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Abstract

Any nondegenerate Banach-Lie algebra which is spanned by extremal elements
has finite dimension.
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1 Introduction

A finite-dimensional Lie algebra L over an algebraically closed field F of char-
acteristic 0 is semisimple if and only if it is nondegenerate, [x, [x, L]] = 0 implies
x = 0 for all x in L, and is spanned by its extremal elements, i.e., elements
e in L such that [e, [e, L]] = Fe. Recently [4], we have described the infinite-
dimensional strongly prime Banach Lie algebras containing extremal elements.
Using that description and socle theory [3], we prove here that any nondegenerate
Banach-Lie algebra which is the linear span of its extremal elements is necessarily
finite-dimensional.

2 Preliminaries

2.1. Throughout this section we will be dealing with Lie algebras L, with [x, y]
denoting the Lie bracket and adx the adjoint map determined by x, over a field
F of characteristic 0 [8]. Any associative algebra A gives rise to a Lie algebra A−

with Lie bracket [x, y] = xy − yx. If A has an involution ∗, then Skew(A, ∗) is a
subalgebra of A− and therefore it is a Lie algebra.

2.2. An element x ∈ L is an absolute zero divisor if ad2
x = 0; L is nondegenerate if

it has no nonzero absolute zero divisors, semiprime if [I, I] = 0 implies I = 0, and
prime if [I, J ] = 0 implies I = 0 or J = 0, for any ideals I, J of L. A Lie algebra
is strongly prime if it is prime and nondegenerate, and simple if it is nonabelian
and contains no proper ideals. Any simple Lie algebra can be considered as an
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algebra over its centroid and the latter is central simple. Nondegeneracy and
strong primeness are inherited by ideals [9, Lemma 4] and [7, (0.4), (1.5)].

2.3. The annihilator or centralizer of a subset S of L is the set AnnL S consisting
of the elements x ∈ L such that [x, S] = 0. By the Jacobi identity, AnnL S is
a subalgebra of L and an ideal whenever S is so. Clearly, AnnL L = Z(L), the
center of L. If L is semiprime, then I ∩ AnnL I = 0 for any ideal I of L, so an
ideal is essential if and only if has zero annihilator. If L is nondegenerate, then
AnnL I = {a ∈ L | [a, [a, I]] = 0} [5, (2.5)].

2.4. An inner ideal of a Lie algebra L is a subspace B of L such that [B, [B, L]] ⊂ B
[1]. An abelian inner ideal is an inner ideal which is also an abelian subalgebra.
An element x ∈ L is said to be extremal if it generates a one-dimensional inner
ideal, that is, ad2

x L = Fx.

2.5. The socle of a nondegenerate Lie algebra L is defined as the sum of all
minimal inner ideals of L. By [3, Theorem 2.5], Soc L =

⊕
α Mα is a direct sum

of minimal ideals, each of which is a simple nondegenerate Lie algebra coinciding
with its socle.

2.6. An element x in L is called a Jordan element if ad3
x = 0. Clearly, any element

of an abelian inner ideal is a Jordan element. Conversely, by [1, (1.8)], any Jordan
element x yields the abelian inner ideal ad2

x L. A good reason for this terminology
is the following analogue of the fundamental identity for Jordan algebras [1, (1.7)]:

ad2
ad2

x y = ad2
x ad2

y ad2
x

for any y ∈ L. §

3 Lie algebras with extremal elements

All the vector spaces considered in this section are infinite-dimensional over
an algebraically closed field F of characteristic 0.

3.1. Let (X, Y, 〈·, ·〉) be a pair of dual vectors spaces over F, i.e., X, Y are vector
spaces over F, and 〈·, ·〉 : X × Y → F is a nondegenerate bilinear form. (Notice
that any vector space X gives rise to the canonical pair (X,X∗), where X∗ is the
dual of X.) We associate with (X,Y, 〈·, ·〉) the following algebras:

(i) The associative algebra of all the linear operators a : X → X having a
(unique) adjoint a# : Y → Y , i.e., 〈ax, y〉 = 〈x, a#y〉 for all x ∈ X, y ∈ Y .
Notice that LX∗(X) = End X.

(ii) The ideal FY (X) of all linear operators a ∈ LY (X) having finite rank.

(iii) The general linear algebra glY (X) := LY (X)−.

(iv) The finitary linear algebra fglY (X) := FY (X)−.
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(v) The special linear algebra fslY (X) := [fglY (X), fglY (X)]. Clearly, fglY (X)
and fslY (X) are ideals of glY (X).

3.2. Given x ∈ X and y ∈ Y , let y∗x denote the linear operator defined by
y∗x(x′) = 〈x′, y〉x, for all x′ ∈ X. It is easy to see that y∗x ∈ FY (X), with adjoint
x∗y. Moreover, y∗x ∈ fslY (X) if and only if 〈x, y〉 = 0 [6, Theorem 1.7].

3.3. Let X be a vector space over F endowed with a nondegenerate symmetric
(respectively, alternate) bilinear form 〈·, ·〉. Then (X,X, 〈·, ·〉) is a pair of dual
vector spaces and the adjoint becomes an involution, denoted by ∗, in the asso-
ciative algebra L(X) := LX(X), making the ideal F(X) ∗-invariant. We have the
following Lie algebras:

If 〈·, ·〉 is symmetric, then o(X, 〈·, ·〉) := Skew(L(X), ∗) is the orthogonal alge-
bra), and fo(X, 〈·, ·〉) := Skew(F(X), ∗) = [Skew(F(X), ∗),Skew(F(X), ∗)] is the
finitary orthogonal algebra.

If 〈·, ·〉 is alternate, then sp(X, 〈·, ·〉) := Skew(L(X), ∗) is the symplectic alge-
bra, and fsp(X, 〈·, ·〉) := Skew(F(X), ∗) = [Skew(F(X), ∗),Skew(F(X), ∗)] is the
finitary symplectic algebra.

3.4. If 〈·, ·〉 is symmetric, then for any x, y ∈ X the linear operator [x, y] :=
x∗y− y∗x belongs to fo(X, 〈·, ·〉). In fact, these operators span fo(X, 〈·, ·〉). If 〈·, ·〉
is alternate, then fsp(X, 〈·, ·〉) is spanned by the operators x∗x.

3.5. Let 〈·, ·〉 be symmetric or alternate. For a hyperbolic pair we mean a pair
(x, y) of isotropic vectors of X such that 〈x, y〉 = 1. A hyperbolic plane is any
2-dimensional subspace of X having a basis consisting of a hyperbolic pair. Since
F is algebraic closed, a 2-dimensional subspace H of X is a hyperbolic plane if and
only if it is nondegenerate.

Theorem 3.6. Let L be an infinite-dimensional Lie algebra over F. Then L is
strongly prime and contains extremal elements if and only if it is, up to isomor-
phism, one of the following:

(i) (fslY (X)+F IdX)/F IdX ≤ L ≤ glY (X)/F IdX , where (X,Y ) is an infinite-
dimensional pair of dual vector spaces over F.

(ii) fo(X, 〈·, ·〉) ≤ L ≤ o(X, 〈·, ·〉), where X is an infinite-dimensional vector
space over F with a nondegenerate symmetric bilinear form 〈·, ·〉.

(iii) fsp(X, 〈·, ·〉) ≤ L ≤ sp(X, 〈·, ·〉), where X is an infinite-dimensional vector
space over F with a nondegenerate alternate bilinear form 〈·, ·〉.

Moreover, L is simple if and only if it is either fslY (X), fo(X, 〈·, ·〉) or fsp(X, 〈·, ·〉).
Proof. See [4, Theorem 3.10]. §

4 Banach-Lie algebras with extremal elements

4.1. Let L be a complex Lie algebra. By an algebra norm of L we mean any norm
|| · || on the complex vector space L making continuous the bracket product, i.e.,
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there exists a positive number k such that ||[x, y]|| ≤ k||x||||y|| for all x, y ∈ L. A
normed Lie algebra is a complex Lie algebra L endowed with an algebra norm. If
the norm is complete, then L is called a Banach-Lie algebra.

4.2. Following [2, Section 27, Definition 1], a Banach pairing is a pair of dual vec-
tor spaces (X,Y, 〈·, ·〉) over C such that both X and Y are endowed with prefixed
complete norms making the bilinear form 〈·, ·〉 continuous. An standard applica-
tion of the closed graph theorem allows us to prove that the complete norms of
X and Y making continuous the nondegenerate bilinear form are unique up to
equivalence. By another application of the closed graph theorem we obtain that
every a ∈ LY (X) is a norm-continuous operator on X, so LY (X) is a subalgebra
of the Banach (associative) algebra BL(X) of all bounded linear operators on X.
Although LY (X) needs not be complete for the operator norm, it has a natural
structure of Banach algebra under the norm | · |′ defined by |a|′ = max{|a|, |a#|},
where | · | denotes the operator norm. As a consequence, we have

4.3. Let (X, Y, < ., . >) be a Banach pairing. Then (i) up to equivalence of
norms, there is a unique Banach pairing structure on the pair of dual vector spaces
(X, Y,< ., . >), and (ii) glY (X) and glY (X)/F IdX are Banach-Lie algebras for the
norm defined by |a|′ = max{|a|, |a#|}, with | · | denoting the operator norm, and
its quotient norm, also denoted by | · |′, respectively.

4.4. A Banach pairing (X, Y, 〈·, ·〉) with X = Y will be called a Banach inner
product space and will be denoted by (X, 〈·, ·〉).
Theorem 4.5. Let (L, || · ||) be an infinite-dimensional Banach-Lie algebra. Then
L is strongly prime and contains extremal elements if and only if any one of the
following statements holds:

(i) There exists an infinite-dimensional Banach pairing (X, Y, 〈·, ·〉) such that
(fslY (X) + C IdX)/C IdX ≤ L ≤ glY (X)/C IdX , and the injection (L, || · ||) into
(glY (X)/C IdX , | · |′) is continuous.

(ii) There exists an infinite-dimensional Banach inner product space (X, 〈·, ·〉),
where 〈·, ·〉 is symmetric, such that fo(X, 〈·, ·〉) ≤ L ≤ o(X, 〈·, ·〉), and the injection
of (L, || · ||) into (o(X, 〈·, ·〉), | · |) is continuous.

(iii) There exists an infinite-dimensional Banach inner product space (X, 〈·, ·〉),
where 〈·, ·〉 is alternate, such that fsp(X, 〈·, ·〉) ≤ L ≤ sp(X, 〈·, ·〉), and the injection
of (L, || · ||) into (sp(X, 〈·, ·〉), | · |) is continuous.

Proof. See [4, Theorem 7.2].

Theorem 4.6 Any nondegenerate Banach-Lie algebra spanned by extremal ele-
ments is finite-dimensional.

Proof. By (2.5), L = Soc L =
⊕

Mα is a direct sum of minimal ideals. This
allows us to reduce the question to the case where L is simple. First, each Mα

is a simple nondegenerate Banach-Lie algebra with extremal elements (Mα is an
annihilator ideal and therefore closed, and there exists an extremal element x of L
such that ad2

x Mα 6= 0; then it follows from the analogue of the fundamental Jordan
identity (2.6) that ad2

x y is an extremal element of Mα for any y ∈ Mα such that
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ad2
x y 6= 0). And second, there are only finitely many Mα. If {Mαn

} is an infinite
sequence, take a nonzero element an in each Mαn and set a =

∑∞
n=1

an

2n||an|| .
Since L coincides with its socle, a ∈ Mβ1 ⊕ · · · ⊕ Mβr

for finitely many Mβi
.

Let αm be distinct from all the βi. Then [Mβi
,Mαm

] ⊂ Mβi
∩ Mαm

= 0, but
[
∑∞

n=1
an

2n||an|| , Mαm ] = [am,Mαm ] 6= 0, a contradiction.

Let us then suppose then that L is simple. If L were infinite-dimensional, then
L would be either fslY (X), fo(X, 〈, ·, 〉) or fsp(X, 〈, ·, 〉), where in all the cases X
is infinite dimensional, Theorem 3.6. We analyze the three cases separately.

Case I. Let (X, Y, < ., . >) be an infinite-dimensional pair of dual vector spaces
over C. If L is a Lie algebra such that fslY (X) ≤ L ≤ fglY (X), then L cannot be
equipped with a complete algebra norm.

Suppose on the contrary that L admits a complete algebra norm || · ||. Then
it follows from [4, Proposition 4.3] that (X,Y, < ., . >) becomes a Banach pairing
and || · || majorizes the operator norm | · | of BL(X). Let {xn} ⊂ X and {yn} ⊂ Y
be infinite sequences of vectors such that 〈xn, ym〉 = δnm, and set an = y∗nxn+1.
Since < xn+1, yn >= 0, an ∈ fslY (X) ⊂ L and the infinite series

∑∞
n=1

an

2n||an||
converges absolutely to an element a ∈ L ⊂ fglY (X). But since |·| ≤ k||·||, we have
that

∑∞
n=1

an

2n||an|| also converges to a with respect to the operator norm. Hence
ax =

∑∞
n=1

anx
2n||an|| for any x ∈ X. Taking x = xm, we get that axm = xm+1

2m||am||
for any m ≥ 1, which is a contradiction since a has finite rank.

Case II. Let X be an infinite-dimensional complex vector space with a nondegen-
erate symmetric bilinear form 〈·, ·〉. Then fo(X, 〈·, ·〉), | · |) cannot be equipped with
a complete algebra norm.

The proof is similar to that of Case I, but taking an to be [yn, xn] instead of
y∗nxn+1, and where {(xn, yn)} is now an infinite sequence of pairwise orthogonal
hyperbolic pairs (3.5).

Case III. Let X be an infinite-dimensional complex vector space with a nondegen-
erate alternate bilinear form 〈·, ·〉. Then fsp(X, 〈·, ·〉) cannot be equipped with a
complete algebra norm.

Pick an infinite sequence {(xn, yn)} up of pairwise orthogonal hyperbolic pairs,
and set an = y∗nyn. ¥ §
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[7] GARCÍA, E., (2003). Inheritance of primeness by ideals in Lie algebras. Int.
J. Math. Game Theory Algebra, 13, 6, 481-484.

[8] JACOBSON, N., (1962). Lie Algebras. Interscience Publishers, New York.

[9] ZELMANOV, E. I., (1984). Lie algebras with an algebraic adjoint represen-
tation. Math. USSR Sbornik, 49, 537-552.

6


