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Abstract. Let A be an evolution algebra (possibly infinite-dimensional)
equipped with a fixed natural basis B, and let E be the associated graph
defined by Elduque and Labra. We describe the group of automorphisms of A
that are diagonalizable with respect to B. This group arises as the inverse limit
of a functor (a diagram) from the category associated with the graph E to the
category of groups. In certain cases, this group can be realized as a dyadic
solenoid. Additionally, we investigate the automorphisms that permute (and
possibly scale) the elements of B. In particular, for algebras satisfying the 2LI
condition, we provide a complete description of their automorphism group.

1. Introduction

One way to think about the mathematics underlying evolution algebras is through
the formalization of asexual reproduction. In sexual reproduction, two organisms
combine to produce a third one, whereas in asexual reproduction, a single organism
produces offspring genetically similar to the parent. Thus, sexual reproduction can
be schematized as an interaction in which organisms x and y couple to produce
z. This process can be thought of as a multiplication xy = z. On the other hand,
asexual reproduction involves only one parent. So, instead of two parents (xy), we
have a single parent squared (x2). Since the offspring is genetically similar to x, the
resulting equation is x2 = x.

x y

z

x2

x

Figure 1. On the left side we have the scheme of sexual reproduc-
tion and on the right side the asexual one.

Now, if we embed these ideas in an algebra setting, sexual reproduction gives us
equations of the form eiej =

∑
k ωijkek, where the ei’s represent the different types

of parent organisms, and the scalars ωijk correspond to probabilities. In contrast,
asexual reproduction leads to equations of the form e2i = ei, which characterize
a well-known class of evolution algebras. However, if we take into account the
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possibilities of mutations, errors, or perturbations from the ideal model (described
by e2i = ei), we obtain a more realistic model given by e2i =

∑
k ωkiek, where, in

principle, the scalar ωii is close to 1 while the others are close to 0. If the deviation
from the ideal model becomes significant, we arrive at the concept of a general
evolution algebra, where there are no constraints requiring ωii to be close to 1 and
the others to be close to 0. Notice that within the context of asexual reproduction,
the product eiej for distinct i and j should be zero, as no sexual reproduction occurs
in this scheme.

It turns out that evolution algebras are non-associative and fundamentally differ
from traditional algebraic structures: not only does each basis element square to
a linear combination of other basis elements, but the product of any two distinct
basis elements is zero. This unique property makes evolution algebras particularly
useful for studying dynamical systems, Markov processes, and population genetics.

The first comprehensive reference on evolution algebras is the book by Jianjun
Paul Tian [14], which introduces the theory, explores its algebraic properties, and
discusses classification and applications in biology and physics. The book presents
key concepts of the theory and demonstrates their relevance in various mathematical
and scientific contexts.

Following [14], numerous contributions to the theory of evolution algebras have
appeared in the literature, for example [7], [4], and [3]. Evolution algebras exhibit
deep connections with graph theory and stochastic processes, making them a
versatile interdisciplinary tool. They offer valuable insights into non-Mendelian
inheritance mechanisms and find applications in mathematical ecology, epidemiology,
and theoretical physics. See [5] for a comprehensive background on the state of the
art of this type of non-associative algebra.

The interactions between evolution algebras and graph theory, as established
in [7], allow the description of the affine group scheme of automorphisms of finite-
dimensional perfect evolution algebras, as presented in [8]. This result directly
precedes our current work. Additionally, in [2], the authors determine the Hopf
algebras that represent the affine group scheme of automorphisms of two-dimensional
evolution algebras and explore their relation to universal associative and commutative
representations of these algebras.

The solenoid is a classic object in topology and dynamics, first introduced by
Vietoris and later studied more systematically by van Dantzig and others. While the
term solenoid is sometimes used to describe various kinds of topological or algebraic
structures, one of the most well-studied and structurally rich is the dyadic solenoid,
a one-dimensional compact connected abelian group that arises as the inverse limit
of circles under degree-two covering maps. More generally, a solenoid is a compact
connected topological space (i.e., a continuum) that may be obtained as the inverse
limit of an inverse system of topological groups and continuous homomorphisms.
They naturally arise as minimal sets in certain dynamical systems, especially as
attractors in flows on 3-manifolds or in suspension flows over symbolic systems.

This work describes the automorphism group of certain evolution algebras as
solenoids. This suggests that the symmetries and internal structure of the algebra
are far from trivial, showing a kind of nested, self-similar symmetry, as solenoids
are constructed from repeated circle covers.

We begin by investigating diagonalizable automorphisms—those that diagonalize
relative to a fixed natural basis—without assuming finite-dimensionality or perfection.
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We find that the group of such automorphisms (once a natural basis is chosen) can
be characterized as the inverse limit of a diagram (see Definition 3.5) arising from
the graph associated to the evolution algebra in question. In the second part of our
work, we focus on automorphisms that both permute and scale the elements of the
chosen natural basis.

The paper is organized as follows. We begin with a preliminary section, where we
recall relevant concepts and set up notation concerning evolution algebras, graphs
and their associated categories, inverse limits, and solenoids. In Section 3, we study
diagonalizable automorphisms of evolution algebras, i.e., those that scale the basis
elements. In Example 3.7, we identify the automorphisms with Tate modules.
Moreover, we present examples where the group of diagonalizable automorphisms
coincides with a solenoid and prove a general theorem characterizing this group as
the inverse limit of a certain functor (see Theorem 3.10).

Section 4 focuses on the contrasting behavior of automorphism groups in finite
versus infinite-dimensional evolution algebras. For perfect evolution algebras, we
explore properties such as nondegeneracy, finiteness of the automorphism group,
and invertibility of the structure matrix.

Before addressing non-diagonalizable automorphisms, Section 5 presents an
interlude in which we study evolution algebras satisfying the 2LI Condition. In
particular, we describe the relationships between natural bases of such algebras (see
Theorem 5.3).

We conclude in Section 6 with a study of non-diagonalizable automorphisms. We
introduce weighted graphs and show that weighted graphs satisfying Condition (Sing)
correspond bijectively to pairs (A,B), where A is an evolution algebra and B is a
natural basis. This correspondence is category theoretic and allows us to analyze
the automorphisms of an evolution algebra with a fixed basis as automorphisms of
a weighted graph (see Proposition 6.10). We then show that an automorphism of
a weighted graph induces an inverse limit, which can be naturally embedded into
the automorphism group of A. In Theorem 6.16, we describe the union of all such
automorphisms as a semidirect product of the diagonalizable automorphisms of A
(with respect to a basis B) and the automorphisms of the associated weighted graph.
We end the paper by presenting methods for computing inverse limits arising from
automorphisms of evolution algebras.

2. Preliminaries

In what follows, we will denote the natural numbers without zero by N∗. We will
use the notation Cn = Z/nZ for the cyclic group of order n ≥ 1. This will prevent
confusion with the group of p-adic integers Zp defined as the inverse limit of the
system {Cpn}n≥1 with connecting homomorphism induced by Cpn+1 ! Cpn such
that k̄ 7! j̄, where j is the remainder of the division of k by pn.

An algebra A over a field K is considered an evolution algebra if there exists a
basis B = {ei}i∈Λ such that eiej = 0 for every i, j ∈ Λ with i ̸= j. Such a basis is
called a natural basis. Denote by MB = (ωij) the structure matrix of A relative to
B, where e2i =

∑
j∈Λ ωjiej .

A directed graph is a quadruple E = (E0, E1, s, r) where E0, E1 are sets and
s, r : E1 ! E0 are maps (called source and range, respectively). We will use the
terms graph and directed graph interchangeably. The elements of E0 are called
vertices, and the elements of E1 are called edges of E. A path µ of length m is a
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finite chain of edges µ = f1 . . . fm such that r(fi) = s(fi+1) for i = 1, . . . ,m − 1.
The vertices will be considered trivial paths, namely, paths of length zero. If f ∈ E1

is such that r(f) = s(f), then we say that f is a loop and the vertex r(f) is the
basis of the loop. If S ⊂ E0, then denote by T (S) the tree of S where

T (S) = {v ∈ E0 : exist λ ∈ Path(E) and u ∈ S with s(λ) = u, r(λ) = v}.

A graph E satisfies Condition (Sing) if for every two vertices u, v ∈ E0, we have
|s−1(u) ∩ r−1(v)| ≤ 1.

If A is an evolution algebra with natural basis B = {ei}i∈Λ and structure matrix
MB = (ωij), then we denote by E = (E0, E1, rE , sE) the directed graph associated
to A relative to B, which is defined by setting E0 = {ei}i∈Λ and drawing an edge
from ej to ei if and only if ωij ̸= 0, see [7]. Following [10], For a category C , we will
denote the classes of objects and morphisms by Obj(C ) and Mor(C ), respectively.
Next, we define several categories that we will use. By Cat we mean the category
of small categories and functors, and by Grp we denote the category of groups.

The category of graphs Grph is defined in [10, II, sect. 7, p. 48] (in the
terminology of [10], our graphs are termed "small graphs").

Let E be a graph. We recall the construction of the free category generated
by the graph E, as in [10]: IE is a small category such that Obj(IE) = E0 and
Mor(IE) = ∪u,v∈E0 homIE

(u, v), where for u, v ∈ E0 we define homIE
(u, v) as the

set of all paths with source u and range v. Thus, we have a functor I : Grph! Cat
such that E 7! IE . On the other hand, there is a forgetful functor U : Cat! Grph
given by U(C ) = (Obj(C ),Mor(C ), s, r), where for any morphism f ∈ Mor(C ) with
f ∈ homC (X,Y ) we put s(f) = X and r(f) = Y . As shown in [10, II, sect. formula
(6), p.51] we can say that the functor I is the left adjoint of the forgetful functor U .
This implies that there is a bijection

homGrph(E,U(C )) ∼= homCat(IE ,C ) (1)

for any graph E and small category C . Note that there may exist morphisms in
IE that are not edges of the graph E (for instance, a path of length greater than
one). The main use of (1) is that one can define a functor IE ! C simply by giving
a graph homomorphism E ! U(C ). We will use this fact in the sequel without
further warning. In conclusion, one can associate a category to any graph. Hence,
we can associate a category to each pair formed by an evolution algebra and a
natural basis (via its associated graph).

Definition 2.1. We define the small category C0 as the category whose unique object
is Obj(C0) = {K×} and Mor(C0) = {φ : K× ! K×|φ is a group homomorphism}.

Remark 2.2. Notice that C0 is a subcategory of Grp. So any functor from any
category A to C0, induces a functor A ! Grp.

Definition 2.3. Consider a small category I and F : I ! C a functor with values
in a category C . Recall that a cone for the functor F is an object G in C and a
collection {ti}i∈I of homomorphisms in C with ti : G! F(i) such that the triangles

G F(i) i

F(j) j

ti

tj
F(a) a

commute for any arrow a : i! j in I.
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Observation 2.4. The set {F(i)}i∈I can be thought as a family of objects indexed
by I and, for each arrow a : i ! j in I, the morphism F(a) : F(i) ! F(j) satisfies
F(a) ◦ ti = tj .

Now, we can consider the category of cones for a fixed functor F: its objects
are the cones for F and if (G, {ti}i∈I) and (G′, {t′i}i∈I) are cones for F, then a
homomorphism from (G, {ti}i∈I) to (G′, {t′i}i∈I) is a homomorphism φ : G ! G′

making commutative the triangles

G G′

F(i)

ti

φ

t′i

for any i ∈ I.

Definition 2.5. A inverse limit of the functor F (denoted lim
 

F) It is a terminal
object in the category of cones for F. This means that lim

 
F is an object in C

endowed with homomorphisms ti : lim
 

F! F(i) for any i ∈ I, such that

(1) F(a)ti = tj for any a : i! j in I.
(2) For any other H endowed with homomorphisms si : H ! F(i) satisfying

F(a)si = sj when a : i! j in I, there is a unique homomorphism θ : H !
lim
 

F such that ti ◦ θ = si for any i.

lim
 

F

F(i) F(j).

H

ti

tj

F(a)

si
θ

sj

Direct limits are defined dually by using cocones.

See [10, Sect. 4, §III] for a general reference on categories and related notions.

Remark 2.6. The inverse limit lim
 

F for a functor F : I ! Set can be constructed
as the set of all (xi)i∈I ∈

∏
i∈I F(i) such that F(a)(xi) = xj , whenever a : i! j in I.

The map tj : lim
 

F! F(j) is given by tj((xi)i∈I) = xj . For a functor F : I ! Grp,
the inverse limit can be constructed analogously.

An interesting example is the so-called dyadic solenoid. This is a construction
that appears naturally in our study of automorphisms of evolution algebras.

Example 2.7. Consider the category IE , where E is the graph whose vertices are
the natural numbers 0, 1, . . . and the only edges are i+ 1! i, see Figure 2.

· · ·! i+1• ! i• · · · 1•! 0•

Figure 2. Graph E of example 2.7.

Let n = (n1, n2, . . .) be a sequence of positive integers and consider the functor
F : IE ! Grp such that F(i) = S1 the unit circle and F(i)! F(i− 1) is the map
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x 7! xni . This defines an inverse system of groups

· · ·! S1 f3! S1 f2! S1 f1! S1, (2)

where we have abbreviated fi : x 7! xni . Then we define Σn := lim
 

F to be the
inverse limit (as a topological group). This topological space Σn is called the n-adic
solenoid. For the special case n = (2, 2, . . .) we get the so-called dyadic solenoid.

Dyadic solenoids were first introduced in [16] and in [15] for all constant sequences.
Solenoids are compact connected topological spaces. However, they are not locally
connected or path connected. Of course, they are abelian groups and are examples
of what is known as a protorus (compact connected topological abelian group).
Recalling the definition of inverse limit, a materialization of Σn for n = (2, 2, . . .), is
the group of all sequences (x0, x1, . . .) with xi ∈ S1 and x2i+1 = xi for all i (with
the componentwise product). As it is well known, solenoids are not Lie groups since
connected Lie groups are path-connected. Instead of using the Lie group S1, we can
consider the algebraic group K×, the graph E above, and n = (n1, n2, . . .) fixed.
Then, we can define the functor F : IE ! Grp such that F(i) = K× and the map
F(i)! F(i− 1) is x 7! xni . This defines an inverse system

· · ·! K× f3! K× f2! K× f1! K×, (3)

of groups and the group lim
 

F is what we term as a generalized solenoid.

Figure 3. Drawn with [9].

Figure 4. See [11].
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To end this section, we define the set µ(a)
n (R) := {x ∈ R× : xn = a} for any

a ∈ R×, n ∈ N∗ and R a commutative associative unitary K-algebra. Notice that
µn(R) := µ

(1)
n (R) is the group of n-th roots of the unit. In particular, we have

that µ2(K) = {±1} ∼= C2 if char(K) ̸= 2 and µ2(K) = {1} if char(K) = 2. There
is an action (which is transitive and free ) µ2n(R)× µ

(a)
2n (R) ! µ

(a)
2n (R), given by

multiplication. We also define the sets

µ
(a)
2∞(R) := {(xi)i≥1 : xi ∈ µ

(a)
2i (R), x2i+1 = xi}

for any a ∈ R×. In particular, if a = 1, we write µ2∞(R) := µ
(1)
2∞(R) which is a

group and there is an action µ2∞(R)× µ
(a)
2∞(R)! µ

(a)
2∞(R) given by componentwise

multiplication. Notice that since each µ(a)
2∞(R) is contained in the group (R×)N

∗
we

can consider the union ⋃
a∈K×

µ
(a)
2∞(R)

And this is a group.

3. Diagonalizable automorphisms of evolution algebras

Definition 3.1. Assume that A is an evolution algebra and B = {ui}i∈Λ a natural
basis of A. An automorphism f ∈ Aut(A) is said to be diagonalizable (relative to B)
if f(ui) ∈ K×ui for any i ∈ Λ. We define the group of diagonalizable automorphisms
relative to B, denoted by Diag(A;B), as

Diag(A;B) := {f ∈ Aut(A) : f(ui) ∈ K×ui, i ∈ Λ}.

Remark 3.2. Notice that, as the notation suggests, the group of diagonalizable
automorphisms strongly depends on the chosen basis (unless the algebra satisfies
additional properties). For example, consider the evolution algebra A with natural
basis B = {e1, e2} and product defined by e21 = e1 + e2 and e22 = 0. In this case,
Diag(A;B) = {1}. However, if we consider the algebra with the natural basis
B′ = {e1 + e2, e2}, then Diag(A;B′) = K×.

Example 3.3. Take the graph E such that E0 := {w}⊔{vi}i∈∈Z and E1 := {fi}i∈Z
with s(fi) = vi and r(fi) = w for any i. This is the graph associated to the evolution
algebra A with natural basis B = E0 and multiplication w2 = 0, v2i = w for any i.

v−i−1 v−i v−1 v0 v1 vi vi+1

w

If f ∈ Diag(A;B) then there are nonzero scalars xi such that f(vi) = xivi (i ̸= 0)
and f(w) = x0w. Then f(v2i ) = f(w) = x0w while f(vi)2 = (xivi)

2 = x2iw, whence
x0 = x2i for any i ̸= 0. Assuming that the ground field K is quadratically closed,√
x0 exists and xi = ±xj if i ̸= j. We analyse two cases:

(1) If char(K) = 2 then λ :=
√
x0 exists and it is unique. So f is of the

form f(w) = λ2w, f(vi) = λvi (i ̸= 0), where λ ∈ K×. In this case,
Diag(A;B) ∼= K×, a one-dimensional torus.

(2) If char(K) ̸= 2 we take λ to be one of the square roots of x0. Then
f(w) = λ2w as before, but f(vi) = λϵivi where ϵi = ±1 for i ̸= 0. In this
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case Diag(A;B) ∼= K× × (S0)Z, where (S0)Z is the multiplicative group of
sequences (ϵi)i∈Z with ϵi ∈ S0 = {±1}.

Notice that in any case, other automorphisms of this algebra are possible: if we take
a bijection σ : Z! Z, then the map g : A! A fixing w and making g(vi) = vσ(i) is
an automorphism of A.

If there is essentially a unique natural basis (up to scaling and reordering), the
notation Diag(A;B) can be simplified to Diag(A). For example, when A is a finite-
dimensional perfect evolution algebra (see [8]). In section 5 and subsection 4.3, we
will devote some attention to the problem of essential uniqueness of natural bases.

3.1. Interactions with evolution algebras. In this subsection, we illustrate with
some motivating examples how the solenoids presented above coincide with the
diagonalizable automorphisms of evolution algebras.

Example 3.4. Let IE be the category associated to the following graph:

E :

5

1 2

4 3

a51 a12

a15

a23a41

a34

(4)

Consider now the functor F : IE ! C0, where C0 is defined in 2.1 and K is a field
with cubic roots of the unit {1, ω, ω2}, induced by the graph morphism E ! U(C0)
(see the adjunction defined in formula (1)) such that i 7! K× with aij 7! s where
s : K× ! K× such that s(x) = x2. By Remark 2.2 we may consider F as a functor
F : IE ! Grp. Then, lim

 
F ∼= µ3(K).

To prove this, we apply the functor F to the category IE and obtain a diagram
so that each time an element advances through a (non-identity) arrow, we square it.
There are group homomorphisms ti : lim

 
F! K× = F(i) such that ti(x)2 = tj(x)

for each α : F(i)! F(j) such that α ∈ {a12, a23, a34, a41, a15, a51}.
lim
 

F

K× K× K×

K× K×

t1
t4

t2 t3

t5

s

ss

ss

s

Now,

lim
 

F= {(xi)51 : xj = F(α)(xi),∀α : i! j in IE}
= {(xi)51 : x2 = x21, x3 = x22, x4 = x23, x1 = x24, x5 = x21, x1 = x25}.

Eliminating parameters, we obtain that x31 = 1 and consequently

lim
 

F = {(1, . . . , 1), (ω, ω2, ω, ω2, ω), (ω2, ω, ω2, ω, ω2)}.

The isomorphism between lim
 

F and µ3(K) is clear.
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Consider any evolution algebra A which graph, relative to a natural basis {ui}4i=1,
is (4). So we have

u5

u1 u2

u4 u3,

and if we compute the diagonalizable automorphisms f : A ! A, that is, the
automorphisms satisfying f(ui) = λiui (i = 1, . . . , 5, λi ∈ K), we find that f(u1) =
ωu1, f(u2) = ω2u1, f(u3) = ωu3, f(u4) = ω2u4, f(u5) = ω2u5, where ω ∈ µ3(K).
Thus, the group of diagonalizable automorphisms of A is (isomorphic to) µ3(K)
and therefore it is lim

 
F. If the evolution algebra with graph (4) is perfect, it is easy

to check that any automorphism of A is diagonalizable. So, in this case, we have
Aut(A) ∼= lim

 
F.

The idea issued by the previous paragraphs is the following: take an evolution
algebra A and let IE be the small category associated to its graph relative to a
natural basis B. Then the group of diagonalizable automorphisms of an evolution
algebra A, relative to the basis B, is isomorphic to the inverse limit of the functor
lim
 

F. Given that the functor F is ubiquitous, we give it a notorious place in this
work:

Definition 3.5. Taking into account the adjunction in formula (1) and Remark 2.2,
we define C as the functor C : IE ! Grp such that C(i) = K× for any i and
C(α) : K× ! K× is the squaring map for any α ∈ E1.

Example 3.6. For a first example in the infinite-dimensional case, consider the
category IE induced by the graph in Figure 2, that is, the class of objects is N and
hom(i+ 1, i) has cardinal one for any i. Let C be the functor defined in Definition
3.5. Then lim

 
C is the group of all sequences (xi)i∈N∗ such that x2i+1 = xi for any i.

lim
 

C

K× K× K× K×

t1t2
titi+1

s s

Now, if A is an evolution algebra whose graph relative to a basis {ui}i∈N∗ is the
one given in Figure 2, it is easy to see that the diagonalizable automorphisms f are
of the form f(ui) = λiui, where λ2i+1 = λi. So again the group of diagonalizable
automorphisms of A is isomorphic to lim

 
C = {(xn)n≥1 : x

2
n+1 = xn, n ≥ 1}. If we

take an element (xn)n≥1 in this group and define a := x1, then x22 = x1 = a so
x2 ∈ µ

(a)
2 (K). In addition, x43 = x22 = a and x3 ∈ µ

(a)
22 (K). In general each xn is in

µ
(a)
2n−1(K). Consequently, (xn)n≥1 ∈ µ

(a)
2∞(K). A moment’s reflection reveals that

lim
 

C =
⋃

a∈K×

µ
(a)
2∞(K).

Example 3.7. Let A be a perfect evolution algebra with a natural basis B =
{ui}i∈N∗ and multiplication u21 = u1, u2i+1 = ui for i ≥ 1. This algebra is perfect
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and, as we will see, Aut(A) is infinite (in contrast to the fact that perfect finite-
dimensional evolution algebras have finite groups of automorphisms). Moreover, the
structure matrix is neither invertible nor 2LI (see Section 5 for definitions). Even
taking into account the results of Section 6, we can not conclude that the group
of automorphisms (relative to B) has the special form described in Corollary 6.19,
nor can we say that it is diagonalizable. However, this is the case as the following
proposition shows.

Proposition 3.8. Any automorphism of A is diagonalizable.

Proof. Let θ ∈ Aut(A). So, θ(ui) =
∑

k θikuk and the conditions for being a
homomorphism imply that

θiαθjα = 0, α ≥ 3, i ̸= j

θi1θj1 + θi2θj2 = 0, i ̸= j

θ11 = (θ11)
2 + (θ12)

2

θ1k = (θ1(k+1))
2, k ≥ 2

θ11 = (θ21)
2 + (θ22)

2

θ1k = (θ2(k+1))
2, k ≥ 2.

Take k ≥ 2 and think of θ1k. If θ1k ≠ 0, the equations above imply that
θ1(k+1), θ2(k+1) ≠ 0. But θ1(k+1)θ2(k+1) = 0, a contradiction. Thus θ1k = 0 if
k ≥ 2. The last equation gives θ2k = 0 for k ≥ 3. Then the third equation gives
θ11 = 1. The second gives θj1 = 0 for j ̸= 1. Now the second equation gives θ21 = 0.
So far θ(ui) ∈ Kui for i = 1, 2. Next assume that θ(ui) ∈ Kui for i = 1, . . . , q − 1.
Then, for q > 2

θ(u2q) = θ(uq−1) = θ(q−1)(q−1)uq−1.

But θ(uq)2 =
(∑

k≥1 θqkuk

)2
=
∑

k≥1(θqk)
2u2k = ((θq1)

2+(θq2)
2)u1+

∑
k>2(θqk)

2uk−1

which gives 
θ(q−1)(q−1) = (θqq)

2,

(θq1)
2 + (θq2)

2 = 0,

θqk = 0, (k ̸= 1, 2, q).

Moreover, 0 = θ(u1)θ(uq) = u1
∑

k≥1 θqkuk = θq1u1 implying θq1 = 0 (and similarly
θq2 = 0). In conclusion, θ(uq) ∈ Kuq. □

Next, we investigate the group Aut(A), which we know coincides with Diag(A;B).
The graph of the algebra is given by Figure 5.

u3• u2• u1•

Figure 5.

Applying the functor C we get the diagram given in Figure 6
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K× K× K×s s

s

Figure 6.

where again s(x) = x2 for any x ∈ K×. Then, lim
 

C is the group of all sequences

(xi)i∈N∗ such that x1 = 1 and x2i+1 = xi for i ≥ 1. Further, since Aut(A) =
Diag(A;B) ∼= lim

 
C ∼= lim

 
µ2n(K), we find that for this algebra, the automorphism

group agrees with the so called Tate module of the group K×. The Tate module
was introduced in [13] in the context of abelian varieties. However, we will use the
variant related to abelian groups. Following [12], the Tate module is associated with
the ℓ-adic completion of the torsion subgroup of an abelian group (for a prime ℓ).
The definition given in [12] is:

Definition 3.9. Let A be an abelian group and ℓ a prime. The Tate module Tℓ(A )
is the inverse limit:

Tℓ(A ) = lim −
n

A [ℓn],

where A [ℓn] = {a ∈ A | ℓna = 0} is the ℓn-torsion subgroup, and the transition
maps are given by multiplication by ℓ.

In our case we can take A = K× so that the 2n torsion is µ2n(K), that is,
A [2n] = µ2n(K) and consequently T2(K×) = lim

 
µ2n(K) = Aut(A). The group of

automorphisms is the Tate module T2(K×), so we can take advantage of the known
values of this. Below we describe T2(K×) for various fields K.

(1) Algebraically closed fields of char(K) ̸= 2:

T2(K
×) ∼= Z2,

the free rank-1 Z2-module. See [6, Section 5.3].
(2) Finite fields (K = Fpn with p odd and n ≥ 1):

T2(F×
pn) = 1.

(3) Fields with/without 2n-roots of unity:
• If K contains no nontrivial 2n-th roots of unity for any n ≥ 1 (e.g., Q

or Qp with p ̸= 2):

T2(K
×) = 1.

• If K contains
√
−1 but no higher 2n-roots (e.g. K = Q(i)):

T2(K
×) = 1.

• If K contains all 2n-roots of unity (e.g. K = Q(ζ2∞) :=
⋃

n≥1 Q(ζ2n)

with ζn primitive n-th root of 1):

T2(K
×) ∼= Z2.

(4) char(K) = 2:
T2(K

×) = 1

since x2
n

= 1 implies x = 1.
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Not every value of T2(K×) above is straightforward to justify. Therefore, we now
provide some hints to support and verify these.

The case of characteristic 2 is obvious. More generally if K has characteristic
other than 2 and ∪n≥1µ2n(K

×) is a finite set, we have T2(K×) = 1. Indeed, The
chain

µ2(K) ⊆ µ22(K) ⊆ · · · ⊆ µ2i(K) ⊂ µ2i+1(K) ⊆ · · ·
is stationary hence we may assume that µ2i(K) = µ2j (K) for j ≥ i, where i is
the stationary index of the chain. Now, take any element (xi) ∈ lim

 
µ2n(K

×).

We know that x2j+1 = xj for any j. Thus, x2
k

j+k = xj for any j and k. Take
k > i (the stationary index of the above chain). Then xj+k ∈ µ2j+k(K) = µ2i(K),
because j + k > i. Thus x2

i

j+k = 1 and xj = x2
k

j+k = (x2
i

j+k)
2k−i

= 1. Consequently,
T2(K

×) = 1.
If K/Q is an extension containing all the roots ζ2n = exp(2πi/2n) for n ≥ 1, then

µ2n(K) = {1, ζ2n , ζ22n , . . . , ζ2
n−1

2n } ∼= C2n and the inverse limit is the group of 2-adic
integers.

We conclude this section by proving that the group of diagonalizable automor-
phisms of an evolution algebra is the inverse limit of the functor C : IE ! Grp
(recall Definition 3.5).

Theorem 3.10. Let A be any evolution K-algebra, fix a natural basis B, and
consider the graph E associated with B. Then, there is a group isomorphism
Diag(A;B) ∼= lim

 
C.

Proof. For any u ∈ E0, define πu : Diag(A;B)! C(u) = K× by assigning to each
θ ∈ Diag(A;B) the scalar such that θ(u) = πu(θ)u. It is easy to check that πu is
a group morphism. Consider an edge f with source u and range v. We check the
commutativity of the triangles

Diag(A;B) C(u) x

C(v) x2.

πu

πv
C(f)

Take θ ∈ Diag(A;B) with θ(u) = πu(θ)u, while θ(v) = πv(θ)v. Since the edge f
connects u to v we know that u2 = mv + ξ, where m ∈ K× and ξv = 0. But,

πu(θ)
2(mv + ξ) = θ(u)2 = θ(u2) = θ(mv + ξ) = mθ(v) + θ(ξ) = mπv(θ)v + θ(ξ),

so πu(θ)2mv = mπv(θ)v because θ(ξ)v = πv(θ)
−1θ(ξv) = 0. Consequently, πu(θ)2 =

πv(θ), that is, C(f)(πu)(θ) = πv(θ) and the commutativity of the triangles above is
proved. So, Diag(A;B), {πu}u∈E0 is a cone for the functor C.

To end the proof, we must check that the cone is terminal. For this, assume that
G is another group endowed with homomorphisms tu : G! C(u) (for any u ∈ E0)
such that C(f)tu = tv whenever f is an edge with s(f) = u and r(f) = v. We have
to prove that there is a unique group homomorphism t : G! Diag(A;B) such that
πut = tu for any vertex u. Notice that for any g ∈ G, we have a nonzero scalar
tu(g) ∈ K×, and we define an automorphism θ : A! A by setting θ(u) = tu(g)u for
all u ∈ E0. Then, we define t(g) = θ and, since πu(t(g)) = πu(θ) = tu(g), it follows
that πu ◦ t = tu. The fact that t is a group homomorphism, as well as its uniqueness
property, is easy to check. □
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4. Deviations from the finite-dimensional case

Motivated by the distinct behaviours of the automorphism groups in finite-
dimensional and infinite-dimensional evolution algebras, in this section, we highlight
some differences in the behaviour of infinite-dimensional evolution K-algebras
compared to the finite-dimensional case.

4.1. Perfection x Nondegeneracy. While in the finite-dimensional case, the
perfection of evolution algebras implies nondegeneracy, in the infinite-dimensional
case, there are perfect evolution algebras that are degenerate. For instance, the
K-algebra A = span ({ei}i≥0) with a countable basis whose multiplication is e20 = 0,
e2i+1 = ei and eiej = 0 when i ̸= j. This algebra is degenerate, but A2 = A. Thus,
the only hope to extend some finite-dimensional results regarding perfect algebras
to arbitrary dimensions will likely require replacing the perfection condition with a
stronger assumption.

4.2. Perfection x Finiteness of the automorphism group. As it is well known,
the automorphism group of finite-dimensional perfect evolution algebras is finite
(see [8]). In the infinite-dimensional case, this is no longer true. For instance,
in the algebra A of the previous item (which is perfect), for any diagonalizable
automorphism f : A! A determined by a sequence (xi)i≥0 in K, that is, f given
by f(ei) = xiei for every i ≥ 0, we have xiei = f(ei) = f(e2i+1) = f(ei+1)

2 = x2i+1ei,
so that xi = x2i+1 for any i ≥ 0. Thus, the group AutK(A) contains the subgroup
of all the sequences (xi)i≥0 satisfying xi = x2i+1 for any i ≥ 0. This subgroup is
nothing but the inverse limit of the system

· · ·! K× ! K× ! K× ! K×,

where all arrows are the squaring map x 7! x2. So, lim
 
K× ⊂ AutK(A) as a

subgroup. If we take the complex numbers as the ground field, say K = C, then
lim
 

C× contains the circle S1, since we can consider the group monomorphism

S1 ! lim
 

C× given by exp(it) 7! (exp(it/2j))j≥0, for any j ≥ 0.
Furthermore, we have the following commutative diagram.

lim
 

C× C× C× C× C×

lim
 
S1 S1 S1 S1 S1

s s

s s

As it is well known, the inverse limit lim
 
S1 is the dyadic solenoid, see Figure 4.

Since lim
 
S1 ⊂ lim

 
C× ⊂ Aut(A), we conclude that Aut(A) contains the dyadic

solenoid lim
 
S1.

We have described how the diagonalizable automorphisms of an evolution algebra
A can contribute to the infiniteness of the group Aut(A). But non-diagonalizable
automorphisms can also do it. For instance, consider the evolution K-algebra K(N)

of sequences (xn)n≥0 in K with finitely-many nonzero entries. We consider here
the component-wise product. Denote the canonical basis by {ei}i≥0. Then, for any
bijection σ : N! N, we have an automorphism of K(N) given by mapping ej to eσ(j)
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for any j. In this case, Aut(K(N)) contains a copy of the group of bijections N! N
(an infinite "permutation group").

4.3. Perfection x Inversibility of the structure matrix. If B = {ei}i∈Λ is a
natural basis of an evolution K-algebra and MB is the associated structure matrix,
then MB is column finite (a matrix whose columns have finitely many nonzero
entries). Recall that column finite matrices can be multiplied and inversibility makes
sense. When MB is invertible, we have A = A2. However, the same example above
shows that the perfection of evolution algebras does not imply the inversibility of
the structure matrix of the algebra. In any case, we have:

Proposition 4.1. (c.f. [7, Theorem 4.4]) Let A be any evolution algebra (possibly
infinite-dimensional) and assume that for a natural basis B = {ei}i∈Λ of A, the
structure constants matrix MB is invertible. Then, for any natural basis {ui}i∈Λ

there is a bijection σ : Λ! Λ and scalars {ki : i ∈ Λ} ⊂ K× such that ui = kieσ(i)
for any i ∈ Λ.

Proof. The proof is essentially an adaptation of [7, Lemma 4.3 and Theorem 4.4].
Write ui =

∑
k akiek so that for i ̸= j we have 0 = uiuj =

∑
k akiek

∑
h ahjeh =∑

k akiakje
2
k. Observe that {e2k}k∈Λ is a linearly independent set. Indeed, if there

is a linear combination
∑

i∈Λ0
λie

2
i = 0 with λi ∈ K, then there is a column vector

λ = (li)
T
i∈Λ (T denote the transpose of the matrix) with li = λi if i ∈ Λ0 and li = 0

in other case. In this way, MBλ = 0 which is only possible if λi = 0 for all i ∈ Λ0.
So, we have akiakj = 0 whenever i ̸= j for any k. Therefore, if some aki ̸= 0,

it follows that akj = 0 for any j ̸= i. Given that the matrix of change of basis
(aij) is invertible, we conclude that each row and column must have exactly one
nonzero entry. Consequently, there exists a permutation σ of the index set Λ such
that ui = aσ(i)ieσ(i) for every i. □

Corollary 4.2. If A is an evolution algebra with invertible structure matrix MB,
then any automorphism f : A! A is of the form f(ei) = kieσ(i) for each i, where
B = {ei}i∈Λ and σ is a permutation of Λ.

5. The 2LI condition

An evolution algebra satisfying 2LI is defined in [1, Definition 2.8]. Accordingly,
we say that a natural basis B satisfies 2LI if, for any two distinct elements x, y ∈ B,
the set {x2, y2} is linearly independent. In this section, we will show that if there
is a natural basis satisfying 2LI, every other natural basis coincides with the first
one up to permutation and scalar multiplication. Thus, the group Diag(A) does not
depend on the choice of basis; see Remark 6.2.

Recall that an element of an evolution algebra is called natural if it belongs to
some natural basis. The characterization of naturality for vectors is provided in [1].

Proposition 5.1. Let A be an evolution K-algebra. Suppose that {ei}i∈Λ is a
natural basis of A and let u = λ1e1 + · · ·+ λkek, where λi ̸= 0.

(i) If u2 ̸= 0, then:
(a) If char(K) ̸= 2 and dim(span({e2i }ki=1)) = 1, then u is a natural vector.
(b) If u is natural, then dim(span({e2i }ki=1)) = 1.

(ii) If u2 = 0 then u is natural if and only if e2i = 0 for i = 1, . . . , k.
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Proof. Assume that u2 ̸= 0, charK ̸= 2 and dim(span({e2i }ki=1)) = 1. Let
S = span({ei}ki=1). We suppose, without loss of generality, that e21 generates
span({e2i }ki=1). There exists a symmetric bilinear form ⟨·, ·⟩ defined on S such that
xy = ⟨x, y⟩e21. Since ⟨u, u⟩ ̸= 0, we have S = Ku ⊥ (Ku)⊥. Furthermore, as the
characteristic of K is not 2, (Ku)⊥ has an orthogonal basis {vj}k−1

j=1 . Consequently,
there exists a natural basis {u} ∪ {vj}k−1

j=1 ∪ {ei}i>k that contains u.
For item (1) (b), if u is a natural vector, then dim(Im(Lu)) = 1 where Lu is the

left-multiplication operator. On the other hand, Im(Lu) is generated by uei for
i ∈ Λ, that is, Im(Lu) = span({e21, . . . , e2k}). Hence, dim(span({e2i }ki=1)) = 1.

To show item (2), start with u being natural. Then uA = 0, and thus uei = 0,
which implies e2i = 0 for i = 1, . . . , k. Conversely, if each e2i = 0 then {u}∪{ei}k−1

i=1 ∪
{ei}i>k is a natural basis containing u. □

Remark 5.2. The hypothesis that char(K) ̸= 2 in the first item above can not be
dropped. Consider the evolution algebra K3 with K a field of characteristic 2. In
addition, if we suppose that the canonical basis {e1, e2, e3} of K3 has products e21 =
e22 = e23 ̸= 0 and eiej = 0 when i ≠ j, then we obtain a family of evolution algebras.
In any of these algebras, take u = e1 + e2 + e3 = (1, 1, 1) whose square is u2 =
e21+ e

2
2+ e

2
3 = 3e21 = e21 ̸= 0. Also, supp(u) = {1, 2, 3} and dim(span{e21, e22, e23}) = 1.

However, u is not natural. If {(1, 1, 1), (x, y, z), (r, s, t)} is a natural basis, we must
have 

x+ y + z = 0

r + s+ t = 0

xr + ys+ zt = 0

,

∣∣∣∣∣∣
1 1 1
x y z
r s t

∣∣∣∣∣∣ ̸= 0

which is not consistent in charK = 2. Indeed, as z = −x− y and t = −r − s, then
replacing in the third equation and the determinant, we have 2rx+ sx+ ry+ 2sy =
sx+ ry = 0 and 3sx− 3ry = sx+ ry ̸= 0, a contradiction.

Thus, in item (i) of [1, Theorem 2.4], the hypothesis that char(K) ̸= 2 must be
added.

As noted in Proposition 4.1, if the structure matrix of A is invertible, then any
two natural bases coincide up to permutation and scalar multiplication. Next, we
generalize [1, Corollary 2.7].

Theorem 5.3. Let A be an evolution algebra (arbitrary dimension and ground field).
If A has a natural basis satisfying the condition 2LI, then all the bases coincide up
to permutation and scalar multiplication.

Proof. Assume that B = {ei}i∈Λ is a natural basis satisfying 2LI and B′ is any other
natural basis. Let u ∈ B′ and write, without loss of generality, u = λ1e1+ · · ·+λkek
with λi ̸= 0. Since u is natural dim(Im(Lu)) ≤ 1, but Im(Lu) = span({e2i }ki=1).
Consequently, if k > 1, the dimension of Im(Lu) ≥ 2, which is a contradiction. This
implies that k = 1 and hence u ∈ K×B. Thus, any element of B′ is a nonzero
multiple of some element in B.

□

As noted in [1], if A has a unique basis (up to reordering and scalar multiplication),
it does not automatically follow that it satisfies 2LI. The first additional condition
required for A is nondegeneracy. Moreover, we must assume that the ground field
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has more than three elements. Under these assumptions, the proof of [1, Corollary
2.7] gives that:

Proposition 5.4. Let A be a nondegenerate evolution algebra of arbitrary dimension
over a field with more than 3 elements such that all the natural bases coincide up to
permutation and scalar multiplication. Then all the natural bases satisfy 2LI.

Note that the hypothesis on the cardinality of the ground field is not present in
the statement of [1, Corollary 2.7]; however, it is used in its proof.

6. Non-diagonalizable automorphisms

Let B be the set of all natural bases of a fixed evolution K-algebra A. We
assume all natural bases are indexed by the same set Λ. Then we define the direct
product group SΛ × (K×)Λ with pointwise multiplication, where SΛ is the group of
bijections Λ! Λ (under composition) and (K×)Λ is the group of maps Λ! K×

with elements represented in the form (xi)i∈Λ, where xi ∈ K× (with pointwise
multiplication). This group has a natural action (SΛ × (K×)Λ)× B ! B defined
as follows: if {ei}i∈Λ is a natural basis of A and (σ, (xi)i∈Λ) ∈ SΛ × (K×)Λ, then

(σ, (xi)i∈Λ) · {ei}i∈Λ := {xieσ(i)}i∈Λ

Definition 6.1. The set of orbits on B induced by the action of the group SΛ ×
(K×)Λ will be denoted by B. For a given natural basis B, its orbit under this group
will be denoted by [B].

Remark 6.2. Under the previous settings, we have:
(i) If two basis B,B′ ∈ B of an evolution algebra A are in the same orbit under

the action of SΛ × (K×)Λ, then

Diag(A;B) = Diag(A;B′). (5)

(ii) If A satisfies 2LI, then the action of SΛ × (K×)Λ is transitive. Consequently,
there is only one orbit.

If the set of orbits B has cardinal 1, then we can speak of the group Diag(A)
without further allusion to any particular B ∈ B.

Example 6.3. Consider the 2-dimensional evolution algebra with natural basis
{e1, e2} such that e21 = e1 and e22 = 0. Its associated graph corresponds to E.

E : e1 e2

Let us search for all the possible natural bases (modulo the action of S2× (K×)2).
If {u1, u2} is another natural basis, then we can write u1 = xe1 + ye2 and u2 =
ze1 + te2 (x, y, z, t ∈ K). Thus, 0 = u1u2 gives xz = 0. Modulo the action of
S2× (K×)2, we may assume z = 0. Since u1 and u2 are linearly independent, xt ̸= 0,
and hence the orbits of possible natural bases are of the form{

u1 = e1 + ye2

u2 = e2.
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Now, if y = 0 then the basis {u1, u2} is in the orbit of {e1, e2}, but if y ̸= 0 then
they are in different orbits. It is also easy to realize that different values of y ∈ K
produce different orbits. So,

B = {[{e1 + ye2, e2}] : y ∈ K} .

Proposition 6.4. Given an evolution algebra A, if [B], [B′] ∈ B with [B] = [B′],
then the graphs associated to A relative to B and B′ are isomorphic.

Proof. Let B = {ei} and B′ = {ui} be two natural bases with [B] = [B′]. We can
write u2i = ωjiuj + C with ωji ̸= 0 and Cuj = 0. On the other hand, we have that
ui = λieσ(i) for some λi ∈ K× and σ ∈ SΛ. Therefore, λ2i e2σ(i) = ωjiuj + C. This

implies that e2σ(i) =
λjωji

λ2
i
eσ(j) +

C
λ2
i

with C
λ2
i
eσ(j) = 0. Hence, the graphs associated

to A relative to B and B′ are isomorphic.
□

Definition 6.5. We define EK as the category of pairs (A,B) where A is an
evolution K-algebra and B is a natural basis of A. A homomorphism from (A,B)
to (A′, B′) in EK is a K-algebra isomorphism t : A! A′ such that for any b ∈ B,
there is some b′ ∈ B′ with t(b) ∈ Kb′. We will use the notation AutEK

(A,B) for
the group of all automorphisms of the object (A,B) of EK . If there is no ambiguity,
we will shorten the notation AutEK

(A,B) to Aut(A,B).

So fa,r we have considered automorphisms that are diagonalizable relative to a
natural basis of the given evolution algebra. But in some cases the "symmetry" of
the graph associated to the evolution algebra permits "twisted" automorphisms. To
develop further related results, we need the notion of a K-weighted graph. This is a
pair (E,w), where E is a graph and w : E1 ! K×. Typically, in applications, the
field K is taken to be the real numbers, but in our case, we consider an arbitrary
field K.

Remark 6.6. There is a biunivocal correspondence between pairs (A,B), where A
is an evolution K-algebra and B is a natural basis, and weighted graphs (E,w) with
E satisfying Condition (Sing). Given an evolution algebra A with a natural basis
B = {ui}i∈Λ, we construct the graph E such that E0 = B, and there is exactly one
edge from ui to uj if and only if with ωji ̸= 0. We define the weight w : E1 ! K× by
setting w(f) = ωji if f ∈ s−1(ui) ∩ r−1(uj). Conversely, given a weighted K-graph
(E,w) satisfying Condition (Sing), we can construct an evolution K-algebra with
natural basis E0 and multiplication defined by

e2i =
∑

f∈s−1(ei)

w(f)r(f)

for each i ∈ Λ.

We find ourselves searching for a description of the category of weighted graphs
in such a way that it is isomorphic to the category EK . Considering (A,B) and
(A′, B′) with B = {ei}i∈Λ and B′ = {e′i}j∈Λ′ , notice that if θ : (A,B)! (A′, B′) is
a morphism in EK , then

θ(e2i ) = θ

(∑
k

ωkiek

)
=
∑
k

ωkiθ(ek) =
∑
k

ωkixke
′
σ(k),
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θ(ei)
2 = x2i e

′2
σ(i) = x2i

∑
k

ω′
kσ(i)e

′
k

and
x2iω

′
σ(k)σ(i) = xkωki

for every k ∈ Λ. Using the notation given in Remark 6.6, this motivates the
construction of the ideal Iθ in the next definition.

Definition 6.7. We define the category GrphK whose objects are the weighted
graphs (E,w). To define homomorphisms, consider two weighted graphs (E,w)
and (E′, w′). Denote the elements of E0 by {ei}i∈Λ. Take the polynomial algebra
K[xi, yi : i ∈ Λ] and, for any homomorphism θ : E ! E′ in Grph, define the ideal
Iθ ◁ K[xi, yi : i ∈ Λ] as the one generated by all polynomials in the set:

S := {xiyi − 1}i∈Λ ∪ {w(a)xj − w′(θ(a))x2i : a ∈ E1 ∩ s−1(ei) ∩ r−1(ej)}. (6)

So, the zero-loci of the ideal Iθ is the set V (Iθ) given by{
((xi), (yi)) ∈ (KΛ)2 : xiyi = 1, w(a)xj = w′(θ(a))x2i , ∀a ∈ s−1(ei) ∩ r−1(ej)

}
.

A homomorphism (E,w) ! (E′, w′) in GrphK is defined to be a morphism θv,
where θv : E ! E′ is a graph isomorphism and v = (xi)i∈Λ ∈ (K×)Λ is such that
((xi), (x

−1
i )) ∈ V (Iθv).

Note that if θ : E ! E′ is such that w′(θ(a)) = w(a) for any arrow in E1, then
define v := (xi) where xi = 1 (for all i). Hence (v,v) is in V (Iθ) and θ = θv.

We will show that the categories EK and GrphK are isomorphic, but we need
two auxiliary results for this.

Lemma 6.8. Let (A,B), (A′, B′) ∈ EK with B = {ui}i∈Λ and B′ = {vi}i∈Λ′ and
consider t : (A,B) ! (A′, B′) a homomorphism in EK such that t(ui) = xivσ(i)
(i ∈ Λ), where xi ∈ K× and σ : Λ ! Λ′. If (E,w) and (E′, w′) are the weighted
graphs associated to (A,B) and (A′, B′) respectively, then there is a homomorphism
θv : (E,w)! (E′, w′) such that θv(ui) = vσ(i).

Proof. Let t be the same as the statement of the lemma. Define θ : E0 ! E′0 by
θ(ui) = vσ(i) for any i. If a ∈ E1 ∩ s−1(ui) ∩ r−1(uj), we have u2i = w(a)uj + R

with w(a) ̸= 0 and ujR = 0. Thus, t(ui)2 = w(a)t(uj) + t(R), that is, x2i v2σ(i) =
w(a)xjvσ(j) + t(R). Equivalently,

v2σ(i) = w(a)
xj
x2i
vσ(j) +

t(R)

x2i
, (7)

where vσ(j)t(R) = 0 because ujR = 0. So, there is an edge in E′1 connecting vσ(i)
to vσ(j). We formally define θ : E1 ! E′1 by declaring θ(a) as the edge connecting
vσ(i) to vσ(j). Note that, by construction, s(θ(a)) = θ(s(a)) and r(θ(a)) = θ(r(a)).
Thus, θ is an isomorphism between E and E′ in Grph. On the other hand, by
comparing (7) with v2σ(i) = w′(θ(a))vσ(j) + R′ (where we also have vσ(j)R′ = 0),
we obtain w(a)xj

x2
i
= w′(θ(a)), which implies ((xi), (x

−1
i )) ∈ V (Iθ). So, θv := θ is a

homomorphism in GrphK with v = (xi). □

By Lemma 6.8, we can define a functor F : EK ! GrphK as follows: for each
object (A,B) in EK , we set F (A,B) = (E,w), where E is the graph associated to A
relative to B (as a set E0 = B). For any edge a from u to v in this graph, we define
w(a) to be the scalar such that u2 = w(a)v +R, (with Rv = 0). Furthermore, for
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each morphism t, we define F (t) = θv, where θv is the homomorphism established
in Lemma 6.8.

Lemma 6.9. Let θv : (E,w) ! (E′, w′) be a homomorphism in GrphK . Then
there is a unique homomorphism t : (A,B)! (A′, B′) in EK such that F (t) = θv.

Proof. Let E0 = {ui}i∈Λ and E′0 = {vi}i∈Λ′ . Then θv(ui) = vσ(i) for some
bijection σ : Λ ! Λ′. Let v = (xi), it follows that w(f)xj = w′(θv(f))x

2
i for all

f ∈ E1 ∩ s−1(ui) ∩ r−1(uj). This enables us to define t : A ! A′ as the linear
extension of t(ui) = xivσ(i). Moreover,

t(ui)
2 = x2i v

2
σ(i) = x2i

∑
s(g)=vσ(i)

w′(g) r(g) = x2i
∑

s(f)=ui

w′(θv(f)) r(θv(f))

=
∑

s(f)=ui

x2iw
′(θv(f)) θv(r(f)) =

∑
s(f)=ui

w(f)xj θv(r(f)).

Since s(f) = ui and r(f) = uj , we have that θv(r(f)) = θv(uj) = vσ(j) = x−1
j t(uj)

and so

t(ui)
2 =

∑
s(f)=ui

w(f)xjx
−1
j t(uj) =

∑
s(f)=ui

w(f)t(r(f))

= t

 ∑
s(f)=ui

w(f)r(f)

 = t(u2i ).

The uniqueness of t follows easily. □

Let G : GrphK ! EK be the functor such that G (E,w) = (A,B), where A is
the K-algebra with natural basis B = E0 = {ui}i∈Λ and product given by u2 =∑

f∈s−1(u) w(f)r(f), where f ∈ s−1(u). Furthermore, for θv : (E,w)! (E′, w′) we
define G (θv) as the homomorphism t : (A,B)! (A′, B′) such that t(ui) = xivσ(i),
where B′ = {vi}i∈Λ′ is the natural basis of A′, (xi)i∈Λ ∈ V (Iθv), and σ : Λ! Λ′ is
the map satisfying θv(ui) = vσ(i).

Proposition 6.10. The categories EK and GrphK are isomorphic in the sense
that FG = 1GrphK

and G F = 1EK
. In particular, the functor F induces a group

isomorphism AutEK
(A,B) ∼= AutGrphK

(E,w).

Proof. It is easy to check that F and G are mutually inverse functors. Now, if Ci

are categories (i = 1, 2) and there are functors A : C1 ! C2 and B : C2 ! C1 such
that A B = 1C2 and BA = 1C1 , then A maps monomorphicaly automorphisms
of any object U ∈ C1 onto automorphisms of A (U) in C2. So it induces a group
isomorphism AutC1(U)

∼= AutC2(A (U)). Applying this reasoning to the functors
F : EK ! GrphK and G : GrphK ! EK , we obtain the desired result. □

Example 6.11. Let K be a field with char(K) ̸= 2 and consider the 2-dimensional
evolution algebra A with natural basis B = {u1, u2} and multiplication u21 = u1+u2,
u22 = 2u1 + u2. The associated weighted graph (E,w) is

E : •u1 •u2

f

h

g

k
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where w(h) = w(k) = 1, w(f) = 1, and w(g) = 2. We define the order two
automorphism θ of E given by

θ(u1) = u2, θ(h) = k,
θ(f) = g.

(8)

Since AutEK
(A,B) ∼= AutGrphK

(E,w) and AutGrph(E) = {1E , θ}. To compute
AutGrphK

(E,w), we only need to verify if θ is a homomorphism in GrphK . We
compute Iθ: it is the ideal of K[x1, x2, y1, y2] generated by xiyi − 1 (i = 1, 2),
w(h)x1 − w(k)x21, w(k)x2 − w(h)x22, w(f)x2 − w(g)x21, and w(g)x1 − w(f)x22. So,

Iθ = (x1y1 − 1, x2y2 − 1, x1 − x21, x2 − x22, x2 − 2x21, 2x1 − x22).

It is easy to check that 1 ∈ Iθ, so V (Iθ) = ∅ and consequently θ is not a homo-
morphism in the category GrphK . This implies that AutGrphK

(E,w) = {1}, and
consequently, Aut(A,B) = {1}. From this, given that A is a perfect evolution
algebra, the reader can also deduce that AutK(A) = {1}, where automorphisms are
considered in the category of K-algebras.

Example 6.12. Consider again the graph E described in Example 6.11, now with
a general weight w. Let θ be the automorphism in the category Grph defined by
(8). We aim to determine the conditions under which θ is a homomorphism in the
category GrphK . To verify whether θ ∈ AutGrphK

(E,w), we must check if the
following system has solutions xi ̸= 0, (i = 1, 2):

w(h)x1 = w(k)x21, w(k)x2 = w(h)x22, w(f)x1 = w(g)x22, w(g)x2 = w(f)x21.

It is not easy to find all the solutions of the above system, but it is straightforward
to verify that if the field contains a cubic root ρ of 1, then a solution of the above
system is x1 = ρ, x2 = ρ2 ⇐⇒

(
w(f) = w(g), w(h) = ρw(k)

)
. Thus, we have{

if w(h) = ρw(k) and w(f) = w(g), then AutGrphK
(E,w) ∼= Z2,

otherwise, AutGrphK
(E,w) = {1}.

6.1. On a class of automorphisms of evolution algebras. The group isomor-
phism AutGrphK

(E,w) ∼= AutEK
(A,B) given in Proposition 6.10, followed by the

group monomorphism AutEK
(A,B) ↪! Aut(A), provides the group monomorphism

AutGrphK
(E,w)! Aut(A), which we denote by θv 7! θv.

More generally, we have the following definition.

Definition 6.13. Let σ ∈ AutGrphK
(E,w), and define the functor Fσ : IE ! Set

as follows. For any i ∈ E0, let Fσ(i) = K× and, for a ∈ E1 with s(a) = i and
r(a) = j, define Fσ(a) : K

× ! K× by x 7! kjix
2, where kji = ωσ(j)σ(i)/ωji. If

λ = a1 · · · an is a path of length n > 1, set Fσ(λ) = Fσ(a1) ◦ · · · ◦ Fσ(an). Complete
this definition by setting Fσ(1i) = 1K× for any i.

Following Remark 2.6, the inverse limit lim
 

Fσ is the set of all (xi)i∈E0 , elements

of (K×)E
0

, such that when a is an edge in E1 with source i and range j we have
Fσ(a)(xi) = xj . Equivalently, kjix2i = xj , which gives

ωσ(j)σ(i)x
2
i = xjωji. (9)

These conditions say that the map A! A such that ei 7! xieσ(i) is an automorphism
of A. Since the converse is clear, we have here a collection of injections

lim
 

Fσ ↪! Aut(A), (σ ∈ AutGrphK
(E,w)). (10)
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Moreover, we define the operation • : lim
 

Fσ × lim
 

Fτ ! lim
 

Fτσ by

((xi)i∈E0 , (yi)i∈E0) 7! (xi) • (yi) := (xiyσ(i))i∈E0 .

Observe that this operation is well-defined. Indeed, since (xi)i∈E0 ∈ lim
 

Fσ and
(yi)i∈E0 ∈ lim

 
Fτ , this implies that

ωτσ(j)τσ(i)x
2
i y

2
σ(i) = ωσ(j)σ(i)x

2
i yσ(j) = ωjixjyσ(j)

and so we have that (xiyσ(i))i∈E0 ∈ lim
 

Fτσ.

Remark 6.14. When we view lim
 

Fσ inside Aut(A), we can say that lim
 

Fσ is the
set of all automorphisms ϕv : A ! A such that ϕv(ei) = xieσ(i) for any i, where
v = (xi)i∈E0 . Note that the conditions ϕ(ei) = xieσ(i) for all i imply the identities
(9). Furthermore, modulo the identification in (10), the operation • corresponds to
composition.

As a consequence, we have the following properties.

Proposition 6.15. Let σ, τ ∈ AutGrphK
(E,w). Then,

(i) lim
 

F1 = Diag(A;B),

(ii) (lim
 

Fσ)
−1 = lim

 
Fσ−1 ,

(iii) (lim
 

Fσ) ◦ (lim
 

Fτ ) = lim
 

Fστ ,
(iv) (lim

 
Fσ) ◦ (lim

 
Fσ−1) = Diag(A;B),

(v) lim
 

Fσ ∩ lim
 

Fτ = ∅, (σ ̸= τ),

(vi) Diag(A;B) ◦ ϕv = lim
 

Fσ, ∀ϕv ∈ lim
 

Fσ.

Proof. (i) is straightforward. For item (ii), let ϕv ∈ lim
 

Fσ, so that ϕv(ei) = xieσ(i).

Hence, ei = xiϕ
−1
v (eσ(i)). This implies that x−1

σ−1(j)eσ−1(j) = ϕ−1
v (ej). Therefore,

ϕ−1
v ∈ lim

 
Fσ−1 . Moreover, if ϕv ∈ lim

 
Fσ−1 then ϕ−1

v ∈ (lim
 

Fσ−1)−1 ⊂ lim
 

Fσ.

Hence, ϕv ∈ (lim
 

Fσ)
−1. Item (iii) follows from item (ii) and Remark 6.14. Item (iv)

is a consequence of items (i) and (iii). Let us prove (v). If ϕv is an element in the
intersection then ϕv(ei) = xieσ(i) = xieτ(i) for any i. If σ(i) ̸= τ(i) then eσ(i) and
eτ(i) are linearly independent so xi = 0, which is a contradiction. Finally, to prove
(vi), we first note that Diag(A;B) ◦ ϕv = (lim

 
F1)ϕv ⊂ lim

 
F1 ◦ lim

 
Fσ ⊂ lim

 
Fσ.

On the other hand, for any ψw ∈ lim
 

Fσ we can write ψw = (ψwϕ
−1
v )ϕv and

ψwϕ
−1
v ∈ lim

 
Fσ ◦ lim

 
Fσ−1 = Diag(A;B). □

This suggests the following.

Notation 6.16. Consider the union U := ∪σ lim
 

Fσ (where σ ranges in the group
AutGrphK

(E,w)). The formulas in (6.15) imply that U is a subgroup of Aut(A)
and that Diag(A;B) is a normal subgroup of U .

As we will see in Corollary 6.19, for specific evolution algebras A, one has
U = Aut(A). Notice that lim

 
Fσ is not a group in general, but the union of the

various lim
 

Fσ is. Now, we take into consideration the map p : U ! AutGrphK
(E,w)

defined as follows: for t ∈ U , there is a permutation σ of Λ such that t ∈ lim
 

Fσ. So,
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there is (xi)i∈Λ ∈ KΛ such that t(ui) = xiuσ(i). We define θ ∈ AutGrphK
(E,w) as in

Lemma 6.8: by writing θ(ui) = uσ(i) and, for an edge a ∈ E1∩σ−1(ui)∩r−1(uj), we
define θ(a) as the unique edge in E1 connecting uσ(i) to uσ(j). It is straightforward
to prove that p is a group homomorphism whose kernel is Diag(A;B). So, there is
a short exact sequence of groups

Diag(A;B) ↪! U
p
↠ AutGrphK

(E,w).

This sequence splits. Indeed, if we let ι : AutGrphK
(E,w) ! U be such that

θ 7! t, where t is defined as G (θ) (see Lemma 6.9), then pι = 1 (the identity in
AutGrphK

(E,w)). Consequently,

Theorem 6.17. With the notation in 6.16, there is a group isomorphism

U ∼= Diag(A;B)⋊ AutGrphK
(E,w).

Remark 6.18. Note that AutEK
(A,B) consists of the elements t ∈ Aut(A) such

that for any b ∈ B, there is some b′ ∈ B and k ∈ K with t(b) = kb′. In view of
Theorem 6.17, AutEK

(A,B) agrees with the 8group U defined in Notation 6.16.

Corollary 6.19. Let A be an evolution algebra. If A has a natural basis B satisfying
the condition 2LI, then

Aut(A)
(1)∼= Diag(A;B)⋊ AutGrphK

(E,w)
(2)∼= Diag(A;B)⋊ Aut EK

(A,B).

In particular, this happens if the structure matrix MB(A) is invertible.

Proof. The isomorphism (1) is a consequence of Theorem 5.3 and the isomorphism
(2) of Proposition 6.10. □

6.2. Methods for inverse limit computations. To illustrate how we can compute
the inverse limit of Fσ, we will now consider several examples. The general idea
is to consider, in the category of sets, the diagram obtained from the graph E
of the evolution K-algebra (relative to some natural basis {ui} such that u2i =∑

j ωjiuj) and replace each vertex by the set K×. Then, for every a ∈ E1, we
define Fσ(a) : K

× ! K× by Fσ(a)(x) = kjix
2, that is, Fσ(a) = kjis, where s is the

squaring map and kji = ωσ(j)σ(i)/ωji.

Example 6.20. Let A be an evolution K-algebra with natural basis {ui}3i=1 and
product u21 = u1 + 2u2, u22 = −u2 − u3, and u23 = 2u3 − 8u1. The graph associated
to this evolution algebra is

•u1

•u3 •u2

ω11 = 1, ω21 = 2,
ω22 = −1, ω32 = −1,
ω13 = −8, ω33 = 2.



SOLENOIDS IN AUTOMORPHISM GROUPS OF EVOLUTION ALGEBRAS 23

The group Diag(A) is trivial (we do not specify the basis in the notation, since the
algebra is perfect). On the other hand, the graph has cyclic symmetries of type
σ = (123) and σ2 = (132). For σ = (123) we have

k11 = −1 k22 = −2 k33 = 1/2
k21 = −1/2 k32 = 8 k13 = −1/4

The action of the functor Fσ is summarized in the diagram below.

K×

K× K×

−s

− 1
2 s− 1

4 s

1
2 s 8s −2s

Now, we have to compute triples (x1, x2, x3) such that kj,is(xi) = xj , That is:

−x21 = x1, − 1
2x

2
1 = x2,

−2x22 = x2, 8x22 = x3,
1
2x

2
3 = x3, − 1

4x
2
3 = x1.

Thus, the first three equations on the left side give x1 = −1, x2 = −1/2, and
x3 = 2. These solutions are compatible with the remaining equations. From this it

follows that lim
 

Fσ =

{
(−1,−1

2
, 2)

}
, which can be seen as an automorphism such

that u1 7! −u2, u2 7! − 1
2u3, and u3 7! 2u1. Using the matrix representation of the

automorphisms and item (iii) of Proposition 6.15, we can make the identifications

lim
 

Fσ
∼=


 0 0 2
−1 0 0
0 −1/2 0

 , lim
 

Fσ2 ∼=


 0 −1 0

0 0 −2
1/2 0 0

 .

Notice that lim
 

F1 = Diag(A) = {1}. Thus, Aut(A) = {1} ⊔ lim
 

Fσ ⊔ lim
 

Fσ2 .

Remark 6.21. Since the algebra A above is perfect and its associated graph is
finite, Diag(A) and Aut(A) can also be computed using the methods presented in [8].
As for the following example, this is not the case for infinite-dimensional algebras.

Example 6.22. Consider A an evolution K-algebra with B = {ui}i∈Z a natural
basis and product u2i = ui + ui+1 for all i ∈ Z. The associated graph E is described
below.

E : •
u−i

•
u−1

•
u0

•
u1

•
ui

Let us prove that A is not perfect. Fix uj of the natural basis. Then, there are
scalars kl, only finitely many of which are nonzero, such that we can write

uj = · · ·+ kj−2u
2
j−2 + kj−1u

2
j−1 + kju

2
j + kj+1u

2
j+1 + · · · =

· · ·+kj−2(uj−2+uj−1)+kj−1(uj−1+uj)+kj(uj+uj+1)+kj+1(uj+1+uj+2)+ · · · .
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So, we get the system 

...
0 = kj−3 + kj−2,

0 = kj−2 + kj−1,

1 = kj−1 + kj ,

0 = kj + kj+1,

0 = kj+1 + kj+2,
...

and hence, for n ∈ N∗, we have kj−n = ±kj−1 and kj+n = ±kj . However, since
kj−1 + kj = 1, there exist infinitely many nonzero scalars kj−n or kj+n, which is a
contradiction. Observe that this non-perfect evolution algebra can be obtained as
the direct limit of a sequence of perfect evolution algebras. Thus, perfection is not
preserved under direct limits. Moreover, as we have seen in Section 5, this algebra
satisfies the 2LI condition.

In this case, all weights are one and Diag(A;B) = {1}. Moreover, the graph E
exhibits translational symmetry: applying the shift ui 7! ui+1 and iterating this
operation for arbitrary lengths yields the same graph.

Denote by σ : E ! E the automorphism mapping each ui to ui+1.

•
K×

•
K×

•
K×

•
K×

•
K×

s s

s

s

s

s s

It is straightforward to check that lim
 

Fσ = {(xi)i∈Z : xi = 1 for any i}. Moreover,
the automorphism represented by the only element in lim

 
Fσ is given by f(ui) = ui+1

(i ∈ Z). In this case,

Aut(A,B) =
⋃
n∈Z

lim
 

Fσn ∼= Z.

The conclusion is that by Theorem 6.17, up to isomorphism, Aut(A) ⊃ Z because
Aut(A) ⊃ U ∼= Z.

Remark 6.23. The example above shows that perfection is not preserved under
direct limits, as the algebra A can be written as the direct limit of the algebras
An, where An is the perfect evolution algebra with basis {u−n, . . . un} and product
u2i = ui + ui+1, i = −n, . . . , n− 1, and u2n = un.

Remark 6.24. Let A be an evolution algebra with natural basis B. If u ∈ B is
the basis of a loop and T (u) its tree, then for any v ∈ T (u) and t ∈ Diag(A;B), we
have t(v) = v.

Example 6.25. Consider the complex evolution algebra A with natural basis
B = {ui}i∈N and multiplication given by

u20 = u0 and u2i = λiui + µiu0 for i > 0,

where {λi} and {µi} are two sequences of nonzero complex numbers.
The graph associated with A (relative to the basis B) is the following.
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u1

u2u3

u4

u5

u0

The structure matrix of A relative to B is
1 µ1 µ2 µ3 · · ·
0 λ1 0 0 · · ·
0 0 λ2 0 · · ·
0 0 0 λ3 · · ·
...

...
...

...
. . .

 .

It is easy to check that this matrix is invertible, with inverse
1 −µ1λ

−1
1 −µ2λ

−1
2 −µ3λ

−1
3 · · ·

0 λ−1
1 0 0 · · ·

0 0 λ−1
2 0 · · ·

0 0 0 λ−1
3 · · ·

...
...

...
...

. . .

 .

With only this data, Remark 6.24 ensures that Diag(A) = {1}. The question is:
What other automorphisms does Aut(A) have? Notice that any permutation of N
fixing 0 induces a symmetry of the graph. Let Σ be the set of all such permutations,
and let σ ∈ Σ. We have ω00 = 1, ω0i = µi, ωii = λi for any i > 0, and the other
structure constants are null. So, for i > 0 we have kii := ωσ(i)σ(i)/ωii = λσ(i)/λi,
while k0i = ω0σ(i)/ω0i = µσ(i)/µi. Also k00 = 1. If we focus on the arrow a

from ui to u0 (again i > 0), this induces k0is : K× ! K×. The loop at ui gives
kiis : K

× ! K×, and the loop at u0 gives the squaring map s : K× ! K×. So,
diagrammatically, we have

•
K×

•
K×

kiis k0is s

and lim
 

Fσ consists on those sequence (xi)i≥0 such that kiix2i = xi, k0ix2i = x0, and

x20 = x0. Then, x0 = 1 and xi = λi/λσ(i) =
√
µi/µσ(i). So, we must have

λ2i /λ
2
σ(i) = µi/µσ(i). (11)

If this condition is satisfied by a permutation σ ∈ Σ, then lim
 

Fσ is the set
whose unique element is the automorphism t : A ! A such that t(u0) = u0 and
t(ui) = xiuσ(i), where xi = λi/λσ(i). On the other hand, note that Σ′, the set of
permutations σ ∈ Σ satisfying (11), is a group. Since the structure matrix of A
relative to B is invertible, we have Aut(A) = ⊔σ∈Σ′ lim

 
Fσ, which is isomorphic to
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the group of permutations fixing 0 and satisfying (11). If there is no permutation
satisfying (11), then Aut(A) = {1}. If, for instance, we have the multiplication table{

u20 = u0,

u2i = α 2i/3ui + β 4i/3u0, (i > 0),

for some nonzero constants α and β, then λi = α 2i/3 and µi = β 4i/3 and it is
easy to see that µi = kλ2i for some nonzero k. So (11) is satisfied for any σ and the
group of automorphisms of A is isomorphic to the group of permutations of N \ {0}.
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