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Abstract. In this note we extend the Lie inner ideal structure
of simple Artinian rings developed by Benkart to centrally closed
prime algebra A. New Lie inner ideals (which we call non-standard)
occur when making this extension. A necessary and sufficient con-
dition for A to have a non-standard inner ideal is the existence in
A of a zero square element which is not regular von Neumann.

1. Introduction

Let A be an associative algebra (not necessarily with a unit element)

over a ring of scalars Φ. By a Lie inner ideal of A we mean an abelian

inner ideal B of the Lie algebra A− in the sense of [2], i.e., B is a

Φ-submodule of A such that [B, [B,A]] ⊆ B and [B, B] = 0.

Suppose now that 1
2
∈ Φ. By a Jordan inner ideal of A we mean an

inner ideal V of the Jordan algebra A+, i.e., vAv ⊆ V for all v ∈ V . It

is easy to see that if V is a Φ-submodule of A such that V V = 0, then

V is a Jordan inner ideal if and only if it is a Lie inner ideal. In this

case, V will be called a Jordan-Lie inner ideal. If V is a Jordan-Lie

inner ideal, then for any Φ-module Ω of Z(A), V + Ω is a Lie inner

ideal. Any Lie inner ideal of this form, B = V + Ω, will be called

standard.

In this note we study conditions under which a Lie inner ideal of a

semiprime Lie algebra is standard, give a construction of non-standard

inner ideals, and classify the Lie inner ideals of any centrally closed
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prime algebra of characteristic not 2 or 3. As a consequence we obtain

the following:

Corollary 4.6. Let A be a centrally closed prime algebra of character-

istic not 2 or 3. If A is non-unital, then every Lie inner ideal of A is

standard. If A is unital, then the following conditions are equivalent:

(i) Every zero square element of A is von Neumann regular.

(ii) Every Lie inner ideal of A is standard.

Since any simple algebra is centrally closed over its centroid, we

obtain as a consequence of the above result that any Lie inner ideal of

a semiprime associative algebra A coinciding with its socle is standard.

In fact, we describe its Lie inner ideals and refine the description in the

case that A is Artinian. The reader is referred to [2, Theorem 5.1] and

[4, Theorem 2.5] for related results.

In the last section we adopt a different approach in the study of the

Lie inner ideals of an associative algebra A (1
6
∈ Φ is required). We

prove that if A is semiprime and B is a Lie inner ideal of A such that

its image B in the Lie algebra A−/Z(A) is von Neumann regular in

the Lie sense, then B is standard. Then using the Jordan structure

theory for Lie algebras developed in [5] and [6], we prove that the von

Neumann regularity of B is guaranteed when it has finite length.

2. associative algebras, Lie algebras and Jordan systems

Throughout this section, and unless otherwise specified, we will be

dealing with (not necessarily unital) associative algebras A, with prod-

uct xy; Lie algebras L, with [x, y] denoting the Lie bracket and adx

the adjoint map determined by x; Jordan pairs V = (V +, V −), with

triple products {x, y, z}, for x, z ∈ V σ, y ∈ V −σ, σ = ±, and qua-

dratic operators Qxy = 1
2
{x, y, x}; and Jordan algebras J , with prod-

uct x ·y, quadratic operator Uxy = 2x · (x ·y)−x2 ·y and triple product

{x, y, z} = Ux+zy − Uxy − Uzy, over a ring of scalars Φ containing 1
6
.

So Jordan pairs and Jordan algebras considered here are linear. Since

any Jordan algebra can be regarded as a Jordan pair, any definition for

Jordan pairs makes sense for Jordan algebras. The reader is referred

to [8] as a general reference for Jordan pairs.



LIE INNER IDEALS ARE NEARLY JORDAN INNER IDEALS 3

2.1. Any associative algebra A gives rise to:

(i) a Lie algebra A−, with Lie bracket [x, y] = xy − yx,

(ii) a Jordan pair (A, A), with Jordan triple products given by

{x, y, z} = xyz + zyx.

(iii) a Jordan algebra A+, with Jordan product x · y = 1
2
(xy + yx),

quadratic operator Uxy = xyx and triple product {x, y, z} =

xyz + zyx.

2.2. Given a Jordan pair V = (V +, V −), an inner ideal of V is any

Φ-submodule B of V σ such that {B, V −σ, B} ⊆ B. Similarly, an inner

ideal of a Lie algebra L is a Φ-submodule B of L such that [[B, L], B] ⊆
B. An abelian inner ideal is an inner ideal B which is also an abelian

subalgebra, i.e., [B, B] = 0.

2.3. Let A be an associative algebra. An abelian inner ideal of A−

will be called a Lie inner ideal of A. Similarly, an inner ideal of the

Jordan algebra A+ will be called a Jordan inner ideal of A.

2.4. An ad-nilpotent element x ∈ L of index of nilpotency ≤ 3 is

called a Jordan element.

(i) Clearly, any element of an abelian inner ideal is a Jordan ele-

ment. Conversely, by [3, 1.8], if A is 3-torsion free, then any

Jordan element b ∈ L yields the principal abelian inner ideal

ad2
bL.

(ii) Any zero square element x in an associative algebra A is a

Jordan element of the Lie algebra A−. Indeed, x2 = 0 implies

ad2
xy = −2xyx for all y ∈ A, and hence ad3

x = 0.

2.5. Recall that an element x in an associative algebra A is von Neu-

mann regular if x ∈ xAx. Similarly, an element x ∈ V σ, σ = ±, in a

Jordan pair V is von Neumann regular if x ∈ QxV
−σ.

2.6. A Jordan element e in a Lie algebra L is called von Neumann

regular if e ∈ ad2
eL. It is easy to see that if x is an element of an

associative algebra A such that x2 = 0, then x is von Neumann regular

in the associative sense if and only if it is von Neumann regular in the

Lie sense.
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2.7. Let V = (V +, V −) be a Jordan pair. An element x ∈ V σ, σ = ±,

is called an absolute zero divisor if Qx = 0. A Jordan pair V is said to

be nondegenerate if it has no nonzero absolute zero divisors. Similarly,

given a Lie algebra L, x ∈ L is an absolute zero divisor of L if ad2
x = 0,

and L is said to be nondegenerate if it has no nonzero absolute zero

divisors.

2.8. Let B ⊆ V + be an inner ideal of a Jordan pair V . Follow-

ing [9], the kernel of B is the set KerV B = {y ∈ V − | QBy = 0}.
Then (0, KerV B) is an ideal of the Jordan pair (B, V −), and the quo-

tient SubV B = (B, V −)/(0, KerV B) = (B, V −/KerV B) is a Jordan

pair called the subquotient of B. The kernel and the corresponding

subquotient of an inner ideal B ⊆ V − are defined in a similar way.

The analogues of all these results hold for abelian inner ideals of a

Lie algebra, if we replace the Jordan triple product {x, y, z} by the left

double commutator [[x, y], z] as we describe next.

2.9. Let M be an abelian inner ideal of a Lie algebra L.

(i) The kernel of M is the set KerLM := {y ∈ L | [M, [M, y]] = 0}.
(ii) The pair of Φ-modules SubLM := (M, L/KerLM) with the

triple products given by

{m, a, n} := [[m, a], n] for every m,n ∈ M and a ∈ L

{a,m, b} := [[a,m], b] for every m ∈ M and a, b ∈ L,

where x denotes the coset of x relative to the submodule KerLM ,

is a Jordan pair called the subquotient of M [6, Lem. 3.2].

(iii) A Φ-submodule B of M is an inner ideal of L if and only if it

is an inner ideal of SubLM [6, 3.5 (i)].

Definition 2.10. Let B and C be abelian inner ideals of a Lie alge-

bra L. We will say that B and C are isomorphic (B ∼= C) if their

subquotients SubLB and SubLC are isomorphic as Jordan pairs.

In [5] a Jordan algebra was attached to any Jordan element of a

Lie algebra. Many properties of a Lie algebra can be transferred to

its Jordan algebras, as well as the nature of the Jordan element in
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question is reflected on the structure of the attached Jordan algebra.

These facts turn out to be crucial for applications of Jordan theory to

Lie algebras.

2.11. Let a be a Jordan element of a Lie algebra L over a field Φ

of characteristic 6= 2, 3. Then L with the new product defined by

x ·a y := 1
2
[[x, a], y] is a nonassociative algebra denoted by L(a), such

that

(i) KerLa := {x ∈ L : [a, [a, x]] = 0} is an ideal of L(a).

(ii) La := L(a)/KerLa is a Jordan algebra, called the Jordan algebra

of L at a.

3. standard inner ideals

Let A be an associative algebra A over a ring of scalars Φ containing
1
2
, and let Z(A) denote the centre of A.

3.1. If V be a Φ-submodule of A such that V V = 0, then V is Jordan

inner ideal if and only if it is a Lie inner ideal: for u, v ∈ V and x ∈ A,

V V = 0 implies [[u, x], v] = uxv + vxu = {u, x, v}. In this case, V will

be called a Jordan-Lie inner ideal.

Definition 3.2. A Lie inner ideal B of A is said to be standard if

B = Ω + V , where Ω is a Φ-module of Z(A) and V is a Jordan-Lie

inner ideal of A.

Note that if A is semiprime, then the sum Ω + V is direct and the

intersection of any family of standard inner ideals of A is a standard

inner ideal.

Notation 3.3. Given a Lie inner ideal B of A, we denote by VB (or

simply by V when there is no risk of confusion) the subset of all zero

square elements of the commutative set B + Z(A).

Lemma 3.4. Let A be semiprime algebra over a ring of scalars Φ

containing 1
2
, and let B be a Lie inner ideal of A.

(i) If B ⊆ VB + Z(A), then VB is a Jordan-Lie inner ideal of A,

the sum VB + Z(A) is direct, and {VB, A, VB} ⊆ B,
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(ii) If in addition VB ⊆ B (in particular, if Z(A) ⊆ B), then B =

VB ⊕ (B ∩ Z(A)) is standard.

Proof. (i) Let N be the set of all nilpotent elements of B+Z(A). Then

V = VB ⊆ N , and since B + Z(A) is commutative, we have

V + V ⊆ N + N ⊆ N ⊆ B + Z(A) ⊆ V + Z(A),

which implies V +V ⊆ V , because Z(A) does not contain any nonzero

nilpotent element since A is semiprime. Then, for any u, v ∈ V , we have

0 = (u + v)2 = 2uv, and hence {u, x, v} = uxv + vxu = [[u, x], v] ∈ B

with {u, x, v}2 = 0. This proves that V has the required properties.

(ii) Suppose in addition that V ⊆ B. Then the Modular Law applied

to the inclusion B ⊆ V ⊕Z(A) yields B = V ⊕ (Z(A)∩B). Note that

Z(A) ⊆ B implies VB ⊆ B+Z(A) ⊆ B, which completes the proof. ¤

Theorem 3.5. Let A be semiprime algebra over a ring of scalars Φ

containing 1
2
, and let B be a Lie inner ideal of A. Then B is standard

if and only the following condition holds:

VB ⊆ B ⊆ VB + Z(A). (ST)

Proof. By Lemma 3.4, condition (ST) is sufficient for B to be standard.

Suppose then that B = V ⊕ Ω is standard. Clearly, V ⊆ VB, and

VB ⊆ B + Z(A) ⊆ V ⊕ Z(A) implies VB = V , which proves that B

satisfies (ST). ¤

We now show a way of constructing non-standard inner ideals.

3.6. Let A be a unital semiprime algebra A over a field Φ of character-

istic not 2 such that Z(A) = Φ1. Let V be a Jordan-Lie inner ideal of A

and suppose that V = Φu⊕V0 where V0 is a hyperplane of V such that

[V, [V, A]] ⊆ V0. (Note that u ∈ V cannot be von Neumann regular.)

Define the functional f of V by putting f(u) = 1 and f(V0) = 0.

Theorem 3.7. The set B = {v + f(v)1 : v ∈ V } is a Lie inner ideal

of A which is not standard.

Proof. (1) B is a Lie inner ideal. Indeed,

[B, [B, A]] ⊆ [V, [V, A]] ⊆ V0 = Ker(f) ⊆ B
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and

[B, B] ⊆ [V, V ] ⊆ V V = 0.

(2) B ∩ Z(A) = B ∩ Φ1 = 0, since v + f(v)1 = α1 implies v =

(f(v)− α)1 and hence v = 0 and α = f(v) = 0.

(3) VB = V . By definition, V ⊆ B ⊕ Φ1, and since V V = 0 we have

V ⊆ VB. Conversely, let b + α1 ∈ VB, with b = v + f(v)1. Then

0 = (b + α1)2 = (v + (f(v) + α)1)2 = 2(f(v) + α)v + (f(v) + α)21

implies α + f(v) = 0, so b + α1 = v ∈ V , which proves that VB ⊆ V .

(4) Since V ∩ B = Ker(f) = 0, f(u) = 1 implies that u does not

belong to B. Thus VB = V is not contained in B. So B is not standard

by Theorem 3.5. ¤

3.8. The above non-standard inner ideal B has been constructed from

a triple (V, V0, u), where V is a Jordan-Lie inner ideal, V0 is a hyper-

plane of V and u is distinguished element of V such V = Φu ⊕ V0

and [V, [V, A]] ⊆ V0; equivalently, there exists a nonzero f ∈ V ∗ such

that [V, [V,A]] ⊆ Kerf and f(u) = 1. A such triple (V, V0, u) will

be called special. We will see now that the non-standard inner ideal

B constructed from the special triple (V, V0, u) is independent of the

choice of u; equivalently, from the choice of the functional f such that

Kerf = V0. For the time being, set B = Inn(V, V0, u) = Inn(V, V0, f).

Lemma 3.9. Let A be a unital semiprime algebra A over a field Φ of

characteristic not 2 such that Z(A) = Φ1, let V be a Jordan-Lie inner

ideal of A, and let V0 be a hyperplane of V such that [V, [V, A]] ⊆ V0.

If f, g are functional of V such that Kerf = Kerg = V0, then the Lie

inner ideals Inn(V, V0, f) and Inn(V, V0, g) are isomorphic.

Proof. Note first that KerA−B = KerA−C = Ker(A,A)V . Now we have

that the pair of linear mappings (ϕ, Id), where ϕ : B → C is de-

fined by ϕ(v + f(v)) = v + g(v), v ∈ V , and Id is the identity map-

ping on the vector space A/KerA−B, is a Jordan pair isomorphism of

SubA−Inn(V, V0, f) onto SubA−Inn(V, V0, g). ¤

Corollary 3.10. Let A be a unital semiprime algebra A over a field

Φ of characteristic not 2 such that Z(A) = Φ1, and let x ∈ A be a
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zero square element which is not von Neumann regular. Then (Φx ⊕
xAx, xAx, x) is a special triple and therefore it gives rise to the non-

standard inner ideal Inn((Φx⊕ xAx, xAx, x).

4. Lie inner ideals of central closed prime algebras

4.1. A prime associative algebra A over a field Φ is centrally closed over

Φ if the extended centroid (see [1] for definition) of A is Φ itself. Clearly,

any simple associative algebra is centrally closed over its centroid.

The following Lemma, which was proved in [2, Lemma 3.10] for

simple associative algebras, is a refinement of a more general result

by Martindale and Miers for prime algebras.

Lemma 4.2. Let A be a centrally closed prime associative algebra over

a field Φ of characteristic not 2 or 3 and let a be a Jordan element of

A−. Then there exists z ∈ Z(A), necessarily unique, such that (a −
z)2 = 0.

Proof. By [10, Corollary 1], there exists λ ∈ Φ such that (a−λ1)2 = 0,

the formula making sense in the unital hull Â = A + Φ1 of A. If A is

unital, then λ1 ∈ Z(A). If A is non-unital, then a2−2λa = λ21 implies

λ = 0. ¤

Proposition 4.3. Let A be a centrally closed prime associative algebra

over a field Φ of characteristic not 2 or 3, and let B be a Lie inner

ideal of A. In any of the following situations B is standard:

(i) A is non-unital.

(ii) Every zero square element of A is von Neumann regular.

(iii) Z(A) ⊆ B.

(iv) B is a maximal Lie inner ideal.

In case (i), B = VB is in fact a Jordan-Lie inner ideal.

Proof. (i) Since A is non-unital, Z(A) = 0. Hence VB ⊆ B (by defini-

tion) and B ⊆ VB by Lemma 4.2. Now we have by Lemma 3.4(i) that

B = VB is a Jordan-Lie inner ideal.

(ii) By Lemma 4.2, B ⊆ VB + Z(A). Hence VB is Jordan-Lie inner

of A such that {VB, A, VB} ⊆ B by Lemma 3.4(i). Since every zero
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square element of A is von Neumann regular, VB = {VB, A, VB} =

[[VB, A], VB] ⊆ B, which implies that B is standard by Lemma 3.4(ii).

(iii) The inclusion Z(A) ⊆ B implies VB ⊆ B. Then the proof follows

as in (i).

(iv) It follows from (iii) since B + Z(A) is a Lie inner ideal. ¤

Corollary 4.4. Let X be a right vector space over a division ring ∆

of characteristic not 2 or 3. Then every Lie inner ideal of End∆(X)

(regarded as a Z(∆)-algebra) is standard.

Proof. The ring End∆(X) is prime (in fact, primitive) and von Neu-

mann regular. Moreover, it is centrally closed over Z(∆) by [1, Theo-

rem 4.3.7(ix)]. Thus we can apply Proposition 4.3 to get that any Lie

inner ideal of End∆(X) is standard. ¤

Theorem 4.5. Let A be a centrally closed prime associative algebra

over a field Φ of characteristic not 2 or 3. If B is a Lie inner ideal of

A, then either

(i) B = V where V is a Jordan-Lie inner ideal of A, or

(ii) B = V ⊕ Φ1 where V is as in (i), or

(iii) B = Inn(V, V0, u) where (V, V0, u) is a special triple.

Note that in cases (ii) and (iii), A is necessarily unital.

Proof. If A is non-unital, then every Lie inner ideal of A is a Jordan-Lie

inner ideal by Proposition 4.3(i). Suppose that A has a unit element,

and therefore Z(A) = Φ1. If 1 ∈ B, then B = V ⊕ Φ1 is standard

by Proposition 4.3(iii). Suppose then that 1 /∈ B. Then, again by

Proposition 4.3(iii), B ⊕Φ1 = V ⊕Φ1 for some Jordan-Lie inner ideal

V of A. We also have that if v + α1 and v + β1 ∈ B, then α = β

(otherwise 1 would belong to B, what has been discarded). Thus there

exists f ∈ V ∗ such that B = {v+f(v)1 : v ∈ V }. If f = 0, then B = V

and we have in case (i). Suppose then that f is non-zero and let u ∈ V

such that f(u) = 1. Then V = Φu ⊕ V0, with V0 = Kerf . Clearly,

V ∩ B = V0, and since [V, [V, A]] = [B, [B, A]], we have [V, [V,A]] ⊆
V ∩ B = V0. Thus (V, V0, u) is a special triple and B = Inn(V, V0, u),

which completes the proof. ¤
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Corollary 4.6. Let A be a centrally closed prime associative algebra

over a field Φ of characteristic not 2 or 3. If A is non-unital, then

every Lie inner ideal of A is standard. If A is unital, then the following

conditions are equivalent:

(i) Every zero square element of A is von Neumann regular.

(ii) Every Lie inner ideal of A is standard.

Proof. It follows from Theorem 4.5 together with Corollary 3.10. ¤

The following example provides a primitive algebra which is not cen-

trally closed but which still enjoys the property that all its Lie inner

ideals are standard.

Example 4.7. Let X be an infinite-dimensional complex vector space,

let F(X) be the simple complex associative algebra of all finite rank

operators on X, and set A = F(X)⊕RIdX . Then A is a real primitive

algebra which is not centrally closed, its extended centroid being the

complex field. However, every Lie inner ideal B of A is standard.

In fact, either B = V , where V is a Jordan-Lie inner ideal, or B =

RIdX ⊕ V .

5. Lie inner ideals of semiprime algebras with finiteness

conditions

In this section we see that in a semiprime algebra coinciding with

its socle every Lie inner ideal is standard. In fact, we describe its Lie

inner ideas in associative terms.

Theorem 5.1. Let A be semiprime and 6-torsion free and let B be a

Lie inner ideal of A.

(i) If A coincides with its socle, then B = Ω ⊕ RL, where Ω is a

Φ-submodule of Z(A), R is a right ideal of A, and L is a left

ideal of A with LR = 0 and RL = R ∩ L.

(ii) If A is actually Artinian, then B = Ω ⊕ eAf , where Ω is a

Φ-submodule of Z(A) and e, f are idempotents of A such that

fe = 0.

Proof. (i) By the structure of the socle, A = ⊕Mi is a direct sum of

minimal ideals, each of which is a simple (and therefore centrally closed
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over its centroid) algebra of characteristic not 2 or 3 coinciding with

its socle. Let b ∈ B. Then b =
∑

bi where each bi ∈ Mi and bi = 0

up to a finite subset of indexes. By Lemma 4.2, for any bi there exists

a unique zi ∈ Z(Mi) such that (bi − zi)
2 = 0 (with zi = 0 if bi = 0).

Set z =
∑

zi. Then z ∈ Z(A) and (b − z)2 = 0, which proves that B

satisfies condition (i) of Lemma 3.4. Moreover, since A is von Neumann

regular (because it coincides with its socle), B also satisfies condition

(ii) of of Lemma 3.4, so B = V ⊕ (B ∩Z(A)) is standard. Using again

the von Neumann regularity of A+, we get that V = ⊕Vi, where each

Vi is Jordan-Lie inner ideal of Mi. By [7, Theorem 3(ii)], for each index

i, Vi = RiLi where Ri is a right ideal of Mi and Li is a left ideal. Then

V = RL where R = ⊕Ri and L = ⊕Li, with LR = 0 since V V = 0.

The equality RL = R ∩ L follows because A is von Neumann regular.

(ii) If A is Artinian, then it coincides with its socle. Hence, by (i),

B = RL⊕ (B ∩Z(A)) is standard. Now we can apply the structure of

one-sided ideals of semiprime Artinian rings to get that R = eA and

L = Af , where e, f are idempotents of A with fe = 0, or use [11,

Theorem 1] to get V = eAf directly. ¤

6. standard inner ideals by a jordan approach

Let A be an associative algebra A (over a ring of scalars Φ) and

let Z(A) be its centre. We will denote by π : x 7→ x the canonical

homomorphism of Lie algebras of A− onto A := A−/Z(A).

Proposition 6.1. Let A be a semiprime and let b be an element of A.

(i) If adn
b A ⊆ Z(A), then adn

b A = 0 for all n ≥ 1, and

n(adn−1
b x)(adn−1

b y) = 0

for all x, y ∈ A and n ≥ 2.

(ii) If A is 2-torsion free, then the Lie algebra A is nondegenerate.

(iii) If A is 3-torsion free, then every principal inner ideal of B of

A− satisfies BB = 0. Therefore it is a Jordan-Lie inner ideal

of A.

(iv) If A is 3-torsion free and b is von Neumann regular in A, then

b = v+z where v ∈ [[b, A], b], v2 = 0, v is von Neumann regular

in A, and z ∈ Z(A).
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Proof. (i) Since adb is a derivation of the associative algebra A, we

have by Leibniz rule that adn
b (xb) = adn

b (x)b ∈ Z(A) for all x ∈ A and

n ≥ 1. Hence, by Jacobi identity, 0 = [adn
b (x)b, y] = adn

b (x)[b, y] for all

y ∈ A. Taking y = adn−1
b x, we obtain adn

b (x)2 = 0, which implies that

adn
b (x) = 0 for all x ∈ A, since adn

b A ⊆ Z(A) and semiprime algebras

does not contain nonzero nilpotent central elements. If n ≥ 2, again

by Leibniz rule, we have 0 = adn
b (xadn−2

b y) = n(adn−1
b x)(adn−1

b y), as

required.

(ii) Let a ∈ A be such that ad2
aA ⊆ Z(A). By (i), ad2

aA = 0, and

hence, for all x, y ∈ A, 0 = ad2
a(xy) = 2ada(x)ada(y), which implies

ada(x)ada(y) = 0 since A is 2-torsion free. Then ada(xy)ada(x) =

ada(x)yada(x) = 0 implies by semiprimeness of A that adax = 0 for all

x ∈ A, i.e., a ∈ Z(A), which proves that A is nondegenerate.

(iii) Let B be a principal inner ideal of A−, i.e., B = ad2
xA where x

is a Jordan element of A−. Since A is 3-torsion free, it follows from (i)

that BB = 0. Hence {B, A,B} = [[B,A], B] ⊆ B, as required.

(iv) Von Neumann regularity of b in A means that b is a Jordan

element of A and there exist x ∈ A and z ∈ Z(A) such that b =

[[b, x], b]+z. Since we are assuming that A is 3-torsion free, [[b, x], b]2 =

0 by (iii). The von Neumann regularity of v = [[b, x], b] (in the usual

associative sense) is proved as follows: By [5, Lemma 3.2(ii)], we have

that the Jordan algebras A+
v and Av = Ab are isomorphic. Since the

latter is unital by [5, Proposition 2.15(ii)], A+
v is unital, equivalently, v

is von Neumann regular in the associative sense. ¤

Theorem 6.2. Let A be semiprime and 6-torsion free and let B be a

Lie inner ideal of A. If every element b of B is von Neumann regular,

then B is standard.

Proof. It follows from Proposition 6.1(iv) and Lemma 3.4. ¤

6.3. Let L be a Lie algebra and V a Jordan pair.

(i) The length of an inner ideal B of L (respectively V ) is defined

as the supremum of the lengths of the chains 0 ⊂ B1 ⊂ B2 ⊂
· · · ⊂ Bn of inner ideals of L (respectively V ) contained in B.

(ii) L (respectively V ) is said to be Artinian if it satisfies the de-

scending chain condition on all inner ideals.
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Corollary 6.4. Let A be a semiprime associative algebra over a ring of

scalars Φ containing 1
6
, and let B be an abelian inner ideal of A− such

that B has finite length. Then B = Ω⊕V , where Ω is a Φ-submodule of

Z(A) of finite length, and V is a Jordan-Lie inner ideal of A of finite

length.

Proof. By Proposition 6.1(iii) the Lie algebra A is nondegenerate, and

since B has finite length, we have by [6, Proposition 3.5(iii),(v)] that

SubAB is a nondegenerate Artinian Jordan pair, so it is von Neumann

regular by [8, Theorem 10.17], which clearly implies that B is von

Neumann regular in A. Then it follows from Theorem 6.2 that B =

V ⊕ Ω is standard. Since V ∩ Z(A) = 0, any n-length chain 0 ⊂ U1 ⊂
U2 ⊂ · · · ⊂ Un of Jordan inner ideals of A contained in V gives rise

to the n-length U1 ⊂ U2 ⊂ · · · ⊂ Un of Lie inner ideal of A contained

in B, so V has finite length. Similarly, Ω has finite length, as a Φ-

module. ¤
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of a Lie algebra, J. Algebra 308(2007), 164-177.
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Málaga, 29071, Málaga, Spain

E-mail address: emalfer@uma.es


