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ABSTRACT: In this paper we prove that a Lie algebra L is strongly prime if and only if

[x, [y, L]] 6= 0 for every nonzero elements x, y ∈ L. As a consequence, we give an elementary

proof, without the classification theorem of strongly prime Jordan algebras, that a linear Jordan

algebra or Jordan pair T is strongly prime if and only if {x, T, y} 6= 0 for every x, y ∈ T .

Moreover, we prove that the Jordan algebras at nonzero Jordan elements of strongly prime Lie

algebras are strongly prime.

Introduction

It is well know that an associative algebra R is prime if and only if aRb 6= 0
for arbitrary nonzero elements a, b ∈ R and is semiprime if and only if is nonde-
generate, i.e., aRa 6= 0 for every nonzero element a ∈ R. In the non-associative
setting these characterizations are not so easy, mainly due to the difficulty of
building ideals. Moreover, it is known that there exist semiprime, even prime,
alternative, Jordan, or Lie algebras that are degenerate (there even exist simple fi-
nite dimensional Lie algebras which are degenerate). Nevertheless, there are some
characterizations of strong primeness by elements in Jordan systems or alternative
algebras, see [3] (even for quadratic systems [2]):
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de Andalućıa FQM264.
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(i) An alternative algebra A is strongly prime if and only if (aA)b = 0 (or
a(Ab) = 0), a, b ∈ A, implies a = 0 or b = 0.

(ii) A linear Jordan algebra or Jordan pair T is strongly prime if and only if
{a, T, b} = 0, a, b ∈ T , implies a = 0 or b = 0.

We want to point out that (ii) is not true for quadratic Jordan algebras or
Jordan pairs (see [2]), but in this case we have a “quadratic” characterization of
strong primeness by elements:

(iii) A Jordan algebra or Jordan pair T is strongly prime if and only if
UaUT UbT = 0, a, b ∈ T , implies a = 0 or b = 0.

In this paper we give a characterization of strong primeness by elements in
Lie algebras over an arbitrary ring of scalars:

(iv) A Lie algebra L is strongly prime if and only if [a, [b, L]] = 0, a, b ∈ L,
implies a = 0 or b = 0.

This result will allow to transfer the strong primeness between a Lie algebra
and its Jordan algebras at nonzero Jordan elements (see [4] for definitions). More-
over it gives rise to an alternative proof of the elemental characterization of strong
primeness in linear Jordan algebras [3] without using the classification theorem of
strongly prime Jordan algebras (given by Zelmanov in 1983).

1. Main result

We will be dealing with Lie algebras over an arbitrary ring of scalars Φ. As
usual, [x, y] will denote the Lie bracket, with adx the adjoint map determined by
x. Given a Lie algebra L, x ∈ L is an absolute zero divisor of L if ad2

x = 0, L is
nondegenerate if it has no nonzero absolute zero divisors, and prime if [I, J ] = 0
implies I = 0 or J = 0, for ideals I, J of L. We say that a Lie algebra is strongly
prime if it is prime and nondegenerate.

In this section we are going to prove the main result of the paper: A Lie
algebra L is strongly prime if and only if [x, [y, L]] = 0 implies x = 0 or y = 0. As
in the Jordan setting it is easy to prove the “ if ” part of the theorem. In order to
prove the “ only if ” part we are going to study some properties of elements x, y

in a Lie algebra L such that [x, [y, L]] = 0.

1.1 Proposition. Let L be a Lie algebra and let x, y ∈ L such that
[x, [y, L]] = 0 = [x, y]. Then, [y, [x, L]] = 0 and adx ada ady = − ady ada adx.
Moreover, if L is nondegenerate, [x, [y, L]] = 0 implies [x, y] = 0.
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Proof. For every a ∈ L, [y, [x, a]] = [[y, x], a] + [x, [y, a]] = 0. Now, for any
b ∈ L

[x, [a, [y, b]]] = [x, [[a, y], b]] + [x, [y, [a, b]]] = [[a, y], [x, b]] + 0

= [[a, [x, b]], y] + [a, [y, [x, b]]] = −[y, [a, [x, b]]] + 0,

i.e., adx ada ady = − ady ada adx. Moreover,

ad2
[x,y] = adx ady adx ady − adx ad2

y adx− ady ad2
x ady + ady adx ady adx = 0,

so, if L is nondegenerate, [x, y] = 0.

In the following propositions and in theirs proofs, we will use capital letters
to denote the adjoint operators, i.e., X := adx; A := ada.

1.2 Lemma. Let L be a nondegenerate Lie algebra, x, y ∈ L such that
XY = 0. Then any product adz1 adz2 . . . adzn is zero if the number of zi = x (call
it s) and the number of zj = y (call it r) satisfy s 6= 0 6= r and n + 1 < 2(r + s).

Proof. We are going to give a proof by induction on n: if n = 2 then adx ady =
0 by definition, and ady adx = 0 by (1.1). Let us suppose that the result is true
for 2, . . . , n− 1 and let us prove it for n. Let adz1 adz2 . . . adzn be a product such
that the number of zi = x (call it s) and the number of zj = y (call it r) satisfy
that s 6= 0 6= r and n + 1 < 2(r + s).

(a). Let us suppose that there exist k1 < k2 < k3 ≤ n such that zk1 =
zk3 = x and zk2 = y. Then, let s′ be the number of zi = x and r′ the number
of zi = y between z1 and zk2 , and s′′ the number of zi = x and r′′ the number
of zi = y between zk2 and zn. Note that s′ = s − s′′ and r′ = r − r′′ + 1. So
s′, s′′, r′, r′′ 6= 0 and either k2 + 1 < 2(s′ + r′) (in this case by the induction
hypothesis adz1 adz2 . . . adzk2

= 0) or k2 + 1 ≥ 2(s′ + r′) and then (note that
n− k2 + 1 is the number of elements between zk2 and zn)

(n− k2 + 1) + 1 = n + 3− (k2 + 1) ≤ n + 3− 2s′ − 2r′ = n + 3− 2s + 2s′′

− 2r + 2r′′ − 2 = n + 1− 2(s + r) + 2s′′ + 2r′′ < 2s′′ + 2r′′,

which implies by the induction hypothesis that adzk2
. . . adzn−1 adzn = 0. In any

case, adz1 adz2 . . . adzn = 0.

Note that if zk1 = zk3 = y and zk2 = x, the meanings of s, s′ and s′′ can be
exchanged with r, r′ and r′′ respectively to also obtain that adz1 adz2 . . . adzn = 0.



4

(b). There exists k < k′ ∈ {1, 2, . . . , n} such that zk = x and if zi = x, then
i ≤ k, and zk′ = y and if zi = y, then i ≥ k′. Note that, since n > 2, either r or s

are bigger than 1. Let us suppose that s > 1 (if s = 1 we exchange the roles of x

and y) and in this case there exists i ∈ {1, 2, . . . , k − 1} such that zi = x. Then,

adz1 adz2 . . . adzk−1 ad[[x,zk+1],zk+2] adzk+3 . . . adzn
= 0

because if zk+1 or zk+2 = y then ad[[x,zk+1],zk+2] = 0 by (1.1), and if zk+1, zk+2 6= y

the result follows by induction since s > 1 and the number of elements in the above
formula is n − 2. So ad[x,zk+1] and adzk+2 commute. In a similar way ad[x,zk+1]

commutes with adzk+3 and if we follow this way ad[x,zk+1] meets and crosses with
an ady, and we return to case (a). Then by (a) adz1 adz2 . . . adzn = 0.

1.3 Proposition. Let L be a nondegenerate Lie algebra and n ∈ N. Let
us consider x, y ∈ L such that XA1A2 . . . AnY = 0 for every a1, a2, . . . , an ∈ L.
Then XA1A2 . . . AkY = 0 and Y A1A2 . . . AkX = 0 for any a1, a2, . . . , ak ∈ L,
k ∈ {0, 1, 2, . . . , n}. Moreover [x, y] = 0.

Proof. Firstly, let us prove that adx ada1 . . . adak
ady adak+1 . . . adan(b) = 0,

for every a1, a2, . . . , an, b ∈ L. Notice that

ady adak+1 . . . adan b = ad[y,ak+1] adak+2 . . . adan b + adak+1 ady adak+2 . . . adan b

=− ad(adak+2 ... adan b) ady ak+1 + adak+1 ady adak+2 . . . adan b.

So if k = n− 1,

adx ada1 . . . adan−1 ady adan(b) = − adx ada1 . . . adan−1 adb ady(an)

+ adx ada1 . . . adan−1 adan ady(b) = 0,

and if the result is true for any k,

adx ada1 . . . adak−1 ady adak
. . . adan(b)

=− adx ada1 . . . adak−1 ad(adak+1 ... adan (b)) ady(ak)

+ adx ada1 . . . adak−1 adak
ady adak+1 . . . adan(b) = 0.

The first summand is zero because it begins by an adx, it ends by an ady and if
we span the terms in the middle, it contains n elements of the form adai or adb,
while the second summand is zero by the induction hypothesis.
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Now, for every b ∈ L, let us denote by z = adx ada1 . . . adan−1 ady(b) and by
t = ada1 . . . adan−1 ady(b). Then, since adx adt = adx adada1 ... adan−1 ady(b) = 0 by
the previous formula, ad2

z = ad2
[x,t] = (adx adt− adt adx)2 = 0. Moreover, since L

is nondegenerate, z = 0, i.e., XA1 . . . An−1Y = 0. The remaining equalities follow
by induction. Moreover, by (1.1), [x, y] = 0.

Let us show that also Y A1 . . . AkX = 0 for any a1, . . . , ak ∈ L, k ∈ {0, . . . , n}:
We have XY = 0 which implies, by (1.1), that Y X = 0 and if n ≥ 1, Y AX =
−XAY = 0 for every a ∈ L. Let us suppose that Y A1 . . . AsX = 0, for any
a1, . . . , as ∈ L, s ∈ {0, 1, . . . , k}, k < n. Then if we take arbitary a1, . . . , ak+1 ∈ L:

Y A1A2 . . . Ak+1X = Y A1A2 . . . [Ak+1, X] = Y [A1, [A2, [. . . , [Ak+1, X]]]]

=[Y, [A1, [A2, [. . . , [Ak+1, X]]]]] + [A1, [A2, [. . . , [Ak+1, X]]]]Y

=[A1, [A2, [. . . , [Ak+1, X]]]]Y = (−1)k+1XAk+1Ak . . . A1Y = 0.

(Notice that [Y, [A1, [. . . , [Ak+1, X]]]] = 0 because [Y, [A1, [. . . , [Ak+1, X]]]] =
− ad[y,[a1,[...,[x,ak+1]]]] = − adY A1...AkX(ak+1) and Y A1 . . . AkX = 0 by the induc-
tion hypothesis.)

1.4 Proposition. Let L be a nondegenerate Lie algebra and n ∈ N. Let
us consider x, y ∈ L such that XA1A2 . . . AnY = 0, for every a1, a2, . . . , an ∈ L

(if n = 0 we understand XY = 0). Then there exist x′ 6= 0 and y′ 6= 0 such that
X ′A1A2 . . . An+1Y

′ = 0 for every a1, a2, . . . , an+1 ∈ L.

Proof. Let us prove the case n = 0. Without loss of generality we can suppose
that ad3

x L = 0 = ad3
y L: If there exists a ∈ L such that ad3

x a 6= 0, then, by (1.2),
x′ = ad3

x a, y′ = y satisfy X ′Y ′ = 0 and X ′A1Y
′ = 0 for every a1 ∈ L (respectively,

if there exists b ∈ L such that ad3
y b 6= 0, consider x′ = x and y′ = ad3

y b).

Now, let us prove some equalities: For every e, f, g ∈ L, X2EY 2 = XEY 2 =
X2EFY 2 = X2EY = 0 and XEFY 2 = XFEY 2, by (1.2). Moreover,

X2EFY = X[X, E]FY + XEXFY = X[[X, E], F ]Y + XF [X,E]Y

+ XEXFY = −Y [[X,E], F ]X + XFXEY + XEXFY

= Y EXFX + Y FXEX − Y EFX2 + XFXEY + XEXFY

= 2Y EXFX + 2Y FXEX − Y EFX2,

XEFY 2 = 2XFY EY + 2XEY FY − Y 2FEX follows symmetrically, and
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X2EFGY 2 = X[X, E]FGY 2 + XEXFGY 2 = X[[X, E], F ]GY 2

+ XF [X,E]GY 2 + XEXFGY 2 = XG[[X, E], F ]Y 2

+ XFXEGY 2 + XEXFGY 2 = XGXEFY 2 + XFXEGY 2

+ XEXFGY 2 = 2XGXEY FY + 2XGXFY EY + 2XFXEY GY

+ 2XFXGY EY + 2XEXFY GY + 2XEXGY FY.

Now, using the formulas above:

adad2
x a adb adad2

y c = (X2A + AX2 − 2XAX)B(Y 2C + CY 2 − 2Y CY )

= X2ABY 2C + AX2BY 2C − 2XAXBY 2C + X2ABCY 2 + AX2BCY 2

− 2XAXBCY 2 − 2X2ABY CY − 2AX2BY CY + 4XAXBY CY

= X2ABCY 2 − 2XAXBCY 2 − 2X2ABY CY + 4XAXBY CY

= 2XAXBY CY + 2XAXCY BY + 2XBXAY CY + 2XBXCY AY

+ 2XCXAY BY + 2XCXBY AY − 4XAXBY CY − 4XAXCY BY

− 4XAXBY CY − 4XBXAY CY + 4XAXBY CY = −2XAXBY CY

+ 2XCXBY AY − 2XAXCY BY + 2XCXAY BY − 2XBXAY CY

+ 2XBXCY AY.

Note that in the last expression the roles of a and c are skew-symmetrical. So if
we exchange a and c we obtain: adad2

x a adb adad2
y c = − adad2

x c adb adad2
y b .

Therefore, if we take a = ad2
u ad2

x v and c = ad2
u′ ad2

y v′, for u, u′, v, v′ ∈ L:

adad2
x a adb adad2

y c = adad2
x ad2

u ad2
x v adb adad2

y ad2
u′ ad

2
y v′

= − adad2
x ad2

u′ ad
2
y v′ adb adad2

y ad2
u ad2

x v = 0
(∗)

because, by (1.2), ad2
x ad2

u′ ad2
y v′ = 0. Finally, since x and y are nonzero and L

is nondegenerate there exist u, u′ ∈ L such that ad2
x u 6= 0 6= ad2

y u′ and again
there exist v, v′ ∈ L such that ad2

ad2
x u v 6= 0 6= ad2

ad2
y u′ v

′. Moreover, since at
the beginning of the proof we showed that x and y can be taken with the extra
hypothesis ad3

x = ad3
y = 0 we have, see [1], that

x′ = ad2
ad2

x u v = ad2
x ad2

u ad2
x v 6= 0 and y′ = ad2

ad2
y u′ v

′ = ad2
y ad2

u′ ad2
y v′ 6= 0

satisfy the case n = 0, see (∗).
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Let us prove the case n ≥ 1: Let us denote by Sn+1 the group of permutations
on n + 1 elements and let σ ∈ Sn+1. Then, by (1.3):

XA1A2 . . . An+1Y = XAσ(1) . . . Aσ(n)Aσ(n+1)Y

XA1A2 . . . An+1Y = XA1A2 . . . [An+1, Y ] = X[A1, [A2, [. . . , [An+1, Y ]]]]

=[X, [A1, [A2, [. . . , [An+1, Y ]]]]] + [A1, [A2, [. . . , [An+1, Y ]]]]X

=[A1, [A2, [. . . , [An+1, Y ]]]]X = (−1)n+1Y An+1An . . . A1X

X2A1A2 . . . An+2Y = X[X,A1]A2 . . . An+2Y + XA1XA2 . . . An+2Y

=X[[X, A1]A2]A3 . . . An+2Y + XA2[X, A1]A3 . . . An+2Y

+ (−1)n+1XA1Y A2 . . . An+2X = XA3 . . . An+2[[X, A1]A2]Y

=XA3 . . . An+2XA1A2Y = XA3 . . . An+2Y A1A2X = 0

XA1A2 . . . An+2Y
2 = 0, follows simetrically.

Finally,

X2A1A2 . . . An+3Y
2 = X[X, A1]A2 . . . An+3Y

2 = X[[X,A1], A2] . . . An+3Y
2 = 0

Let us denote by B := A1A2 . . . AnAn+1. Then

adad2
x aB adad2

y c = (X2A + AX2 − 2XAX)B(Y 2C + CY 2 − 2Y CY )

= X2ABY 2C + AX2BY 2C − 2XAXBY 2C + X2ABCY 2 + AX2BCY 2

− 2XAXBCY 2 − 2X2ABY CY − 2AX2BY CY + 4XAXBY CY = 0,

which finishes the proof.

Given a subset S of L, the annihilator or centralizer of S in L, AnnL(S),
consists of the elements x ∈ L such that [x, S] = 0. By the Jacobi identity,
AnnL(S) is a subalgebra of L, and also an ideal whenever S is so. Moreover, if
L is semiprime and I is an ideal of L, I ∩ AnnL(I) = 0 which implies that in a
semiprime Lie algebra L an ideal I is essential if and only if AnnL(I) = 0.

1.5 Proposition. Let L be a nondegenerate Lie algebra and let x, y ∈ L

such that adx ada adb ady = 0 for every a, b ∈ L. Then y ∈ AnnL(IdL(x)) and
x ∈ AnnL(IdL(y)).

Proof. Let us prove that [[x, a], [b, [c, [y, d]]]] = 0 for every a, b, c, d ∈ L. In
this case the set

I = {s ∈ L | [s, [b, [c, [y, d]]]] = 0 for every b, c, d ∈ L}
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is an ideal of L. Moreover, by (1.3), [I, y] = 0 and therefore y ∈ AnnL(I) ⊂
AnnL(IdL(x)). Now, if we exchange the roles of x and y we obtain that x ∈
AnnL(IdL(y)).

In what follows we use, without mentioning it, that XY = Y X = XAY =
Y AX = XABY = Y ABX = 0 and XABCY = −Y ABCX for every a, b, c ∈ L,
see (1.3).

ad[[x,a],[b,[c,[y,d]]]] = [[X, A], [B, [C, [Y,D]]]] = XABCY D −XABCDY

+ XABDY C + XACDY B + AXBCDY + Y DCBXA

−BY DCAX − CXDBAX −DY CBAX.

An therefore, since in each summand of ad2
[[x,a],[b,[c,[y,d]]]] we always have a product

of the form . . . XE1E2Y . . . (which is equal to 0), we have that ad2
[[x,a],[b,[c,[y,d]]]] = 0

and, since L is nondegenerate, [[x, a], [b, [c, [y, c]]]] = 0.

Now we show the main result of this paper.

1.6 Theorem. A Lie algebra L is strongly prime if and only if for every
x, y ∈ L such that [x, [y, L]] = 0 we have that x = 0 or y = 0.

Proof. Let us suppose that L is not strongly prime. If L has a nonzero zero
divisor x ∈ L, then [x, [x, L]] = 0 for 0 6= x ∈ L, and if L is nondegenerate but
not prime, there exist two nonzero ideals I, J of L such that [I, J ] = 0, so given
0 6= x ∈ I and 0 6= y ∈ J , [x, [y, L]] ⊂ [I, J ] = 0.

Conversely, if L is strongly prime and there exist two nonzero elements x, y ∈
L such that [x, [y, L]] = 0, since L is, in particular, nondegenerate, there exist
0 6= x′ ∈ L and 0 6= y′ ∈ L such that X ′CDY ′ = 0 for any c, d ∈ L (1.4), i.e.,
adx′ adc add ady′ = 0, which implies, by (1.5), that 0 6= y′ ∈ AnnL(IdL(x′)) = 0,
since L is strongly prime, a contradiction.

2. Some consequences

Now we are going to study the transfer of strong primeness between Lie alge-
bras and some related structures.

2.1 We say that an element x in a Lie algebra L over Φ is a Jordan element
if ad3

x = 0. When 1
2 , 1

3 belong to Φ, every Jordan element gives rise to a Jordan
algebra, called the Jordan algebra of L at x, see [4]: Let L be a Lie algebra
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and let x ∈ L be a Jordan element. Then L with the new product given by
a • b := 1

2 [[a, x], b] is an algebra such that

ker(x) := {z ∈ L | [x, [x, z]] = 0}

is an ideal of (L, •). Moreover, Lx := (L/ ker(x), •) is a Jordan algebra. In this
Jordan algebra the U-operator has this very nice expression:

Uab =
1
8
ad2

a ad2
x b, for all a, b ∈ L, and

{a, b, c} = −1
4
[a, [ad2

x b, c]] for all a, b, c ∈ L

A Lie algebra is nondegenerate if and only if Lx is nonzero for every Jordan element
x ∈ L. Moreover, in this case, Lx is a nondegenerate Jordan algebra [4, 2.15(i)].

Now we show the inheritance of strong primeness by the Jordan algebras of
a strongly prime Lie algebra. We also give a sufficient condition for the lifting of
strong primeness from the Jordan algebras at Jordan elements to the Lie algebra.

2.2 Theorem. Let L be a nondegenerate Lie algebra over a ring of scalars
with 1

2 , 1
3 . Then

(i) if L is a strongly prime Lie algebra, every Jordan algebra of L at a nonzero
Jordan element is strongly prime.

Conversely, if for every ideal I 6= 0 of L such that AnnL(I) 6= 0 we have that
AnnL(I) contains a nonzero Jordan element, then

(ii) L is strongly prime if every Jordan algebra of L at a nonzero Jordan
element is strongly prime.

Proof. (i) Let us suppose that L is strongly prime and let x ∈ L be a Jordan
element of L with Jordan algebra Lx. Let a, b ∈ Lx be such that {a, y, b} = 0 for
every y ∈ L. Then, by [4, 2.3(vi)]

0 = [x, [x, [[a, ad2
x(y)], b]]] = [ad2

x a, [y, ad2
x b]] for every y ∈ L,

so [ad2
x a, [ad2

x b, y]] = 0 for every y ∈ L, which implies, by (1.6), that ad2
x a = 0 or

ad2
x b = 0, i.e., a = 0 or b = 0.

(ii) Let us suppose that every ideal I 6= {0} of L with AnnL(I) 6= 0 contains
a nonzero Jordan element, and let x′, y′ be two nonzero elements of L such that
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[x′, [y′, L]] = 0. By (1.4), we can suppose that [x′, [a, [b, [y′, c]]]] = 0 for every
a, b, c ∈ L. Now, by (1.5), 0 6= y′ ∈ AnnL(IdL(x′)) and, by hypothesis, there
exists an ad-nilpotent element 0 6= y ∈ L of index 3 such that y ∈ AnnL(IdL(x′)).
So [x′, [a, [b, [y, c]]]] = 0 for every a, b, c ∈ L and if we repeat the argument, x′ ∈
AnnL(IdL(y)), and there exists an ad-nilpotent element 0 6= x ∈ L of index 3
such that x ∈ AnnL(IdL(y)). Finally, since by (1.3) adx ady = ady adx = 0 and
[x, y] = 0, we have that x + y is a Jordan element.

Let us prove that Lx+y is not strongly prime: take a, b ∈ L such that ad2
x a 6= 0

and ad2
y b 6= 0 and a′, b′ ∈ L such that

0 6= ad2
ad2

x a a′ = ad2
x ad2

a ad2
x a′ and 0 6= ad2

ad2
y b b′ = ad2

y ad2
b ad2

y b′.

Then, 0 6= ad2
a ad2

x a′ ∈ Lx+y and 0 6= ad2
b ad2

y b′ ∈ Lx+y:

ad2
x+y ad2

a ad2
x a′ = ad2

x ad2
a ad2

x a′ 6= 0,

ad2
x+y ad2

b ad2
y b′ = ad2

y ad2
b ad2

y b′ 6= 0,

because x ∈ AnnL(IdL(y)), and, for every d ∈ L, see (2.1),

{ad2
a ad2

x a′, d, ad2
b ad2

y b′}x+y = −1
4
[ad2

a ad2
x a′, [ad2

x+y d, ad2
b ad2

y b′]] = 0,

since x ∈ AnnL(IdL(y)), which shows that Lx+y is not strongly prime, a contra-
diction.

The next theorem gives an alternative proof of the characterization of strong
primeness by elements for Jordan algebras [3] without the use of Zelmanov classifi-
cation of strongly prime Jordan systems. An element x in a Jordan algebra or pair
T is called an absolute zero divisor if Ux = 0. Thus T is said to be nondegenerate if
it has no nonzero absolute zero divisors, and prime if {B, C, B} = 0 implies B = 0
or C = 0, for ideals B, C of T . We say that T is strongly prime if it is prime and
nondegenerate.

2.3 Theorem. Let T be a Jordan algebra or a Jordan pair over a ring of
scalars with 1

2 . Then T is strongly prime if and only if for every x, y ∈ T we have
that {x, T, y} = 0 implies x = 0 or y = 0.

Proof. The “if” part follows as in (1.6). Now, if T = (T+, T−) is a strongly
prime Jordan pair, the Tits-Kantor-Koecher algebra TKK(T ) is a strongly prime



11

Lie algebra, see [5, 2.6]. Moreover, if x, y ∈ Tσ satisfy that 0 = {x, T−σ, y} =
[x, [y, T−σ]], then, by the grading, [x, [y, TKK(T )]] = 0 which implies that x = 0
or y = 0. If T is a strongly prime Jordan algebra, (T, T ) is a strongly prime Jordan
pair, see [2, 1.12], and the result follows from the above.

The next proposition is an alternative proof of [6, Lemma 3.1], which was
proved by means of a strong result related with the Kostrikin radical of a Lie
algebra. Recall that for every Lie algebra with a (2n + 1)-grading L = L−n ⊕
. . .⊕ L0 ⊕ . . .⊕ Ln, the pair of modules (L−n, Ln) is a Jordan pair with product
{x, y, z} = [[x, y], z] for every x, z ∈ Lσn, y ∈ L−σn, as soon as 1

2 , 1
3 belong to the

ring of scalars Φ. The pair (L−n, Ln) is called the associated Jordan pair of L.

2.4 Proposition. Let L be a strongly prime Lie algebra with a (2n + 1)-
grading over a ring of scalars with 1

2 , 1
3 . Then its associated Jordan pair (L−n, Ln)

is strongly prime.

Proof. If x, y ∈ Lσn, with σ = ±, are elements such that 0 = {x, L−σn, y} =
[x, [y, L−σn]] we have by the grading that [x, [y, L]] = 0 and therefore, since L is
strongly prime, x = 0 or y = 0, which proves that (L−n, Ln) is strongly prime
itself.
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bras of a Lie algebra. (Preprint)
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