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Abstract. Let R be a ring such that 2, 3 ∈ R×. We construct classes of structurable

algebras over R whose residue class algebras have skew-dimension 1, which are matrix

algebras or forms of matrix algebras which do not necessarily arise out of separable Jordan

algebras of degree 3. As an application, we give canonical examples of structurable

algebras of large dimension.

Introduction

Let k be a field of characteristic not 2 or 3. Let A be a unital nonassociative algebra over
k with an involution . The pair (A, ) is called a structurable algebra if

{x, y, {z, w, q}} − {z, w, {x, y, q}} = {{x, y, z}, w, q} − {z, {y, x, w}, q}

for x, y, z, w, q ∈ A, where

{x, y, z} = (xȳ)z + (zȳ)x− (zx̄)y.

Structurable algebras were introduced by Allison [A1]. Examples of structurable algebras
include associative and alternative algebras with involution, Jordan algebras with the trivial
involution id, and tensor products of two composition algebras with involution the tensor
product of their canonical involutions [A1, Theorem 13]. An analogue of the Köcher-Kantor-
Tits functor gives a correspondence between a structurable algebra and a Lie algebra. Using
this functor all classical simple isotropic Lie algebras can be obtained [A2].

Define S(A, ) = {a ∈ A |σ(a) = −a}. If dimkS(A, ) = 0 then the structurable algebra
(A, ) over k is a Jordan algebra [A1, p. 135]. In the introduction of [A3], Allison mentions
that simple structurable algebras of skew-dimension one are in a sense those structurable
algebras closest to Jordan algebras. Our two constructions will highlight a close connection
to cubic Jordan algebras.

Let R be a ring such that 2, 3 ∈ R×. In the present paper we present two classes of
structurable algebras (A, ) over R, whose residue class algebras A(P ) are central simple
structurable algebras of skew-dimension one, i.e. dimk(P )S(A(P ), ) = 1. Over a field of
characteristic not 2, 3 or 5, every structurable algebra of skew-dimension one is a form of
a 2 × 2 matrix algebra with off-diagonal entries from a cubic Jordan algebra. The first
class of algebras introduced in our paper are matrix algebras of rank 4, 8 or 20 which
do not necessarily arise from the generic trace and norm of separable Jordan algebras of
degree 3 together with a suitable non-zero scalar as described in [A-F, p. 195] (for an earlier
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reference consult [Sp1, 2]). However, this classical construction occurs as a special case.
There is a clear connection between these matrix algebras and the first Tits construction
for cubic Jordan algebras over rings. Both have the same ‘ingredients’. The second class of
structurable algebras we define becomes a matrix algebra under a suitable ring extension.
This construction is connected to the second Tits construction for cubic Jordan algebras over
rings. Again, both have the same ‘ingredients’. Moreover, both constructions presented here
are related to and overlap with the one given in [A-F-Y], Section 7.

The contents of the paper are as follows. We briefly summarize results and terminology
we need to know in Sections 1 and 2. Given a unital associative algebra B over a ring R′ with
involution ∗, we explain the general setup of norms, traces and adjoints defined on locally
free B-modules of rank 1 in Section 3. These results we use repeatedly in the rest of the
paper. Section 4 contains the first main result of the paper. It deals with matrix algebras
over R and their automorphism groups. Section 5 deals with the second main result: a
construction of structurable algebras of rank ≤ 20 which are forms of the matrix algebras
of Section 4.

One application of our previous results will be discussed in Section 6. Looking at struc-
turable algebras over the projective space Pn

R, by passing to their global sections we canoni-
cally construct classes of structurable algebras M(T,N,N∨) over R of large dimension, with
highly degenerate cubic forms N , N∨.

We will repeatedly use the results and notation from [Pu1, 2] and [Pa-Sr-T]. The approach
taken in [Pu1, 2] which goes back to [Ach1, 2] is different from the one in [Pa-Sr-T]. Both
techniques have advantages and disadvantages. The method introduced in [Pa-Sr-T] is
more functorial, while the one in [Pu1, 2] works in a much more general setting. Both were
developed to generalize the first and second Tits construction of Jordan algebras of degree
3 to base rings.

For the standard terminology on Jordan algebras, the reader is referred to the books by
McCrimmon [M], Jacobson [J1] and Schafer [Sch]. For recent related literature on struc-
turable algebras, see for instance [A-F-Y], [Kr], [G].

We assume throughout the paper that R is a ring such that 2, 3 ∈ R×.

1. Preliminaries

1.1. Forms of higher degree over R. Let d be a positive integer. Let M , G be two
R-modules which are finitely generated projective of finite rank. When talking about maps
of degree d, we will always assume that d! ∈ R×. A map of degree d over R is a map
N : M → G such that N(ax) = adN(x) for all elements a ∈ R, x ∈ M , where the map

θ : M × · · · ×M → G

defined by

θ(x1, . . . , xd) =
1
d!

∑
1≤i1<···<il≤d

(−1)d−lN(xi1 + · · ·+ xil
)

is a d-linear map over R (the range of summation of l being 1 ≤ l ≤ d). Obviously,
N(x) = θ(x, . . . , x) for all x ∈ M . We canonically identify a map of degree d and its
associated symmetric d-linear map θ.
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If G = R, then a map of degree d is called a form of degree d, θ is called the symmetric
d-linear form associated with N .

A form N : M → R of degree d on a locally free R-module of finite rank with full support
is called nondegenerate if N(P ) : M(P ) → k(P ) is nondegenerate in the classical sense for
all P ∈ Spec R. I.e., the residue maps θ′ ⊗ k(P ) of the map

θ′ : M → HomR(M ⊗ · · · ⊗M,R)

((d− 1)-copies of M) defined by

x1 → θx1(x2 ⊗ · · · ⊗ xd) = θ(x1, x2, . . . , xd).

are injective for all P ∈ X. This concept of nondegeneracy is invariant under base change.

1.2. Algebras over R. For P ∈ Spec R, let RP be the local ring of R at P and mP the
maximal ideal of RP . The corresponding residue class field is denoted by k(P ) = RP /mP .
For an R-module F the localization of F at P is denoted by FP . The rank of F is defined
to be sup{rankRP

FP |P ∈ Spec R}. The term “R-algebra” always refers to nonassociative
R-algebras which are unital and projective of finite constant rank as R-modules. An algebra
A over R is called separable if A(P ) is a separable k(P )-algebra for all P ∈ X.

For an R-algebra A, an anti-automorphism σ : A → A of order 2 is called an involution
on A. Define H(A, σ) = {a ∈ A |σ(a) = a} and S(A, σ) = {a ∈ A |σ(a) = −a}. Then
A = H(A, σ)⊕ S(A, σ).

1.3. Jordan algebras over R. (see [Pu1])
Let J be an R-module. (J, U, 1) with 1 ∈ J is a (unital quadratic) Jordan algebra over R

if:

(1) The U -operator U : J → EndR(J), x → Ux is a quadratic map;
(2) U1 = idJ ;
(3) UUx(y) = Ux ◦ Uy ◦ Ux for all elements x, y ∈ J ;
(4) Ux ◦ Uy,z(x) = Ux,Ux(z)(y) for all elements x, y, z ∈ J ;
(5) for every commutative associative R-algebra R′, J ⊗R R′ satisfies (3) and (4).

We write J instead of (J, U, 1).
An R-algebra J is called an Albert algebra if J(P ) = JP ⊗ k(P ) is an Albert algebra over

k(P ) for all P ∈ X. This terminology is compatible with the one used in [Pa-S-T], cf. [P1,
Section 2].

1.4. Cubic forms with adjoint and base point. Let W be an R-module. Following [P-
R1] or [Ach], a tripel (N, ], 1) is a cubic form with adjoint and base point on W if N : W → R

is a cubic form, ] : W → W a quadratic map and 1 ∈ W , such that

x] ] = N(x)x,

T (x], y) = DyN(x) for T (x, y) = −DxDylogN(1),
N(1) = 1, 1] = 1,

1× y = T (y)1− y with T (y) = T (y, 1), x× y = (x + y)] − x] − y]
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for all elements x, y ∈ W . Here, DyN(x) denotes the directional derivative of N in the
direction y, evaluated at x. Since we assume that 2, 3 ∈ R×, this means that the quadratic
map DyN(x) is the coefficient N(x; y) of the indeterminant Z in the expansion

N(x + Zy) = N(x) + ZN(x; y) + Z2N(y;x) + Z3N(y)

and that T (x], y) = 3N(x, x, y) [M, p. 200].
Let DxDyN denote the bilinearization of the quadratic form DyN and DxDyN(z) =

DyN(x, z). The term DxDylogN(z) is defined by

DxDylogN(z) = N(z)−2[N(z)DxDyN(z)−DxN(z)DyN(z)]

for all elements x, y, z ∈ W with N(z) ∈ R×. Hence

T (x, y) = DxN(1)DyN(1)−DxDyN(1) = T (x)T (y)− S(x, y)

with S(x, y) = 6N(x, y, 1). The symmetric bilinear form T : W ×W → R is called the trace
form of W .

Every cubic form with adjoint and base point (N, ], 1) on a locally free R-module W of
finite rank defines a unital Jordan algebra structure J (N, ], 1) = (W,U, 1) on W via

Ux(y) = T (x, y)x− x] × y

for all x, y ∈ W , where the identities given in [P-R1, p. 213] hold for all elements in W .

1.5. Structurable algebras. An algebra with involution is a pair (A, ) consisting of an R-
algebra A and an involution : A → A. A structurable algebra is an algebra with involution
(A, ) satisfying

{x, y, {z, w, q}} − {z, w, {x, y, q}} = {{x, y, z}, w, q} − {z, {y, x, w}, q}

for all elements x, y, z, w, q ∈ A, where

{x, y, z} = (xȳ)z + (zȳ)x− (zx̄)y

[A1, (3) and Cor. 5]. If B is an R-submodule if A which is closed under multiplication, we
call B a subalgebra of A. If, additionally, B = B then we call (B, ) a subalgebra of (A, ).

An ideal of (A, ) is an ideal of A which is stabilized by . We call an algebra with
involution (A, ) over k simple if the only ideals of (A, ) are 0 and A and central if

Z(A, ) = {x ∈ A |xy = yx for all y ∈ A and x̄ = x}

equals k. In the following, we will investigate structurable algebras (A, ) over R, where
the residue class algebras A(P ) are central simple structurable algebras of skew-dimension
1, i.e. of dimk(P )S(A(P ), ) = 1.
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2. Matrix algebras

The following is well-known over fields and easily extends to base rings. Let W and W ′ be
two finitely generated projective R-modules of constant rank with cubic forms N : W → R

and N ′ : W ′ → R, paired by a nondegenerate bilinear form T : W ×W ′ → R. That is, T

induces R-module isomorphisms

T : W → HomR(W ′, R), x 7→ T (x, ·)

and
T : W ′ → HomR(W,R), y′ 7→ T (·, y′).

We say that the triple (T,N,N ′) is defined on (W,W ′). Let x ∈ W , x′ ∈ W ′ and define
quadratic maps ] : W → W ′ and ]′ : W ′ → W via

DyN(x) = T (y, x]) and Dy′N
′(x′) = T (x′ ]

′
, y′)

for all elements x, y ∈ W , x′, y′ ∈ W ′. I.e.,

3N(x, x, y) = T (y, x]) and 3N ′(x′, x′, y′) = T (x′]
′
, y′).

The triple (T,N,N ′) satisfies the adjoint identities if

(x]) ]′ = N(x)x and (x′ ]
′
)] = N ′(x′)x′.

If N = 0 and N ′ = 0 these identities are trivially satisfied. If N 6= 0 or N ′ 6= 0 then both N

and N ′ are nonzero and (T,N,N ′) is called non-trivial.
Let (T,N,N ′) be a triple defined on (W,W ′). Let N(x, y, z) denote the trilinear form
associated with N and N ′(x′, y′, z′) the trilinear form associated with N ′. Define symmetric
bilinear maps × : W ×W → W ′ and ×′ : W ′ ×W ′ → W via

x× y = (x + y)] − x] − y], x′ ×′ y′ = (x′ + y′)]′ − x′]
′
− y′]

′
.

Then
x] =

1
2
x× x, x′ ]

′
=

1
2
x′ ×′ x′,

N(x, y, z) = T (x, y × z), N ′(x′, y′, z′) = T (x′ ×′ y′, z′).

Theorem 1. Suppose the triple (T,N,N ′) satisfies the adjoint identities. Then the R-
module

M(T,N,N ′) =

[
R W

W ′ R

]
.

becomes a structurable algebra over R with multiplication given by[
a x

x′ b

] [
c y

y′ d

]
=

[
ac + T (x, y′) ay + dx + x′ ×′ y′

cx′ + by′ + x× y bd + T (y, x′)

]
and involution [

a x

x′ b

]
=

[
b x

x′ a

]
.

For the symmetric elements, we have S(M(T,N,N ′)) ∼= R s0 for the global section

s0 =

[
1 0
0 −1

]
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and the residue class algebras A(P ) = AP ⊗ k(P ) are central simple structurable algebras of
skew-dimension 1 over k(P ).

Proof. The defining identity of a structurable algebra is satisfied as in the classical case over
fields. For P ∈ X, we have

M(T,N,N ′)P
∼= M(TP , NP , N ′

P )

and

M(T,N,N ′)P ⊗RP
k(P ) ∼= M(T (P ), N(P ), N ′(P )),

is a central simple structurable algebra. Moreover, S(M(T,N,N ′)) = R s0 for the global
section s0 as in [A-F, p. 195]. �

Let

u =

[
a x

x′ b

]
and

v =

[
c y

y′ d

]
with a, b, c, d ∈ R and x, y ∈ W , x′, y′ ∈ W ′.

Remark 2. Suppose the triple (T,N,N ′) satisfies the adjoint identities. Then q : M(T,N,N ′) →
R,

q(x) = 4aN(x) + 4bN ′(x′)− 4T (x′ ]
′
, x]) + (ab− T (x, x′))2,

is a quartic form such that q(1) = 1 (see also [Kr]). For each P ∈ Spec R, the quartic residue
class form q ⊗R k(P ) over k(P ) is 2-round [Pu3].

Lemma 3. Let (N, ], 1) be a cubic form with adjoint and base point on W such that
T (x, y) = −DxDylogN(1) is nondegenerate. Let µ ∈ R×.

(i) (µT, µN, µ2N) is a non-trivial triple defined on (W,W ) which satisfies the adjoint iden-
tities.
(ii) Let (Ñ , ]̃, 1̃) be a cubic form with adjoint and base point on W̃ , such that T̃ (x, y) =
−DxDylogÑ(1) is nondegenerate and f : W → W̃ an R-module isomorphism such that
Ñ(f(x)) = N(x), f(x)̃] = f(x]) and f(1) = 1̃. Then

M(µT, µN, µ2N) ∼= M(µT̃ , µÑ , µ2Ñ).

Proof. (i) This follows from 1.4.
(ii) f induces a Jordan algebra isomorphism f : J(N, ], 1) → J(Ñ , ]̃, 1̃), which yields the
assertion. �

Over a field k, any non-trivial triple (T,N,N ′) satisfying the adjoint identities which is
defined on a k-vector space W of dimension larger than 2, is isomorphic to (µT, µN, µ2N)
for a suitable µ ∈ k× and a separable Jordan algebra over k of degree 3 with reduced trace
T and norm N and M(T,N,N ′) ∼= M(µT, µN, µ2N) [Sp1, 2]. In Section 4 we will see that
this is no longer true over rings.
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3. The setup

The results in this section are due to Achammer [Ach] and can be found with proofs in
[Pu1] as part of the Tits process for Jordan algebras over locally ringed spaces.

Remark 4. The results of this section, apart from Remark 5 (ii), hold for arbitrary rings,
the restriction that 2, 3 ∈ R′× can be omitted. In that case, we work with the more general
notion of a quadratic and cubic map viewed as certain polynomial laws between R-modules,
see [R]. If 2, 3 6∈ R× this definition is equivalent to the one given in 1.1.

3.1. Let R′ be a ring, X = Spec R′ and B a unital associative R′-algebra. Write B× for
the sheaf of units of B. Let PiclB denote the set of isomorphism classes of locally free left
B-modules of rank 1. PiclB is a pointed set. By non-commutative Čech-cohomology [Mi,
III, 4.6], we canonically identify PiclB = Ȟ1(X, B×). Let ∗ : R′ → R′ be an involution on
R′ and ∗B an involution on B which extends ∗, that means ∗B |R′ = ∗.

Let (NB , ]B , 1) be a cubic form with adjoint and base point on B such that

(1) B+ = J(NB , ]B , 1) with 1 the unit element in B, and

xyx = TB(x, y)x− x]B ×B y

for x, y in B;
(2) NB(xy) = NB(x)NB(y) for all x, y in B.
(3) N(x∗B ) = N(x)∗B for x ∈ B

These identities imply that

(4) (xy)]B = y]Bx]B ;
(5) (x∗B )]B = (x]B )∗B ;
(6) TB(x, y) = TB(xy)

for all x, y ∈ B. Because of (2) and (4), the maps

NB : B× → R′×, ]B : B× → Bop×

are morphisms of groups. Using the natural identifications

PiclB = Ȟ1(X, B×), PiclB
op = Ȟ1(X, Bop×)

as pointed sets, the group morphisms

NB : B× → R′×, ]B , ∗B : B× → Bop×

induce morphisms

NB : PiclB → Pic R′, P → NB(P ),

]B : PiclB → PiclB
op, P → P ]B ,

∗B : PiclB → PiclB
op, P → P ∗B

of pointed sets.
Let P ∈ PiclB and F be a right B-module. A quadratic map g : P → F in the category

of R′-modules is called multiplicative if

g(bv) = g(v)b]B
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for all elements b ∈ B, v ∈ P .
Let E be an R′-module. A cubic map f : P → E in the category of R′-modules is called
multiplicative if

f(bw) = NB(b)f(w)

for all b ∈ B, w ∈ P .
A multiplicative quadratic map ] : P → P ]B is called an adjoint on P , if ] is universal in

the category of multiplicative quadratic maps on P .
A multiplicative cubic map N : P → NB(P ) is called a norm on P , if N is universal in

the category of multiplicative cubic maps on P . Norms on P always exist and are unique
up to an invertible factor in R′.

Remark 5. (i) In order to be able to construct non-trivial (i.e., non-free) locally free B-
modules P , we observe that Pic R′ acts on Ȟ1(X, B×) via (L,P ) → L⊗P and NB(L⊗P ) ∼=
L3 ⊗NB(P ). In particular, if L ∈ Pic R′ has order 3, then L⊗P is a left B-module of rank
one which admits a norm N : P → R′.

(ii) If B is an Azumaya algebra over R′ and R′ satisfies that 2, 3 ∈ R′×, we can also take
the point of view of [K-O-S] described and also used for instance in [Pa-Sr-T, p. 16]: Then
we can define a reduced norm functor N :A Mod →R′ Mod which associates to every locally
free B-module P a locally free R′-module N (P ) such that

• N (B) = R′,
• the map NP : P = HomB(B,P ) → HomR(N (B),N (P )) = N (P ) induced by

functoriality, satisfies

NP (bw) = NB(b)NP (w)

for all b ∈ B, w ∈ P ,
• if P has rank 1 then N (P ) is invertible and N (B) is the norm of B.

Now if N : P → R′ is a map such that N(bw) = NB(b)N(w) for all b ∈ B, w ∈ P and such
that the values of N generate the unit ideal in R′, then there exists a unique isomorphism
µ : NP → R′ such that N = µNP [Pa-Sr-T, 1.1].

Hence we can view a norm N : P → R on a locally free left B-module P of rank 1 in our
terminology also as given by an isomorphism µ : N (P ) → R′ of R′-modules and vice versa.

3.2. We canonically identify left Bop-modules and right B-modules. For P ∈ PiclB, let
P∨ denote the locally free right B-module HomB(P,B). Let 〈 , 〉 : P × P∨ → B denote the
canonical map 〈u, u∨〉 = u∨(u).

Suppose that NB(P ) ∼= R′ and let N : P → R′ be a norm on P . Then

P ]B ∼= P∨, P∨]B ∼= P

and NB(P∨) ∼= R′. There exists a uniquely determined norm N∨ : P∨ → R′ and uniquely
determined adjoints ] : P → P∨ and ]̌ : P∨ → P such that

(7) 〈w,w]〉 = N(w)1;
(8) 〈w̌]̌, w̌〉 = N∨(w̌)1;
(9) w] ]̌ = N(w)w
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for all w ∈ P , w̌ ∈ P∨. Moreover,

(10) w̌]̌ ] = N∨(w̌)w̌;
(11) 〈w, w̌〉]B = 〈w̌]̌, w]〉;
(12) NB(〈w,w]〉) = N(w)N∨(w̌);
(13) Dw′N(w) = TB(〈w′, w]〉);
(14) Dw̌′N∨(w̌) = TB(〈w̌]̌, w̌′〉);
(15) 〈w, w̌〉w = TB(〈w, w̌〉)w − w]×̌w̌

for all w,w′ ∈ P , w̌, w̌′ ∈ P∨ where ×̌ : P∨ × P∨ → P denotes the bilinear map associated
to the quadratic map ]̌.

For a right B-module F , let F denote the left B-module obtained by defining a new scalar
multiplication on F via

b · w = wb∗B

for b ∈ B, w ∈ F [K, I, (2.1)]. Any morphism of right B-modules f : F → E induces a
morphism of left B-modules f : F → E. (An analogous argument holds for left B-modules.)

Let P be a locally free left B-module of rank 1. An isomorphism of left B-modules
j : P → P ∗B is called an involution on P .

3.3. A pair (A,R) consisting of a subring R of R′ and an R-submodule A of B is called
B-ample if

(16) R ⊂ H(R′, ∗B),
(17) rr∗B ∈ R for r ∈ R′,
(18) A ⊂ H(B, ∗B),
(19) 1 ∈ A,
(20) bab∗ ∈ A for a ∈ A, b ∈ B,
(21) NB(A) ⊂ R; i.e. NB |A : A → R is a cubic form over R,
(22) A]B ⊂ A; i.e., ]B |A : A → A is a quadratic map over R.

Equation (21) implies that TB(A,A) ⊂ R. If 2 ∈ R×,

(H(B, ∗B),H(R′, ∗B))

is the only B-ample pair.
Let (A,R) be B-ample and P be a locally free left B-module of rank 1 with NB(P ) ∼= R′.

If P ∗B ∼= P∨ and NB(P ) ∼= R′, then a pair (N, ∗) with N : P → R′ a norm on P and an
involution ∗ : P → P∨ on P is called A-admissible if

〈w,w∗〉 ∈ A and NB(〈w,w∗〉) = N(w)N(w)∗B

for w ∈ P .
P is called A-admissible if there is a norm N : P → R′ and a nondegenerate ∗B-sesquilinear
form h : P × P → B (i.e., h(aw, bv) = ah(w, v)b∗B and h induces an isomorphism jh : P →
P∨ of left B-modules) such that

h(w,w) ∈ A and NB(h(w,w)) = N(w)N(w)∗B

for w ∈ P . Note that P∨ ∼= P ∗B and that therefore jh (denoted ∗ from now on) is an
involution on P which is A-admissible.
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Let (NB , ]B , 1) be B-admissible, (A,R) B-ample, P an A-admissible B-module and (N, ∗)
A-admissible. Then ∗̌ = ∗−1 : P∨ → P is an involution on P and

(23) w∗∗̌ = w;
(24) w̌∗̌∗ = w̌;
(25) Ň(w∗) = N(w)∗B ;
(26) w∗]̌ = w]∗̌;
(27) w̌]̌∗ = w̌∗̌];
(28) 〈w, w̌〉∗B = 〈w̌∗̌, w∗〉;
(29) 〈w,w∗〉w∗]̌ = N(w)∗Bw

for all w ∈ P , w̌ ∈ P∨.

4. Matrix algebras

4.1. Let B be a separable unital associative R-algebra. Let (NB , ]B , 1) be a cubic form
with adjoint and base point on B satisfying equations (1) and (2). Let P ∈ PiclB such
that NB(P ) ∼= R and let N : P → R be a norm on P . Let N∨ : P∨ → R be the uniquely
determined norm and ] : P → P∨, ]̌ : P∨ → P be the uniquely determined adjoints
satisfying equations (7), (8), (9). Let × : P∨ × P∨ → P denote the bilinear map associated
to the quadratic map ] and ×̌ : P∨ × P∨ → P the bilinear map associated to the quadratic
map ]̌.

Define T : P × P∨ → R via

T (w, w̌) = TB(〈w, w̌〉).

Theorem 6. For any µ ∈ R×, the triple (µT, µN, µ2N∨) satisfies the adjoint identities.

Proof. Since B is separable, TB is a nondegenerate symmetric bilinear form, hence so is T .
(T,N,N∨) is a non-trivial triple defined on (P, P∨) and the norms N : P → R, N∨ : P∨ → R

and adjoints ] : P → P∨, ]̌ : P∨ → P satisfy the identities

Dw′N(w) = TB(〈w′, w]〉) and Dw̌′N∨(w̌) = TB(〈w̌]̌, w̌′〉)

by equations (13) and (14). By equations (9) and (10), (T,N,N∨) satisfies the adjoint
identitites.

Moreover, an easy calculation shows that for any µ ∈ R×, the adjoint belonging to µN is
µ ] and (µN)∨ = µ2N∨, (µ ])∨ = µ2 ]. The assertion again follows involving equations (9),
(10), (13) and (14). �

Corollary 7. For any µ ∈ R×,

M(µT, µN, µ2N∨) =

[
R P

P∨ R

]
is a structurable algebra over R.

If we want to make it clear that the map N is defined on the locally free left B-module P ,
we also sometimes use the notation NP . Analogously, we then also write TP : P × P∨ → R

instead of T : P × P∨ → R.
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Remark 8. This construction generalizes the classical construction by Springer [Sp1, 2]: B

itself canonically is a globally free left B-module of rank 1 denoted BB and µNB , µ ∈ R×,
is a norm on BB. We have (BB)∨ = BB . So choose P =B B. The adjoint belonging
to µNB is µ ]B and (µNB)∨ = µ2NB , (µ ]B)∨ = µ2 ]B . Moreover, 〈w, w̌〉 = ww̌, hence
T (w, w̌) = µTB(w, w̌) and we obtain the classical matrix algebra

M(µTB , µNB , µ2NB) =

[
R B

B R

]
.

4.2. Let B and D be Azumaya algebras over R. We take the point of view of [Pa-Sr-T], see
also Remark 5 (b). Let g : B → D be an algebra isomorphism and g̃ : P → Q a g-semilinear
isomorphism of R-modules. Then there is an R-linear isomorphism N (g̃) : P → Q such that
N (g̃)NP = NQg̃. The map N (g̃) is constructed by descent, see [Pa-Sr-T, p. 16].

Proposition 9. Let R be a domain. Let B, D be two Azumaya algebras over R with
properties as described in 4.1. Let P , Q be locally free left modules of rank 1 over B and D,
respectively, with norms NP : P → R and NQ : Q → R given by isomorphisms µ : N (P ) →
R and ν : N (Q) → R of R-modules, respectively. Let g : B → D be an algebra isomorphism
and g̃ : P → Q a g-semilinear isomorphism of R-modules such that

µ = ν ◦ N (g̃).

Then the map

S(g) :

[
R P

P∨ R

]
→

[
R Q

Q∨ R

]
between M(TP , NP , N∨

P ) and M(TQ, NQ, N∨
Q) given by

S(g) :

[
a w

w̌ b

]
→

[
g(a) g̃(w)

(g̃∨)−1(w̌) g(b)

]
is an isomorphism of structurable algebras.

Proof. The proof goes along similar lines as the one of [Pa-Sr-T, 1.3]. It suffices to show
the assertion that S(g) is an isomorphism after a faithfully flat base change of R. Hence
assume w.l.o.g. that P = Be is free. Then Q = De′ with e′ = g̃(e). Let µe = µ(N (e)) and
νe′ = ν(N (e′)). Then µe = νe′ .

In other words, norms NP = αeNB and NQ = βe′ND are determined by µe and νe′

with αe, βe′ ∈ R× such that g(αe) = βe′ . Hence g : B → D induces a map S(g) :
M(αeTB , αeNB , α2

eNB) → M(βe′TD, βe′ND, β2
e′ND) defined by

S(g) :

[
a c

d b

]
→

[
g(a) g(c)
g(d) g(b)

]
.

This is an isomorphism of structurable algebras (in particular, it is compatible with the
involutions). Define maps

F : M(αeTB , αeNB , α2
eNB) → M(TP , NP , NP )

and
H : M(βe′TD, βe′ND, β2

e′ND) → M(TQ, NQ, NQ)



12 S. PUMPLÜN

via

F (

[
a c

d b

]
) =

[
a ce

e∨d b

]
.

and

H(

[
a c

d b

]
) =

[
a ce′

e′∨d b

]
.

A straighforward calculation shows that these are isomorphisms of structurable algebras.
Since we also have

H ◦ S(g) = S(g) ◦ F,

this shows that S(g) is an isomorphism of structurable algebras. �

Theorem 10. (a) Let J = J(B,P,N) be a first Tits construction with norm NJ , trace TJ

and adjoint ]J . Then the structurable algebras

M(TB , NB , N∨
B) =

[
R B

B R

]
and

M(T,N,N∨) =

[
R P

P∨ R

]
are subalgebras of the structurable algebra

M(TJ , NJ , N∨
J ) =

[
R B ⊕ P ⊕ P∨

B ⊕ P ⊕ P∨ R

]
.

over R, which are stable under the involution of M(TJ , NJ , NJ).
(b) Let J = J(B,H(B, ∗B), P, N, ∗) = H(B, ∗B)⊕ P be a Tits process with norm NJ , trace
TJ and adjoint ]J . Then the structurable algebra

M(TB , NB , NB) =

[
R H(B, ∗B)

H(B, ∗B) R

]
.

is a subalgebra of the structurable algebra

M(TJ , NJ , NJ) =

[
R H(B, ∗B)⊕ P

H(B, ∗B)⊕ P R

]
.

over R, which is stable under the involution of M(TJ , NJ , NJ).

For details on the first Tits construction and the Tits process, see [Pu1, 3.7, 5.1], [P-R1].

Proof. (a) We have B+ = J(NB , ]B , 1). As an R-module, J = J(B,P,N) ∼= B ⊕ P ⊕ P∨

and
1J = (1, 0, 0),
NJ(a,w, w̌) = NB(a) + N(w) + Ň(w̌)− TB(a, 〈w, w̌〉)
(a,w, w̌)]J = (a]B − 〈w, w̌〉, w̌]̌ − aw, w] − w̌a)

for a ∈ B, w ∈ P , w̌ ∈ P∨. (NJ , ]J , 1J) is a cubic form with adjoint and base point on J

and with trace form

TJ((a,w, w̌), (c, v, v̌)) = TB(a, c) + TB(〈w, v̌〉) + TB(〈v, w̌〉).
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J(A,P, N) is the induced Jordan algebra J(NJ , ]J , 1J). B+ identifies canonically with a
subalgebra of J(B,P,N).
Since the multiplication in M(TJ , NJ , NJ) is given by[

a x

x′ b

] [
c y

y′ d

]
=

[
ac + TJ(x, y′) ay + dx + x′ ×J y′

cx′ + by′ + x×J y bd + TJ(y, x′)

]
with x ×J y = (x + y)]J − x]J − y]J , restricting the multiplication and a straightforward
calculation yields the assertion.
(b) As an R-module, J = J(B,P,N) ∼= A⊕ P . We have

1J = (1, 0) ∈ H0(X, J̃ ),

NJ(a,w) = NB(a) + N(w) + Ň(w∗)− TB(a, 〈w,w∗〉)
= NB(a) + N(w) + N(w)∗B − TB(a, 〈w,w∗〉),

(a,w)]J = (a]B − 〈w,w∗〉, w∗]̌ − aw)

TJ((a,w), (c, v)) = TB(a, c) + TB(〈w, v∗〉) + TB(〈v, w∗〉)

for a, c ∈ H(B, ∗B) and v, w ∈ P . (NJ , ]J , 1J) is a cubic form with adjoint and base point
on J and with trace form TJ . Again, restricting the multiplication of M(TJ , NJ , NJ) yields
the assertion. �

Remark 11. For any Albert algebra J , the residue class algebras of M(TJ , NJ , NJ) are
isomorphic to a form of the 56-dimensional irreducible module for the split simple Lie algebra
of type E7 over k(P ) [A-F, p. 195].

Lemma 12. (a) For µ ∈ R×,

M(µT, µN, µ2N∨) ∼= M(µ2T∨, µ2N∨, N).

(b) For b ∈ B×,

M(µT, µN, µ2N∨) ∼= M(µNB(b)T∨, µNB(b)N∨, µ2NB(b2)N).

Proof. (a) Define

g :

[
R P

P∨ R

]
→

[
R P∨

P R

]
,

g(

[
a w

w̌ b

]
) =

[
b w̌

µ−1w a

]
.

Then g is an algebra isomorphism which is compatible with the involutions.
(b) Let ε = NB(b). Define

G :

[
R P

P∨ R

]
→

[
R P∨

P R

]
,

G(

[
a w

w̌ b

]
) =

[
b w̌ε

ε−1w a

]
.

Then G is an algebra isomorphism which is compatible with the involutions. �
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Example 13. Let B = R, NB(a) = a3 and a]B = a2. Then J(N, ], 1) = R+ and the
associated trace form is TB(a, b) = 3ab. Let L be a projective R-module of rank 1 (also
called an invertible R-module) and order 3. If β : L⊗ L⊗ L → R is an isomorphism then

N(w) = β(w ⊗ w ⊗ w)

defines a norm on L. Let µ ∈ R× and T : L× L∨ → R,

T (w, w̌) = 〈w, w̌〉.

There exists a uniquely determined norm Ň : L∨ → R and uniquely determined adjoints
] : L → L∨ and ]̌ : L∨ → L such that 〈w,w]〉 = N(w)1; 〈w̌]̌, w̌〉 = Ň(w̌)1 and w] ]̌ = N(w)w
for w ∈ L, w̌ ∈ L∨ and

M(µT, µN, µ2N∨) =

[
R L

L∨ R

]
is a structurable algebra over R of rank 4.

Example 14. Let B = R×R×R. Then B+ = J(NB , ]B , 1) and B satisfies equations (1)
and (2). Since

Ȟ1(X, B×) = Pic R× Pic R× Pic R,

every locally free left B-module P of rank one satisfies P ∼= L ⊕ M ⊕ S with invertible
R-modules L, M and S. Thus NB(P ) ∼= R iff L ⊗ M ⊗ S ∼= R. Choose an isomorphism
α : L⊗M ⊗ S → R, then N(x, y, z) = α(x⊗ y ⊗ z) defines a norm on P and

(x, y, z)] = (y ⊗ z, z ⊗ x, x⊗ y),
(x̌, y̌, ž)]′ = (y̌ ⊗ ž, ž ⊗ x̌, x̌⊗ y̌),
N∨(x̌, y̌, ž) = α̌−1(x̌⊗ y̌ ⊗ ž),
T ((x, y, z), (x̌, y̌, ž)) = 〈(x, y, z), (x̌, y̌, ž)〉 = 〈x, x̌〉+ 〈y, y̌〉+ 〈z, ž〉.

for (x, y, z) ∈ P , (x̌, y̌, ž) ∈ P∨, see [Pu1, Example 8]. Here, we canonically identify L⊗M ∼=
S∨ etc. Then

M(T,N,N∨) =

[
R L⊕M ⊕ S

L∨ ⊕M∨ ⊕ S∨ R

]
.

is a structurable algebra over R of rank 8.
This algebra can be viewed as a generalization of the split quartic Cayley algebra denoted

by M(R3) in [A3, p. 1276], since we obtain M(R3) by simply choosing P =B B and N = NB .
If k has characteristic not 2 or 3 and J = k × k × k, any form of a 2× 2-matrix algebra

M(µTJ , µNJ , µ2NJ) is isomorphic to a “diagonal isotope” of an algebra Cay(B, η) = B ⊕
vB obtained by the Cayley-Dickson process from a 4-dimensional commutative associative
algebra B and a scalar η ∈ k× [A3, 9.1]. Quartic Cayley algebras are used in the construction
of non-split Lie algebras over k of type D4.

Example 15. Let D be a quaternion algebra over R and B = R×D, NB((a, x)) = anD(x)
for all a ∈ R, x ∈ D, nD the norm of D. B is a separable unital associative R-algebra
and B+ = (NB , ]B , 1) with (NB, ]B, 1) a cubic form with adjoint and base point satisfying
equations (1) and (2). Every left B-module P of rank one with NB(P ) ∼= R satisfies
P ∼= L⊕P0, where L is an invertible R-module and P0 ∈ Picl D satisfies ND(P0) ∼= L∨. Let
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N ′ : P0 → L∨ be a norm. A norm on P is then given by NP ((m,u)) = 〈a,N ′(u)〉 for m ∈ L,

u ∈ P0. Define TP : P × P∨ → R as usual via TP (w, w̌) = TB(〈w, w̌〉).
If D = EndR(E) then every locally free left B-module P of rank one with NB(P ) ∼= R

has the form

P ∼= ((detE)∨ ⊗ detF )⊕ (E ⊗ F∨),

where F is a projective R-module of constant rank 2. Choose norms NP : P → R, N∨
P :

P∨ → R and adjoints ] : P → P∨, ]̌ : P∨ → P satisfying equations (7), (8) (9). Then

M(TP , NP , N∨
P ) =

[
R ((detE)∨ ⊗ detF )⊕ (E ⊗ F∨)

(detE ⊗ (detF )∨)⊕ (E∨ ⊗ F ) R

]
.

is a structurable algebra over R of rank 12.

Example 16. For every finitely generated projective R-module E of constant rank 3, B =
EndR(E) is an Azumaya algebra of rank 9 and B+ = J(NB , ]B , 1) with NB the usual
determinant, ]B the usual adjoint. The locally free left B-modules of rank 1 all have the
form

P = E ⊗ F∨ = HomR(F,E),

where F is another finitely generated projective R-module of constant rank 3. Since

NB(P ) ∼= det E ⊗ detF∨,

we have NB(P ) ∼= R iff there exists an isomorphism α : det E → det F . Fixing such an
isomorphism, there exists a unique cubic form N : P → R with

(α ◦ det)(g) = N(g)iddetF

for g ∈ P . N is a norm on P . Moreover,

P∨ = E∨ ⊗ F = HomR(E,F ),
〈g, f〉 = g ◦ f for g ∈ P, f ∈ P∨.

The adjoint ] : P → P∨ of N satisfies

g ◦ g] = N(g)idE ,

see [Ach, 4.2] or [Pu1, Example 9]. Moreover, T : P × P∨ → R,

T (g, f) = TB(g ◦ f),

where TB is the usual trace of B. Then

M(T,N,N∨) =

[
R HomR(F,E)

HomR(E,F ) R

]
.

is a structurable algebra over R of rank 20.
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4.3. Let R be a domain. Let B be a unital associative separable R-algebra. Let (NB , ]B , 1)
be a cubic form with adjoint and base point on B satisfying equations (1) and (2). Let
P ∈ PiclB such that NB(P ) ∼= R and let N : P → R be a norm on P . Let N∨ : P∨ → R

be the uniquely determined norm and ] : P → P∨, ]̌ : P∨ → P be the uniquely determined
adjoints satisfying (6) – (8). Let T : P × P∨ → R, T (w, w̌) = TB(〈w, w̌〉).

Let P ′ ∈ PiclB such that NB(P ′) ∼= R and let N ′ : P ′ → R be a norm on P ′. Let N ′∨ :
P ′∨ → R be the uniquely determined norm and ]′ : P ′ → P ′∨, ]̌′ : P ′∨ → P ′ be the uniquely
determined adjoints satisfying (6) – (8). Let T ′ : P ′ × P ′∨ → R, T (w′, w̌′) = TB(〈w′, w̌′〉).

As in [G, 2.8 (2)] we obtain:

Lemma 17. Let f : M(µT, µN, µ2N∨) → M(µ′T ′, µ′N ′, µ′2N ′∨) be an algebra isomor-
phism. Then there is a bijective R-linear map ϕ : P → P ′ such that

N ′(ϕ(w)) =
µ

µ′
N(w),

i.e. (P, µ
µ′ N) ∼= (P ′, N ′) or a bijective R-linear map ϕ : P → P ′∨ such that

N ′∨(ϕ(w)) =
µ

µ′2
N(w)

for all w ∈ P , i.e. (P, µ
µ′ N) ∼= (P ′∨, N ′∨).

Proof. The element

s0 =

[
1 0
0 −1

]
is a global section which is skew-symmetric, i.e.[

1 0
0 −1

]
=

[
−1 0
0 1

]
= −

[
1 0
0 −1

]
.

Since f respects the involutions, f(s0) must also be skew-symmetric, hence f(s0)2 = f(s2
0) =

1 which implies that f(s0) = ±s0.
Suppose that f(s0) = s0. Then f restricted to the diagonal matrices is the identity and

so

f(

[
a w

w̌ b

]
) =

[
a ϕ(w)

ϕ′(w̌) b

]
for two R-linear maps ϕ : P → P ′, ϕ′ : P∨ → P ′∨. Since f is an algebra isomorphism,
µ′T ′(ϕ(w), ϕ′(w̌)) = µT (w, w̌). Let ϕ0 : P∨ → P∨ be the unique R-linear map such that

T ′(ϕ(w), ϕ0(w̌)) = T (w, w̌)

for all w ∈ P, w̌ ∈ P∨. Then ϕ′ = µ
µ′ ϕ0. Looking at the lower left corner, we obtain

ϕ(w)× ϕ(v) = ϕ′(w × v) =
µ

µ′
ϕ0(w × v).

By equations (5) and (6),

N(w)1 =
1
3
T (w,w]) =

1
6
T (w,w × w),

N∨(w̌)1 =
1
3
T (w̌]̌, w̌) =

1
6
T (w̌ ×′ w̌, w̌).
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Hence

T ′(ϕ(w), ϕ0(w̌)) = T (w, w̌)

implies

N ′(ϕ(w))1 =
1
6
T ′(ϕ(w), ϕ(w)×ϕ(w)) =

1
6
T ′(ϕ(w),

µ

µ′
ϕ0(w×w)) =

µ

µ′
1
6
T (w,w×w) =

µ

µ′
N(w).

Therefore ϕ : P → P ′ is a linear map such that

N ′(ϕ(w)) =
µ

µ′
N(w)

for all w ∈ P , implying that it is a norm similarity on P with multiplier µ
µ′ .

Now suppose f(s0) = −s0. Then we look at the isomorphism

g ◦ f : M(µT, µN, µ2N∨) → M(µ′2T ′∨, µ′2N ′∨, N ′)

which satisfies g ◦ f(s0) = s0, where

g : M(µT, µN, µ2N∨) → M(µ2T∨, µ2N∨, N),

g(

[
a w

w̌ b

]
) =

[
b w̌

µ−1w a

]
as in Lemma 12. Then g ◦ f(s0) = s0 and we are back in the first case. So there is an
R-linear map ϕ : P → P ′∨ such that

N ′∨(ϕ(w)) =
µ

µ′2
N(w)

for all w ∈ P . �

If the algebra has rank 8, the automorphism group of M(µT, µN, µ2N∨) ⊗ k(P ) is iso-
morphic to Sl2 × Sl2 × Sl2, if it has rank 20, it is isomorphic to Sl6. As in [G, 2.9] it can be
shown:

Theorem 18. The automorphism group of the structurable algebra M(µT, µN, µ2N∨) is
isomorphic to the semi-direct product of Z/2 and the group of bijective norm isometries of
P .

5. Forms of matrix algebras

5.1. We use a slightly refined version of the setup of Section 3 by assuming that B is a
unital separable associative algebra over the ring R′. Let ∗ : R′ → R′ be an involution on
R′ and ∗B an involution on B such that ∗B |R′ = ∗. Let (NB , ]B , 1) be a cubic form with
adjoint and base point on B satisfying identities (1), (2), (3) and let (H(B, ∗B),H(R′, ∗B))
be a B-ample pair. Define R = H(R′, ∗B). Let P ∈ Picl B such that NB(P ) ∼= R′ and such
that there is a nondegenerate hermitian form h : P × P −→ B satisfying

h(w,w) ∈ H(B, ∗B) and NB(h(w,w)) = N(w)N(w)∗B

for w ∈ P . Denote the H(B, ∗B)-admissible involution jh : P → P∨ on P induced by h by
∗. Let N : P → R′ be a norm on P . Let N∨ : P∨ → R′ be the uniquely determined norm
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and ] : P → P∨, ]̌ : P∨ → P be the uniquely determined adjoints satisfying equations (7),
(8), (9). We point out that we can also write

〈u, v∗〉 = h(u, v), v∗ = jh(v) and v̌∗̌ = j−1
h (v̌)

for jh : P → P∨ induced by h.

Remark 19. Let us compare this with the setup used in [Pa-Sr-T, p. 22] for their general
Tits construction. We slightly adjust their notation here, because there would be some
ambiguity with ours otherwise. There R is required to be a domain and B an Azumaya
algebra of degree 3 over a quadratic étale algebra R′/R, with involution ∗B such that ∗B

restricts to the non-trivial automorphism ∗ of R′/R. Let P ∈ Picl B such that there exists
a nondegenerate ∗B-hermitian form b : P × P → R′. Regarding b as an isomorphism
b : P → P∨, b(u)(v) = b(v, u), its discriminant disc(b) : N (P ) × N (P ) → R′ is a rank 1
hermitian form over (R, ∗) such that

disc(b)(N (u),N (w)) = NB(h(u, w))

for all u, w ∈ P . It is assumed that this form is trivial. Let

µ : (N (P ),disc(b)) → (R′, 〈1〉)

be an isomorphism of hermitian spaces and let

ν = (µ∨)−1 : (N (P )∨,disc(b)) → (R′, 〈1〉).

The connection with our scenario is the following: our norm N : P → R′ is given by the
choice of the hermitian form b : P × P → R′ via N(u) = b(u, u) and N∨ : P∨ → R′ is
given by ν as explained in Remark 5 (b). The bilinearization × of the quadratic map ]

corresponds with the map φ in [Pa-Sr-T, p. 22], our bilinearization ×̌ with their φ∗ and
their b−1 : P∨ → P is our ∗̌.

On the other hand, we have

b(u, v) = TB(〈u, v∗〉) = TB(h(u, v)).

Theorem 20. The R-module S(B, ∗B , P, N, h) = R′ ⊕ P together with the multiplication

(a, u)(b, v) = (ab + TB(〈u, v∗〉), b∗Bu + av + (u× v)∗̌)

and the involution

(a, u) = (ā, u)

for a, b ∈ R′, u, v ∈ P becomes an R-algebra which is a form of the structurable algebra
M(T,N,N∨) from Corollary 7 and thus is a structurable algebra over R.

Proof. Define a map

F : S(B, ∗B , P, N, h)R′ = S(B, ∗B , P, N, h)⊗R R′ −→ M(T,N,N∨)

via

F ((a, u)⊗ 1) = (a, a∗B , u, u∗),

F (1⊗ r) = (r, r∗B , 0, 0)
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for a, r ∈ R′, u ∈ P . F is an R′-linear bijection. To show that F is multiplicative, it suffices
to check that it is multiplicative on S(B, ∗B , P, N, h), since S(B, ∗B , P, N, h) is generated
by S(B, ∗B , P, N, h)R′ over R′: For (a, u), (b, v) ∈ R′ ⊕ P we have

F ((a, u)(b, v)) = F (ab + TB(〈u, v∗〉), b∗Bu + av + (u× v)∗̌) =
(ab + TB(〈u, v∗〉), a∗Bb∗B + TB(〈u, v∗〉)∗B ,

b∗Bu + av + (u× v)∗̌, bu∗ + a∗Bv∗ + (u× v)∗̌)∗)

which equals
F (a, u)F (b, v) = (a, a∗B , u, u∗)(b, b∗B , v, v∗) =
(ab + TB(〈u, v∗〉), a∗Bb∗B + TB(〈v, u∗〉),
av + b∗Bu + u∗ × v∗, bu∗ + a∗Bv∗ + u× v),

since ((u×v)∗̌)∗ = u×v and u∗×̌ v∗ = (u×v)∗̌ by equations (26), (27). (If B is an Azumaya
algebra of degree 3, this is proved also in [Pa-S-T, p. 24]; the argument presented there goes
through in our more general setting, as well.) Moreover, h is hermitian, so using (28) we
obtain

TB(〈v, u∗〉) = TB(〈(v∗)∗̌, u∗〉) = TB(〈u, v∗〉∗B ) = TB(〈u, v∗〉)∗B .

�

Remark 21. (i) Let (c, µ) be an admissible scalar, i.e. µ ∈ R×, c ∈ H(B, ∗B)× and
NB(c) = µµ∗ [P-R2, p. 246].

Let P =B B be the globally free left B-module of rank 1, then P is H(B, ∗B)-admissible
and the H(B, ∗B)-admissible pairs are given by the pairs (µNB , c∗B) with (c, µ) an admis-
sible scalar. The adjoint belonging to µNB is µ]B , (µNB)∨ = µ−1NB (µ]B)∨ = µ−1]B .
Moreover, 〈w, w̌〉 = ww̌ and h : B × B → B is given by h(w, w̌) = µwcw̌∗B . Then
S(B,B B, c∗B , µNB , h) = R′ ⊕B together with the multiplication

(a, u)(b, v) = (ab + µTB(u, cv∗B ), b∗Bu + av + cµ∗(u× v)∗B )

and the involution
(a, u) = (ā, u)

for a, b ∈ R′, u, v ∈ B is a structurable algebra over R, which is a form of the struc-
turable algebra M(µTB , µNB , µ2NB). For simplicity, we denote S(B,B B, c∗B , µNB , h) also
by S(B, ∗B , c, µ).
(ii) Let K be a separable quadratic field extension of k. Let B be a central simple K-algebra
of degree 3 with a unitary involution ∗B such that ∗B |K = ∗ is the non-trivial automorphism
of K/k. Let (c, µ) be an admissible scalar. As in (i), we obtain the structurable algebra
S(B, ∗B , c, µ) = K ⊕B over k with the involution (a, u) = (ā, u) for a, b ∈ K, u, v ∈ B.

Remark 22. Our construction overlaps with the construction in [A-F-Y, Section 7]: their
commutative associative algebra E with involution ∗ is our R′, and W is our BB. The
algebra S(B,B B, ∗B , , NB , h) described in Remark 21 is identical to the algebra A(h, NB)
with h(u, v) = TB(u, v∗B ). The construction in [A-F-Y, Section 7] is much more general
than ours in the sense that it allows for the structurable algebra to be of infinite dimension.
As the authors mention, the requirement that the hermitian form h : W × W → E has
to be weakly nondegenerate, i.e. induce an injection jh : u → h( , u) of W to its dual
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space HomE(W, E), guarantees that an adjoint is unique, if it exists. Nondegeneracy in our
stronger sense guarantees the existence and uniqueness of an adjoint.

Our construction explicitly describes how to obtain a nondegenerate hermitian form in
certain cases, e.g. for central simple algebras over fields, thus proving the existence of h.

For an admissible scalar (c, µ) we know that, for any d ∈ B×, also (dcd∗B , µNB(d)) is an
admissible scalar.

Lemma 23. (i) Let d ∈ B×. Then

S(B, ∗B , c, µ) ∼= S(B, ∗B , dcd∗, µNB(d))

via (a, u) → (a, ud).
(ii) For any structurable algebra S(B, ∗B , c, µ) there is an isomorphic structurable algebra
S(B, ∗B , c, µ) such that N(c′) = 1 = µ′µ′∗.

Proof. (1) is a tedious calculation, similar to the one to prove the corresponding statement
for cubic Jordan algebras which arise from a Tits construction.
Take d = µ−1c in (1) to prove (2).

Theorem 24. As in 4.1, let R be a ring and B be a separable unital associative R-algebra.
Let (NB , ]B , 1) be a cubic form with adjoint and base point on B satisfying equations (1)
and (2). Let P ∈ PiclB such that NB(P ) ∼= R and let N : P → R be a norm on P . Let
N∨ : P∨ → R be the uniquely determined norm and ] : P → P∨, ]̌ : P∨ → P be the uniquely
determined adjoints satisfying equations (7), (8), (9). Define

R′ = R×R, (r, r′)∗C = (r, r′),

C = B ⊕Bop, (a, b)∗C = (b, a), 1C = (1, 1)

NC(a, b) = (NB(a), NB(b)), (a, b)]C = (a]B , b]B )

R0 = {(r, r) | r ∈ R}, C0 = {(a, a) | a ∈ B}, P 0 = P ⊕ P∨,

N0(w, w̌) = (N(w), N∨(w̌)) and (w, w̌)∗
0

= (w̌, w)

for a, b ∈ B, r, r′ ∈ R and w ∈ P, w̌ ∈ P∨. Let h0 denote the nondegenerate hermitian form
induced by the isomorphism ∗0 : P 0 → P 0. Then R′, C, ∗C , (NC , ]C , 1C), (C0, R0), P 0 and
(N0, ∗0) satisfy the assumptions in 5.1 and

S(C,C0, P 0, N0, h0) ∼= M(T,N,N∨)

with T : P × P∨ → R, T (w, w̌) = TB(〈w, w̌〉).

The proof is a straightforward but tedious calculation. The non-trivial parts are done in
[Ach1, 2.25] as part of the proof of the corresponding statement for the first Tits construction
being viewed as a special case of the Tits process, see [Pu1, 5.1]. Hence also in our setting
the above result implies that we can view the matrix algebra construction M(T,N,N∨) as
a special case of the construction S(B, ∗B , P, N, h).
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5.2. Let R be a domain and let R′ be a quadratic étale ring extension of R. Let (B, ∗B),
(D, ∗D) be two Azumaya algebras over R′ with properties as described in 5.1. We use the
setup from [Pa-Sr-T, p. 23].

Let P ∈ Picl B such that there exists a nondegenerate ∗B-hermitian form b : P ×P → R′

respectively b′ : Q × Q → R′ with trivial discriminant. Let µ : (N (P ),disc(b)) → (R′, 〈1〉)
respectively ν : (N (Q),disc(b′)) → (R′, 〈1〉) be a trivialization.

Let f : (B, ∗B) → (D, ∗D) be an isomorphism of R′-algebras with unitary involutions
and f̃ : (P, b) → (Q, b′) an f -semilinear isomorphism of hermitian spaces. There is an
isomorphism

N (f̃) : (N (P ),disc(b)) → (N (Q),disc(b′))

of hermitian spaces such that N (f̃)NP = NQf̃ . The map N (f̃) is constructed by descent,
analogously as in [Pa-Sr-T, p. 16].

Proposition 25. Let R be a domain. Let (B, ∗B) and (D, ∗D) be two Azumaya algebras
over R′ with properties as described in 5.1. Let P , Q be locally free left modules of rank
1 over B and D, respectively. Let (P, b), respectively (Q, b′), be a hermitian (B, ∗B)-space,
respectively a hermitian (D, ∗D)-space, with a trivialization

µ : (N (P ),disc(b)) → (R′, 〈1〉)

respectively with a trivialization

ν : (N (Q),disc(b′)) → (R′, 〈1〉).

Let f : (B, ∗B) → (D, ∗D) be an isomorphism of R′-algebras with unitary involutions and
f̃ : (P, b) → (Q, b′) an f-semilinear isomorphism of hermitian spaces such that

µ = ν ◦ N (f̃).

The norms NP : P → R′ and NQ : Q → R′ are given by the nondegenerate ∗B-hermitian
form b : P × P → R′ respectively b′ : Q×Q → R′. Then the map

S(f) : R⊕ P → R⊕Q

between S(B, ∗B , P, NP , h) and S(D, ∗D, Q,NQ, h) given by

S(f) : (a,w) → (f(a), f̃(w))

is an isomorphism of structurable algebras.

Proof. The proof goes along similar lines as the one of [Pa-Sr-T, 2.2], i.e. as the proof of
Proposition 9. �

Example 26. Let R be a domain and let R′ be a quadratic étale ring extension of R.
Let L ∈ 3Pic R′, then there exists a nondegenerate cubic form N : L → R′ defined via
N(x) = α(x⊗ x⊗ x), where we just choose an isomorphism α : L⊗ L⊗ L → R′. Let ? be
the involution on R′ induced by the nontrivial automorphism of R′/R. Suppose that L also
carries a nondegenerate hermitian form h : L× L → R′ such that

N ′
R(h(w,w)) = N(w)N(w)∗B .
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For every L ∈ Pic R′ of order 3 such that L? ∼= L∨, we obtain a structurable algebra

S(R′, ?, L, N, h) = R′ ⊕ L

over R of rank 4.

Example 27. Let R′ be a quadratic étale R-algebra with canonical involution . Let E be
a cubic étale R-algebra such that E+ = J(NE , ]E , 1). Choose the commutative associative
R′-algebra B = E ⊗R R′ and ∗B = idE ⊗ . Then H(B, ∗B) = E ⊗ 1 can be identified with
E. We view B = ER′ as an algebra over R′ to see that norm and adjoint of E canonically
extend to B and satisfy (1), (2). We have h(x, y) = TE(x, y∗B ) for x, y ∈ B, TE denoting
the canonical extension of TE to B. Then

S(B, ∗B , B,NB , h) = R′ ⊕ E ⊗R R′

is a structurable algebra of rank 8.
Recall also that the étale Tits process

J = J(B,H(B, ∗B), P, N, ∗) = E ⊕ E ⊗R R′,

which yields a cubic Jordan algebra of rank 9, uses the same ingredients, see [P-T], [P-R2,
p. 248].

Example 28. (a) In the situation of Example 27, let E = R×R×R. Then B = E ⊗R′ ∼=
R′ × R′ × R′. Every left B-module P of rank one satisfies P ∼= L ⊕M ⊕ S with invertible
R′-modules L, M and S, and NB(P ) ∼= R′ if and only if L⊗M⊗S ∼= R′. Every isomorphism
α : L⊗M ⊗ S → R′ defines a norm on P via N(x, y, z) = α(x⊗ y ⊗ z).
(b) In the situation of Example 27, let R′ = R × R be a split quadratic étale algebra
with exchange involution . Then B = E ⊕ E with exchange involution and H1(X, B) =
H1(X, E) × H1(X, E). Hence any P ∈ H1(X, B) is of the type P ∼= P1 ⊕ P2 with Pi ∈
H1(X, E).

A tedious calculation, similar to the proof of Theorem 24, shows that in this case
S(B, ∗B, P, N, h) is a 2× 2-matrix algebra.

Also the étale Tits process J(B,H(B, ∗B), P, N, ∗) ∼= E⊕P1⊕P∨
1 with P1 ∈ H1(X, E) =

Picl E becomes an étale first Tits construction starting with E.

6. Structurable algebras of large rank

6.1. Structurable algebras over locally ringed spaces. Let (X,OX) be a locally ringed
space such that 2, 3 ∈ H0(X,O×

X). For P ∈ X let OP,X be the local ring of OX at P

and mP the maximal ideal of OP,X . The corresponding residue class field is denoted by
k(P ) = OP,X/mP . For an OX -module F the stalk of F at P is denoted by FP . F is locally
free of finite rank, if for each P ∈ X there is an open neighborhood U ⊂ X of P such that
F|U = Or

U for some integer r ≥ 0. The rank of F is defined to be sup{rankOP,X
FP |P ∈ X}.

An “OX -algebra” (or “algebra over X”) is a nonassociative OX -algebras which is unital and
locally free of finite constant rank as OX -module. An algebra A over OX is called separable
if A(P ) is a separable k(P )-algebra for all P ∈ X. Recall that an associative OX -algebra A
is called an Azumaya algebra if AP ⊗OP,X

k(P ) is a central simple algebra over k(P ) for all
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P ∈ X [K]. For an OX -algebra A, an anti-automorphism σ : A → A of order 2 is called an
involution on A. Define H(A, σ) = {a ∈ A |σ(a) = a} and S(A, σ) = {a ∈ A |σ(a) = −a}.
Then A = H(A, σ)⊕ S(A, σ).

6.2. An algebra with involution is a pair (A, ) consisting of an OX -algebra A and an
involution : A → A. A structurable algebra is an algebra with involution (A, ) satisfying

{xy{zwq}} − {zw{xyq}} = {{xyz}wq} − {z{yxw}q}

for all sections x, y, z, w ∈ A, where

{xyz} = (xȳ)z + (zȳ)x− (zx̄)y.

If B is an OX -submodule if A which is closed under multiplication, we call B a subalgebra
of A. If, additionally, B = B then we call (B, ) a subalgebra of (A, ).

There is a canonical equivalence between the category of structurable algebras over the
affine scheme Z = Spec R, for which the algebras are locally free as OX -modules and
the category of structurable algebras over R which are finitely generated projective as R-
modules, given by the global section functor (A, ) −→ (H0(Z,A),H0(Z, )) and the functor
(A, ) −→ (Ã, ˜).

The setup given in 4.1. adapts without any problems to the setting of locally ringed
spaces, for this we refer the reader to [Pu1, Section 3]. The same is obviously true for the
construction of the 2 × 2-matrix algebra M(T,N,N∨), as well as for 1.1, 1.3 and 1.4 (see
[Pu1] or [Pu2]).

6.3. The results of the previous sections have applications to structurable algebras over
fields as well. We will now construct classes of structurable algebras over a field which are
of large rank by passing to the global sections of structurable algebras over projective space.
We will consider the projective space over an arbitrary ring, though, since our considerations
hold not just over Pn

k .
Let X = Pn

R be the n-dimensional projective space over R, that is X = ProjS where
S = R[t0, . . . , tn] is the polynomial ring in n+1 variables over R, equipped with the canonical
grading S = ⊕m≥0Sm. We have rank Sm =

(
m+n

n

)
. We know that OX(m) is a locally free

OX -module of rank one for each m ∈ Z and

H0(X,OX(m)) = Sm for m ≥ 0,

H0(X,OX(m)) = 0 for m < 0.

Example 29. Let F = OX(m1)⊕OX(m2)⊕OX(m3), then B = EndX(F) is an Azumaya
algebra over X of constant rank 9. Hence B is a separable unital associative OX -algebra
and B+ = (NB, ]B, 1) with (NB, ]B, 1) a cubic form with adjoint and base point satisfying
equations (1), (2), see [Pu1]. We have

B =


OX OX(a) OX(b)

OX(−a) OX OX(b− a)

OX(−b) OX(a− b) OX
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with a = m1 − m2, b = m1 − m3, the right hand side being equipped with the usual
matrix multiplication. B = H0(X,B) is a unital associative R-algebra of degree 3 and
H0(X,B+) = (N0, ]0, 1) with (N0, ]0, 1) a cubic form with adjoint and base point on B

satisfying equations (1), (2), where we put N0 = N(X) : H0(X,B) → H0(X,OX), ]0 =
]B(X) : H0(X,B) → H0(X,B) and T0 = T (X) : H0(X,B)×H0(X,B) → H0(X,OX).

(1) If a, b > 0 and b− a > 0 then

H0(X,B) =


R Sa Sb

0 R Sb−a

0 0 R


has rank

3 +
(

a + n

n

)
+

(
b + n

n

)
+

(
(b− a) + n

n

)
.

(2) If a = b > 0 then

H0(X,B) =


R Sa Sa

0 R R

0 R R


has odd rank 5 + 2

(
a+n

n

)
.

In (1), we obtain

N0(


c fa fb

0 d fb−a

0 0 e

) = cde,

T0(


c fa fb

0 d fb−a

0 0 e

 ,


m ga gb

0 n gb−a

0 0 s

) = cm + dn + es

and in (2),

N0(


c fa ga

0 d e

0 m n

) = c(dn− em),

T0(


c fa ga

0 d e

0 m n

 ,


q ha la

0 r s

0 t u

) = cq + dr + nu.

The maps N0, T0 and ]0 satisfy the adjoint identities by construction. In each case,
the structurable R-algebra M(T0, N0, N0) is an R-subalgebra of the structurable algebra
M(TE , NE , NE) over S, E = Mat3(S), and has

(1) rank 8 + 2[
(
a+n

n

)
+

(
b+n

n

)
+

(
(b−a)+n

n

)
],

(2) rank 12 + 4
(
a+n

n

)
.
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Example 30. Let

D = EndX(OX ⊕OX(m))

be the split quaternion algebra over X with norm nD =det as defined in [P2, 2.11], m ≥ 0
an integer. Let B = OX ⊕D and NB((x1, x2)) = x1nD(x2) for all sections x1 in OX , x2 in
D. B is a separable unital associative OX -algebra and B+ = (NB, ]B, 1) with (NB, ]B, 1) a
cubic form with adjoint and base point satisfying equations (1), (2). We get

B = H0(X,B) = R⊕H0(X,D) = R⊕

[
R Sm

0 R

]
.

B is a unital associative R-algebra of degree 3 and B+ = (N0, ]0, 1) with (N0, ]0, 1) a
cubic form with adjoint and base point on B satisfying equations (1), (2), where we put
N0 = N(X) : H0(X,B) → H0(X,OX),

N0((a,

[
b fm

0 c

]
)) = abc,

]0 = ]B(X) : H0(X,B) → H0(X,OX),

(a,

[
b fm

0 c

]
)]0 = (bc,

[
ab(c− 1) −afm

0 ac(b− 1)

]
),

and the global section T0 = T (X) of the symmetric bilinear map T (x, y) = TB(xy) are given
by

T0((a,

[
b fm

0 c

]
), (d,

[
e gm

0 h

]
)) = ad + be + ch,

cf. [Pu1, Exercise 1 (ii)]. B is an R-subalgebra of the associative S-algebra F = S⊕Mat2 S

and of rank

3 +
(

m + n

n

)
.

The maps N0, T0 and ]0 satisfy the adjoint identities by construction. The structurable R-
algebra M(T0, N0, N0) is an R-subalgebra of the structurable algebra M(TF , NF , NF ) over
S, and has rank

8 + 2
(

m + n

n

)
.

If n = 1 then rankRM(T0, N0, N0) = 10 + 2m.

Example 31. Let B = OX × OX × OX . Then B+ = J (NB, ]B, 1) and, analogously as
in Example 14, every left B-module P ∼= OX(l) ⊕ OX(m) ⊕ OX(−l − m) of rank one
satisfies NB(P) ∼= OX (see also [Pu1, Example 8] for more details). Choose an isomorphism
α : OX(l)⊗OX(m)⊗OX(−l−m) → OX , then N(x, y, z) = α(x⊗ y⊗ z) defines a norm on
P and

T ((x, y, z), (x̌, y̌, ž)) = 〈(x, y, z), (x̌, y̌, ž)〉 = 〈x, x̌〉+ 〈y, y̌〉+ 〈z, ž〉.

Moreover, the adjoints are given by

(x, y, z)] = (y ⊗ z, z ⊗ x, x⊗ y),
(x̌, y̌, ž)̃] = (y̌ ⊗ ž, ž ⊗ x̌, x̌⊗ y̌)
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and

Ň(x̌, y̌, ž) = α̌−1(x̌⊗ y̌ ⊗ ž),

for (x, y, z) in P, (x̌, y̌, ž) in P∨. The structurable algebra

M(T,N,N∨) =

[
OX OX(l)⊕OX(m)⊕OX(−l −m)

OX(−l)⊕OX(−m)⊕OX(l + m) OX

]
over X has global sections

A = H0(X, M(T,N,N∨)) =

[
R Sl ⊕ Sm

Sl+m R

]
.

These global sections are an R-algebra with involution, with the algebra multiplication in
A given by[

a fl ⊕ fm

fl+m a′

] [
b gl ⊕ gm

gl+m b′

]
=

[
ab (agl + b′fl) + (agm + b′fm)

bfl+m + a′gl+m + flgm + fmgl a′b′

]
and the involution by [

a fl ⊕ fm

fl+m a′

]
=

[
a′ fl ⊕ fm

fl+m a

]
.

Here, a, a′, b, b′ ∈ R and the f ’s and g’s are homogeneous polynomials with subscrips indi-
cating their degrees.

Note that this multiplication closely resembles the one described in [P2, 3.8]. It is analo-
gously defined as the one on the global sections of the split octonion algebra Zor(T , α) with
T = OX(l)⊕OX(m)⊕OX(−l−m), the only difference is the term flgm − fmgl instead of
flgm + fmgl above, which generalizes the usual vector product × used in the multiplication
of a split octonion algebra.

Note also that the maps T , ]̌ on the global sections become trivial, i.e. with T0 = T (X),
×̌0 = ×̌(X) and ×0 = ×(X), we have

T0 : (Sl ⊕ Sm)× Sl+m → R, T0 = 0,

×̌0 : Sl+m × Sl+m → (Sl ⊕ Sm), fl+m ×̌0 gl+m = 0

and

×0 : (Sl ⊕ Sm)× (Sl ⊕ Sm) → Sl+m, (fl ⊕ fm)×0 (gl ⊕ gm) = flgm + fmgl.

Indeed, (T,N,N∨) = (0, 0, 0). (A, ) is an R-subalgebra of the classical split Cayley algebra

M(S3) =

[
R S3

S3 R

]
.

over S and free of rank

2 +
(

l + n

n

)
+

(
m + n

n

)
+

(
(l + m) + n

n

)
.

It is not difficult to generate more examples of this nature, all of them arising canonically
as the global sections of some structurable algebra over projective n-space (or over a curve
of genus zero or one).



CLASSES OF STRUCTURABLE ALGEBRAS OF SKEW-RANK 1 27

References

[Ach1] Achhammer, G., Albert Algebren über lokal geringten Räumen. PhD Thesis, FernUniversität Ha-
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