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Abstract

A new classification of two-dimensional real division algebras is given. We also obtain a new
classification of commutative real division algebras.

0. Introduction. A finite-dimensional real vector space V equipped with a bilinear product xy
is said to be a real division algebra if there are no zero divisors: xy = 0 implies x = 0 or y = 0. By
the celebrated Bott-Milnor-Kervaire Theorem [4], real division algebras exist only in dimensions
1, 2, 4, 8. Standard examples are the reals R, the complexes C, the quaternions H, and the octonions
O, an excellent up-to-date reference to the latter being Baez [2]. Writing Alg(V ) for the totality of
bilinear products on V , which is a finite-dimensional real vector space in its own right, the division
algebra structures on V form a subset of Alg(V ) which, by a theorem of Kuzmin [8] (see also
Petersson [9, 5.]), is open in the natural topology. Hence, if n-dimensional real division algebras
exist at all, they exist in abundance, and classifying them up to isomorphism becomes a nontrivial
problem (unless n = 1).

In the present paper, we take up this problem for n = 2, which was done before by Althoen and
Kugler [1], Burdujan [3] and, more recently, by Gottschling [5]. Our reason for doing so again is
that we adopt a completely different point of view. Rather than working with structure constants
and multiplication tables as in [1], [3], [5], we prefer a more intrinsic approach that is based on the
second author’s general classification theory [10] for two-dimensional nonassociative algebras over
arbitrary base fields. Indeed, the classification of two-dimensional real division algebras follows
from this almost immediately and implies the classification of commutative real division algebras
as an instant corollary. We also show how the original solution to the latter problem due to Kantor-
Solodovnikov [7] fits canonically into this picture. The paper concludes with a few comments on
the methodology of the Althoen-Kugler approach [1] to two-dimensional real division algebras. In
particular, the key ingredient of this approach, a theorem of Segre [13] which says that the number



of nonzero idempotents in a two-dimensional real division algebra is at least one and at most three,
will be recast here in a purely algebraic setting.

1. The unital heart. We begin by recalling a few facts from [10]. Specializing V = R2 through-
out, we continue to write Alg(V ) for the set of nonassociative (possibly nonunital) algebra structures
on V . The product of x, y ∈ V relative to A ∈ Alg(V ) will be denoted by xAy = LA(x)y = RA(y)x,
where LA(x), RA(y) stand for the left, right multiplication of x, y, respectively, in A. The group
G = GL(V )×GL(V ) acts on Alg(V ) exponentially from the right according to the rule

xA(f,g)y := f(x)Ag(y) (x, y ∈ V )(1)

for A ∈ Alg(V ), (f, g) ∈ G. This action obviously preserves the property of being a division algebra
and is compatible with passing to the opposite multiplication:

A(f,g)op = Aop(g,f).(2)

Notice that (1), (2) make sense also when f, g are not invertible. A ∈ Alg(V ) is said to be regular
if LA(u) and RA(v) are invertible for some u, v ∈ V . In this case, the orbit of A under G contains
a unital algebra which is unique up to isomorphism [10, 1.10]; we call it the unital heart of A. If A
is a division algebra, its unital heart, being a unital real division algebra of dimension two, must
be the complex numbers [4, Kap. 7, §3 5.], forcing A ∼= C(f,g) for some (f, g) ∈ G. Conversely,
every algebra of this form is a division algebra.

2. Complex numbers. In dealing with complex numbers, we dispense ourselves from the pre-
vious notations to replace them by more conventional ones, writing L(z), z′ 7→ zz′, for the left
multiplication by z ∈ C and τ, z 7→ z, for complex conjugation. Specializing [10, 2.2] to K = C, we
obtain

Proposition 1. Every f ∈ EndR(V ) can be written uniquely in the form

f = L(z) + L(w)τ (z, w ∈ C).

Moreover,

det f = |z|2 − |w|2.(3)

¤

Similarly, writing S1 = {z ∈ C | |z| = 1} for the unit circle in the complex plane, 1 = idV for the
identity transformation on V , and putting C× = C− {0}, [10, 2.8] for K = C, d = 1 specializes to

Lemma 1. For v, v′ ∈ C− S1, g, g′ ∈ GL(V ), the following statements are equivalent.

(i) C(1+L(v)τ,g) ∼= C(1+L(v′)τ,g′).

(ii) There exist u ∈ C×, σ ∈ {1, τ} satisfying
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v′ =
u2

|u|2 σ(v), g′ = σgσL(u).

¤

In applications, we use Proposition 1 to decompose g ∈ GL(V ) as

g = L(z) + L(w)τ (z, w ∈ C, |z| 6= |w|)(4)

and observe

gL(u) = L(zu) + L(wu)τ (u ∈ C),(5)
τgτ = L(z) + L(w)τ.(6)

3. Main results. We write H = {z ∈ C | Im(z) ≥ 0} for the closed upper half-plane.

Theorem 1. (Classification of two-dimensional real division algebras) The two-dimensional real
division algebras are isomorphic to precisely one of the following.

a) C(τ,τ).

b) C(1+L(v)τ,τ), v ∈ (C− S1) ∩H.

c) C(τ,1+L(w)τ), w ∈ (C− S1) ∩H.

d) C(1+L(v)τ,1+L(w)τ), v ∈ (C− S1) ∩H, w ∈ C− S1, and v ∈ R implies w ∈ H.

Conversely, all algebras listed in a) - d) are two-dimensional real division algebras.

Proof. The final statement follows from (3). Now suppose D is a two-dimensional real division
algebra. Specializing [10, 2.3 and 2.12] to K = C, M = R×+ = {r ∈ R | r > 0}, D is isomorphic to
precisely one of the following types of algebras.

α) C(1+rτ,g), r ∈ R×+ − {1}, g ∈ GL(V ).

β) C(1,τ).

γ) C(τ,L(w)τ), w ∈ S1.

δ) C(1,1+L(w)τ), w ∈ C− S1.

ε) C(τ,1+L(w)τ), w ∈ C− S1.

These five types will now be discussed separately.
α) Decomposing g as in (4), we consider the following cases.
Case 1. z 6= 0.
By Lemma 1 (for u = 1, σ = τ) and (6) we may assume z−2 ∈ H. Applying Lemma 1 again (for
u = z−1, σ = 1), (5) yields D ∼= C(1+L(v′)τ,g′), where

v′ = r|z|2z−2 ∈ H, g′ = 1 + L(w′)τ, w′ = wz−1 ∈ C− S1.
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If v′ ∈ R, we may invoke (6) once more to assume w′ ∈ H. Thus D is of type d) with v 6= 0.
Conversely, reading this argument backwards, every algebra of type d) with v 6= 0 is of type α).
Case 2. z = 0.
First Lemma 1 (for u = 1, σ = τ) and (6) allow us to assume w−2 ∈ H, then Lemma 1 (for
u = w −1, σ = 1) and (5) imply D ∼= C(1+L(v′)τ,τ), where v′ = r|w|2w−2 ∈ (C − S1) ∩ H. Thus
D is type b) with v 6= 0. Again we have the converse, so every algebra of type b) with v 6= 0 is of
type α).
β) D is of type b) with v = 0.
γ) Since [10, 2.12 c)] allows us to multiply w by a third power in S1 without changing the isomor-
phism class of D , we may assume w = 1, forcing D to be of type a).
δ), ε) We have D ∼= C(σ,1+L(w)τ) for some σ ∈ {1, τ}. Since [10, 2.12 d)] allows us to replace w by
w if necessary, we may assume w ∈ H. Thus D is of type d) with v = 0 for σ = 1 and of Type c)
for σ = τ .
It remains to prove uniqueness. Lemma 1 combined with the preceding discussion shows that, since
types α) - ε) are disjoint, so are types a) - d). Uniqueness of parameters for each type except c)
again follows from Lemma 1. But since passing to the opposite algebra interchanges types b) and
c) by (2), it follows for type c) as well. ¤

Theorem 2. (Classification of commutative real division algebras) The commutative real division
algebras are isomorphic to precisely one of the following.

a) R.

b) C(τ,τ).

c) C(1+L(w)τ,1+L(w)τ), w ∈ (C− S1) ∩H.

Conversely, all algebras listed in a), b), c) are commutative real division algebras.

Proof. By a theorem of Hopf [4, Kap. 7, §3 3.], a commutative real division algebra has dimension
at most two. Hence Theorem 2 follows from Theorem 1 and the following lemma.

Lemma 2. Given f = L(u) + L(v)τ, g = L(z) + L(w)τ ∈ EndR(V ) (u, v, z, w ∈ C), the algebra
C(f,g) is commutative if and only if uw = vz.

Proof. A straightforward computation gives

xC(f,g)y − yC(f,g)x =
(
L(vz − uw) + L(uw − vz)τ

)
(xy)

for all x, y ∈ V . Applying Proposition 1, the assertion follows. ¤

4. The Kantor-Solodovnikov classification. In order to match the Kantor-Solodovnikov clas-
sification of commutative real division algebras [7, Theorem 20.1] with our own, we first note that
the group GL(V ) acts on Alg(V ) exponentially from the left according to the rule x(fA)y = f(xAy)
for x, y ∈ V, f ∈ GL(V ), A ∈ Alg(V ). This action obviously preserves the property of being a
commutative algebra and is compatible with the right action of G on Alg(V ) as defined in (1).
Secondly, we canonically identify EndR(V ) with the algebra of 2-by-2 real matrices through the
basis of unit vectors and write

ϑ : V × V −→ R, (x, y) 7−→ ϑ(x, y) := Re(xy),
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for the canonical scalar product on V . Then τ =
(

1 0
0 −1

)
, and the transpose (i.e., the adjoint

relative to ϑ) of f = L(z) + L(w)τ ∈ EndR(V ) (z, w ∈ C) is given by

tf = L(z) + L(w)τ.(7)

Linearizing (3) at 1 in the direction f , we also get

trace(f) = 2 Re(z).(8)

Lemma 3. Let A ∈ Alg(V ) and f ∈ GL(V ). Then

a) f : A(f,f) ∼−→ fA is an isomorphism.

b) fA ∼= αfA for all α ∈ R, α 6= 0.

Proof. a) is immediate, and b) follows from a) combined with [10, 1.14]. ¤

Proposition 2. (cf. Kantor-Solodovnikov [7, Theorem 20.1]) For a real algebra D to be a commu-
tative division algebra it is necessary and sufficient that D ∼= R or there exist

f =
(

α β

β γ

)
∈ EndR(V ) (α, β, γ ∈ R)

satisfying

a) D ∼= fC.

b) det f ∈ {1,−1}.
c) β ≥ 0.

d) α ≥ 0, and α = 0 implies γ ≥ 0.

e) α + γ = 0 implies α = −γ = 1, β = 0.

In this case, f is unique.

Proof. Sufficiency being obvious, it is enough to prove necessity and uniqueness. So let D be a
commutative real division algebra, without loss of dimension > 1. We first observe that Lemma 1
(for u = 1, σ = τ), (6) and Lemma 3 a) yield

(1+L(w)τ)C ∼= (1+L(w)τ)C (w ∈ C− S1).(9)

Hence, by Theorem 2, D is isomorphic to fC where either f = τ or f = 1 + L(w′)τ for some
w′ = α′ + β′i (α′, β′ ∈ R) such that β′ is nonnegative for α′ = −1 and has the same sign as 1 + α′

otherwise. Moreover, f = τ iff trace(f) = 0 by (8), and an easy computation gives

1 + L(w′)τ =
(

1 + α′ β′

β′ 1− α′

)
.(10)

Thus a), e) hold, and scaling, which is justified by Lemma 3 b), allows us to assume b), c), d) as
well. Finally, to establish uniqueness, suppose f, g ∈ EndR(V ) are symmetric and satisfy a) - e). By
symmetry and e) we may assume that the trace of f is nonzero. Thus f = r1+L(w)τ (r ∈ R, r 6=
0, w ∈ C) by (7), (8), and a), Lemma 3 b) yield D ∼= f ′C where f ′ = 1

rf = 1 + L(w′)τ, w′ = 1
rw.
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Hence the trace of g is nonzero as well, by Theorem 2, (9) and e), so the preceding argument also
gives g = s1 + L(z)τ (s ∈ R, s 6= 0, z ∈ C), D ∼= g′C, g′ = 1

sg = 1 + L(z′)τ, z′ = 1
sz. Combining

Theorem 2 with (9) again, we conclude w′ = z′ or w′ = z′. This not only implies det f ′ = det g′ by
(3), hence det f = ( r

s)
2 det g and then ( r

s)
2 = 1 by b), but also, thanks to the first part of d) and

(10), that r(1 + α′) and s(1 + α′), where α′ = Re(w′) = Re(z′), are nonnegative. Therefore r and
s have the same sign for α′ 6= −1, while α′ = −1 implies r > 0, s > 0 by the second part of d) and
(8), (10). Summing up we obtain r = s, whence Im(w′), Im(z′) by c) and (10) have the same sign.
Since w′ differs from z′ at most by conjugation, this yields w′ = z′, hence f = g. ¤

Remark. Condition e) is missing in [7, Theorem 20.1], which therefore lists the algebras L(w)τC, w ∈
S1 ∩H, as being mutually nonisomorphic while in fact they are all isomorphic to τC. Explicitly,
choosing any cube root v of w, L(v) : L(w)τC ∼−→ τC is an isomorphism. ¤

5. The Althoen-Kugler Classification. We won’t even try to match the Althoen-Kugler clas-
sification [1] (nor Burdujan’s [3] or Gottschling’s [5]) of two-dimensional real division algebras with
our own since this would be a daunting and not particularly rewarding task. Instead, we will focus
on two points of a more methodological nature. We begin by recasting Segre’s Theorem [13] in a
purely algebraic setting. To do so, we pick up ideas going back to Walcher [14], [15] and Röhrl-
Walcher [12], who work with commutative algebras of characteristic not 2 but often allow m-ary
(rather than just binary) ones and get more detailed information over the reals and complexes, cf.
[14, 3.3].

Proposition 3. Let A be a two-dimensional nonassociative algebra over an arbitrary base field k.
Then one of the following holds.

a) A has rank 2, i.e., there exists a linear form λ on A such that x2 = λ(x)x for all x ∈ A.

b) The number of one-dimensional subalgebras of A is at most 3. Moreover, it is at least 1 if
there are no cubic field extensions of k.

Proof. For completeness, we give the proof in full. Referring to Roby [11] for polynomial maps over
commutative rings (including, e.g., finite fields), we follow Walcher (loc. cit.) to consider the cubic
form N : A → ∧2 A = k given by N(x) = x∧ x2 for all x ∈ A⊗R and all commutative associative
k-algebras R. If N is zero, x, x2 are linearly dependent for all x in any base field extension of
A. Hence there is a rational function ρ on A, homogeneous of degree 1, such that every base
change of A satisfies the relation x2 = ρ(x)x whenever it makes sense. For ρ = 0 we are done.
Otherwise, clearing denominators, we find an integer m ≥ 0 and relatively prime homogeneous
polynomial functions f, g of degree m, m + 1, respectively, on A such that f(x)x2 = g(x)x for all
x in any base field extension of A. Thus f(x) = 0 implies g(x) = 0 provided x is not zero, and
the homogeneous form of Hilbert’s Nullstellensatz (Hartshorne [6, I Ex. 2.1]) shows that f divides
some power of g. This forces m = 0, and we obtain a). If N is not zero, the equation N = 0 defines
a closed subscheme of P1

k (the projective line over k) whose irreducible components correspond to
the irreducible factors of N and have all codimension 1, i.e., consist of single points. Furthermore,
the k-rational points of this subscheme are precisely the one-dimensional subalgebras of A. Hence
b) holds. ¤
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Corollary. (Segre’s Theorem [13]) The number of nonzero idempotents in a two-dimensional real
division algebra is at least 1 and at most 3.

Proof. Since nonzero elements that square to zero do not exist, Proposition 3 a) does not hold.
Hence b) does, and the one-dimensional subalgebras correspond exactly to the non-zero idempo-
tents. ¤

The second point we wish to make concerns the Althoen-Kugler classification itself. Classifying
algebraic objects up to isomorphism in the naive sense of the word amounts to writing down a list
of examples that represents each isomorphism class exactly once. While Theorem 1 above produces
such a list for two-dimensional real division algebras, the Althoen-Kugler classification does not (but
Burdujan [3] and Gottschling [5] do, though [3] contains no proof). More specifically, it is the two-
dimensional real division algebras containing three nonzero idempotents (one of the two “generic”
cases, the other one being comprised by those algebras that contain a single nonzero idempotent)
where a classification list fails to materialize. Instead, the authors merely construct classifying
invariants by attaching three multiplication tables Ti(D) (i = 0, 1, 2) to any two-dimensional real
division algebra D containing three nonzero idempotents in such a way that, given another algebra
D′ of this kind, D and D′ are isomorphic if and only if Ti(D) = Tj(D′) for some i, j = 1, 2, 3
[1, Theorem 6]. Therefore the approach to two-dimensional real division algebras by means of
idempotents seems to be less natural than the one adopted here.
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