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Abstract. Let R be a ring such that 2, 3 ∈ R. Let (X,OX) be a locally ringed space such

that 2, 3 ∈ H0(X,O×X). We investigate the structure of symmetric composition algebras

over X and thus in particular over R. Symmetric composition algebras are constructed

on the trace 0 elements of cubic alternative algebras A over X, if H0(X,OX) contains a

primitive third root of unity, generalizing a method first presented by J. R. Faulkner. If

A is an Azumaya algebra of rank 9 satisfying certain additional conditions, an isotope of

such a symmetric composition algebra is a Hurwitz algebra. We find examples of Okubo

algebras over elliptic curves which cannot be made into octonion algebras.

Introduction

Unital composition algebras (also called Hurwitz algebras) were first studied over locally
ringed spaces by Petersson [P1] and were classified over curves of genus zero [P1, 4.4].
Quaternion and octonion algebras over curves of genus one were investigated in [Pu1, 2].

Petersson [P2], Okubo [O] and later, in a more general setting, Faulkner [F], provided
the elements of trace 0 of a central simple associative algebra A of degree 3 over a field
k with the structure of an eight-dimensional non-unital symmetric composition algebra,
under the assumption that the base field k has characteristic not 2 or 3 and contains the
cube roots of unity. This algebra (called an Okubo algebra), in turn, determined a unique
octonion algebra structure on the elements of trace 0 in A. Both the Okubo algebra obtained
from this construction and the octonion algebra have the same norm. Expanding these
earlier approaches, Elduque and Myung [E-M] set up a categorical equivalence between
finite dimensional flexible composition algebras and finite dimensional separable alternative
algebras of degree 3, the latter with or without involutions of the second kind, depending
on whether the base field contains the third roots of unity or not. Given a primitive sixth
root of unity in the base ring R, Loos [L] constructed functors between the category of
generalized symmetric compositions and the category of unital algebras with multiplicative
cubic forms, which are equivalences if 3 ∈ R×.

In this paper we initiate the study of symmetric composition algebras over locally ringed
spaces. We restrict our investigations to algebras with nondegenerate norms and construct
symmetric composition algebras over a locally ringed space X using Faulkner’s idea of taking
the trace zero elements of a separable cubic alternative algebra over X and supplying them
with a suitable multiplication. We only consider the case where (X,OX) is a locally ringed
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space such that 2, 3 ∈ H0(X,O×X) and such that H0(X,OX) contains a primitive third root
of unity ω. The case where H0(X,OX) does not contain a primitive third root of unity will
be treated in another paper, to keep the length of this one within reason.

In the process we find algebras A over X whose residue class algebras A(P ) = AP ⊗k(P )
are isometric to the Okubo algebra P8(k(P )) (Theorem 2, 7.1), and thus can be viewed as
canonical generalizations of Okubo algebras over fields. These algebras have the additional
property that, if we take the attached algebra A− with multiplication [x, y] = xy − yx, we
obtain examples of Lie algebras over X, whose residue class algebras are central simple Lie
algebras of type A2 which arise from central simple associative algebras of degree 3 [E-M,
p. 2499].

Special emphasis is put on symmetric composition algebras over algebraic curves of genus
zero and on elliptic curves. It is interesting to see which (selfdual) vector bundles carry the
structure of a symmetric composition algebra, and if there are any indecomposable such
bundles or bundles, which are direct sums of vector bundles of large ranks. The results on
these algebras over curves also serve as examples on what underlying module structures can
appear when studying symmetric composition algebras over rings.

The vector bundles over curves of genus zero are of relatively simple type (there is no in-
decomposable vector bundle of rank greater than 2, and the only absolutely indecomposable
ones are the line bundles). Thus it is worth going one step further and looking at algebras
over curves of genus one. The vector bundles over elliptic curves and their behaviour are
well-known [At, AEJ1, 2, 3]. There exist absolutely indecomposable selfdual vector bundles
of arbitrary rank, and indecomposable ones of different types. Over elliptic curves (or more
generally, over curves of genus one, since, indeed, our arguments generally would work also
for curves without rational points), a classification of symmetric composition algebras seems
to be still out of reach. One of the problems is that the Azumaya algebras of constant rank 9
over an elliptic curve are not sufficiently well understood, at least to the author’s knowledge,
which would be important in order to at least get an idea on all the constructions which are
possible when using such an algebra.

We give examples of symmetric composition algebras of constant rank 2 over locally ringed
spaces (and over rings) which cannot be turned into a quadratic étale algebra (Examples 2,
3), and of Okubo algebras over elliptic curves, for which there exists no multiplication which
makes them into a Hurwitz algebra (Proposition 11). For composition algebras over fields
this is not possible: every symmetric composition algebra over a field has an isotope which
is a unital composition algebra.

The hope is that by using this construction it should be possible to find octonion algebras
over X which cannot be constructed by one of the construction we know so far, like the
generalized Cayley-Dickson doubling process [P1], or the Thakur’s method [T], which yields
all octonion algebras containing a quadratic étale subalgebra. A better understanding of
the Azumaya algebras of constant rank 9 over a curve would be important in order to get
an idea on all the underlying module structures which are possible.

The contents of the paper are as follows: After defining (not necessary unital) composition
algebras over rings and locally ringed spaces as well as recalling some other well-known
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facts on algebras and cubic forms in Section 1, we extend some results from the theory
of composition algebras over fields to the setting of composition algebras over rings and
locally ringed spaces in Section 2. We do not strive for completeness but rather choose
a selection of results needed later, in order to keep the paper within a reasonable length.
Some observations on symmetric algebras and Petersson algebras over rings are collected
in Section 3. We then move on to describe how to define a flexible symmetric composition
algebra on the trace zero elements of a cubic alternative algebra over X in Section 5. Before
that, the results needed for alternative algebras over X are briefly summarized in Section 4.
The converse of Theorem 2, the main result of Section 5, is treated in Section 6. In Section
7, we introduce Petersson algebras over X and in Section 8, we look at flexible symmetric
composition algebras of rank 2. Sections 9 and 10 deal with symmetric composition algebras
over curves of genus zero and elliptic curves, respectively.

We use the standard terminology from algebraic geometry, see Hartshorne’s book [H]. In
the following, let (X,OX) be a locally ringed space and R a unital commutative associative
ring.

1. Preliminaries

1.1. Let M be an R-module. M has full support if SuppM = Spec R. The rank of
M is defined to be sup {rankRP

MP |P ∈ Spec R}. In the following, the term R-algebra
always refers to non-associative algebras over R which are finitely generated projective as
R-modules. Let C be an R-algebra with full support. A quadratic form N : C → R on C

is multiplicative (one also says that it permits composition) if N(uv) = N(u)N(v) for all
u, v ∈ C.

Following [KMRT, p. 454 ff.], C is called a composition algebra over R if it admits a
multiplicative quadratic form N : C → R which is nondegenerate; i.e., its induced symmetric
bilinear form N(u, v) = N(u + v)−N(u)−N(v) determines a module isomorphism C

∼−→
C∨ = HomR(C,R). A unital composition algebra is called a Hurwitz algebra. For a Hurwitz
algebra C, the nondegenerate multiplicative form N on C is uniquely determined up to
isometry and called the norm of C. A Hurwitz algebra is quadratic alternative and its norm
N satisfies N(1) = 1. Hurwitz algebras exist only in ranks 1, 2, 4 or 8. Those of constant
rank 2 (resp., 4, 8) are called quadratic étale (resp., quaternion algebra, octonion algebra).
Every Hurwitz algebra possesses a canonical involution : C → C, x̄ = N(x, 1)1 − x (see
for instance [P1, 1.6]). If C is a Hurwitz algebra over R, then CP is locally free as an
RP -module for all P ∈ Spec R, so the canonical morphism R → C, r → r1C is injective,
since it is injective locally. Thus C is a faithful R-module; i.e., AnnR(C) = 0 (so rC = 0
implies r = 0 for all r ∈ R). However, a non-unital composition algebra need not be defined
on a faithful R-module C.

1.2. Let (X,OX) be a locally ringed space. For P ∈ X let OP,X be the local ring of OX at
P and mP the maximal ideal of OP,X . The corresponding residue class field is denoted by
k(P ) = OP,X/mP . For an OX -module F the stalk of F at P is denoted by FP . F is said to
have full support if SuppF = X; i.e., if FP 6= 0 for all P ∈ X. We call F locally free of finite
rank if for each P ∈ X there is an open neighborhood U ⊂ X of P such that F|U = Or

U for
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some integer r ≥ 0. The rank of F is defined to be sup{rankOP,X
FP |P ∈ X}. The term

“OX -algebra” (or “algebra over X”) always refers to a non-associative OX -algebra which is
locally free of finite rank as OX -module. An OX -algebra A is called alternative if it is unital
and if x2y = x(xy) and yx2 = (yx)x for all sections x, y of A over the same open subset of
X. A unital algebra A over OX is called separable if A(P ) is a separable k(P )-algebra for all
P ∈ X. A unital associative OX -algebra A is called an Azumaya algebra if AP ⊗OP,X

k(P )
is a central simple algebra over k(P ) for all P ∈ X [K].

1.3. Let C be an OX -algebra with full support. A quadratic form N : C → OX on C is
multiplicative (or permits composition), if N(uv) = N(u)N(v) for all sections u, v of C over
the same open subset of X. Following [P1], C is called a composition algebra over X if
it admits a multiplicative quadratic form N : C → OX such that the induced symmetric
bilinear form N(u, v) = N(u + v) − N(u) − N(v) is nondegenerate; i.e., it determines a
module isomorphism C ∼−→ C∨ = Hom(C,OX). A unital composition algebra is called a
Hurwitz algebra. If C is a Hurwitz algebra over X with nondegenerate multiplicative form N

then N is uniquely determined and called the norm of C. It is often denoted by NC . Hurwitz
algebras over X exist only in ranks 1, 2, 4 or 8. A Hurwitz algebra of constant rank 2 (resp.
4 or 8) is called a quadratic étale algebra (resp. quaternion algebra or octonion algebra). A
Hurwitz algebra over X of constant rank is called split, if it contains a Hurwitz subalgebra
isomorphic to OX ⊕OX .

If X is an R-scheme with structure morphism τ : X → Spec R, then a composition algebra
C over X is defined over R if there exists a composition algebra C over R such that C ∼=
τ∗C = C ⊗R OX .

1.4. Construction methods for Hurwitz algebras. There exists a Cayley-Dickson dou-
bling for Hurwitz algebras of constant rank over locally ringed spaces [P1]: letD be a Hurwitz
algebra of constant rank ≤ 4 over X. If a locally free right D-module P of rank one has norm
one as defined in [P1], there exists a nondegenerate quadratic form N : P → OX satisfying
N(w · u) = N(w)ND(u) for all sections w in P, u in D, where · denotes the right D-module
structure of P. N is uniquely determined up to an invertible factor in H0(X,OX) and called
a norm on P. N determines a unique OX -bilinear map P×P → D, written multiplicatively
and satisfying (w · u)(w · v) = N(w)v∗u for u, v in D, w in P. The OX -module

Cay(D,P, N) = D ⊕ P

becomes a Hurwitz algebra under the multiplication

(u, w)(u′, w′) = (uu′ + ww′, w′ · u + w · u′∗),

with norm NCay(D,P,N) = ND ⊕ (−N).
If C is a Hurwitz algebra of constant rank r containing a Hurwitz subalgebra of constant

rank r/2, then there are P, N as above such that C ∼= Cay(D,P, N). This construction is
called the (generalized) Cayley-Dickson doubling of D. The globally free right D-module D
itself has norm one and µND, for any invertible µ ∈ H0(X,OX), is a norm on D. This case
yields the classical doubling Cay(D, µ) = Cay(D,D, µND).
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Moreover, it is possible to construct octonion algebras which do not necessarily arise
from a Cayley-Dickson doubling but contain a quadratic étale subalgebra (cf. Petersson and
Racine [P-R, 3.8] or Thakur [T]).

1.5. Cubic forms over X. Let (X,OX) be a locally ringed space such that 2, 3 ∈ H0(X,O×X).
Let M, N be two OX -modules which are locally free of finite rank. A map N : M→N is
called a cubic map, if N(ax) = a3N(x) for all sections a in OX , x in M over the same open
subset of X, where the map θ : M×M×M→N defined by

θ(x, y, z) =
1
6
(N(x + y + z)−N(x + y)−N(x + z)−N(y + z) + N(x) + N(y) + N(z))

for x, y, z sections in M over the same open subset of X, is a trilinear form over OX . We
have N(x) = θ(x, x, x) for all sections x of M over the same open subset of X.

A trilinear map θ : M×M×M→N is called symmetric if θ(x, y, z) is invariant under
all permutations of its variables. We canonically identify symmetric trilinear maps and cubic
maps.

If N = OX , then a cubic map N : M→OX is called a cubic form and M together with
a symmetric trilinear map θ : M×M×M → OX a trilinear space. A cubic form N :
M→OX on a locally free OX -module M of finite rank with full support (or, respectively,
the associated trilinear form θ) is called nondegenerate if, for all P ∈ X, the induced maps
N(P ) : M(P ) → k(P ) are nondegenerate in the sense that the residue maps θ′ ⊗ k(P ) of
the maps θ′ : M→HomOX

(M⊗M,OX) defined by

x → θx(y ⊗ z) = θ(x, y, z)

are injective. This notion of nondegeneracy is invariant under base change.
Two trilinear spaces (Mi, θi) (i = 1, 2) are called isomorphic if there exists an OX -module

isomorphism f : M1 →M2 such that θ2(f(v1), f(v2), f(v3)) = θ1(v1, v2, v3) for all sections
v1, v2, v3 of M1 over the same open subset of X.

1.6. Cubic forms with adjoint and base point. ([Pu4], [McC2]) Let (X,OX) be a locally
ringed space such that 2, 3 ∈ H0(X,O×X). Let W be an OX -module. A tripel (N, ], 1) is a
cubic form with adjoint and base point on W if N : W → OX is a cubic form, ] : W →W a
quadratic map and 1 ∈ H0(X,W), such that

x] ] = N(x)x,

T (x], y) = DyN(x) for T (x, y) = T (x)T (y)− 6N(1, x, y),
N(1) = 1, 1] = 1,

1× y = T (y)1− y with T (y) = T (y, 1), x× y = (x + y)] − x] − y]

for all sections x, y in W over the same open subset of X.
Here, DyN(x) denotes the directional derivative of N in the direction y, evaluated at

x, see for instance [P-R]. Since we assume that 2, 3 ∈ H0(X,O×X), this means that the
quadratic map DyN(x) is the coefficient N(x; y) of the indeterminant Z in the expansion

N(x + Zy) = N(x) + ZN(x; y) + Z2N(y;x) + Z3N(y),

i.e. that T (x], y) = 3N(x, x, y).
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Every cubic form with adjoint and base point (N, ], 1) on a locally free OX -module W of
finite rank defines a unital Jordan algebra structure J (N, ], 1) = (W, U, 1) on J via

Ux(y) = T (x, y)x− x] × y

for all sections x, y in W, where the identities given in [P-R, p. 213] (resp., in [McC2, Section
1.3.8]) hold for all sections in W.

1.7. Some facts on proper schemes. Let X be a proper scheme over k and l/k an
algebraic field extension. The Theorem of Krull-Schmidt holds for vector bundles over X,
i.e., every vector bundle on X can be decomposed as a direct sum of indecomposable vector
bundles, unique up to isomorphisms and order of sumands [AEJ1, p. 1324]. Moreover, non-
isomorphic vector bundles on X extend to non-isomorphic vector bundles on Xl = X ×k l,
for every separable algebraic field extension l/k [AEJ1, p. 1325].

For a vector bundle N on Xl, the direct image π∗N of N under the projection morphism
π : Xl → X is a vector bundle on X denoted by trl/k(N ).

If X is any curve over k and l/k is a finite algebraic field extension of degree r, then

trl/k(OXl
) = π∗OXl

∼= Or
X

as OX -modules.

2. Composition algebras

2.1. Let R be a ring.

Proposition 1. Let (C, ?,N) be a composition algebra over R.
(i) C has dimension 1, 2, 4 or 8.
(ii) Suppose there is an element a ∈ C such that N(a) ∈ R×. Then there exists a multipli-
cation (x, y) → x � y on C such that (C, �, N) is a Hurwitz algebra.
(iii) Let (C ′, ?′, N ′) be another composition algebra over R. Suppose there exists an element
u ∈ C such that N(u) = 1. Then any automorphism of algebras α : (C, ?) → (C ′, ?′) such
that N ′(α(u)) = 1 induces an isometry (C,N) → (C ′, N ′).
In particular, if both C and C ′ are Hurwitz algebras then any automorphism of algebras
α : (C, ?) → (C ′, ?′) induces an isometry (C,N) → (C ′, N ′).

For Hurwitz algebras, (i) was proved in [P1, 1.7].

Proof. (i) For all P ∈ Spec R, the residue class algebra (C(P ), N(P )) is a composition
algebra over the residue class field k(P ) and therefore has one of the claimed dimensions by
[KMRT, VIII.(33.28)].
(ii) Let a ∈ C such that N(a) ∈ R× and let u = N(a)−1a2, so that N(u) = 1. The
linear maps Lu : x → u ? x and Ru : x → x ? u are compatible with the norm, since
N(Lu(x)) = N(ux) = N(u)N(x) = N(x) and N(Ru(x)) = N(xu) = N(x)N(u) = N(x)
for all x ∈ C. The maps on the residue class algebras induced by Lu and Ru are bijective
for all P ∈ Spec R. Thus, by Nakayama’s Lemma, their localizations (Lu)P resp. (Ru)P



SYMMETRIC COMPOSITION ALGEBRAS OVER ALGEBRAIC VARIETIES 7

are bijective over the local rings RP for all P ∈ X. This shows that Lu and Ru are both
bijective, hence isometries. Therefore v = u2 is the identity for the multiplication

x � y = (R−1
u x) ? (L−1

u y)

and N(x � y) = N(x)N(y) as in [KMRT, VIII.(33.27)(1)].
(iii) As in [KMRT, VIII.(33.27)(2)], we observe that N ′ ◦ α is a multiplicative quadratic
form on C, so that we have N(x ? y) = N(x)N(y) and N ′(α(x ? y)) = N ′(α(x))N ′(α(y)).
Since there exists an element u ∈ C such that N(u) = N ′(α(u)) = 1, we obtain a new
multiplication � as in (ii) with a unit element 1 with respect to which both N and N ′ ◦α are
multiplicative, so that the uniqueness of the norm of a unital composition algebra implies
N = N ′ ◦ α.
If both C and C ′ are Hurwitz algebras then we choose u = 1C . �

Hence, over rings, the nondegenerate multiplicative form N on a non-unital composition
algebra C does not always seem to be uniquely determined by the multiplicative structure
of the algebra anymore (for fields it is, cf. [KMRT, VIII.(33.27)]).

Note from the above proof that there is an element a ∈ C such that N(a) ∈ R× if and
only if there is an element u ∈ C such that N(u) = 1.

Corollary 1. Let (C, ?, N), (C ′, ?′, N ′) be two composition algebra without identity over a
domain R.
(i) Suppose there exists an element u ∈ C such that N(u) = 1 and α : (C, ?) → (C ′, ?′) is an
automorphism of algebras such that N ′(α(u)) ∈ R× then α induces an isometry (C,N) →
(C ′, N ′).
(ii) Suppose there exists an element u ∈ C such that N(u) = 1. If N ′ is anisotropic, every
automorphism of algebras α : (C, ?) → (C ′, ?′) induces an isometry (C,N) → (C ′, N ′).

Proof. (i) To find an element ũ ∈ C as needed in Proposition 1 (iii), we use that Lu is a
bijective isometry of (C,N) as in the proof of Proposition 1 (ii). Hence there is an element
ũ ∈ C such that u ? ũ = u, implying N(u ? ũ) = 1 and N(ũ) = 1. Since we assume that
N(α(u)) is invertible in R, we also obtain that N ′(α(u)) = N ′(α(u))N ′(α(ũ)) and thus that
N ′(α(ũ)) = 1. Proposition 1 (iii) now yields the assertion.
(ii) We choose the element ũ ∈ C needed to apply Proposition 1 (iii) as in (i) such that
u? ũ = u. Then N(ũ) = 1. Since u 6= 0, α(u) 6= 0 and since N ′ is anisotropic, N ′(α(u)) 6= 0.
Now N ′(α(u)) = N ′(α(ũ ? u)) = N ′(α(ũ))N ′(α(u)) implies 0 = N ′(α(u))(1−N ′(α(ũ))) and
hence N ′(α(ũ)) = 1. �

Remark 1. If 2 ∈ R× then we can write a Hurwitz algebra C as the direct sum of R-modules
C = R⊕ C0 where C0 = ker t = {x ∈ C | t(x) = 0}.

Lemma 1. For a composition algebra (C, ?,N) over a local ring R there always exists an
element a ∈ C such that N(a) ∈ R×. In particular, there exists a new multiplication � such
that (C, �, N) is a unital composition algebra over R.

Proof. Change scalars to the residue class field k of R, then this is known: There exists an
element a′ ∈ C ⊗R k such that (N ⊗R k)(a′) 6= 0. Lifting a′ to C yields an element a ∈ C

such that N(a) ∈ R× and thus proves the assertion. �
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2.2. Let (X,OX) be a locally ringed space.

Lemma 2. (i) Let C be an algebra over X, not necessarily with identity, and N : C → OX

a quadratic form. Then C is a composition algebra over X with multiplicative form N if and
only if for each P ∈ X, CP is a composition algebra over OP,X with a multiplicative form
NP .
(ii) Composition algebras are invariant under base change: If σ : X ′ → X is a morphism of
locally ringed spaces and C a composition algebra over X then σ∗C = C⊗O′X is a composition
algebra over X ′.
(iii) If (C, N) is a symmetric composition algebra over X then (CP , NP ) is a symmetric
composition algebra over OP,X for all P ∈ X.
(iv) Let (C, ?, N) be a composition algebra over X. Then its dimension is 1, 2, 4 or 8.

For Hurwitz algebras, (i), (ii) and (iv) were proved in [P1, 1.7].

Proof. The proof of (i) and (ii) works analogously to the one of [P1, 1.7 (a), (b)].
(iii) is trivial.
(iv) For all P ∈ X, the residue class algebra (C(P ), ?, N(P )) is a composition algebra over
the residue class field k(P ) and therefore of one of the claimed dimensions by Proposition 1
(i). �

Lemma 3. Let (C, ?, N), (C′, ?′, N ′) be two composition algebras over X, not necessarily
with identity. Then any automorphism of algebras α : (C, ?) → (C′, ?′) induces an isometry
N(P ) ∼= N ′(P ) for all P ∈ X.

Proof. Let α : (C, ?) → (C′, ?′) be an OX -algebra automorphism, then α(P ) : (C, ?)⊗k(P ) →
(C′, ?′)⊗ k(P ) is an k(P )-algebra automorphism and hence an isometry N(P ) ∼= N ′(P ) by
[KMRT, VIII.(33.27)]. �

Lemma 4. Let X be a scheme over the affine scheme Y = Spec R and suppose H0(X,OX) =
R. Then a composition algebra A over X is defined over R provided it is globally free as an
OX-module.

The proof is analogous to the one of [P1, 1.10].

3. Symmetric composition algebras

3.1. Let (A,N) be an R-algebra together with a quadratic form N : A → R. Let ? be the
multiplication of A. N is called associative if

N(x ? y, z) = N(x, y ? z)

for all x, y, z ∈ A. A composition algebra together with a nondegenerate associative mul-
tiplicative form N is called a symmetric composition algebra. A symmetric composition
algebra of rank ≥ 2 does not have a unit element. This is a direct consequence from the
analogous situation over fields described in [KMRT, p. 464].

Lemma 5. Let N : A → R be a form on an R-algebra A with full support.
(i) If N is nondegenerate, multiplicative and associative then
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(1) x ? (y ? x) = N(x)y = (x ? y) ? x

for all x, y ∈ A. In particular, (A, ?) is a flexible algebra.
(ii) If 2 ∈ R× and N is associative and satisfies (1) for all x, y ∈ A then N is multiplicative.
(iii) Let R be a domain and N satisfy (1) for all x, y ∈ A. Then N is multiplicative and
associative.

Proof. Adapting the proof of [KMRT, VIII.(34.1)] we get:
(i) We linearize N(x ? y) = N(x)N(y) which yields the assertion, since N is nondegenerate.
(ii) is trivial.
(iii) Linearizing (1) implies

(2) x ? (y ? z) + z ? (y ? x) = N(x, z)y = (x ? y) ? z + (z ? y) ? x

and hence

N(x ? y, z)y = N(x, y ? z)y

for all x, y, z ∈ A. Thus (N(x ? y, z)−N(x, y ? z))y = 0. Since A is a projective R-module,
thus torsion free as an R-module, this implies N(x?y, z) = N(x, y?z). Moreover, (1) implies
(N(x ? y)−N(x)N(y))y = 0, which analogously yields N(x ? y) = N(x)N(y). �

In particular, if (A, ?, N) is a symmetric composition algebra over R, then

x ? (x ? x) = N(x)x = (x ? x) ? x

and

x ? (x ? (x ? x)) = N(x)x ? x

for all x ∈ A as two special cases of (1). Together with (2) this implies that

(3) (x ? x) ? (x ? x) = N(x, x ? x)x−N(x)x ? x

as in [KMRT, p. 464]. In general, a symmetric composition algebra is not power-associative
[KMRT, p. 464].

If (C, �, N) is a Hurwitz algebra, then N permits composition with respect to the new
multiplication

x ? y = x̄ � ȳ

and N is associative with respect to ?, making (C, ?,N) into a symmetric composition
algebra. Such an algebra is called the para-Hurwitz algebra associated to the Hurwitz al-
gebra (C, �, N) [KMRT, VIII.34.A]. By definition, para-Hurwitz algebras live on faithful
R-modules.

Remark 2. If R is a field, the para-Hurwitz algebras of dimension 4 are the only symmetric
composition algebras of dimension 4, and those of dimension 2 and their forms constitute
all the symmetric composition algebras of dimension 2. Examples 2 and 3 below, translated
into the setting of algebras over rings, show that this is not true any more for symmetric
composition algebras of rank 2 over rings.

The two-dimensional composition algebras over fields were classified by Petersson [P3]:
For any such algebra (A, ?), there exists a Hurwitz algebra defined on the same vector space,
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with multiplication � and canonical involution , such that ? is given by one of the following
equations (for some u ∈ A with N(u) = 1):

(i) x ? y = x � y (ii) x ? y = x̄ � y (iii) x ? y = x � ȳ (iv) x ? y = ux̄ � ȳ.

Each multiplication of the above type also yields a two-dimensional composition algebra over
a ring. However, not all two-dimensional composition algebra over a ring can be obtained
this way, see Examples 2 and 3. In general, given any Hurwitz algebra (C, �, N) of rank
greater or equal to 2 over R, with canonical involution , we can define a new algebra on
the R-module C with respective multiplications (i), (ii), (iii) or (iv) as above. These are
called the standard composition algebras associated to C. Since only in case (i) there is an
identity element, only in case (ii) there is a left but not a right identity element, and only
in case (iii) there is a right but not a left identity element, the four standard composition
algebras cannot be isomorphic [E-P2, p. 378].

Proposition 2. Let (C1, �, N1) and (C2, �, N2) be Hurwitz algebras over R.
(i) Any isomorphism of Hurwitz algebras (C1, �) → (C2, �) is an isomorphism of the corre-
sponding para-Hurwitz algebras.
(ii) If α is an isomorphism (C1, ?) → (C2, ?) of para-Hurwitz algebras with α(1C1) = 1C2

then α is an isomorphism of Hurwitz algebras (C1, �) → (C2, �).

Proof. (cf. [KMRT, VIII.(34.4)] for base fields instead of rings)
(i) If α is an isomorphism of Hurwitz algebras then α(x) = α(x) by the uniqueness of
the quadratic generic polynomial of a Hurwitz algebra over a ring [P1, 1.2]. Thus α is an
isomorphism of para-Hurwitz algebras.
(ii) Let α be an isomorphism of para-Hurwitz algebras with α(1C1) = 1C2 . Since equation
(1) holds in both C1 and C2, we have

N2(α(x))α(y) = α(x) ? (α(y) ? α(x)) = α(x ? (y ? x)) = α(N1(x)y) = N1(x)α(y)

for all x, y ∈ C1. Thus [N2(α(x)) − N1(x)]α(y) = 0 for all y, in particular, [N2(α(x)) −
N1(x)]α(1) = [N2(α(x)) −N1(x)]1C2 = 0. Since C2 is the underlying module of a Hurwitz
algebra and so faithful as an R-module (see 1.1), N2(α(x)) = N1(x) for all x. Thus α is an
isometry between (C1, N1) and (C2, N2).

Moreover, it follows from TC1(x) = N1(x, 1C1) and α(1C1) = 1C2 that TC2(α(x)) =
N2(α(x), 1C2) = N1(x, 1C1) = TC1(x) for all x ∈ C1. Therefore, α(x) = α(x) for all x ∈ C1

and α is even an isomorphism of Hurwitz algebras over R. �

Remark 3. (i) Let (S, ?,N) be a symmetric composition algebra over R. A non-zero
idempotent e ∈ S is called a para-unit of S if N(e) = 1 and

e ? x = x ? e = −x for all x ∈ S with N(e, x) = 0.

Every para-Hurwitz algebra C has the unit element 1C of the associated Hurwitz algebra
as a para-unit. Analogoulsy as shown in [KMRT, VIII.(34.8)], a symmetric composition
algebra defined on a faithful R-module (resp., over a domain R) is para-Hurwitz if and only
if it contains a para-unit.
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(ii) Let (C, �, N) be a Hurwitz algebra over R. Given two isometries f and g of its norm,
the new multiplication defined via

x ? y = f(x)g(y)

yields a composition algebra (C, ?, N).

3.2. Petersson algebras over R. Let (C, �, N) be a Hurwitz algebra over R. Given an
R-automorphism ϕ of C such that ϕ3 = 1, we define another new multiplication on C via

x ? y = ϕ(x̄) � ϕ2(ȳ)

and call the resulting composition algebra (denoted (Cϕ, ?, N) or simply Cϕ) a Petersson
algebra (cf. [P2] or [KMRT, 34.B, p. 466]). The unit element of (C, �, N) is a nonzero
idempotent of Cϕ. ϕ is an automorphism of Cϕ. If ϕ = 1 then Cϕ is para-Hurwitz.

Obviously, each Cϕ(P ) is a symmetric composition algebra over the residue class field k(P )
by [KMRT, 34.B, p. 467]. It is straightforward to check that, if R is a domain, equation (1)
from Lemma 5 holds, so that Cϕ is a symmetric composition algebra over R.

Lemma 6. Let (S, ?,N) be a symmetric composition algebra over R.
(i) If there is an isotropic element 0 6= x ∈ S of the cubic form N(x ? x, x) such that
N(x) ∈ R×, then (S, ?) contains an idempotent.
(ii) Let S be a faithful R-module. For any non-trivial idempotent e ∈ S, we have N(e) = 1.

Proof. (i) We follow [KMRT, VIII.(34.10) (1)]: Let 0 6= x ∈ S be such that N(x ? x, x) = 0
and N(x) ∈ R×. Since (x?x)? (x?x) = −N(x)(x?x) by (3), the element e = −N(x)−1x?x

is an idempotent.
(ii) is proved as in [KMRT, VIII.(34.10) (2)]. �

Proposition 3. Let (S, ?,N) be a symmetric composition algebra over R and let e ∈ S be
a non-trivial idempotent. Let S be faithful as an R-module.
(i) The product x � y = (e ? x) ? (y ? e) makes S into a Hurwitz algebra over R with identity
e, norm N , and conjugation x̄ = N(x, e)e− x.
(ii) The map

ϕ(x) = e ? (e ? x) = N(e, x)e− x ? e = x̄ ? e

is an automorphism of (S, �) (and also of (S, ?)) such that ϕ3 = id and (S, ?) = (S, �)ϕ is a
Petersson algebra over R.

The proof is analogous to the one given in [E-P1, 2.5] or [KMRT, VIII.(34.9)]:

Proof. (i) By Lemma 6 (ii), N(e) = 1. Hence as in the proof of Proposition 1 (ii), the linear
maps Le and Re are bijective and Le = R−1

e . Now Equation (2) implies that

(x ? e) ? e + e ? x = N(e, x)e.

Multiply this by e on the right to obtain R3
e(x) = N(e, x)e− x. The new multiplication

x � y = R−1
e (x) ? L−1

e (x) = (e ? x) ? (y ? e)
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on S makes S into a Hurwitz algebra with unit element e, norm N and canonical involution
R3

e.
(ii) Equation (2) yields

x � y = N(e, x)y − e ? (y ? (e ? y)))

which analogously as in [KMRT, VIII.(34.9)] shows that ϕ is an automorphism of (S, �).
(The fact that ϕ is bijective can also be deduced from the fact that the induced morphisms
ϕ(P ) are bijective by [KMRT, VIII.(34.9)].) Moreover ϕ3(x) = x and x ? y = ϕ(x̄) � ϕ2(ȳ).

�

Thus, if R is a domain, symmetric composition algebras with nontrivial idempotents
defined on finitely generated projective R-modules are precisely the Petersson algebras Sϕ.

Theorem 1. Let C be a quaternion algebra over R with C a faithful R-module, and let τ

be an inner automorphism of C with τ3 = 1. Then Cτ is a para-Hurwitz algebra.

Proof. The proof follows [E-P1, 3.2]: There is an invertible element a ∈ C such that τ(x) =
a−1xa for all x ∈ C and N(a) ∈ R×. Since τ3 = 1 we get a3 = α1 for some α ∈ R. Put
w = a2/N(a) then w3 = 1, N(w) = 1 and w = w2. Thus τ(x) = wxw2 for all x ∈ C. As in
[E-P1, 3.2], in Cτ we have

x ? w = wx̄w = N(w, x)w − x,

so, in particular, w2 = w and w is a para-unit in Cτ . Thus Cτ is para-Hurwitz by Remark
3. �

If Pic R = 0 then each automorphism of a quaternion algebra over R is inner [K, III.(5.2)].
It is not clear what happens if τ is not an inner automorphism.

3.3. Symmetric composition algebras over X. Let S be an OX -algebra with full sup-
port and N : S → OX a quadratic form. Let ? be the multiplication of S. N is called
associative if

N(x ? y, z) = N(x, y ? z)

for all sections x, y, z in S over the same open subset of X. A composition algebra over X

with a nondegenerate associative norm N is called a symmetric composition algebra.
There is a canonical equivalence between the category of composition algebras (resp.,

Hurwitz algebras, symmetric composition algebras) over the affine scheme Z = Spec R

and the category of composition algebras (resp., Hurwitz algebras, symmetric composition
algebras) over R given by the global section functor C −→ H0(Z,C) and the functor C −→
C̃.

4. Cubic separable alternative algebras over X

From now on, let (X,OX) be a locally ringed space such that 2, 3 ∈ H0(X,O×X). Let A be
a unital OX -algebra of constant rank together with a nondegenerate cubic form N : A → OX

permitting composition; i.e., N(xy) = N(x)N(y) for all sections x, y of A over the same
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open subset of X. Then A is an alternative algebra over X. Let θ be the trilinear form
associated with N . Then

θ(xy, xy, xy) = θ(x, x, x)θ(y, y, y)

for all sections x, y of A over the same open subset of X. Let 1 = 1A ∈ H0(X,OX) be the
unit element of A and assume that N(1) = 1. Define the trace T : A → OX of A as the
linear form

T (x) = 3θ(x, 1, 1)

and a quadratic form S : A → OX via

S(x) = 3θ(x, x, 1)

for all sections x, y of A over the same open subset of X. We have

A ∼= OX ⊕A0

with A0 = kerT . The symmetric bilinear form T (x, y) = T (xy) on A is associative and
nondegenerate.

We will consider the following unital alternative OX -algebras of constant rank which
admit a nondegenerate cubic form N permitting composition such that N(1) = 1 (it is not
clear if these are all of them, see [Pu2]):

(1) A (commutative associative) cubic étale algebra A, such that A+ is a first or second
Tits construction of constant rank 3, and its norm N .

(2) A = OX ⊕ C, N(a + x) = aNC(x), for a Hurwitz algebra C of constant rank over X

with norm NC .
(3) An Azumaya algebra over X of constant rank 9 and its norm.

Every section x of A satisfies

x3 − T (x)x2 + S(x)x−N(x)1 = 0

[Pu2]. Define

x] = x2 − T (x)x + S(x)1;(1)

S(x, y) = S(x + y)− S(x)− S(y);(2)

x× y = (x + y)] − x] − y].(3)

Then (N, ], 1) is a cubic form with adjoint and base point on A and A+ = J (N, ], 1).

Remark 4. Let A be such that, for every P ∈ X, there is an element u ∈ A(P ) such that
1, u, u2 are linearly independent over k(P ). Then the cubic, quadratic and linear maps N ,
S and T satisfying x3 − T (x)x2 + S(x)x − N(x)1 = 0 are unique [Ach, 1.12]. Uniqueness
of N , S and T therefore holds, if A is an Azumaya algebra over X, if A+ is a first Tits
construction of constant rank 3, or if X is a k-scheme and k has infinitely many elements
[Ach, 1.13].

As in [F, p. 1027] (see also [McC1], [R, p. 95] or [Ach, 1.8]), we obtain the following
identities for the Jordan algebra A+ = J (N, ], 1):



14 S. PUMPLÜN

Lemma 7. (1) N(xy) = N(x)N(y),
(2) S(1) = T (1) = 3,

(3) S(x) = T (x]),
(4) S(x, y) = T (x× y),
(5) S(x, 1) = 2T (x)
(6) T (x)T (y) = T (xy) + T (x× y),
(7) 2S(x) = T (x)2 − T (x2),
(8) T (xy) = T (yx),
(9) x× y = xy + yx− T (x)y − T (y)x + (T (x)T (y)− T (xy))1,

(10) x]] = N(x)x,
(11) (x× y)] + x] × y] = T (x]y)y + T (xy])x,
(12) (xy)] = y]x],
(13) S(xy) = S(yx).

5. Finding composition algebras in alternative algebras

From now on, let (X,OX) be a locally ringed space such that 2, 3 ∈ H0(X,O×X) and
such that H0(X,OX) contains a primitive third root of unity ω and let R be a ring such
that 2, 3 ∈ R× containing a primitive third root of unity ω. We keep the assumptions from
Section 4 on the algebra A. Lemma 5 yields:

Lemma 8. Let N : A → OX be a quadratic form on an OX-algebra A with full support.
(i) If N is multiplicative and associative then x ? (y ? x) = N(U)(x)y = (x ? y) ? x for all
x, y ∈ A(U), for all open subsets U ⊂ X for which N(U) is nondegenerate.
(ii) Let N be nondegenerate. If N is multiplicative and associative then x ? (y ? x) =
N(P )(x)y = (x ? y) ? x for all x, y ∈ A(P ) and for all P ∈ X.
(iii) If N is associative and satisfies x ? (y ? x) = N(x)y = (x ? y) ? x for all x, y ∈ A, then
N is multiplicative.
(iv) Let (X,OX) be an integral scheme. If N satisfies x ? (y ? x) = N(x)y = (x ? y) ? x for
all x, y ∈ A, then N is multiplicative and associative.

Theorem 2. Let A be a unital alternative OX-algebra of constant rank together with a cubic
form N : A → OX permitting composition. Let A(P ) have degree 3 for all P ∈ X. For
x ∈ A, let x0 = x− 1

3T (x)1. Define a new product on A0 via

u ? v =(ωuv − ω2vu)0

=ωuv − ω2vu− 1
3
[ω − ω2]T (uv)1.

(a) The quadratic form S|A0 satisfies

S(u ? v) = S(u)S(v)

for all u, v ∈ A0 and (A0, ?) is a flexible algebra.
(b) If N is nondegenerate, (A0, ?, S) is a flexible symmetric composition algebra.
(c) If N is nondegenerate, (A0, ?, S) has rank 2, 4, or 8.
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Proof. (a) We have A = OX ⊕A0. Using the equations proved in Lemma 7 we see, analo-
gously as in the proof of [F, Theorem], that

S(u)S(v) = −S(uv)− S(uv, vu) + T (uv)2 = S(u ? v)

for all u, v in A0. Moreover, we have

u ? v

= ωuv − ω2vu− 1
3T (ωuv − ω2vu)1

= ωuv − ω2vu− 1
3 [ωT (uv)− ω2T (vu)1]

= ωuv − ω2vu− 1
3 [ωT (uv)− ω2T (uv)]1

= ωuv − ω2vu− 1
3 [ω − ω2]T (uv)1.

Analogously as in [E-M, Proposition 4.1, (i)], it follows that (A0, ?) is flexible.

(b) The residue class forms S(P ) are nondegenerate for all P ∈ X [F, Theorem], hence
S is nondegenerate. T (x, y) is associative on A and, since N is nondegenerate, T (x, y) is
nondegenerate (5.1). Now S(u, v) = −T (uv) for all u, v in A0 by Lemma 7, (4) and (6),
thus S is associative on A0.
(c) follows from (b). �

Symmetric algebras (A0, ?, S) of rank 8 constructed out of Azumaya algebras of rank 9
as in Theorem 2 are called Okubo algebras over X.

Proposition 4. In the situation of Theorem 2,
(i) each residue class algebra A0(P ) contains an element c (depending on P ), such that c

and c ? c are linearly independent;
(ii) the cubic, quadratic and linear maps N , S and T on A satisfying x3−T (x)x2 +S(x)x−
N(x)1 = 0 are unique.

Proof. (i) This follows immediately from [E-M, Proposition 4.1, (iv)], since (A0(P ), ?) is
obtained by applying [E-M, Main Theorem] to A(P ) and hence as an alternative algebra of
degree 3 over k(P ) satisfies the conditions of [E-M, Proposition 4.1].
(ii) For every P ∈ X, there is an element u ∈ A(P ) such that 1, u, u2 are linearly independent
over k(P ), since the degree of A(P ) is 3. The assertion thus follows from Remark 4. �

Remark 5. (i) For all x ∈ A0, S(x) = − 1
2T (x2).

(ii) Let X be an integral curve over a field k with function field K = K(X) = Oξ,X (ξ the
generic point of X). Let A and D be Azumaya algebras of constant rank 9 over X such that
Aξ 6∼= Dξ. Then (A0,ξ, ?) 6∼= (D0,ξ, ?) [KMRT, VIII.(34.25)] and thus also (A0, ?) 6∼= (D0, ?).
(iii) If A is an Azumaya algebra over X of constant rank 9, if A+ is a first Tits construction of
constant rank 3 as in Remark 4, or if X is a k-scheme and k has infinitely many elements, then
for every P ∈ X, there is an element u ∈ A(P ) such that 1, u, u2 are linearly independent
over k(P ), see Remark 4. We may even assume u ∈ A0(P ) since the degree of A(P ) is 3,
see [E-M, p. 2489], and hence that u, u ? u are linearly independent.

Corollary 2. In the situation of Theorem 2, let a ∈ H0(X,A0) such that T (a2) ∈ H0(X,OX)
is invertible. Then there exists a multiplication � on A0 such that (A0, �, S) is a Hurwitz
algebra over X.
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In particular, if A is an Azumaya algebra over X of constant rank 9, then (A0, �, S) is an
octonion algebra.

Proof. Since S(a) = − 1
2T (a2) ∈ H0(X,OX) is invertible by assumption, we may put u =

S(a)−1a2 ∈ H0(X,A0). Then S(u) = 1 and both the left-multiplication Lu : A0 → A0 and
the right-multiplication Ru : A0 → A0 with u are bijective, since they are bijective over the
residue class fields. The element e = u ? u is the identity for the new multiplication defined
via

x � y = (R−1
u x) ? (L−1

u y)

which satisfies S(x � y) = S(x)S(y) by Proposition 1 (ii). S is nondegenerate by Theorem
2. �

Remark 6. Let (C, ·, NC) be a Hurwitz algebra over X of constant rank. Then A = OX ⊕C
is a unital alternative algebra together with a nondegenerate cubic form N : A → OX ,
N(x) = rNC(u) for x = (r, u) ∈ A (r in OX , u in C) which permits composition. We have
1A = (1, 1C), (r, u)] = (NC(u), ru), S(x) = rTC(u) + NC(u) and T (x) = r + TC(u) [P-R,
p. 219]. Identify A0 = {x ∈ A |T (x) = 0} = ker(T ) with C via w = (−TC(w), w), then
S|C(w) = NC(w) − TC(w)2. We observe that S permits composition on A0 with respect to
the new multiplication

u ? v = (ωu · v − ω2v · u)0

as in Theorem 2. If there is an element a ∈ H0(X,A0) such that S(a) ∈ H0(X,OX) then
we can find a new multiplication � on (A0, ?, S) such that (A0, �, S) is isomorphic to the
Hurwitz algebra (C, ·, NC) [F, p. 1028].

Remark 7. Let A be an Azumaya algebra over X of constant rank 9 with cubic norm
N . The residue class form S(P ) : A0(P ) → k(P ) of the form S restricted to (A0, ?) is
hyperbolic; i.e., S|A0(P ) ∼= 〈〈−1,−1,−1〉〉, for all P ∈ X [KMRT, VIII.(34.25)]. Hence the
Okubo algebra (A0, ?) constructed in Theorem 2 has a multiplicative quadratic form whose
residue class forms are all hyperbolic. Therefore every octonion algebra C over X, for which
there is a point P ∈ X such that the residue class algebra C(P ) does not split, cannot be
obtained as the trace zero elements of some Azumaya algebra as described in Corollary 2.

It remains to be investigated if this construction yields new octonion algebras over X

which cannot be constructed by means of a general Cayley-Dickson doubling or by using a
hermitian form as described in 1.4, 1.5.

Theorem 3. Let A be a unital alternative OX-algebra of constant rank together with a
nondegenerate cubic form N : A → OX permitting composition. Let B be a unital alternative
subalgebra of A of constant rank with nondegenerate cubic norm N ′ = N |B : B → OX . Let
A(P ) and B(P ) have degree 3 for all P ∈ X. Then (B0, ?) is a symmetric composition
algebra, which is a subalgebra of the symmetric composition algebra (A0, ?, S) from Theorem
2, with the product ? on A0 given by

u ? v = ωuv − ω2vu− 1
3
[ω − ω2]T (uv)1.
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The proof is straightforward.
Translated into the setting of rings, Theorem 2 and Corollary 2 become:

Corollary 3. Let A be a unital R-algebra of constant rank together with a nondegenerate
cubic form N : A → R permitting composition. Let the residue class algebra A(P ) =
A⊗R k(P ) have degree 3 for all P ∈ Spec R. Define a new product on A0 via

u ? v = ωuv − ω2vu− 1
3
(ω − ω2)T (uv)1.

(a) (A0, ?, S) is a flexible symmetric composition algebra over R.
(b) Suppose there exists an element a ∈ A0 such that T (a2) ∈ R×. Then there exists a
multiplication � on A0, such that (A0, �, S) is a Hurwitz algebra over R. In particular, if A

is an Azumaya algebra over R of constant rank 9, then (A0, �, S) is an octonion algebra.

If (A0, ?, S) has rank 8, it is called an Okubo algebra.

Example 1. Let (X,OX) be a scheme over R such that R = H0(X,OX).
(i) If A = Mat3(OX) then N(x) = det(x) and S(x) = tr(adj(x)). Let ρ = (ω − ω2)−1 ∈
H0(X,OX) and

u = diag(2ρ,−ρ,−ρ) ∈ Mat3(H0(X,OX)).

Then S(u) = tr(adj(u)) = tr(diag(ρ2,−2ρ2,−2ρ2)) = 1 [F]. Therefore e = u?u is an identity
for the new multiplication

x � y = (R?−1
u x) ? (L?−1

u y)

on A0 and N(x � y) = N(x)N(y) as in Proposition 1 (ii). Hence (A0, �, S) is an octonion
algebra over X.
(ii) More generally, let A = EndX(E) where E is a locally free OX -module of constant rank
3. Suppose that H0(X,OX) ∗ ∗

∗ H0(X,OX) ∗
∗ ∗ H0(X,OX)

 ⊂ H0(X, EndX(E))

where the entries denoted by ∗ can be anything. Let

u = diag(2ρ,−ρ,−ρ) ∈ H0(X, EndX(E)).

Then again S(u) = tr(adj(u)) = 1 and A0 together with the new multiplication

v � w = (R?−1
u x) ? (L?−1

u y)

is an octonion algebra with unit e = u ? u. Due to the construction, (A0(P ), �, S(P )) splits
for all P ∈ X.

Lemma 9. Let A, A′ be two isomorphic OX-algebras of constant rank together with non-
degenerate cubic forms N : A → OX , N ′ : A′ → OX permitting composition. Let A(P )
and A′(P ) have degree 3 for all P ∈ X. Then the flexible symmetric composition algebras
(A0, ?, S) and (A′0, ?, S′) constructed in Theorem 2 are isomorphic.



18 S. PUMPLÜN

Proof. Let f : A → A′ be an algebra isomorphism, then due to the uniqueness of the maps
T , S and N we have S(x, y) = S′(f(x), f(y)) for all x, y ∈ A0 and T (xy) = T ′(f(x)f(y)),
since S(x, y) = −T (xy). Using the multiplication ? on A0, A′0 this implies the assertion.

�

6. On the converse of Theorem 2

Theorem 4. Let (B, ?) be an algebra over X of constant rank with an associative quadratic
form S0 : B → OX such that

(1) (x ? y) ? x = x ? (y ? x) = S0(x)y

for all sections x, y ∈ B. Assume that, for all P ∈ X, the residue class algebra B(P ) contains
an element c such that c and c ? c are linearly independent.
(i) There exists a unital alternative algebra A of constant rank over X together with linear,
quadratic, resp. cubic maps T , S and N from A to OX satisfying

x3 − T (x)x2 + S(x)x−N(x)1 = 0,

S|A0 = S0 and (B, ?) is isomorphic to the flexible algebra (A0, ?) defined in Theorem 2.
(ii) If S0 is nondegenerate then (B, ?) ∼= (A0, ?) is a flexible symmetric composition algebra
and N is a nondegenerate cubic form.

This was proved in [E-M, Proposition 4.2] for algebras over fields.

Proof. (i) By Lemma 8 (iii), S0 is multiplicative. Define a multiplication on A = OX ⊕ B
via 1x = x1 = x for any x ∈ A and

ab = −S0(a, b)
3

1 +
1
3
((ω2 − 1)a ? b− (ω − 1)b ? a)

for all sections a, b ∈ B, with S0(a, b) = S0(a + b)− S0(a)− S0(b). Let x = s1 + a ∈ A with
s ∈ OX and a ∈ B. Define ρ = − 1

3 (2ω + 1). The multiplication in A together with (1) and
the associativity of S0(U) for all open sets U ⊂ X yields

a2b = a(ab) and ba2 = (ba)a

for all a, b ∈ B(U) analogously as demonstrated in [E-M, p. 2491], thus A is alternative. We
also obtain

x3 − 3sx2 + (3s2 + S0(a))x− (s3 + S0(a)s− 1
3
ρS0(a ? a, a))1 = 0

as in the proof of [E-M, Proposition 4.2]. Let

T (x) = 3s, S(x) = 3s2 + S0(a) and N(x) = s3 + S0(a)s− 1
3
ρS0(a ? a, a)

then these are linear, quadratic, resp. cubic maps from A to OX satisfying

x3 − T (x)x2 + S(x)x−N(x)1 = 0.

Furthermore, B = {x ∈ A |T (x) = 0} since T (x) = 0 iff x = 0 + a ∈ B. For all P ∈ X, the
residue class algebra B(P ) contains an element c such that {c, c ? c} is linearly independent,
hence {1, c, c2} is linearly independent over k(P ). Thus A(P ) is of degree 3 and N , S
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and T are uniquely determined by Remark 4. As the norm of an alternative algebra, N is
multiplicative. Since S(a, b) = −T (ab),

a ? b = ωab− ω2ba + ρT (ab)1

for all a, b ∈ A0, so that we have proved that (B, ?) is isomorphic to (A0, ?).
(ii) If S0 is nondegenerate, then (B, ?, S0) is a flexible symmetric composition algebra over
X. For all P ∈ X, S(P ) is nondegenerate and hence so is the cubic form N(P ), by [E-M,
Main Theorem I]. �

Proposition 5. (a) Let (B1, ?) and (B2, ?) be two isomorphic flexible symmetric composi-
tion algebras over X of constant rank, satisfying the assumptions of Theorem 4. Then the
unital alternative algebras A1 and A2 of constant rank over X constructed in Theorem 4 are
isomorphic.
(b) Let A1 and A2 be two unital alternative algebras over X of constant rank, satisfying the
assumptions of Theorem 2. If A1 ∼= A2 then the flexible symmetric composition algebras
(A1

0, ?) and (A2
0, ?) are isomorphic.

Proof. (a) The isomorphism f : B1 → B2 canonically induces a homomorphism F : A1 → A2

which is an isomorphism, since each residue class morphism F (P ) is bijective by [E-M,
p. 2492].
(b) In the situation of Theorem 2, the cubic, quadratic and linear maps Ni, Si and Ti

on Ai satisfying x3 − Ti(x)x2 + Si(x)x − Ni(x)1 = 0 are unique by Proposition 4. Given
an isomorphism F : A1 → A2, we thus have S1(x, y) = S2(F (x), F (y)) and T1(xy) =
T2(F (x)F (y)) for x, y ∈ A1

0. The definition of the multiplication ? on Ai
0 shows that this

implies (A1
0, ?) ∼= (A2

0, ?). �

Corollary 4. Let (B, ?) be an algebra over R with a nondegenerate associative quadratic
form S0 : B → R such that

(1) (x ? y) ? x = x ? (y ? x) = S0(x)y

for all x, y, z ∈ B. Assume that, for all P ∈ Spec R, the residue class algebra B(P ) contains
an element c such that c and c ? c are linearly independent. Then there exists a separable
unital alternative algebra A over R together with linear, quadratic, resp. cubic maps T , S

and N from A to R satisfying

x3 − T (x)x2 + S(x)x−N(x)1 = 0,

S|A0 = S0 and (B, ?) is isomorphic to the flexible symmetric composition algebra (A0, ?)
defined in Corollary 3.

7. Petersson algebras over X

Given a Hurwitz algebra (C, �, N) over X and an automorphism ϕ : C → C such that
ϕ3 = 1, we define a new multiplication on C via

x ? y = ϕ(x̄) � ϕ2(ȳ)
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and call the resulting composition algebra (denoted Cϕ) a Petersson algebra over X. For
all P ∈ X, Cϕ(P ) is a symmetric composition algebra. Let X be an integral scheme over a
domain R and suppose H0(X,OX) = R. Then Cϕ is a symmetric composition algebra.

Proposition 6. Let X be an integral scheme over a domain R and suppose H0(X,OX) = R.
Let (S, ?, N) be a symmetric composition algebra over X and let e ∈ H0(X,OX) be a non-
trivial idempotent.
(i) The product x � y = (e ? x) ? (y ? e) makes S into a Hurwitz algebra over X with identity
e, norm N , and conjugation x̄ = N(x, e)e− x.
(ii) The map

ϕ(x) = e ? (e ? x) = N(e, x)e− x ? e = x̄ ? e

is an automorphism of (S, �) (as well as of (S, ?)) such that ϕ3 = id and (S, ?) ∼= (S, �)ϕ is
a Petersson algebra over X.

Proof. (i) Since H0(X,OX) = R is a domain and H0(X,A) is a finitely generated projective
R-module, H0(X,A) is torsion free, hence faithful. In particular, this means N(e) = 1.
The linear maps Le and Re are bijective, since their residue class maps are by [KMRT,
VIII.(34.9)], and Le = R−1

e . The rest of the proof is analogous to the proof of Proposition
3 (i).
(ii) Equation (2) yields

x � y = N(e, x)y − e ? (y ? (e ? y)))

and ϕ is an automorphism of (S, �), since its residue class morphisms are bijective by [KMRT,
VIII.(34.9)]. Moreover ϕ3(x) = x and x ? y = ϕ(x̄) � ϕ2(ȳ) as in Proposition 3 (ii). �

Note that the fact that the quadratic form N(U) may be degenerate for some open sets
U does not create any problems.

Proposition 7. Let k be a field such that 2, 3 ∈ k× containing a primitive third root of
unity ω and X be a proper integral scheme over k with function field K = k(X) = Oξ,X . Let
A be an Azumaya algebra over X of constant rank 9. Let e ∈ H0(X,A0) be a non-trivial
idempotent in the Okubo algebra (A0, ?) obtained as in Theorem 2. Then the following holds:
(i) Aξ

∼= Mat3(K).
(ii) The Okubo algebra becomes an octonion algebra under the new multiplication

x � y = (e ? x) ? (y ? e).

Moreover, (A0, ?) = (A0, �)ϕ is a Petersson algebra over X.

Proof. (i) follows from [E-M, p. 2502].
(ii) follows by Proposition 5. �

Proposition 8. Let A = EndX(F ⊕L) be an Azumaya algebra of constant rank 9 over X,
with F an OX-module of rank 2 and L a line bundle on X. Let B = OX ⊕EndX(F). Then
the Okubo algebra (A0, ?) obtained via the construction in Theorem 2 contains the flexible
symmetric composition algebra (B0, ?) as a subalgebra.
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Proof. The algebra B = OX ⊕ End(F) is a unital alternative algebra over X with nonde-
generate cubic norm N(a + x) = aN0(x) permitting composition, where N0 is the norm of
End(F). B is a subalgebra of A: the inclusion is given by

a + M →

 M 0
0

0 0 a

 ,

for a ∈ OX , M ∈ EndX(F). Now use Theorem 3. �

Proposition 9. Let k be a field such that 2, 3 ∈ k× containing a primitive third root of
unity and X a proper integral scheme over k. Let F be a vector bundle on X of rank 2.
Let A = End(F ⊕OX) and let (A0, ?) be the Okubo algebra obtained via the construction in
Theorem 2.
(i) Let

e =

[
−1 0
0 2

]
∈ H0(X,A0).

The product

x � y = (e ? x) ? (y ? e)

makes A0 into an octonion algebra over X with identity e and norm S.
(ii) (A0, ?) = (A0, �)ϕ is a Petersson algebra over X.
(iii) The octonion algebra (A0, �) is a Cayley-Dickson doubling of D = EndX(F), where the
right D-module of rank one used in the doubling process is, as OX-module, isomorphic to
the vector bundle F ⊕ F∨.

Proof. Since 2 is invertible in H0(X,OX), End(F) ∼= OX ⊕F ′, where F ′ is the subspace of
the endomorphisms of trace 0. Analogously as described in [KMRT, VIII.(34.30)], we view
the elements of A = End(F ⊕OX) of trace zero as block matrices[

Φ v

f −tr(Φ)

]
∈

[
End(F) F
F∨ OX

]
with the product given by[

Φ v

f −tr(Φ)

] ˙[
Φ′ v′

f ′ −tr(Φ′)

]
=

[
Φ ◦ Φ′ + v ◦ f ′ Φ(v′)− tr(Φ′)v

f ◦ Φ′ − tr(Φ)f ′ f(v′) + tr(Φ)tr(Φ′)

]
where (v ◦ f ′)(x) = vf ′(x). With ? as defined in Theorem 2, (A0, ?, S) is a symmetric
composition algebra with underlying vector bundle

(F ⊗ F∨)⊕F ⊕F∨

containing a non-trivial idempotent

e =

[
−1 0
0 2

]
∈ H0(X,A0).

[KMRT, VIII.(34.30)]. By Proposition 6, the product

x � y = (e ? x) ? (y ? e)
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makes A0 into an octonion algebra over X with identity e, norm S and conjugation x̄ =
S(x, e)e−x. Furthermore, (A0, ?) = (A0, �)ϕ is a Petersson algebra over X. This settles (i)
and (ii).

Let B = OX ⊕ End(F). Using the inclusion given in Proposition 8, B is a subalgebra
of A and thus (B0, ?) is a symmetric composition subalgebra of (A0, ?). We also have
e ∈ H0(X,B0). Now (B0, �) is isomorphic to the quaternion algebra D = End(F) by Remark
6. Therefore the octonion algebra (A0, �) is a Cayley-Dickson doubling of D, where the
right D-module of rank one used in the doubling is, as OX -module, isomorphic to the vector
bundle F ⊕ F∨, proving (iii). �

If (C, �, N) is a Hurwitz algebra over X, then (C, ?, N) with

x ? y = x̄ � ȳ

is a symmetric composition algebra over X, called the para-Hurwitz algebra associated to
the Hurwitz algebra (C, �, N) (the associativity is proved as in [KMRT, VIII.34.A]).

Lemma 10. Let k be a field such that 2, 3 ∈ k× containing a primitive third root of unity.
Let X be an integral scheme over k and A an Azumaya algebra of constant rank 9 over X

such that Aξ is a division algebra. Then there are no para-Hurwitz algebras of constant rank
2 or 4 over X which can be embedded into the associated Okubo algebra (A0, ?).

Proof. This is a direct consequence of [E-M, 8.2], applied to Aξ. �

7.1. Let us denote the Okubo algebra we obtain by applying Theorem 2 to the Azumaya
algebra Mat3(OX) by P8(OX), and the one we obtain by applying Corollary 3 to the Azu-
maya algebra Mat3(R) by P8(R), analogously as in [E-P1] or [E, p. 285]. Note that the
algebra P8(C), discovered by [O] in 1978, was the first Okubo algebra which was known.

The original definition of Okubo algebras required the base field to be of characteristic
not 2 or 3. A new definition avoiding this restriction was given in [E-P1]. This definition
generalizes easily to our setting of algebras over rings (or locally ringed spaces) as follows:
let R be an arbitrary ring. Let T be a projective R-module of constant rank 3 such that∧3(T ) ∼= R and Zor(T, α) be a split octonion algebra over R [P1, 3.2]. Take id 6= ϕ ∈
EndR(T ) of order 3. Let ϕ∗ : T∨ → T∨ be the adjoint of ϕ with respect to the canonical
pairing

〈 , 〉 : T × T∨ → R, 〈u, v̌〉 = v̌(u),

so 〈ϕ(u), v̌〉 = 〈u, ϕ∗(v̌)〉 for all u ∈ T , v̌ ∈ T∨. ϕ∗ is an automorphism, since the residue
class morphism ϕ∗(P ) is an automorphism, for all P ∈ Spec R. Define

τ(

[
a u

ǔ b

]
) =

[
a ϕ(u)

(ϕ∗−1)(ǔ) b

]
.

Then τ is an automorphism of Zor(T, α) of order 3. Obviously, we have

Zor(R)τ
∼= P8(R).
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The Petersson algebra Zor(T, α)τ can be viewed as a natural generalization of the Okubo al-
gebra P8(R) over R: for all P ∈ Spec R, the residue class algebra Zor(T, α)τ (P ) is isomorphic
to the Okubo algebra P8(k(P )).

If we take the attached algebra (Zor(T, α)τ )− with multiplication

[x, y] = xy − yx,

we obtain examples of Lie algebras over X, whose residue class algebras are central simple
Lie algebras of type A2 which arise from central simple associative algebras of degree 3 [E-M,
p. 2499].

Zor(T, α)τ is a composition algebra and, if R is a domain, a symmetric composition
algebra over R by 3.2. However, it does not seem to be clear if Zor(T, α)τ is, indeed, always
an Okubo algebra over the ring R. So the question remains if we can obtain Zor(T, α)τ as
the trace zero elements of some Azumaya algebra A over R of constant rank 3 by applying
Corollary 3. A must have residue class algebras A(P ) isomorphic to Mat3(k(P )) for all
P ∈ Spec R. Note that, in general, we will not be able to choose the split Azumaya algebra
EndR(T ) as a candidate for A here, see Proposition 11.

The other remaining question is if, in case this construction really yields an Okubo algebra
and R is a domain, all Okubo algebras are isomorphic to an algebra of the type Zor(T, α)τ

for suitable T and α. This can be negated immediately, though: we will show in Proposition
9 that there is an Okubo algebra over an elliptic curve over a field k with underlying OX -
module structure

F3 ⊕F5,

where F3 is an absolutely indecomposable vector bundle of rank 3 and F5 an absolutely
indecomposable vector bundle of rank 5. This algebra cannot be isomorphic to Zor(T , α)τ

for any suitable vector bundle T of rank 3 as in the above construction (when generalized
to locally ringed spaces), since that one only yields algebras with underlying OX -module
structure O2

X⊕T ⊕T ∨ for some vector bundle T of constant rank 3 with trivial determinant.

8. Symmetric composition algebras of rank 2

Let k be a field such that 2, 3 ∈ k× containing a primitive third root of unity ω. Let X be
a proper integral scheme over k. Let E be a separable commutative associative OX -algebra
of rank 3 with norm N . The multiplication ? on the trace zero elements E0 of E reduces to

u ? v = (ω − ω2)(uv − 1
3
T (uv)1) = (ω − ω2)(uv)0.

By [KMRT, VIII.(34.28)], for P ∈ X, the residue class algebra

(E0(P ), ?, S(P ))

is a para-Hurwitz algebra iff E(P ) is not a field, e.g., if E = OX × T for a quadratic étale
algebra T over X.

Example 2. Let k′ be a quadratic field extension of k. Put X ′ = X×kk′ and let π : X ′ → X

be the canonical projection morphism. Let P ∈ Pic X ′ be a line bundle of order 3 carrying
a nondegenerate cubic form N over X ′. N is uniquely determined up to some invertible
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scalar in H0(X ′,OX′). Let ? be the involution on OX′ induced by the nontrivial element in
the Galois group of k′/k. The Tits process

E = J (π∗OX′ ,OX ,P, N, ?) = OX ⊕ P

using P and N yields a a separable commutative associative OX -algebra of constant rank 3
with norm

N((a,w)) = a3 + N(w) + N(w)? − 3a〈w,w?〉
and trace

T ((a,w), (c, v)) = 3ac + 3〈w, v?〉+ 3〈v, w?〉
for all a, c ∈ OX , v, w ∈ P [Pu3, Pu4]. Since the Theorem of Krull-Schmidt for vector
bundles holds over X,

E0
∼= P

as OX -module. Moreover,

S(w) = −1
2
T (w2) = −3〈w,w?〉

for w ∈ P. (P, ?, S) is a flexible symmetric composition algebra over X. If P does not
contain OX as a direct summand as a vector bundle over X, then (P, ?, S) cannot be a
Hurwitz algebra for any new multiplication by the Theorem of Krull-Schmidt.

Example 3. Every first Tits construction over X starting with OX is isomorphic to

E = J (OX ,N , N) ∼= OX ⊕N ⊕N∨

for some line bundle N ∈ PicX of order 3 and some nondegenerate cubic form N on N which
is uniquely determined up to a scalar in H0(X,O×X). Let N ×N∨ → OX , 〈w, w̌〉 = w̌(w) be
the canonical pairing. There exists a uniquely determined cubic form Ň : N∨ → OX and
uniquely determined adjoints ] : N → N∨ and ]̌ : N∨ → N such that 〈w,w]〉 = N(w)1;
〈w̌]̌, w̌〉 = Ň(w̌)1 and w] ]̌ = N(w)w for v, w in N , v̌, w̌ in N∨. E+ = J (Ñ , ]̃, 1) with the
following cubic norm structure:

Ñ(a,w, w̌) = a3 + N(w) + Ň(w̌)− 3a〈w, w̌〉,
(a,w, w̌)̃] = (a2 − 〈w, w̌〉, w̌]̌ − aw, w] − w̌a),
T̃ ((a,w, w̌), (c, v, v̌)) = 3ac + 3〈w, v̌〉+ 3〈v, w̌〉

for a, c ∈ OX , v, w ∈ N , v̌, w̌ ∈ N∨ [Pu3, Pu4]. E is a separable commutative associative
OX -algebra of constant rank 3. By the Theorem of Krull-Schmidt for vector bundles,

E0
∼= N ⊕N∨

as OX -modules and
S((w, w̌)) = −3〈w, w̌〉

for all (w, w̌) ∈ E0. (N ⊕N∨, ?, S) is a flexible symmetric composition algebra, but cannot
be made into a Hurwitz algebra for any new multiplication.
If N is not isomorphic to OX , then (N ⊕N∨, S) = H(N ) is a hyperbolic quadratic space
and not defined over k.
If N ∼= OX , then (N ⊕N∨, S) is defined over k.
Suppose we have two non-isomorphic line bundles N ,M of order 3 over X such that N 6∼=
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M∨. Then the symmetric composition algebras (N⊕N∨, ?, S) and (M⊕M∨, ?, S′) obtained
as before are not isomorphic and neither are the hyperbolic spaces H(N ) = (N ⊕ N∨, S)
and H(M) = (M⊕M∨, S′). However, the residue class forms satisfy

(N (P )⊕N (P )∨, S(P )) ∼= 〈1,−1〉 ∼= (M(P )⊕M(P )∨, S′(P ))

for all P ∈ X.

Corollary 5. (i) Let k′ be a quadratic field extension of k. Put X ′ = X ×k k′. Let ? be
the involution on OX′ induced by the nontrivial element in the Galois group of k′/k. Let
P ∈ Pic X ′ have order 3. Suppose that P? ∼= P∨. Then there exists a multiplication which
makes the rank 2 space (P, S) into a symmetric composition algebra over X with

S(w) = −3〈w,w?〉.

(ii) Let N ∈ Pic X be a line bundle of order 3. Then there exists a multiplication which
makes the quadratic space (which is hyperbolic for non-trivial N )

(N ⊕N∨, S), S((w, w̌)) = −3w̌(w)

into a symmetric composition algebra over X, which cannot be a Hurwitz algebra for any
new multiplication unless N ∼= OX .

Note that, over locally ringed spaces, it does not need to be true that every symmet-
ric composition algebra of rank 2 is isomorphic to the trace zero elements (E0, ?) of some
alternative algebra E of rank 3. This is true over fields of characteristic not 3 [KMRT,
VIII.(34.28)].

Example 4. Let X = P2
k be the projective plane over k and X0 = A2

k the affine plane. Let
(x, y, z) denote the homogeneous coordinates of P2

k. Identify the affine plane A2
k with the

open subscheme A2
k = D(z) = P2

k − V (z) in P2
k.

Every first Tits construction over X starting with OX is defined over k and every first
Tits construction over k[x, y] starting with k[x, y] is defined over k. Hence each symmet-
ric composition algebra of rank 2 over X (resp., over k[x, y]) obtained from a first Tits
construction through the construction from Theorem 2 is defined over k.

If A is an Azumaya algebra of rank 9 over A2
k then A can be extended to an Azumaya

algebra A over P2
k. If its reduced norm nA is anisotropic, this extension is unique up to

isomorphism [K-Pa-S, Theorem 7.1]. Thus A0 extends to A0 over P2
k as well, implying that

each octonion algebra obtained through the construction of Theorem 2 is extended from A2
k.

It is uniquely extended if nA is anisotropic. It was already shown in [Pa-S-T, 4.6] that every
octonion algebra over A2

k with anisotropic norm can be uniquely extended to an octonion
algebra A over P2

k.

9. Curves of genus zero

9.1. Let X be a curve of genus zero over k; i.e. a geometrically integral, complete, smooth
scheme of dimension one over k. Let P0 ∈ X be a closed point of minimal degree and L(mP0)
the line bundle over X associated with the divisor mP0. The isomorphism Z ∼= Pic X is
given by the map m → L(mP0).
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If X is rational, P0 has degree 1 and L(mP0) ∼= OX(m). In that case, let h(m) denote
the hyperbolic plane given by the symmetric bilinear form ((a, b), (c, d)) → ad + bc on
OX(m)⊕OX(−m).

If X is nonrational, let D0 be the quaternion division algebra associated to X. If k′/k is a
finite separable field extension which is a maximal subfield of D0, then for X ′ = X ×k k′ we
have X ′ ∼= P1

k′ . In that case, let E0 = trk′/k(OX′(1)) be the indecomposable vector bundle
of rank 2 with D0 = End(E0) described in [P1, 4.3]. Moreover, E∨0 = trk′/k(OX′(−1)). All
vector bundles of rank at least 3 over X are decomposable. The indecomposable vector
bundles of rank 2 over X are isomorphic to E0 ⊗ L(mP0), where m ∈ Z is unique.

Remark 8. Let k′/k be a quadratic field extension, X ′ = X ×k k′ and π : X ′ → X the
canonical projection. Then, for m ∈ Z,

(2) π∗OX(m) = OX(m) ⊗OX
OX′ ∼= OX′(m) and π∗OX′(m) = trk′/k(OX′(m)) ∼=

OX(m)2 if X is rational,
(3) π∗L(mP0) = L(mP0) ⊗OX

OX′ ∼= OX′(2m), π∗OX′(2m) = trk′/k(OX′(2m)) ∼=
L(mP0)2 and
π∗OX′(2m+1) = trk′/k(OX′(2m+1)) ∼= E0⊗L(mP0) if X ′ is rational but X is not,

(4) π∗L(mP0) = L(mP0) ⊗OX
OX′ ∼= L(mP ′

0) and π∗L(mP ′
0) = trk′/k(L(mP ′

0)) ∼=
L(mP0)2 if X ′ is non-rational and P ′

0 has (minimal) degree 2.

Let C be an octonion algebra over X. Then C is defined over k, split, or X is nonrational
and C ∼= Cay(D′,P, NP), where D = D0 ⊗ OX , P is a locally free right D-module of
rank one and norm one, and NP is a norm on it. Then we know that P = P1 ⊕ P2 with
P1 = L(mP0) ⊗ E∨0 and P2 = L((−m + 1)P0) ⊗ E∨0 for some integer m ≥ 0 uniquely
determined by C [P1].

Let k be a field of characteristic not 2 or 3 containing a primitive third root of unity ω.

Lemma 11. (i) Every symmetric composition algebra obtained from a first Tits construction
over X using Theorem 2 is defined over k.
(ii) Let l/k be a separable quadratic field extension with Gal(l/k) = 〈σ〉. Let Xl = X ×k l

and let π : Xl → X be the canonical projection. Every every symmetric composition algebra
obtained from a Tits process over X using Theorem 2, starting with B = π∗OXl

and ∗B = σ,
is defined over k.

The proof is straightforward and uses the fact that the corresponding Tits construc-
tions/Tits processes are algebras over X which are defined over k [Pu4, Lemma 1].

We cannot exclude the possibility that there are commutative associative algebras J (N, ], 1)
of rank 3 over X with nondegenerate norm form, which do not arise from a first Tits con-
struction or a Tits process. The underlying module structure of such algebras must be
OX ⊕ L(mP0) ⊕ L(−mP0) (m > 0) [Pu4, Remark 2], so these algebras would yield a sym-
metric composition algebra structure on the vector bundle L(mP0)⊕ L(−mP0).

9.2. Let X be nonrational with associated quaternion division algebra D0. For every locally
free OX -module E of constant rank 3, A = EndX(E) is an Azumaya algebra of rank 9. We
have the following possibilities for E :
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Proposition 10. (i) If E = L(m1P0)⊗ E0 ⊕ L(m2P0) for some mi ∈ Z then

A ∼=

[
D ⊗OX L(−(m2 −m1)P0)⊗ E0

L((m2 −m1)P0)⊗ E∨0 OX

]
and

A0
∼= O4

X ⊕ L(−(m2 −m1)P0)⊗ E0 ⊕ L((m2 −m1)P0)⊗ E∨0 .

(ii) If E = L(n1P0)⊕ L(n2P0)⊕ L(n3P0) for some ni ∈ Z then

A ∼=

 OX L((n2 − n1)P0) L((n1 − n3)P0)
L(−(n2 − n1)P0) OX L((2n1 − n3 − n2)P0)
L(−(n1 − n3)P0) L((n2 − 2n1 + n3)P0) OX


and

A0
∼= O2

X ⊕ L((n2 − n1)P0)⊕ L((n1 − n3)P0)⊕ L(−(n2 − n1)P0)⊕

L((2n1 − n3 − n2)P0)⊕ L(−(n1 − n3)P0)⊕ L((n2 − n1 − n1 + n3)P0).

In both cases, (A0, ?, S) is an Okubo algebra with ? as in Theorem 2.
In case (i), (A0, ?) contains the flexible symmetric composition subalgebra (B0, ?) with

B = OX ⊕ EndX(L(m1P0) ⊗ E0) (Proposition 8). B0 is a free OX -module, hence (B0, ?)
is defined over k. A0 can be made into an octonion algebra via a suitable multiplication
�, since it is of the type discussed in Example 1. By the Theorem of Krull-Schmidt and
the classification of octonion algebras in [P1, 4.4], (A0, �) is a Cayley-Dickson doubling of
D = D0 ⊗OX . (This also follows immediately by applying Theorem 3 and Remark 6.)

In case (ii), (A0, ?) contains for instance the flexible symmetric composition subalgebra
(B0, ?) with B = OX ⊕ EndX(L(m1P0) ⊕ L(m2P0)) (Proposition 8). A0 can be made into
an octonion algebra, since it is of the type discussed By the classification Theorem [P1, 4.4],
if A0 is globally free as OX -module, it must be isomorphic to Zor(k)⊗OX , and if A0 is not
globally free as OX -module, it must be a split octonion algebra over X which is not defined
over k.

Note that every Azumaya algebra over X which is defined over k, i.e. A ∼= A⊗OX , yields
a Hurwitz algebra over X which is defined over k.

9.3. Let X be rational. It is well-known that each Azumaya algebra over X of constant
rank 9 is either defined over k or isomorphic to A = EndX(OX(n1) ⊕ OX(n2) ⊕ OX(n3))
with ni ∈ Z; i.e.,

A ∼=

 OX OX(n1 − n2) OX(n1 − n3)
OX(−(n1 − n2)) OX OX(−n3 + n2)
OX(−(n1 − n3)) OX(−n2 + n3) OX

 .

The Okubo algebra (A0, ?) contains for instance the flexible symmetric composition sub-
algebra (B0, ?) with B = EndX(OX(n1P )⊕OX(n2)) (Proposition 8).

Each Okubo algebra (A0, ?) is either defined over k or A0
∼= O2

X ⊕ T ⊕ T ∨ with

T = OX(n1 − n2)⊕OX(−(n1 − n3))⊕OX(−n3 + n2)
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not globally free. Note that n1 − n2 − (n1 − n3) + (−n3 + n2) = 0, so that T has trivial
determinant. It remains to be checked if A0 is perhaps isomorphic to an algebra of the type
Zor(S, α)τ for suitable S and α as described in 7.1.

(A0, ?) contains an idempotent e (Proposition 9), so it can be made into an octonion
algebra. If A0 is globally free as OX -module, (A0, �) is isomorphic to Zor k ⊗ OX . The
classification in [P1, 4.4] shows that if A0 is not globally free as OX -module, (A0, �) is a
split octonion algebra over X which is not defined over k. As in 9.2, our results show that
(A0, �) contains the quaternion subalgebra (B0, �) which is split by [P1, 4.4] (and then hence
so is (A0, �)), if its underlying vector bundle is not globally free.

10. Curves of genus one

The advantage of working over elliptic curves instead of curves of genus zero is that there
are also bundles of degree higher than 2 which are indecomposable. These contribute to
more interesting examples of symmetric composition algebras. We will use the results and
terminology from Atiyah [At] and Arason, Elman and Jacob [AEJ1].

For simplicity, we assume from now on that k is a field of characteristic zero. An elliptic
curve X/k can be described by a Weierstraß equation of the form

y2 = x3 + b2x
2 + b1x + b0 (bi ∈ k)

with the infinite point as base point O. Let q(x) = x3 + b2x
2 + b1x + b0 be the defining

polynomial in k[x]. The k-rational points of order 2 on X are the points (a, 0), where a ∈ k

is a root of q(x). Let K = k(X) = k(x,
√

q(x)) be the function field of X. We distinguish
three different cases (cf. [AEJ3]).

Case I. X has three k-rational points of order 2 which is equivalent to 2Pic (X) ∼= Z2×Z2.
Write q(x) = (x−a1)(x−a2)(x−a3) and 2Pic (X) = {OX ,L1,L2,L3} where Li corresponds
to the point (ai, 0) for i = 1, 2, 3.

Case II. X has one k-rational point of order 2 which is equivalent to 2Pic (X) ∼= Z2. Write
q(x) = (x − a1)q1(x) and 2Pic (X) = {OX ,L1} with L1 corresponding to (a1, 0). Define
l2 = k(a2) with a2 a root of q1.

Case III. X has no k-rational point of order 2 which is equivalent to 2Pic (X) = {OX}.
Define l1 = k(a1) with a1 a root of the irreducible polynomial q(x) and let ∆(q) = (a1 −
a2)2(a1 − a3)2(a2 − a3)2 be the discriminant of q.

Correspondingly, X/k is called of type I, II or III. Let k be an algebraic closure of k and
let X = X ×k k.

For any integer r, there exists an absolutely indecomposable vector bundle of rank r and
degree 0 on X we call Fr, which is unique up to isomorphism, such that Fr has nontrivial
global sections [At, Theorem 5]. Each Fr is selfdual. In particular, we know that F1 = OX .
Furthermore, if M is an absolutely indecomposable vector bundle of rank r and degree 0 on
X, there is a line bundle L ∈ Pic X of degree 0, such that M∼= L⊗Fr. This line bundle is
unique up to isomorphism.
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Let Ni denote a line bundle of order 3 on X. Let β : Ni ⊗ Ni ⊗ Ni → OX be an
isomorphism. Then

N : Ni → OX , w → N(w) = β(w ⊗ w ⊗ w)

is a nondegenerate cubic form on Ni. The nondegenerate cubic forms on Ni are uniquely
determined up to an invertible factor in k [Pu3, Lemma 1].

Following [AEJ1], for any separable field extension l/k, we denote the selfdual line bundles
Li ⊗OX

OXl
on Xl = X ×k l also by Li, i = 1, 2, 3, to avoid complicated terminology. We

do the same for the line bundles Ni ⊗OX
OXl

of order 3. This abuse of notation is justified
by the fact that the natural map Pic X → Pic Xl is injective (1.7). Recall that 3Pic (X) =
{Ni | 0 ≤ i ≤ 8} where N0 = OX [At, Lemma 22]. Hence 3Pic (X) = {Ni | 0 ≤ i ≤ m} for
some even integer m, 0 ≤ m ≤ 8, where N0 = OX .

Let k contain a primitive third root of unity ω.

Example 5. Every first Tits construction over X starting with OX , which is not defined
over k, is isomorphic to A = J (OX ,Ni, N) where Ni ∈ 3PicX is nontrivial and N is a
nondegenerate cubic form on Ni [Pu4]. We have

A0
∼= Ni ⊕N∨

i .

Note that H0(X,A0) = 0. For all x = (w, w̌) ∈ A0,

S(x) = −3〈w, w̌〉,

see Example 3. (Ni ⊕N∨
i , ?, S) is a symmetric composition algebra over X by Theorem 2,

which is not defined over X and which cannot be a Hurwitz algebra for any new multipli-
cation.

By the Theorem of Krull-Schmidt, Ni ⊕N∨
i
∼= Nj ⊕N∨

j iff Ni
∼= Nj or Ni

∼= N∨
j . Hence

if m = 8 (e.g. if k is algebraically closed) there are at least 4 non-isomorphic symmetric
composition algebras of rank 2 which are not defined over k.

Example 6. Let l/k be a quadratic field extension with Gal(l/k) = 〈σ〉. Let Xl = X ×k l

and let π : Xl → X be the canonical projection. Define B = π∗OXl
.

(i) If X has type I or III, or type II and l 6∼= l2, then every Tits process over X starting with
B and ∗B = σ is defined over k [Pu4, Lemma 6] and thus the construction from Theorem 2
yields a symmetric composition algebra of rank 2 which is defined over k.
(ii) Let X be of type II and l ∼= l2. If there is a line bundle Ni over Xl of order 3
which is not defined over X and satisfies σNi

∼= N∨
i , then there is a Tits process J =

J (B,OX ,Ni, N, ∗) ∼= OX ⊕ Ni which is not defined over X [Pu4, Lemma 6] and thus the
construction from Theorem 2 yields a symmetric composition algebra of rank 2 over X on
the indecomposable vector bundle Ni with norm

S(w) = −1
2
T (w2) = −3〈w,w?〉,

see Example 2.
Otherwise every Tits process starting with B and ∗B = σ is defined over X [Pu4, Lemma

6] and thus the construction from Theorem 2 yields a symmetric composition algebra of
rank 2 which is defined over k as well.
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For every locally free OX -module E of constant rank 3, A = EndX(E) is an Azumaya
algebra of rank 9. We look at some examples:

Proposition 11. (i) If E is absolutely indecomposable and E = M⊗F3 for some line bundle
M∈ Pic X, then

A ∼= OX ⊕F3 ⊕F5

and

A0
∼= F3 ⊕F5

as OX-modules.
(ii) If E is absolutely indecomposable and E ∈ Ω(3, d), gcd(3, d) = 1 then, if m < 8,

A ∼= OX ⊕N1 ⊕ · · · ⊕ Nm ⊕ trl1/k(Nm+1) · · · ⊕ trlj/k(Nj)

and

A0
∼= N1 ⊕ · · · ⊕ Nm ⊕ trl1/k(Nm+1) · · · ⊕ trlj/k(Nj)

as OX-module, where the line bundles Nm+1 over Xl1 , . . . ,Nj over Xlj are not defined over
X. If m = 8 (e.g., if k is algebraically closed),

A0
∼= N1 ⊕ · · · ⊕ N8

as OX-module.

Proof. This follows from [At, Theorem 8, Lemma 22]. In particular, if E is absolutely
indecomposable and E ∈ Ω(3, d), gcd(3, d) = 1 then

A ∼= N0 ⊕N1 ⊕ · · · ⊕ N8

over X and there is a suitable integer m, 1 ≤ m ≤ 8 depending on X such that 3Pic (X) =
{N0, . . . ,Nm}, which implies (iii). �

If k contains a primitive third root of unity ω, then in both (i) and (ii), A0 becomes an
Okubo algebra over X via the new multiplication

u ? v = ωuv − ω2vu− 1
3
[ω2 − ω]T (uv)1

by Theorem 2. Due to the structure of the underlying vector bundle, it is obvious that in both
cases there does not exist any multiplication which would make A0 into an octonion algebra,
or otherwise A0 would have OX as a direct summand. In case (ii), even H0(X,A0) = 0.

Moreover, case (i) is an example of an Okubo algebra which is the direct sum of only two
absolutely indecomposable vector bundles of rank 3 and rank 5 and which, over each residue
class field, is isomorphic to P8(k(P )).

Recall that for X of type III, the elliptic curve X1 = X ×k l1 is of type I and the selfdual
line bundle L1 over X1 is not defined over X. The vector bundle trl1/k(L1) is indecomposable
of rank 3 and trl1/k(L1)⊗OX1

∼= L1 ⊕ L2 ⊕ L3.
For X of type II, the elliptic curve X2 = X×k l2 is of type I and the selfdual line bundles

L2 and L3 on X2 are not defined over X. The vector bundle trl2/k(L2) ∼= trl2/k(L3) is
indecomposable of rank 2 and trl2/k(L3)⊗OX2

∼= L2 ⊕ L3.
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Proposition 12. (i) If E is indecomposable, but not absolutely so, then there is a suitable
cubic field extension l of k and a line bundle N over Y = X ×k l, such that E = trl/k(N )
and A ∼= trl/k(N )⊗ trl/k(N∨). If l/k is Galois with Gal(l/k) = {id, σ1, σ2} then

A ∼= O3
X ⊕ trl/k(N ⊗ σ1N∨)⊕ trl/k(N ⊗ σ2N∨)

and
A0

∼= O2
X ⊕ trl/k(N ⊗σ1 N∨)⊕ trl/k(N ⊗ σ2N∨)

as OX-module. In particular, if X is of type III, we may choose E = trl1/k(L1) and get

A0
∼= O2

X ⊕ [trl1/k(L1)]2

as OX-module.
(ii) If E = M1 ⊕M2 ⊗F2 for some line bundles Mi ∈ Pic X, then

A ∼=

[
OX Hom(M1,M2 ⊗F2)

Hom(M2 ⊗F2,M1) End(F2)

]
∼= OX ⊕M1 ⊗M∨

2 ⊗F2 ⊕M∨
1 ⊗M2 ⊗F2 ⊕OX ⊕F3

as OX-module and

A0
∼= OX ⊕M1 ⊗M∨

2 ⊗F2 ⊕M∨
1 ⊗M2 ⊗F2 ⊕F3

as OX-module.
(iii) If E is the direct sum of a line bundle and an indecomposable (but not absolutely in-
decomposable) vector bundle of rank 2 then there is a quadratic field extension l/k with
Gal(l/k) = {id, σ} and a line bundle N over Xl = X ×k l, not defined over X, such that
E = M⊕ trl/k(N ) and

A ∼=

[
OX HomX(M, trl/k(N ))

HomX(trl/k(N ),M) EndX(trl/k(N ))

]
with

EndX(trl/k(N )) ∼= O2
X ⊕ trl/k(N ⊗ σN∨).

Hence
A0

∼= O2
X ⊕ trl/k(N ⊗ σN∨)⊕ (M⊗ trl/k(N∨))⊕ (M∨ ⊗ trl/k(N ))

as OX-module. In particular, if X is of type II, we may choose E = M⊕ trl2/k(L2) and get

A0
∼= O2

X ⊕ L2
1 ⊕ (M⊗ trl2/k(L2))⊕ (M∨ ⊗ trl2/k(L2))

as OX-module.
(iv) If E is the direct sum of line bundles E = M1 ⊕M2 ⊕M3 then

A ∼=

 OX HomX(M1,M2) HomX(M1,M3)
HomX(M2,M1) OX Hom(M2,M3)
HomX(M3,M1) HomX(M3,M2) OX


and, as OX-module,

A0
∼= O2

X ⊕M∨
1 ⊗M2 ⊕M∨

1 ⊗M3 ⊕M∨
2 ⊗M1 ⊕M∨

2 ⊗M3 ⊕M∨
3 ⊗M1 ⊕M∨

3 ⊗M2

is a direct sum of line bundles.
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Proof. This follows from [At, Theorem 8, Lemma 22], (i) uses [AEJ3, 2.2]. �

If k contains a primitive third root of unity ω, then in all of the above cases, A0 becomes
an Okubo algebra over X via the new multiplication

u ? v = ωuv − ω2vu− 1
3
[ω2 − ω]T (uv)1

by Theorem 2.
By Proposition 8, we know that in case (ii), the Okubo algebra (A0, ?) contains the

flexible symmetric composition subalgebra (B0, ?) with B = OX ⊕ EndX(M2 ⊗ F2) and
in case (iii), (A0, ?) contains the flexible symmetric composition subalgebra (B0, ?) with
B = OX ⊕ EndX(trl/k(N )).

Corollary 6. Suppose that k contains a primitive third root of unity.
(i) If M1

∼= OX in Proposition 11 (ii), then

A0
∼= OX ⊕M∨

2 ⊗F2 ⊕M2 ⊗F2 ⊕F3

can be made into a (non-split) octonion algebra which does not contain any quadratic étale
algebra and is a Cayley-Dickson doubling of the quaternion algebra EndX(F2).
(ii) If M∼= OX in Proposition 11 (ii), then

A0
∼= O2

X ⊕ trl/k(N ⊗ σN∨)⊕ trl/k(N )⊕ trl/k(N∨)

can be made into an octonion algebra which is a Cayley-Dickson doubling of the quaternion
algebra EndX(trl/k(N )).

Proof. In both cases A0 is of the type discussed in Proposition 9, hence contains an idem-
potent e ∈ H0(X,A)
(i) If M1

∼= OX then

A ∼=

[
OX HomX(OX ,M2 ⊗F2)

HomX(M2 ⊗F2,OX) EndX(F2)

]
.

The octonion algebras (A0, �) are Cayley-Dickson doublings of the quaternion algebra EndX(F2)
by Proposition 9. The rest of the assertion is obvious from the module structure.
(ii) If M∼= OX then

A ∼=

[
OX trl/k(N )

trl/k(N∨) EndX(trl/k(N ))

]
.

The algebras (A0, �) are Cayley-Dickson doublings of the quaternion algebra EndX(trl/k(N )).
�

For a list of all the possible Cayley-Dickson doublings of EndX(F2), the reader is referred
to [Pu1, 4.2 (b)].

It would be desirable to find an example of an Okubo algebra which is defined on an
indecomposable vector bundle. Due to the behaviour of the vector bundles over elliptic
curves, such an example cannot arise out of the trace zero elements of a split Azumaya
algebra over X.
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Remark 9. Let S be an Okubo algebra over X. Then S− with multiplication [x, y] = xy−yx

is a Lie algebra over X of constant rank 8, whose residue class algebras are central simple
Lie algebras of type A2 [E-M, p. 2499]. We have thus found Lie algebras of this type, which
can be constructed on an elliptic curve over a field of characteristic 0 containing a primitive
third root of unity, for example on the following vector bundles (with the Mi’s line bundles):

(1) A0
∼= F3 ⊕F5,

(2) N1 ⊕ · · · ⊕ N8,
(3) A0

∼= O2
X ⊕ [trl1/k(L1)]2, if X is of type III,

(4) OX ⊕M1 ⊗M∨
2 ⊗F2 ⊕M∨

1 ⊗M2 ⊗F2 ⊕F3,
(5) O2

X ⊕ L2
1 ⊕ (M⊗ trl2/k(L2))⊕ (M∨ ⊗ trl2/k(L2)), if X is of type II,

(6) O2
X ⊕M∨

1 ⊗M2 ⊕M∨
1 ⊗M3 ⊕M∨

2 ⊗M1 ⊕M∨
2 ⊗M3 ⊕M∨

3 ⊗M1 ⊕M∨
3 ⊗M2
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