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Abstract. Let k be a field of characteristic not 2 or 3. Infinitely many mutually non-

isomorphic structurable algebras of rank 20 over k[X, Y ] are constructed whose fibre is

a given structurable algebra over k of skew-rank 1.

Introduction

Let R be a ring such that 1/6 ∈ R and k a field of characteristic not 2 or 3. Let A
be a unital nonassociative algebra over R with an involution . The pair (A, ) is called a
structurable algebra if

{x, y, {z, w, q}} − {z, w, {x, y, q}} = {{x, y, z}, w, q} − {z, {y, x, w}, q}

for x, y, z, w, q ∈ A, where

{x, y, z} = (xȳ)z + (zȳ)x− (zx̄)y.

Structurable algebras were introduced by Allison [A1]: An analogue of the Köcher-Kantor-
Tits functor gives a correspondence between a structurable algebra and a Lie algebra. Using
this functor all classical simple isotropic Lie algebras can be obtained [A2].

In [Pa-Sr-T], non-trivial Albert algebra bundles over the affine plane were constructed
whose associated principal F4 bundle admits no reduction of the structure group to any
proper connected reductive subgroup. Over a field, every Albert algebra arises from the
first or second Tits construction and the associated F4 bundle admits reduction of the
structure group to SL1(B) for a central simple algebra B either over k or to SU(B, σ) for a
central simple algebra B over a quadratic field extension of k, σ an involution of the second
type. Hence the patched Albert algebras over the affine plane arise neither from a first nor
a second Tits construction.

In the present paper we employ the patching arguments from [Pa-Sr-T] to obtain infinitely
many structurable algebras Mi of rank 20 over the affine plane A2

k, which are not extended
from k and mutually non-isomorphic and whose fibre is a given matrix algebra over k

(Theorem 4). In order to achieve this, we show that the matrix algebra M(T,N,N∨) over
k[X,Y ] admits a unique extension to a matrix algebra over P2

k in Section 2. In Section 3, we
look at forms of these matrix algebras. For a nonfree projective left D[X,Y ]-module P of
rank one, the structurable algebra S(D,σ, P,N) over k[X,Y ] admits a unique extension to a
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structurable algebra S(D, σ, P̃ , N) over P2
k, where P̃ is an indecompsable vector bundle. We

use this result to construct infinitely many mutually non-isomorphic structurable algebras
Ai over A2

k such that Ai ⊗k K ∼= Mi where K is a separable quadratic field extension of
k (Theorem 9). In Section 4, some general results on extending structurable algebras from
affine to projective space are obtained.

We use the results and terminology from [Ach] (see also [Pu1, 2, 3]) and [Pa-Sr-T]. The
approach in [Pa-Sr-T] is mostly functorial and formulated for base rings R which are domains
with 1/6 ∈ R, the one in [Ach] works instead for arbitrary base rings. Both were originally
developed to generalize the first and second Tits construction for Jordan algebras over rings.

For the standard terminology on Jordan algebras, the reader is referred to the books by
McCrimmon [M], Jacobson [J] and Schafer [Sch].

1. Preliminaries

1.1. Algebras over R. For P ∈ SpecR, let RP be the local ring of R at P and mP the
maximal ideal of RP . The corresponding residue class field is denoted by k(P ) = RP /mP .
For an R-module F the localization of F at P is denoted by FP . The rank of F is defined
to be sup{rankRP

FP |P ∈ SpecR}. The term “R-algebra” always refers to nonassociative
R-algebras which are unital and finitely generated projective of finite constant rank as R-
modules.

An anti-automorphism σ : A → A of order 2 is called an involution on A. Define
H(A, σ) = {a ∈ A |σ(a) = a} and S(A, σ) = {a ∈ A |σ(a) = −a}. Then A = H(A, σ) ⊕
S(A, σ).

1.2. Structurable algebras. An algebra with involution is a pair (A, ) consisting of an R-
algebra A and an involution : A→ A. A structurable algebra is an algebra with involution
(A, ) satisfying

{x, y, {z, w, q}} − {z, w, {x, y, q}} = {{x, y, z}, w, q} − {z, {y, x, w}, q}

for all elements x, y, z, w, q ∈ A, where

{x, y, z} = (xȳ)z + (zȳ)x− (zx̄)y

[A1, (3) and Cor. 5]. If B is an R-submodule if A which is closed under multiplication, we
call B a subalgebra of A. If, additionally, B = B we call (B, ) a subalgebra of (A, ).

An isotopy from (A, )→ (A′, ′) is an R-linear bijective map a : A→ A′ such that

a{x, y, z} = {ax, ây, az}

for all x, y, z ∈ A and some R-linear map â : A → A′. Two structurable algebras (A ) and
(A, ) are isotopic if there exists an isotopy from A to A′. This is equivalent to (A′, ′) ∼=
(A, )〈u〉 for some invertible u ∈ A. Every isomorphism between structurable algebras is an
isotopy.

In the following, we will only deal with structurable algebras (A, ) over R whose residue
class algebras A(P ) = AP ⊗RP

k(P ) are central simple structurable algebras of skew-
dimension 1.
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1.3. Let W and W ′ be two finitely generated projective R-modules of constant rank with
cubic forms N : W → R and N ′ : W ′ → R, paired by a nondegenerate bilinear form
T : W ×W ′ → R. That is, T induces R-module isomorphisms

T : W → HomR(W ′, R), x 7→ T (x, ·)

and

T : W ′ → HomR(W,R), y′ 7→ T (·, y′).

We say that the triple (T,N,N ′) is defined on (W,W ′). Let N(x, y, z) denote the trilinear
form associated with N and N ′(x′, y′, z′) the trilinear form associated with N ′. Let x ∈W ,
x′ ∈W ′ and define quadratic maps ] : W →W ′ and ]′ : W ′ →W via

DyN(x) = T (y, x]) and Dy′N ′(x′) = T (x′ ]
′
, y′)

for all elements x, y ∈W , x′, y′ ∈W ′, i.e.,

3N(x, x, y) = T (y, x]) and 3N ′(x′, x′, y′) = T (x′]
′
, y′)

for all elements x, y ∈W , x′, y′ ∈W ′. The triple (T,N,N ′) satisfies the adjoint identities if

(x]) ]
′

= N(x)x and (x′ ]
′
)] = N ′(x′)x′.

If N = 0 and N ′ = 0 these identities are trivially satisfied. If N 6= 0 or N ′ 6= 0 then both N
and N ′ are nonzero and (T,N,N ′) is called non-trivial.
Let (T,N,N ′) be a triple defined on (W,W ′). Define symmetric bilinear maps × : W×W →
W ′ and ×′ : W ′ ×W ′ →W via

x× y = (x+ y)] − x] − y], x′ ×′ y′ = (x′ + y′)]
′
− x′]

′
− y′]

′
.

Then

x] =
1
2
x× x, x′ ]

′
=

1
2
x′ ×′ x′,

N(x, y, z) = T (x, y × z), N ′(x′, y′, z′) = T (x′ ×′ y′, z′).

If the triple (T,N,N ′) satisfies the adjoint identities then the matrix algebra

A = M(T,N,N ′) =

[
R W

W ′ R

]
,

[
a x

x′ b

] [
c y

y′ d

]
=

[
ac+ T (x, y′) ay + dx+ x′ ×′ y′

cx′ + by′ + x× y bd+ T (y, x′)

]
with involution [

a x

x′ b

]
=

[
b x

x′ a

]
is a structurable algebra ([A-F1, p. 194], [Pu3, Theorem 1]). We have S(A, ) = s0R with

s0 =

[
1 0
0 −1

]
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invertible and s2
0 = 1 ∈ R× and the residue class algebras A(P ) = AP ⊗ k(P ) are central

simple structurable algebras of skew-dimension 1 over k(P ) ([A-F1], [Pu3]). Let

u =

[
a x

x′ b

]
and v =

[
c y

y′ d

]
with a, b, c, d ∈ R and x, y ∈W , x′, y′ ∈W ′. The (conjugate) norm ν : M(T,N,N ′)→ R is
given by

ν(u) = 4aN(x) + 4bN ′(x′)− 4T (x′ ]
′
, x]) + (ab− T (x, x′))2

and is isotropic since ν(u) = 0 for

u =

[
1 0
0 0

]
.

The trace χ : M(T,N,N ′)×M(T,N,N ′)→ R is defined by

χ(u, v) = 2(ad+ bc+ T (x, y′) + T (y, x′)).

Note that χ(u, u) = 0.

1.4. Let B be an Azumaya algebra over R of degree 3, B+ = (NB , ]B , 1) with (NB , ]B , 1)
a cubic form with adjoint and base point (cf. for instance [Pu3, 1.4]). Let PiclB denote
the set of isomorphism classes of locally free left B-modules of rank 1. Let P ∈ PiclB
such that NB(P ) ∼= R and let N : P → R be a norm on P . Let N∨ : P∨ → R be
the uniquely determined norm and ] : P → P∨, ]̌ : P∨ → P be the uniquely determined
adjoints satisfying equations

(1) 〈w,w]〉 = N(w)1;
(2) 〈w̌]̌, w̌〉 = N∨(w̌)1;
(3) w] ]̌ = N(w)w

for all w ∈ P , w̌ ∈ P∨ (these are (7), (8), (9) in [Pu3]). Let × : P∨ × P∨ → P denote the
bilinear map associated to the quadratic map ] and ×̌ : P∨ × P∨ → P the bilinear map
associated to the quadratic map ]̌ (cf. for instance [Pu3, 3.2]). Define T : P × P∨ → R via

T (w, w̌) = TB(〈w, w̌〉).

For any µ ∈ R×, the triple (µT, µN, µ2N∨) satisfies the adjoint identities [Pu3, Theorem 6],
hence

M = M(µT, µN, µ2N∨) =

[
R P

P∨ R

]
is a structurable algebra over R with automorphism group isomorphic to the semi-direct
product of Z/2 and the group of bijective norm isometries of P . [Pu3, Corollary 7, Theorem
18].

The group Inv(M) defined in Section 4 is an absolutely almost simple linear algebraic
group which is connected except in the case that M has rank 9. In that case its connected
component is a subgroup of index 2 in Inv(M) [Krutelevich, p. 941 ff.].
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1.5. LetR′ be a ring andB be a unital separable associative algebra overR′. Let ∗ : R′ → R′

be an involution on R′ and ∗B an involution on B such that ∗B |R′ = ∗. Let (NB , ]B , 1) be
a cubic form with adjoint and base point on B such that B+ = J(NB , ]B , 1) with 1 the unit
element in B and

xyx = TB(x, y)x− x]B ×B y,

NB(xy) = NB(x)NB(y)

and

N(x∗B ) = N(x)∗B

for all x, y ∈ B (these are identities (1), (2), (3) in [Pu3]) and let (H(B, ∗B), H(R′, ∗B)) be
a B-ample pair. Define R = H(R′, ∗B). Let P ∈ PiclB such that NB(P ) ∼= R′ and such
that there is a nondegenerate hermitian form h : P × P −→ B satisfying

h(w,w) ∈ H(B, ∗B) and NB(h(w,w)) = N(w)N(w)∗B

for w ∈ P . Denote the H(B, ∗B)-admissible involution jh : P → P∨ on P induced by h by
∗. Let N : P → R′ be a norm on P . Let N∨ : P∨ → R′ be the uniquely determined norm
and ] : P → P∨, ]̌ : P∨ → P be the uniquely determined adjoints satisfying equations (1),
(2), (3). We can also write

〈u, v∗〉 = h(u, v), v∗ = jh(v) and v̌∗̌ = j−1
h (v̌)

for jh : P → P∨ induced by h. The R-module S(B, ∗B , P,N, h) = R′ ⊕P together with the
multiplication

(a, u)(b, v) = (ab+ TB(〈u, v∗〉), b∗Bu+ av + (u× v)∗̌)

and the involution

(a, u) = (ā, u)

for a, b ∈ R′, u, v ∈ P is a structurable algebra over R which is a form of the struc-
turable algebra M(T,N,N∨) [Pu3, Theorem 20]. We define the (conjugate) norm ν :
S(B, ∗B , P,N, h)→ R of S(B, ∗B , P,N, h) via

ν((λ,w)) = NB(λλ∗ − h(w,w)).

If R′ is a field this definition coincides with [A-F2, Theorem 6.1]. ν is a quartic form. Even
if B is a division algebra and R′ is a field, the norm is isotropic: then ν((λ,w)) = 0 if and
only if (λ,w) is an admissible scalar, i.e. µ ∈ R′×, w ∈ H(B, ∗B)× and NB(w) = µµ∗.

If R′ is a quadratic étale ring extension of the ring R then R′ = Cay(R,P,N) with L ∈
PicR of order 2, since 2 ∈ R×. For A = S(B, ∗B , P,N, h) this means S(A, ) = {(r, 0) | r ∈
S(R′, ∗)} = L. If R is a domain and R′ = Cay(R, c) = R(

√
c) then S(A, ) = (

√
c, 0)R

and s0 = (
√
c, 0) satisfies s2

0 = (c, 0) = c1A with c ∈ R×. This means we can define the
(conjugate) norm ν : A→ R also by

ν(x) =
1

12c
χ(s0x, {x, s0x, x}),

and also a trace χ : A×A→ R on A by

χ(x, y) =
2
c
ψ(s0x, y)s0 =

2
c

(V δy,xs0)s0,
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analogously as in [A-F1, 2], where ψ(x, y) = xȳ − yx̄ [A-F2, 5.4]. χ is a nondegenerate
symmetric bilinear form independent of the choice of s0 and χ(1, 1) = 4. (Nondegeneracy
follows from [A-F1, Proposition 2.5] applied to the residue class forms.)

2. Non-trivial structurable algebras over the affine plane which locally

are matrix algebras

2.1. We mostly use the results and notation of [Pa-Sr-T, Section 4]. Occasionally, we also
use the notation of [Pu1]: In the notation of [Pa-Sr-T], the map × in [Pu1] or 1.4 is denoted
by φ and the map ×̌ in 1.4 by φ∗. There is the obvious notion of a structurable algebra over
a locally ringed space, see [Pu3]. We identify structurable algebras over k[X,Y ] and over
A2
k using the canonical equivalence described in [Pu3, 6.2]. Let X = P2

k.

Remark 1. Let D be a central simple algebra over k of degree 3. Once we have picked a
locally free left D[X,Y ]-module of rank 1 with ND[X,Y ](P ) ∼= k[X,Y ], the choice of a norm
N : P → k[X,Y ] automatically determines N∨ and the adjoints ] and ]̌, see [Pu3, 3.2]. This
fact is expressed in [Pa-Sr-T] by explicitly choosing a trivialization µ̃ : ND[X,Y ](P )→ k[X,Y ]
which in turn determines uniquely the choice of N , hence of N∨, ] and ]̌. Recall that the
norm N is uniquely determined up to a scalar µ ∈ k×. For any µ ∈ k×, the adjoint belonging
to µN is µ ] and (µN)∨ = µ2N∨, (µ ])∨ = µ2 ].

2.2. Let D be a central division algebra over k of degree 3. Let De be a free module of rank
1 over D with e as a basis element such that ND(De) ∼= k and let µ0 : ND(De)→ k be such
an isomorphism. Let {gi} be an infinite family of mutually coprime polynomials in k[X].
Then there exist non-free projective left modules Pi of rank 1 over D[X,Y ] and polynomials
fi ∈ k[X] with (fi, fj) = 1 for i 6= j, (fi, gj) = 1 for all i, j, such that Pi ⊗ k[X]fi

[Y ] is free
for each i. Further, there exists µ̃i : ND[X,Y ](Pi)→ k[X,Y ] such that

(Pi, µ̃i) modulo Y is (De, µ0)⊗k k[X]

[Pa-Sr-T, 4.1]. The Pi are mutually non-isomorphic D[X,Y ]-modules [Pa-Sr-T, 4.2].

2.3. Let P be a non-free projective D[X,Y ]-module such that ND[X,Y ](P ) ∼= k[X,Y ], the
isomorphism given by the trivialization µ̃ : ND[X,Y ](P ) → k[X,Y ] of the reduced norm.
Then the pair (P, µ̃) is a principal SL1(D)-bundle over A2

k which admits an extension (P̃ , µ̃)
to P2

k; the bundle P̃ is simply an extension of the D[X,Y ]-module P [Pa-Sr-T, p. 31] (by
abuse of notation, we denote both µ̃ and its extension by the same name). Let N : P →
k[X,Y ] be the norm on P determined by the choice of the trivialization µ̃. The choice of
µ̃ also determines the maps × : P × P → P∨, ×̌ : P∨ × P∨ → P and N∨, hence also ]

and ]̌, see [Pa-Sr-T, p. 16]. Take T (u, v̌) = TD[X,Y ](〈u, v̌〉). The adjoints satisfy the adjoint
identities [Pa-Sr-T, 1.2].

Analogously, µ̃ determines extensions Ñ : P̃ → OX of N , Ñ∨ : P̃∨ → OX of N∨, ]̃ and ˜̌]
of ] and ]̌, which satisfy the adjoint identities. Let T̃ (u, v̌) = TD⊗OX

(〈u, v̌〉).

Proposition 2. The matrix algebra

M(T,N,N∨) =

[
k[X,Y ] P

P∨ k[X,Y ]

]
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over k[X,Y ] admits a unique extension to a matrix algebra

M(T̃ , Ñ , Ñ∨) =

[
OX P̃

P̃∨ OX

]
over P2

k. The vector bundles P̃ and P̃∨ are indecomposable and P̃ and P̃∨ are not isomorphic
as vector bundles on X.

Proof. There is a unique extension P̃ over X = P2
k of P of norm one which is a locally free

right D⊗OX -module: by [Pa-Sr-T, p. 29], P extends to a vector bundle P̃ which is unique
up to a line bundle L. Since we require P̃ to be of norm one this implies L3 ∼= OX , hence
L = OX and the extension is unique. Let N : P → k[X,Y ] be the norm on P determined
by the choice of the trivialization µ̃. Two extensions Ñ : P̃ → OX and, say Ñ ′ : P̃ → OX
of N , can only differ by a scalar λ ∈ k×. Being its extension, the algebra M(T̃ , Ñ , Ñ∨)
restricts to the structurable matrix algebra

M(T,N,N∨) =

[
k[X,Y ] P

P∨ k[X,Y ]

]
over A2

k. Therefore Ñ |A2
k

= N = Ñ ′|A2
k

implies that λ = 1. Thus the maps Ñ : P̃ → OX ,

Ñ∨ : P̃∨ → OX , ]̃ and ˜̌] which are the extensions of the maps N , N∨, ] and ]̌ from A2
k to

P2
k determined by the trivializations µ̃ and µ are uniquley determined as well.

The proof of the second statement follows from [Pa-Sr-T, 3.2]. �

More precisely, by [Pa-Sr-T, Remark] and [AEJ1], P̃ ∼= trl/k(P0) for some cubic field
extension l/k and a suitable vector bundle P0 over P2

l which is absolutely indecomposable
and of rank 3.

2.4. Let J be an Albert algebra over k which is a first Tits construction and a division
algebra. Choose two cyclic division algebras D1, D2 of degree 3 over k such that the Jordan
algebras D+

1 and D+
2 are subalgebras of J with D+

1 ∩D
+
2 = k. By [Pa-Sr-T, 4.3], these can

be even chosen such that D+
2 = Φ(D+

1 ) for a suitable automorphism Φ of J , i.e. we may and
will assume that additionally we have D+

1
∼= D+

2 . Then J = J(D1, e1, µ1) = J(D2, e2, µ2)
for some ei ∈ J and isomorphisms µi : N(Diei) → k. Again, the choice of µi determines a
norm Ni : Di → k, (a scalar multiple of NDi

) and an adjoint ]i : Di → Di (a scalar multiple
of ]Di

), so with Ti(a, b) = TDi
(ab) we obtain the structurable algebra

M = M(T1, N1, N1) ∼= M(T2, N2, N2)

over k. By 2.2, for every i ≥ 1 there exists a pair (P 1
i , µ̃

1
i ), where P 1

i is a non-free projective
D1[X,Y ]-module of rank 1 and µ̃1

i a trivialization of its reduced norm and a polynomial
fi ∈ k[X] such that:

(4) The polynomials fi and fj are coprime for i 6= j and (P 1
i )fi

is free.
(5) The reduction of (P 1

i , µ̃
1
i ) modulo Y is (D1e1, µ1)⊗ k[X].

Similarly, for every i ≥ 1, there is a pair (P 2
i , µ̃

2
i ), where P 2

i is a non-free projective D2[X,Y ]-
module of rank 1 and µ̃2

i a trivialization of its reduced norm and a polynomial gi ∈ k[X]
such that:
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(6) The polynomials gi and gj are coprime for i 6= j, the polynomials fi and gj are
coprime for all i, j, and (P 2

i )gi is free.
(7) The reduction of (P 2

i , µ̃
2
i ) modulo Y is (D2e2, µ2)⊗ k[X].

To each pair (P ji , µ̃
j
i ), j = 1, 2, let N j

i : P ji → k[X,Y ] be the norm on P ji induced by µ̃ji ,
T ji : P ji ×(P ji )∨ → k[X,Y ], T ji (u, v̌) = TDj

(〈u, v̌〉) the usual trace and ]ji the induced adjoint.
Define matrix algebras

M1
i = M(T 1

i , N
1
i , N

1
i
∨

) =

[
k[X,Y ] P 1

i

(P 1
i )∨ k[X,Y ]

]
and

M2
i = M(T 2

i , N
2
i , N

2
i
∨

) =

[
k[X,Y ] P 2

i

(P 2
i )∨ k[X,Y ]

]
of rank 20. Then {M j

i | j = 1, 2, i ≥ 1} is a family of structurable algebras over k[X,Y ] such
that M j

i = M ⊗ k[X] modulo Y and

M1
i ⊗ k[X]fi [Y ] ∼= M ⊗ k[X]fi [Y ], M2

i ⊗ k[X]gi [Y ] ∼= M ⊗ k[X]gi [Y ],

with (fi, fj) = 1 = (gi, gj) for i 6= j, (fi, gj) = 1 for all i, j. As in [Pa-S-T, 4.5] we can then
conclude:

Proposition 3. The matrix algebras M1
i , respectively M2

i , over k[X,Y ] are mutually non-
isomorphic.

Proof. Suppose there are i 6= j such that M1
i
∼= M1

j . Since M1
i and M1

j are extended after
inverting fi and fj , respectively, and since (fi, fj) = 1, M1

i is extended from M ⊗ k[X].
Let τ : X → k be the structure morphism. Since the extension M̃1

i of M1
i to P2

k is unique,
it must be thus isomorphic to τ∗(M). Therefore, the underlying vector bundles must be
isomorphic, i.e.

O2
X ⊕ P̃ 1

i ⊕ P̃ 1
i

∨ ∼= O20
X .

This is a contradiction, since P̃ 1
i is an indecomposable vector bundle by [Pa-Sr-T, 3.2]. �

2.5. Let
π1
i : (P 1

i , µ̃
1
i )⊗ k[X]fi

[Y ]→ (D1e1, µ1)⊗ k[X]fi
[Y ]

and
π2
i : (P 2

i , µ̃
2
i )⊗ k[X]gi

[Y ]→ (D1e2, µ2)⊗ k[X]gi
[Y ]

be isomorphisms such that πji =id, j = 1, 2 (we may assume this by [Pa-S-T, 6.1]). These
canonically induce isomorphisms

M(π1
i ) : M1

i ⊗ k[X]fi [Y ]→M ⊗ k[X]fi [Y ]

and
M(π2

i ) : M2
i ⊗ k[X]gi

[Y ]→M ⊗ k[X]gi
[Y ]

with M(πji ) =id, j = 1, 2. Let Mi be the structurable algebra obtained by patching M1
i on

k[X]gi
[Y ] and M2

i on k[X]fi
[Y ] over k[X]figi

[Y ] by φi = M(π2
i )−1M(π1

i ).
We obtain an involution : Mi →Mi by analogously patching the involutions of M1

i on
k[X]gi [Y ] and of M2

i on k[X]fi [Y ] over k[X]figi [Y ] by φi = M(π2
i )−1M(π1

i ).
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Since M j
i = M modulo Y and M(πji ) =id, we get φi =id and Mi = M ⊗ k[X] modulo Y .

By construction,

Mi ⊗ k[X]figi
[Y ] ∼= M ⊗ k[X]figi

[Y ]

and the polynomials ri := figi are mutually coprime. The algebras Mi are mutually non-
isomorphic by the same argument as given in [Pa-Sr-T, p. 33] using Proposition 4 and thus
we can conclude:

Theorem 4. The structurable algebras Mi on A2
k have the following properties:

(i) Mi = M ⊗ k[X] modulo Y .
(ii) There are mutually coprime polynomials ri ∈ k[X] such that Mi ⊗ k[X]ri [Y ] ∼= M ⊗
k[X]ri [Y ].
(iii) The algebras Mi are non-extended and mutually non-isomorphic.

Proof. By construction, we have

Mi ⊗ k[X]figi
[Y ] ∼= M ⊗ k[X]figi

[Y ]

and the polynomials ri = figi are mutually coprime. To show that the algebras Mi are
mutually non-isomorphic, suppose that there are i 6= j such that Mi

∼= Mj . Then both
(Mi)ri

and (Mi)rj
are extended from M . Since (ri, rj) = 1, Mi

∼= M ⊗ k[X,Y ]. Restrict
Mi to k[X]gi

[Y ]. This yields that M1
i ⊗ k[X]gi

[Y ] and M1
i ⊗ k[X]fi

[Y ] are extended. Since
(fi, gi) = 1, M1

i is extended from M . This contradicts Proposition 3. �

Note that all the ingredients for the above proofs have been provided in [Pa-Sr-T, Section
4].

It is is not clear that these structurable algebras are again matrix algebras. We are not
able to say if the corresponding principal G-bundle PMi

admits reduction of the structure
group to a proper reductive subgroup of G or not. They are subalgebras of a 56-dimensional
matrix algebra:

2.6. Let J1
i (resp. J2

i ) be the infinitely many mutually non-isomorphic Albert algebras over
k[X,Y ] used in [Pa-Sr-T, Proposition 4.5]. These give rise to infinitely many matrix algebras

M(J1
i ) =

[
k[X,Y ] J1

i

J1
i k[X,Y ]

]
,

resp.

M(J2
i ) =

[
k[X,Y ] J2

i

J2
i k[X,Y ]

]
over k[X,Y ] of rank 56 which contain the mutually non-isomorphic subalgebras

M1
i = M(T 1

i , N
1
i , N

1
i
∨

) =

[
k[X,Y ] P 1

i

(P 1
i )∨ k[X,Y ]

]
,

resp.

M2
i = M(T 2

i , N
2
i , N

2
i
∨

) =

[
k[X,Y ] P 2

i

(P 2
i )∨ k[X,Y ]

]
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of rank 20 which are stable under the involution . They also contain the subalgebra

M(D1) = M(TD1 , ND1 , ND1) =

[
k[X,Y ] D1

D1 k[X,Y ]

]
,

resp.

M(D2) = M(TD2 , ND2 , ND2) =

[
k[X,Y ] D2

D2 k[X,Y ]

]
of rank 20 which is again stable under the involution [Pu3, Theorem 10].

Let Ji be the Jordan algebra we get if we patch J1
i on k[X]gi [Y ] and J2

i on k[X]fi [Y ] over
k[X]figi

[Y ] using the isomorphisms J(π1
i ), resp. J(π2

i ), which are canonically induced by
the πji , j = 1, 2, as described in [Pa-Sr-T, p. 32]. The algebras Ji are non-extended, mutually
non-isomorphic and no longer a first Tits construction starting with some Azumaya algebra
of degree 3 [Pa-Sr-T, 6.3]. The matrix algebra

M(Ji) =

[
k[X,Y ] Ji

Ji k[X,Y ]

]
.

can then be also viewed as obtained from the matrix algebras

M(J1
i ) =

[
k[X,Y ] J1

i

J1
i k[X,Y ]

]
and M(J2

i ) =

[
k[X,Y ] J2

i

J2
i k[X,Y ]

]
by patching them using the obvious induced isomorphisms. Call them S(πji ), j = 1, 2.

By construction, Mi is then clearly a subalgebra of the matrix algebra M(Ji) (the iso-
morphisms used to patch it are restrictions of the S(πji )) and there are mutually coprime
polynomials ri ∈ k[X] with M(Ji) ⊗ k[X]ri

[Y ] ∼= M(J) ⊗ k[X]ri
[Y ] and Mi ⊗ k[X]ri

[Y ] ∼=
M ⊗ k[X]ri

[Y ], where M ∼= M(D+
1 ) ∼= M(D+

2 ) ⊂M(J).

Remark 5. We observe independently of this that be the infinitely many mutually non-
isomorphic reduced Albert algebras Ai over k[X,Y ] constructed in [Pa-S-T, Step I and 6.2]
also give rise to matrix algebras

Hi =

[
k[X,Y ] Ai

Ai k[X,Y ]

]
over k[X,Y ] of rank 56 which are mutually non-isomorphic, which is proved analogously to
[Pa-S-T, 6.2].

3. Structurable algebras over A2
k which are forms of matrix algebras

Remark 6. Let T be a quadratic étale algebra over k[X,Y ] with anisotropic norm. As
in [Pa-S-T, 4.6] one can see that T extends uniquely to a quadratic étale algebra T =
Cay(OX ,L, N) over X = P2

k. Since PicX = Z, L ∼= OX and T is defined over k, thus so is
T . We conclude that every quadratic étale algebra over k[X,Y ] with anisotropic norm is of
the kind K⊗k k[X,Y ] ∼= K[X,Y ] with K = k(

√
c) a separable quadratic field extension. As

a consequence, every quadratic étale ring extension R′ of k[X,Y ] satisfies R′ = k(
√
c)[X,Y ]

and every form of a matrix algebra of the type S(B, ∗, P,N, h), B a central simple algebra
over R′ has S(A, ) = (

√
c, 0)R.
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3.1. Let K be a separable quadratic field extension of k. Let D be a central division
algebra over K of degree 3 with an involution σ of the second kind over K/k. Let X = P2

k,
X ′ = X ⊗k K = P2

K and D = D ⊗K OX′ .

Proposition 7. Let P be a nonfree projective left D[X,Y ]-module of rank one. The struc-
turable algebra S(D,σ, P,N) = K[X,Y ] ⊕ P over k[X,Y ] admits a unique extension to a
structurable algebra S(D, σ, P̃ , N) = OX′ ⊕ P̃ over X = P2

k. The vector bundle P̃ over X ′

is indecomposable.

Proof. There is a unique extension of the quadratic étale algebra K[X,Y ] over k[X,Y ] to
a quadratic étale algebra OX′ = K ⊗k OX over X. There is a unique extension P̃ over
X ′ = P2

K of P of norm one which is a locally free left D-module: by [Pa-Sr-T, p. 29], P
extends to a vector bundle P̃ over X ′ which is unique up to a line bundle L ∈ PicX ′. Since
we require P̃ to be of norm one this implies L3 ∼= OX′ , hence L = OX′ and the extension
is unique. More precisely, by [Pa-Sr-T, Remark] and [AEJ1], P̃ ∼= trL′/K′(P0) for some
cubic field extension L′/K ′ and a suitable vector bundle P over P2

L′ which is absolutely
indecomposable and must have rank 3. In particular, N and h can be extended as well.

The algebra S(D, σ, P̃ , N) = OX′⊕P̃ restricts to the structurable algebra S(D,σ, P,N) =
K[X,Y ]⊕ P over A2

k. The second statement follows from [Pa-Sr-T, 3.2]. �

3.2. Let K be a separable quadratic field extension of k. Let D be a central division
algebra over K of degree 3 with an involution σ of the second kind over K/k. Let (u, µ) be
an admissible scalar, i.e. µ ∈ K×, c ∈ H(B, ∗B)× and NB(c) = µµ∗. By [Pa-Sr-T, p. 33],
there exists a projective left D[X,Y ]-module P of rank 1 together with a nondegenerate
hermitian form h : P × P → D[X,Y ] and a trivialization µ̃ : disc(h)→ (K[X,Y ], 〈1〉) such
that:

(8) The reduction of (P, h, µ̃) modulo Y is isomorphic to (D, 〈u〉, µ), where 〈u〉 denotes
the hermitan form a→ auσ(a) and µ is treated as a trivialization of the discriminant
of 〈u〉. Moreover, (De, ue, µe) ⊗ k[X] = (P, h, µ̃) modulo Y , where De is the free
module of rank one over D with e a basis element, ue the hermitian form on De

given by ue(xe, ye) = xuσ(y) and µeND(e) = µ.
(9) There exists f ∈ k[X], f(0) 6= 0, such that (P, h, µ̃) ⊗ k[X]f [Y ] ∼= (D, 〈u〉, µ) ⊗

k[X]f [Y ].
(10) The principal SU(D,σ)-bundle on A2

k associated to (P, h, µ̃) admits no reduction of
the structure group to any proper connected reductive subgroup of SU(D,σ). In
particular, (P, h, µ̃) is not extended from (D, 〈u〉, µ).

Now let J be an Albert division algebra over k which is a second Tits construction but not
a first one. We may write

J = J(D1e1, ue1 , µe1) = J(D2e2, ue2 , µe2)

where D1, D2 are two isomorphic central simple algebras of degree 3 over a quadratic
extension F/k with involution σ1, σ2 of the second kind and norms N1 and N2, such that
H(D1, σ1) ∩H(D2, σ2) = k [Pa-Sr-T, 5.2].
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Define the structurable algebra

A = S(D1, σ1, D1, N1, ue1) ∼= S(D2, σ2, D2, N2, ue2).

By [Pa-Sr-T, p. 35], there exist non-trivial hermitian spaces (P i1, h
i
1, µ̃

i
1) over (D1[X,Y ], σ1)

and (P i2, h
i
2, µ̃

i
2) over (D2[X,Y ], σ2) of rank 1, and fi, gi ∈ k[X] such that:

(11) (P i1, h
i
1, µ̃

i
1) modulo Y reduces to (D1e1, ue1 , µe1), (P i2, h

i
2, µ̃

i
2) modulo Y reduces to

(D2e2, ue2 , µe2).
(12) (P i1, h

i
1, µ̃

i
1)⊗k[X]fi

[Y ] is isomorphic to (D1e1, ue1 , µe1)⊗k[X]fi
[Y ] and (P i2, h

i
2, µ̃

i
2)⊗

k[X]gi [Y ] is isomorphic to (D2e2, ue2 , µe2) ⊗ k[X]gi [Y ] with (fi, fj) = 1 = (gi, gj)
for all i 6= j and (fi, gj) = 1 for all i, j.

(13) The vector bundles (P i1, h
i
1) and (P i2, h

i
2) are not extended from D1 and D2, respec-

tively.

Let N i
j : P ij → Dj [X,Y ] denote the norm on P ij determined by the choice of µ̃ij , j = 1, 2.

We define two families of structurable algebras

Ai1 = S(D1, σ1, P i1, N
i
1, h

i
1) and Ai2 = S(D2, σ2, P i2, N

i
2, h

i
2)

over k[X,Y ] with underlying modules structures

Ai1
∼= K[X,Y ]⊕ P i1 and Ai2

∼= K[X,Y ]⊕ P i2.

Let

πi1 : (P i1, h
i
1, µ̃

i
1)fi
→ (D1e1, ue1 , µe1)⊗ k[X]fi

[Y ]

and

πi2 : (P i2, h
i
2, µ̃

i
2)gi
→ (D2e2, ue2 , µe2)⊗ k[X]gi

[Y ]

be isometries such that πij =id for j = 1, 2. These isometries induce isomorphisms

A(πi1) : Ai1 ⊗ k[X]fi
[Y ]→ A⊗ k[X]fi

[Y ]

and

A(πi1) : Ai2 ⊗ k[X]gi
[Y ]→ A⊗ k[X]gi

[Y ]

which reduce to the identity map modulo Y .

Proposition 8. The structurable algebras Ai1 and Ai2 over k[X,Y ] have the following prop-
erties:
(i) Ai1 and Ai2 modulo Y reduce to A.
(ii) Ai1 ⊗ k[X]fi

[Y ] is extended from A ⊗ k[X]fi
[Y ] and Ai2 ⊗ k[X]gi

[Y ] is extended from
A⊗ k[X]gi

[Y ], with (fi, fj) = 1 = (gi, gj) for i 6= j, (fi, gj) = 1 for all i, j.
(iii) Aij ⊗k K ∼= M(T ij , N

i
j , N

i∨
j ) = M i

j for j = 1, 2, where the matrix algebras M i
j are the

ones constructed in Section 2.4.
(iv) All the Ai1 are mutually non-isomorphic and all the Ai2 are mutually non-isomorphic.

Proof. The properties (i) and (ii) are immediate consequences of the properties of (P ij , h
i
j , µ̃

i
j).

Property (iii) follows from the construction of the algebras. We use the identification from
the proof of [Pu3, Theorem 20].
(iv) Since Ai1 ⊗k K ∼= M(T ij , N

i
j , N

i
j) is not extended from M = M(TD1 , N1, N1) and P i1
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is not free, it follows that Ai1 is not extended from A by [BCW]. Thus the algebras Ai1 are
mutually non-isomorphic. The same argument holds for the Ai2. �

We now patch the structurable algebras (Ai1)gi over k[X]gi [Y ] and (Ai2)fi over k[X]fi [Y ]
over k[X]figi

[Y ] and their involutions using the isomorphism

ψi : Ai1 ⊗ k[X]figi
[Y ]→ Ai2 ⊗ k[X]figi

[Y ],

ψi = A(πi2)−1A(πi1).

This way we obtain a structurable algebra Ai over k[X,Y ].

Theorem 9. The structurable algebras Ai over A2
k have the following properties:

(1) Ai = A⊗ k[X] modulo Y .
(2) There exists πi : Ai ⊗ k[X]si

[Y ] → A ⊗ k[X]si
[Y ] such that πi = id, for some

si ∈ k[X] with (si, sj) = 1 for i 6= j.
(3) The Ai are mutually non-isomorphic.
(4) Ai ⊗k K ∼= Mi with the Mi as constructed in 2.5.

Proof. Since Aij reduces modulo Y to A and ψi = id, Ai reduces modulo Y to A. By
construction,

Ai ⊗ k[X]]figi
[Y ] ∼= A⊗ k[X]figi

[Y ]

and the polynomials si := figi satisfy (si, sj) = 1 for i 6= j. As in the proof of Theorem 4,
it follows that the Ai are mutually non-isomorphic. �

Again, the ingredients for the results were provided by [Pa-Sr-T, Section 5].

4. On extending structurable algebras from the affine to the projective

plane

We conclude with some general results about extending structurable algebras from the
affine to the projective plane, imitating the techniques used in [Pa-S-T, 4.1, 4.2, 4.3]. Let R
be a domain with 1/6 ∈ R.

4.1. For a structurable algebra (A, ), an isotopy from (A, ) to (A, ) is an element α ∈
GL(A) such that

α{x, y, z} = {α(x), α̂(y), α(z)}

for all x, y, z ∈ A and some α̂ ∈ GL(A). α̂ is uniquely determined by α. The structure group
Γ(A, ) of (A, ) is the subgroup of GL(A) which consists of all isotopies of (A, ) onto itself.

Let (A, ) be a structurable algebra of skew-rank one such that S(A, ) = s0R for some
s0 ∈ S(A, ) which is conjugate invertible, which means that left multiplication Ls0 with s0

is invertible. Since ŝ0 ∈ S(A, ) for its conjugate inverse ŝ0, there is β ∈ R, β 6= 0, such that
ŝ0 = βs0 and since s0ŝ0 = −1A we obtain βs2

0 = −1A. Assume that β ∈ R× and denote
c = β−1. Then s2

0 = c1A with c ∈ R×. Suppose in addition that the invertible elements in
(A, ) are Zariski dense in A. Then we can define a (conjugate) norm ν : A→ R on A via

ν(x) =
1

12c
χ(s0x, {x, s0x, x}),
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a trace χ : A×A→ R on A by

χ(x, y) =
2
c
ψ(s0x, y)s0 =

2
c

(V δy,xs0)s0

and a nondegenerate skew-symmetric bilinear form on A

〈x, y〉 = ψ(x, y)s0 =
1
2
χ(s0x, y)

analogously as in [A-F1, 2] where ψ(x, y) = xȳ − yx̄ [A-F2, 5.4]. (The nondegeneracy of
〈 , 〉 follows from [A-F1, p. 192] applied to the residue class forms.) ν is a quartic form such
that ν(1A) = 1. χ is a nondegenerate symmetric bilinear form independent of the choice of
s0 and χ(1A, 1A) = 4. (Nondegeneracy follows from [A-F1, Proposition 2.5] applied to the
residue class forms.) Note that if desired, A can be viewed as a Freudenthal triple system
as explained in [A-F1, 2.18] in this setting. An element x ∈ A is conjugate invertible iff
ν(x) 6= 0 [A-F2, 4.4]. So if the norm is anisotropic, every non-zero element of A is conjugate
invertible and, if R is a field, (A, ) a conjugate division algebra [A-F1, 2.11]. The norm ν

is a semi-invariant for the structure group Γ(A, ) which is proved analogously as in [A-F2,
4.7]. Denote the group of all invertible linear transformations on A that preserve the norm
and the skew-symmetric bilinear form 〈 , 〉 by Inv(A).

Theorem 10. Let (A1, ) and (A2, ) be structurable algebras of skew-rank one over R.
Suppose that (A2, ) satisfies all of the criteria in 4.1, i.e. carries a conjugate norm, and
that the conjugate norm of (A2 ⊗R/(p), ) is anisotropic. Let

α : (A1 ⊗R[1/p], )→ (A2 ⊗R[1/p], )

be an isotopy of structurable algebras. Then α extends uniquely to an isotopy

α̃ : (A1, )→ (A2, ).

In particular, every isomorphism α : (A1⊗R[1/p], )→ (A2⊗R[1/p], ) of the structurable
algebras (A1, ) and (A2, ) extends uniquely to an isomorphism α̃ : (A1, )→ (A2, ).

Proof. We show that α(A1) = A2 which is sufficient: let x ∈ A1 and assume that α(x) 6∈ A2.
Let n be the least integer such that y = pnα(x) ∈ A2 and pn−1α(x) 6∈ A2. Then n ≥ 1.
ν is a semi-invariant for the structure group of (A, ), i.e. there is 0 6= r ∈ R such that
ν(α(x)) = rν(x) for all x ∈ A1. Thus we obtain ν(y) = rp4nν(x). Hence ν(y) = 0 modulo
p and y 6= 0 modulo p. This contradicts the assumption that the norm ν ⊗ R/(p) of
(A2 ⊗R/(p), ) is anisotropic. �

4.2. There is the obvious notion of a structurable algebra over a locally ringed space, cf.
[Pu3, Section 6]. Let (A, ) be a structurable algebra of skew-rank one over X = Pnk such
that S(A, ) = s0OX for some s0 ∈ H0(X,S(A, )) = k which is conjugate invertible, which
means that left multiplication Ls0 with s0 is invertible. Since ŝ0 ∈ H0(X,S(A, )) for its
conjugate inverse ŝ0, there is c ∈ k×, such that ŝ0 = −c−1s0 and since s0ŝ0 = −1A we
obtain s2

0 = c1A. Suppose in addition that the invertible elements in H0(U, (A, )) are
Zariski dense in H0(U,A) for every open subset U ⊂ X. Then we can define a (conjugate)
norm ν : A→ OX via

ν(x) =
1

12c
χ(s0x, {x, s0x, x}),
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a trace χ : A×A→ OX on A by

χ(x, y) =
2
c
ψ(s0x, y)s0 =

2
c

(V δy,xs0)s0

and a nondegenerate skew-symmetric bilinear form ν : A×A→ OX

〈x, y〉 = ψ(x, y)s0 =
1
2
χ(s0x, y)

analogously as in 4.1, ψ(x, y) = xȳ − yx̄. ν is a quartic form such that ν(1A) = 1. χ is a
nondegenerate symmetric bilinear form independent of the choice of s0 and χ(1A, 1A) = 4.

Theorem 10 now implies:

Corollary 11. Let (A1, 1), (A2, 2) be two structurable algebras of skew-rank one over Pnk
which satisfy the assumptions of 4.2. Suppose that the restrictions (A1)ξ and (A2)ξ to the
generic point ξ have anisotropic norms. Then every isotopy α : A1 → A2 over Ank extends
uniquely to an isotopy α̃ : A1 → A2 over Pnk . In particular, every isomorphism α : A1 → A2

over Ank extends uniquely to an isomorphism α̃ : A1 → A2 over Pnk .

The proof is verbatim the proof of [Pa-S-T, 4.3], substituting ’isotopy’ respectively ’iso-
morphism’ for ’isometry’ throughout.

From Corollary 12 and [Pa-S-T, 4.5] we obtain:

Corollary 12. Let k have characteristic 0. Let (A, ) be a structurable algebra of skew-rank
one over A2

k satisfying the conditions of 4.1, such that its restriction Aξ to the generic point
ξ has an anisotropic norm. Then (A, ) extends uniquely to an algebra (A, ) over P2

k.
If H = Inv(A) is a connected reductive algebraic group defined over k then every H-bundle
over A2

k extends to P2
k as an H-bundle.

If the structurable algebra bundle has rank 56 and admits a reduction of the structure group
to a proper connected reductive subgroup of E7, its corresponding extension to P2

k has the
same property.
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