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Introduction

The present note is an extended version of the announcement [18]. It concerns a project
dealing with the theory of classical groups and Steinberg groups over arbitrary rings from the
point of view of Jordan theory. This provides a unifying framework, avoiding case-by-case
arguments, for the linear elementary groups, the unitary elementary groups and the orthog-
onal elementary groups, see, for example, the book [9] by A. J. Hahn and O. T. O’Meara.
We start from a Jordan pair V graded by a 3-graded root system Φ and show that the pro-
jective elementary group PE(V ) has Φ-commutator relations in the sense of J. R. Faulkner
[7, Ch. 1]. Since our root systems are allowed to be infinite (but locally finite, as in our
monograph [16]), we are able to deal with the infinite elementary groups and Steinberg
groups directly, that is, without having to pass to the limit. To PE(V ) we associate a
Steinberg group St(V ), following the method of J. Tits for Kac-Moody groups [25]. Our
main result concerns the case where Φ is irreducible of infinite rank and asserts that St(V )
is the universal central extension of the projective elementary group. Our approach is
substantially less computational than those in the literature.

In this survey we present background material on elementary groups and Jordan pairs
in §1 and describe the contents of our research in §2.

§1. Elementary groups

1.1. The elementary group of a Morita context. For motivation let us start with
2× 2 matrices (

a b
c d

)

with coefficients in a ring R. The elementary group E2(R) is the subgroup of GL2(R)
generated by the elementary matrices

e12(x) =
(

1 x
0 1

)
, e21(x) =

(
1 0
x 1

)
(x ∈ R).

More generally, one considers the elementary group En(R) ⊂ GLn(R), generated by all
eij(x) = 1n+xEij , i 6= j, x ∈ R [9, 1.2]. This can also be done with (formal) 2×2 matrices
by subdividing an n × n matrix into 4 blocks, say of size p × p, p × q, q × p, q × q, with
p+ q = n. Then it is easy to see that En(R) is already generated by the matrices

(
1p x
0 1q

)
,

(
1p 0
y 1q

) (
x ∈ Matpq(R), y ∈ Matqp(R)

)
.
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This suggests to consider right away the following more general situation: Replace the
n × n-matrices Matn(R) by a ring A with a formal block matrix decomposition. Such a
decomposition can be obtained by choosing an idempotent e ∈ A and putting f = 1 − e.
The Peirce decomposition of A with respect to the idempotent e can then be written as

A =
(
eAe eAf
fAe fAf

)
=

(
A B
C D

)
; (1.1.1)

in other words: M = (A,B,C,D) is a Morita context. One defines the elementary group of
M as the following subgroup of the units of A:

E(M) =
〈(

1A B
0 1D

)
∪

(
1A 0
C 1D

) 〉
.

The setting of a Morita context not only captures the elementary group En(R), but also its
stable version

E(R) =
⋃

n>2

En(R)

([9, 1.3]) where for p > n the group En(R) sits in the upper left hand corner of Ep(R).
Indeed, for arbitrary sets J and K define MatJK(R) as the J × K-matrices with entries
from R, almost all of them zero. Then

RJK =
(
R · 1J + MatJJ (R) MatJK(R)

MatKJ (R) R · 1K + MatKK(R)

)

is a Morita context. If N = J ∪̇ K is a non-trivial partition, it is straightforward to see
that the stable elementary group coincides with the elementary group of the Morita context
RJK , thus E(R) = E(RJK).

1.2. Elementary groups of special Jordan pairs. Let us now always work over an
arbitrary commutative base ring k. All objects for which this makes sense are assumed to
be modules over k, rings are k-algebras, and so on.

If M is a Morita context as above, where now A is an associative k-algebra, one does
not need to take all of (M+,M−) := (B,C) to obtain a group. Rather we can start from
any pair V = (V +, V −) of k-submodules V ± ⊂M± and consider the subgroup

E(M, V ) =
〈(

1 V +

0 1

)
∪

(
1 0
V − 1

) 〉
⊂ E(M)

of E(M). Since V ± are in particular additive subgroups of M±,
(

1 V +

0 1

)
and

(
1 0
V − 1

)

are multiplicative subgroups of A×. It turns out (see Lemma 1.3), that there are natural
group-theoretic reasons to require that V = (V +, V −) have more structure than just being a
pair of submodules. To explain this, recall that the associative algebra A together with the
commutator [a, b] = ab−ba is a Lie algebra, which will be denoted by L. The decomposition
(1.1.1) defines a 3-grading of the Lie algebra L, i.e., a Z-grading L =

⊕
n∈Z Ln with Ln = {0}

for |n| > 1, namely

L−1 =
(

0 0
M− 0

)
, L0 =

(
eAe 0
0 fAf

)
, L1 =

(
0 M+

0 0

)
.
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We observe that (M+,M−) is closed under the composition

Q(x)y = xyx (x ∈Mσ, y ∈M−σ, σ = ±). (1.2.1)

By linearization, (M+,M−) is then also closed under the trilinear composition

{x, y, z} = xyz + zyx (x, z ∈Mσ, y ∈M−σ, σ = ±). (1.2.2)

For a pair V = (V +, V −) of submodules of M we define

e−1 =
(

0 0
V − 0

)
, e1 =

(
0 V +

0 0

)
,

e0 = k ·
(

1A 0
0 0

)
+ k ·

(
0 0
0 1D

)
+ [e1, e−1],

ei = {0} for i 6= 0,±1,
e(M, V ) = e−1 ⊕ e0 ⊕ e1.

1.3. Lemma. (a) e(M, V ) is a graded Lie subalgebra of L, hence itself 3-graded, if
and only if V is closed under the trilinear composition (1.2.2) , i.e., {V σ, V −σ, V σ} ⊂ V σ

for σ = ±.

(b) e(M, V ) is stable under conjugation by elements of E(M, V ) if and only if V is
closed under the Q-operators (1.2.1) , i.e., Q(V σ)V −σ ⊂ V σ for σ = ±.

The condition (a) says that V is a special linear Jordan pair and (b) that V is a special
quadratic Jordan pair. If they are fulfilled, we call e(M, V ) the elementary Lie algebra of
(M, V ).

So far we have seen that any embedding of a special Jordan pair in a Morita context
gives rise to an elementary group. Now it is natural to ask whether there are elementary
groups for arbitrary (not necessarily special) Jordan pairs. The answer, given in 1.5, is
essentially yes. For the sake of completeness, we first present some background material on
Jordan pairs.

1.4. Jordan pairs ([13]). A (quadratic) Jordan pair V = (V +, V −) is a pair of k-
modules together with a pair (Q+, Q−) of quadratic maps Qσ: V σ → Homk(V σ, V −σ) such
that, defining bilinear maps Dσ : V σ × V −σ → Endk(V σ) by

Dσ(x, y)(z) = Qσ(x+ z)(y)−Qσ(x)(y)−Qσ(z)(y),

the following identities hold in all base ring extensions of V :

Dσ(x, y)Qσ(x) = Qσ(x)D−σ(y, x),
Dσ(Qσ(x)y, y) = Dσ(x,Q−σ(y)x),
Qσ(Qσ(x)y) = Qσ(x)Q−σ(y)Qσ(x).

Examples. (a) It is a useful exercise to verify that these identities do indeed hold for
the special Jordan pairs (MatJK(R),MatKJ (R)) or, more generally (B,C) of the previous
subsection 1.1 for Q+ = Q− = Q defined by (1.2.1) and D±(x, y)z = {x, y, z} = xyz + zyx
as in (1.2.2). One is justified to call these Jordan pairs special, since there are examples of
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Jordan pairs which cannot be embedded into a Morita context, for example Jordan pairs
arising from exceptional Jordan algebras, as in (b).

(b) Any quadratic Jordan algebra J with quadratic map U : J → Endk(J) gives rise to
a Jordan pair (J, J) with Q± = U . For example, any associative algebra A can be viewed
as a Jordan algebra A+ with U(a)b = aba and hence a fortiori to a Jordan pair (A+, A+).
Similarly, symmetric matrices over an associative algebra B form a Jordan algebra, viz., a
subalgebra of an appropriate Jordan algebra A+, and hence provide another example of a
Jordan pair.

The aforementioned examples are all special. However, if J is not special (exceptional),
then so is the Jordan pair (J, J). The reader should be warned that not all Jordan pairs
arise from Jordan algebras. For example (Matpq(R),Matqp(R)) is in general not isomorphic
to a Jordan pair associated to a Jordan algebra. Thus Jordan pairs afford a substantial
extension of the theory of Jordan algebras.

(c) The reader may be more familiar with the linear (as opposed to quadratic) version
of a Jordan pair, which can be phrased completely in terms of the Jordan triple products
{· · ·}σ defined by {xyz}σ = Dσ(x, y)z. For simpler notation, we often drop the index σ at
D, Q and the triple products which usually can be supplied from the context. Then a linear
Jordan pair is a pair (V +, V −) of k-modules with trilinear maps V σ × V −σ × V σ → V σ,
(x, y, z) 7→ {xyz}, symmetric in x and z, and such that for all u, x, z ∈ V σ and y, v ∈ V −σ,

{xy{uvz}} = {{xyu}vz} − {u{yxv}z}+ {uv{xyz}}. (1.4.1)

Any quadratic Jordan pair satisfies these identities. Conversely, if 2 and 3 are units in k,
then they are enough to define a Jordan pair by putting Qσ(x)y = 1

2{xyx}.
A homomorphism h: V → W of Jordan pairs is a pair h = (h+, h−) of k-linear maps

hσ: V σ → Wσ, σ = ±, satisfying hσQ(x) = Q(hσ(x))h−σ for x ∈ V σ. It is then clear how
to define automorphism. In contradistinction to Jordan algebras, Jordan pairs have natural
inner automorphisms, defined in terms of the Bergmann operators

B(x, y) = Id−D(x, y) +Q(x)Q(y) (x ∈ V +, y ∈ V −).

These satisfy the (non-obvious) identity Q(B(x, y)z) = B(x, y)Q(z)B(y, x). Hence, if
B(x, y) and B(y, x) are invertible, then

β(x, y) = (B(x, y), B(y, x)−1) ∈ Aut(V ), (1.4.2)

called the inner automorphism defined by (x, y).
In the same vein, a derivation of V is a pair (∆+, ∆−) ∈ Endk(V +) × Endk(V −)

satisfying the quadratic version of the usual derivation identity, namely ∆σ(Q(u)v) =
{∆σ(u), v, u} + Q(u)∆−σ(v) for σ = ± and all u ∈ V σ and v ∈ V −σ. Linearizing this
condition in u leads to

[∆σ, D(u, v)] = D(∆σ(u), v) +D(u,∆σ(v)), (1.4.3)

a condition which is sufficient in case 1
2 ∈ k.

The definition of the Bergmann operator suggests that the left multiplicationsD(x, y) are
infinitesimal versions of Bergmann operators. By general philosophy, they should therefore
be derivations. This is indeed the case: Appropriate linearizations of the Jordan pair
identities show that

δ(x, y) = (D(x, y),−D(y, x))

is a derivation, naturally called the inner derivation defined by (x, y) ∈ V + × V −. We
denote by Inder(V ) the inner derivation algebra, spanned by all inner derivations. Note
that the identity (1.4.3) implies that Inder(V ) is an ideal of the Lie algebra Der(V ) ⊂
EndV + × EndV − of all derivations of V .
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1.5. The projective elementary group of a Jordan pair. As indicated in 1.2,
we now construct, for an arbitrary Jordan pair V , an analogue of the elementary group of
a special Jordan pair.

First of all, the elementary Lie algebra e(M, V ) of 1.2 has an abstract counterpart,
namely the Tits-Kantor-Koecher algebra g(V ) (Tits [23], Koecher [11, 12] for Jordan al-
gebras, Kantor [10], Meyberg [19, 20] for Jordan triple systems): Put

g0 = k · (IdV + ,−IdV −) + Inder(V ) and g±1 = V ± (as k-modules).

One can define a multiplication on

g = g(V ) = g−1 ⊕ g0 ⊕ g1

in such a way that g becomes a 3-graded Lie algebra, as follows:

• the Lie product of elements of g0 is the usual commutator of maps,
• [∆,x] = ∆+(x) and [∆, y] = ∆−(y) for ∆ = (∆+,∆−) ∈ g0 and (x, y) ∈ V ,
• [x, y] = −δ(x, y) for (x, y) ∈ V .

With this product, (adx)3 = 0 for x ∈ g±1, and one can therefore “exponentiate” adx
for x ∈ g±1 (even when 2 is not invertible in k!), by defining for x, z ∈ g±1, h ∈ g0, y ∈ g∓1:

ead x · z = z, ead x · h = h+ [x, h],

ead x · y = y + [x, y] +Qxy.

The Jordan identities guarantee that

exp±(x) := eadx ∈ Aut(g).

Finally we define the projective elementary group of V by

PE(V ) =
〈

exp+(V +) ∪ exp−(V −)
〉
,

a subgroup of the automorphism group of g, see Faulkner [8], Loos [14], Bertram-Neeb [2,
3]. These groups have nice properties, for example:

• expσ: V σ → PE(V ) is an injective homomorphism,
• when V is special, PE(V ) ∼= E(M, V )/Z0, where Z0 is the intersection of the centre of

E(M, V ) with the diagonal
(
A 0
0 D

)
of the Morita context associated to the special V ,

• Simplicity Theorem: Similarly to known results about classical groups (Dieudonné [6],
or see [9]), Chevalley groups ([5], or see [22]) and algebraic groups (Tits [24]), the
following theorem holds:

Theorem 1 (Loos [15]). Let V be a simple non-degenerate Jordan pair with descend-
ing chain condition for principal inner ideals. Then PE(V ) is simple with exactly three
exceptions, namely the one-dimensional Jordan pairs over F2 and F3 and the symmetric
2× 2 matrices over F2.

Here the term simple has the usual meaning. A Jordan pair is nondegenerate if Q(x) = 0
implies x = 0. The descending chain condition for principal inner ideals is a standard
Artinian-like condition in the theory of Jordan pairs. For example, for the Jordan pair
associated to the Jordan algebra A+, A an associative algebra, the conditions in the theorem
mean that A is simple Artinian. The three exceptions in the theorem are the symmetric
respectively alternating groups S3, A4, and S6.
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§2. Steinberg groups

2.1. Standard example: The Steinberg groups of a ring. Let us return to the
elementary group En(R) of a ring R, n > 3, defined in 1.1. The matrices eij(x) (i 6= j)
satisfy the following relations:

eij(x)eij(y) = eij(x+ y),(E1) (((((((
eij(x), elm(y)

)))))))
= 1 (j 6= l, i 6= m),(E2) (((((((

eij(x), ejl(y)
)))))))

= eil(xy) (i, j, l 6=).(E3)

Here (((((((
a, b

)))))))
= aba−1b−1

denotes the group commutator.
The (linear) Steinberg group Stn(R) is defined as the abstract group presented by gener-

ators eij(x), 16 i 6= j6n and the relations (E1)–(E3) above. Similarly, the stable Steinberg
group St(R) of R is defined using the same relations but allowing infinitely many generators
eij(x), i, j ∈ N, i 6= j.

We have already seen that En(R) can be generated by the p × q and q × p matrices
over R which form a Jordan pair and that E(R) has a similar description using the special
Jordan pair RJK . There should therefore also be a Jordan pair approach to Stn(R) and
St(R). More generally, one should be able to define Steinberg groups for arbitrary Jordan
pairs. This is our next aim which we will achieve in 2.5.

2.2. Groups with commutator relations. First, it is useful to re-interpret the re-
lations (E1)–(E3) of 2.1 and also the definition of Steinberg groups in a more abstract way
as follows.

We start with En(R). Let ε1, . . . , εn be the standard basis of Rn and let Φ be the set of
all εi− εj , i 6= j, i.e., the usual realization of the root system An−1. For α = εi− εj ∈ Φ let

Uα := eij(R) ⊂ G := En(R).

Then (E1) says in particular that Uα is a subgroup of G. For a subset Σ ⊂ Φ let UΣ be the
subgroup of G generated by all Uα, α ∈ Σ, and for α, β ∈ Φ let

(((((((
α, β

)))))))
= Φ ∩ (

N+α+ N+β
)
,

the so-called open root interval between α and β. The relations (E2) and (E3) imply in
particular the commutator relations

(CR)
(((((((
Uα, Uβ

))))))) ⊂ U(((((α,β)))))

for every nilpotent pair (α, β) in Φ which by definition means that pα + qβ 6= 0 for all
p.q ∈ N+. (These relations are somewhat weaker than (E1)–(E3), since for example (E3)
gives a precise formula for the commutator of two elementary matrices while (CR) just
states an inclusion between subsets.)

This approach to interpreting the relations (E1)–(E3) also works for the stable elemen-
tary group E(R). All we have to do, is to replace the finite root system An−1 by the “infinite
root system” A+

∞ = {εi − εj : i, j ∈ N, i 6= j} ⊂ R(∞) — an example of an infinite but
locally finite root system.

Recall from [16] that a subset Φ of a real vector space X is a locally finite root system
if it satisfies the same axioms as finite root systems (see e.g. [4]), except that the finiteness
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condition is replaced by local finiteness: The intersection of Φ with every finite-dimensional
subspace of X is finite. In particular, any finite root system is a locally-finite root system.
Locally finite root systems are direct sums of irreducible locally finite root systems, and
irreducible locally finite root systems can be classified: They are either finite or the infinite
analogues of the classical root systems of type A,B,C,D and BC.

Our interpretation of the relations (E1)–(E3) leads us to the following general definition:

Let Φ be a locally finite root system. A group with commutator relations of type Φ is a
group G together with a family (Uα)α∈Φ of subgroups, called root groups, which generate G
and for which (CR) holds. In case Φ is not reduced, we also require that β = nα for n ∈ N
implies Uβ ⊂ Uα.

Examples. As we have seen above, the elementary linear groups En(R) and E(R) are
groups with commutator relations for root systems of type A. The elementary unitary
groups of [9, 5.3] are groups with commutator relations for root systems of type C.

2.3. Steinberg groups defined by groups with commutator relations. Let Ḡ
be a group with subgroups (Ūα)α∈Φ and commutator relations as in 2.2, and let (G, (Uα))
be another such group. Naturally, a morphism ϕ: (G,Uα) → (Ḡ, Ūα) is just a group ho-
momorphism preserving root groups: ϕ(Uα) ⊂ Ūα for all α ∈ Φ. For our purposes the
following more restrictive type of morphism is important. A strong morphism is a mor-
phism ϕ: (G,Uα) → (Ḡ, Ūα) with the property that

ϕ: U[[[α,β]]] → Ū[[[α,β]]] is bijective, for all nilpotent pairs (α, β),

where we put
[[[[
α, β

]]]]
:= {α} ∪ (((((((

α, β
))))))) ∪ {β}. Since the pair (α, α) is in particular nilpotent

and
[[[[
α, α

]]]]
= {α} or {α, 2α}, a strong morphism satisfies

ϕ: Uα → Ūα is bijective for all α ∈ Φ.

Roughly speaking, this means that G has “the same” generators and commutator relations
as Ḡ. Adapting an argument of Tits [25], one can prove that there is a largest such group
G, more precisely:

Theorem 2. Let Φ be a locally finite root system and let (Ḡ, (Ūα)α∈Φ) be a group
with Φ-commutator relations. Then there exists a group (Ĝ, Ûα)α∈Φ with Φ-commutator
relations and a strong morphism π: Ĝ → Ḡ such that every strong morphism ϕ: G → Ḡ is
obtained from π by taking a quotient:

Ĝ
∃!ψ //

π
ÂÂ>

>>
>>

>>
G

ϕ
ÄÄ¡¡

¡¡
¡¡

¡¡

Ḡ

(Ĝ, π) is uniquely determined up to unique isomorphism by this property.

We call Ĝ the Steinberg group of Ḡ. This is justified since for example the classical
Steinberg group Stn(R) = Ĝ is obtained in this way from the elementary group Ḡ = En(R).
Similarly, the stable Steinberg group St(R) is Ĝ for Ḡ = E(R). The same approach works
for the unitary Steinberg groups, as for example defined in [9, 5.5].
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Remarks. (a) In categorical language , π: Ĝ→ Ḡ is an initial object in the category
of groups “over Ḡ”, defined in an evident way. One constructs Ĝ as a suitable inductive
limit. It can also be defined via a presentation.

(b) It is obvious that the notion of a group with commutator relations makes sense for
(much) more general types of root systems, and in fact, we work in this generality. Then it
may very well happen that the root interval

(((((((
α, β

)))))))
is infinite and one must define nilpotent

pairs with the additional requirement that
(((((((
α, β

)))))))
be finite. The structure of these nilpotent

pairs is explored in [17]. In particular it is shown there that for Φ a Kac-Moody root system
the nilpotent pairs are precisely those that enter in Tits’ construction of Kac-Moody groups.

(c) Our approach to Steinberg groups greatly simplifies the description of the defining
relations which have been used elsewhere in the literature. This is most evident in the case
of unitary Steinberg groups, where several different types of generators and many relations
are used, see for example [1, 9].

2.4. Commutator relations for PE(V ). We wish to construct Steinberg groups by
way of Theorem 2 in case Ḡ = PE(V ). This group has two generating abelian subgroups
Ū± = exp±(g±1) ∼= V ± satisfying the A1-commutator relations . But this is not very
interesting; the root system A1 is much too small, and the resulting Steinberg group is
simply the free product of the additive groups V + and V −. Therefore, Ḡ should satisfy
commutator relations for bigger root systems, but in a way compatible with the fact that Ḡ
contains the subgroups Ū±, coming from the Jordan pair V . The key to this is to consider
3-graded root systems, in analogy to 3-graded Lie algebras.

A 3-grading ([21], [16, §§17, 18]) of a locally finite root system Φ is a decomposition
Φ = Φ−1 ∪̇ Φ0 ∪̇ Φ1 such that

(i) if α ∈ Φi, β ∈ Φj and α + β ∈ Φ then α + β ∈ Φi+j ; in particular, then
i+ j ∈ {−1, 0, 1},

(ii) every µ ∈ Φ0 can be written (not uniquely) as µ = α− β with α, β ∈ Φ1,
(iii) Φ−1 = −Φ1.

Remark. A 3-grading is uniquely determined by Φ1. It therefore makes sense to denote
a 3-graded root system by (Φ,Φ1). Such 3-gradings exist for all locally finite irreducible
reduced root systems except for the finite root systems of type G2, F4 or E8; in general,
there are several non-isomorphic 3-gradings on a given Φ.

It turns out that 3-graded root systems are precisely the correct index sets for gradings
of Jordan pairs and lead to the desired commutator relations for the projective elementary
group. Given a 3-graded root system (Φ,Φ1) and a Jordan pair V , we define a (Φ,Φ1)-
grading Γ of V as a decomposition

Γ : V =
⊕

α∈Φ1

Vα

where the Vα = (V +
α , V

−
α ) are pairs of submodules and the direct sum is to be understood

component-wise, such that for all α, β, γ ∈ Φ1 and σ ∈ {+,−} the following multiplication
rules hold:

Q(V σα )V −σβ ⊂ V σ2α−β , {V σα , V −σβ , V σγ } ⊂ V σα−β+γ ,

{V σα , V −σα , V σβ } = 0 for α ⊥ β.

Observe that the roots 2α − β and α − β + γ in the first condition either lie in Φ1 or
are not roots at all. In the latter case the first condition becomes Q(V σα )V −σβ = 0 or
{V σα , V −σβ , V σγ } = 0. The notation α ⊥ β in the second condition means of course that the
roots α and β are orthogonal.
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Example. The special Jordan pair (V +, V −) = (Matpq(R),Matqp(R)) considered ear-
lier has a (Φ,Φ1)-grading with Φ = {εi − εj : 1 6 i 6= j 6 n} = An−1 for n = p + q
and

Φ1 = {εi − εp+j : 1 6 i6 p, 1 6 j 6 q}.
Indeed, the root subspaces Vα = (V +

α , V
−
α ), α ∈ Φ1, are given by

V +
εi−εp+j

= REi,j , V −εi−εp+j
= REj,i.

This immediately extends to the infinite setting: The Jordan pair (MatJK(R),MatKJ (R)
has a (Φ,Φ1)-grading with Φ1 = {εj − εk : j ∈ J, k ∈ K} of type A, where J and K are
disjoint sets.

Theorem 3. Assume the Jordan pair V has a (Φ,Φ1)-grading with root subspaces Vα.
Then the projective elementary group Ḡ = PE(V ) has Φ-commutator relations with the
following root groups:

Ū±α = exp±(V ±α ) for α ∈ Φ1,

Ūµ =
〈⋃

{β(V +
α , V

−
β ) : α− β = µ, α, β ∈ Φ1}

〉
for 0 6= µ ∈ Φ0.

Here β(x, y) is the inner automorphism defined in (1.4.2).

2.5. Steinberg groups for Jordan pairs. Combining Theorem 2 and Theorem 3,
we now define: The Steinberg group St(V,Γ) of a Jordan pair V with a (Φ,Φ1)-grading Γ is
the Steinberg group of PE(V ), considered as a group with Φ-commutator relations.

It is a classical result that the stable Steinberg group St(R) of a ring R is the universal
central extension of the stable elementary group E(R) (the kernel of the canonical homo-
morphism being the second K-group K2(R)). Hence it is natural to ask whether similar
results are true for St(V,Γ). This is indeed the case, but one needs to make stronger as-
sumptions on V than just a (Φ,Φ1)-grading. In the classical cases of linear and unitary
Steinberg groups, R is always a ring with unit element. This is essential and yields so-called

Weyl elements in the elementary groups. For example, in E2(R) the matrix
(

0 1
−1 0

)
is a

Weyl element. More generally, every r ∈ R× yields the Weyl element

w(r) =
(

1 r
0 1

)(
1 0

−r−1 1

)(
1 r
0 1

)
=

(
0 r

−r−1 0

)
∈ E2(R).

In the Jordan pair case, one uses idempotents to construct Weyl elements. Here an idem-
potent in V is a pair e = (e+, e−) ∈ V +× V − such that Q(e+)e− = e+ and Q(e−)e+ = e−.
Similar to the associative or Jordan algebra case, an idempotent induces a Peirce decom-
position V = V2(e) ⊕ V1(e) ⊕ V0(e). For example, if J is a unital Jordan algebra with
associated Jordan pair V = (J, J) and u ∈ J is a unit then e = (u, u−1) is an idempotent
of V with V = V2(e).

Definition. A (Φ,Φ1)-grading Γ of V is called an idempotent grading if there exists a
family E = (eα)α∈Φ1 of idempotents with the following properties:

(i) eα ∈ Vα,
(ii) for all α, β ∈ Φ1, we have Vβ ⊂ V〈β,α∨〉(eα).

The symbol 〈β, α∨〉 in (ii) is the usual Cartan integer. For α, β ∈ Φ1 we always have
〈β, α∨〉 ∈ {0, 1, 2} so that V〈β,α∨〉(eα) makes sense (and is the corresponding Peirce space
of eα).
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Actually, it suffices to require the existence of idempotents only for roots α ∈ Φid1 where,
for Φ irreducible,

Φid1 =





Φ1 if Φ is simply-laced
{long roots} if Φ is of type B
{short roots} if Φ is of type C



 .

This generalization allows us to realize some of the unitary groups of [9] as Steinberg groups
of appropriate Jordan pairs. The link to the Weyl elements w(r) above comes from the fact
that an idempotent eα gives rise to the Weyl element

wα = exp+(e+α ) exp−(e−α ) exp+(e+α )

in Ḡ = PE(V ) and with a similar definition in any group G over Ḡ. The importance of
Weyl elements lies in the fact that they lift the action of the reflection in the root α to the
group G, providing a powerful computational tool.

Then our main results are as follows.

Theorem 4. Let Γ be an idempotent (Φ,Φ1)-grading of a Jordan pair V with Φ irre-
ducible and different from A1 and B2.

(a) St(V,Γ) is perfect, i.e., equal to its commutator group.

(b) If Φ has rank > 5 then St(V,Γ) covers uniquely all central extensions of PE(V ).

(c) If Φ has infinite rank then St(V,Γ) is the universal central extension of PE(V ).

Remarks. (a) The term “covers” means the following: If ϕ: G→ PE(V ) is any central
extension of abstract groups (G need not have commutator relations!) then there exists a
unique group homomorphism ψ: St(V,Γ) → G making the diagram

St(V,Γ)
∃!ψ //

π
%%JJJJJJJJJ G

ϕ
||yy

yy
yy

yy
y

PE(V )

commutative. Observe that this does not yet mean that St(V,Γ) itself is a central extension
of PE(V ).

(b) Parts (b) and (c) of this theorem were known before in the following cases:
(i) Φ of type A: Then V is a rectangular matrix pair over an associative algebra R,

PE(V ) is the usual projective elementary group of R, and St(V,Γ) coincides with the usual
linear Steinberg group Stn(R) for n = 1 + rank Φ. In this case, the theorem follows from
[9, 1.4.12 and 1.4.13].

(ii) Φ is of type C and V is a hermitian matrix pair. In this case, the projective
elementary group of V coincides with the usual projective elementary unitary group, while
St(V,Γ) is the usual unitary Steinberg group. In case rank Φ = ∞, the theorem is due to
Sharpe and Bak [9, 5.5.10]. The case 5 6 rankΦ <∞ does not seem to be explicitly stated
in [9], but it follows from a suitably modified version of the proof of [9, 5.5.10], see [9,
5.5.11].

In addition to the known cases (i) and (ii) above, the theorem applies to new types of
Steinberg groups, like Steinberg groups of groups with commutator relations of type E6 and
E7 or of type Φ with an uncountable Φ. We mention that the theorem is not true if Φ has
rank64.
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2.6. Concluding remarks. Our approach has the advantage of being substantially
less computational than anything else available in the literature, where special cases of
this theorem are proved case-by-case. It avoids to a large part such case distinctions and
introduces two new techniques into the area of Steinberg groups: the elegant combinatorics
of 3-graded root systems and the powerful methods of Jordan pairs.

In proving Theorem 4 we establish a detailed structure theory for the groups PE(V )
and their central coverings. These results are of interest beyond the realm of Steinberg
groups. For example, we expect that they will pave the way for applications of Jordan pair
techniques in algebraic group theory.
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530–535.

[24] , Algebraic and abstract simple groups, Annals of Math. 80 (1964), 313–329.

[25] , Uniqueness and presentation of Kac-Moody groups over fields, J. Algebra 105 (1987), 542–
573.

11


