ⊗F0 F is a division algebra over F ,
and (F0(

√
b)/F0, τ, d) a nonassociative quaternion algebra. Let d = d0 +

√
bd1 ∈ F \F0 with

d0, d1 ∈ F0.
(i) If 3d2

0 + bd2
1 6= 0, then

D0 ⊗F0 (F0(
√
b)/F0, τ, d)

is a division algebra over F0.
(ii) Let F0 = Q. If b > 0, or if b < 0 and − b

3 6∈ Q×2 then

D0 ⊗F0 (F0(
√
b)/F0, τ, d)

is a division algebra over F0.

Proof. F = F0(
√
b) and K = F0(

√
b).

(i) Here, d3 = d3
0 +3bd0d

2
1 +
√
bd1(3d2

0 +bd2
1), so if we want that d3 6= τ̃(d3), this is equivalent

to 3d2
0 + bd2

1 6= 0. The assertion follows from Theorem 17 (b).
(ii) is a direct consequence from (i): for F0 = Q, 3d2

0 + bd2
1 > 0 for all b > 0. For b < 0, the

assertion is true since 3d2
0 + bd2

1 = 0 if and only if d0
d1

2
= − b

3 . �

We conclude with a necessary condition for d in the general case:

Proposition 21. Let D0 = (L/F0, σ, c) be a an associative cyclic algebra of degree n over
F0, such that D = D0⊗F0 F is a division algebra. If D0⊗F0 (F/F0, τ, d) is a division algebra
then

d 6= zτ̃(z) · · · τ̃m−1(z)

for all z ∈ D.

Proof. Again use that tm − d ∈ D[t; τ̃−1] is irreducible if and only if tm − d ∈ Dop[t; τ̃ ]
is irreducible. Let ◦ denote multiplication in Dop. By [4, p. 15, (1.3.8)], for b ∈ D, if
d = τ̃m−1(z) ◦ · · · ◦ τ̃(z) ◦ z = zτ̃(z) · · · τ̃m−1(z) for some z ∈ Dop then f(t) = g(t)(t − b).
Thus if f(t) = tm − d is irreducible then d 6= zτ̃(z) · · · τ̃m−1(z) for all z ∈ D. �

6. Tensoring two nonassociative algebras

For the sake of completeness, we finish by studying the tensor product of two nonasso-
ciative cyclic algebras.

Let us consider the case that K/L is a Galois field extension of degree 2. Imitating the
proof of [9, Theorem 3.2] we obtain:

Theorem 22. Let D = (K/F, σ, c) be a nonassociative cyclic division algebra and A =
ItR(D, τ, d).
(i) If A is a division algebra then d 6= zτ̃(z) for all z ∈ D.
(ii) If

d 6= ( u (v−1( τ̃(u)w) ) )(w−1τ̃(v)−1 )

for all u, v, w ∈ D, then A is a division algebra.
(iii) If

NK/F (d) 6= MD(τ̃(v)w)−1MD(τ̃((vu)w−1)u),
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for all u, v, w ∈ D, then A is a division algebra.

It is not clear if the criteria (ii) or (iii) can be satisfied.

Proof. (i) If there is z ∈ D such that d = zτ̃(z), then

(z, 1)(−τ̃(z), 1) = (−zτ̃(z) + d,−τ̃(z) + τ̃(z)) = (0, 0),

so A contains zero divisors. We conclude that if A is division then d 6= zτ̃(z) for all z ∈ D.
(ii) Suppose

(0, 0) = (u, v) · (u′, v′) = (uu′ + dτ̃(v)v′, vu′ + τ̃(u)v′)

for some u, v, u′, v′ ∈ D. This is equivalent to

(3) uu′ + dτ̃(v)v′ = 0 and vu′ + τ̃(u)v′ = 0.

Assume v′ = 0, then uu′ = 0 and vu′ = 0. Hence either u′ = 0 and so (u′, v′) = 0 or
u′ 6= 0 and u = v = 0. Also, if v = 0 then uu′ = 0 and τ̃(u)v′ = (0, 0), thus u = 0 and
(u, v) = (0, 0), or (u′, v′) = (0, 0) and we are done.

So let v′ 6= 0 and v 6= 0. Then u′ = −v−1(τ̃(u)v′), hence u(v−1(τ̃(u)v′)) = dτ̃(v)v′.
Rearranging gives

d = ( u (v−1( τ̃(u)v′) ) )( τ̃(v)v′ )−1 =

( u (v−1( τ̃(u)v′) ) )( v′−1τ̃(v)−1 ),

so if

d 6= ( u (v−1( τ̃(u)w) ) )(w−1τ̃(v)−1 )

for all u, v, w ∈ D then A is a division algebra.
(iii) From (3) we obtain for v 6= 0, v′ 6= 0 that vu′ = −τ̃(u)v′ yields τ̃(u) = −(vu′)v′−1, i.e.
u = −τ̃((vu′)v′−1). Substituted into the first equation this gives

τ̃((vu′)v′−1)u′ = dτ̃(v)v′.

Applying MD to both sides of this equation we get

MD(τ̃((vu′)v′−1)u′) = MD(dτ̃(v)v′),

i.e.

MD(τ̃((vu′)v′−1)u′) = NK/F (d)MD(τ̃(v)v′),

implying

NK/F (d) = MD(τ̃(v)v′)−1MD(τ̃((vu′)v′−1)u′).

�

For the tensor product of a nonassociative cyclic algebra and a nonassociative quaternion
algebra, we get from Theorem 22 (i):

Corollary 23. Let (F/F0, τ, d) = Cay(F, d) be a nonassociative quaternion algebra. Let
D0 = (L/F0, σ, c) be a nonassociative cyclic algebra of degree n over F0, such that D =
D0 ⊗F0 F is a division algebra. If (L/F0, σ, c) ⊗F0 (F/F0, τ, d) is a division algebra then
d 6= zτ̃(z) for all z ∈ D.
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It is not clear whether this is an ‘if and only if’ condition, since by Theorem 22 (ii), (iii)
we can only say that in the set-up of Corollary 23, A is a division algebra, if

d 6= ( u (v−1( τ̃(u)w) ) )(w−1τ̃(v)−1 )

for all u, v, w ∈ D or, alternatively, if

NK/F (d) 6= MD(τ̃(v)w)−1MD(τ̃((vu)w−1)u),

for all u, v, w ∈ D.
The situation seems to get even more complicated for m > 2 where we have some partial

results:

Proposition 24. Let A = (L/F0, σ, c) ⊗F0 (F/F0, τ, d) with (F/F0, τ, d) of degree 3 and
(K/F, σ, c) a division algebra (with both algebras not assumed to be associative). If A is a
division algebra then d 6= z(τ̃(z)τ̃2(z)) for all z ∈ D.

Proof. Write A = It3R((L/F0, σ, c) ⊗F0 F, τ, d). Suppose d = z(τ̃(z)τ̃2(z)) for some z ∈ D.
Then (−z, 1, 0)(τ̃(z)τ̃2(z), τ̃2(z), 1) = (0, 0, 0) and A has zero divisors. �

Remark 25. ForA = (L/F0, σ, c)⊗F0(F/F0, τ, d), the mapMA(x) = det(Lx) = det(λ(M(x)))
can be seen as a generalization of the norm of an associative central simple algebra, since
MA = NA/F if both cyclic algebras in the tensor product A are associative.

For all X = λ(M(x)) = λ(x) ∈ λ(A) ⊂ Matnm(K), and D0 = (L/F0, σ, c) associative,
D = D0 ⊗F0 F , we have detX ∈ F (cf. [10], [9, Corollary 2] for m = 2). Thus if D0 is
associative, MA : A→ F . In that case, we also have

MA(x) = ND/F (x)τ(ND/F (x)) · · · τ(ND/F (x)) = NF/F0(ND/F (x))

for all x ∈ (K/F, σ, c) (which is easy to see from applying the determinant to the matrix of
Lx in Equation (4) for some x ∈ D).
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