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Abstract. In this paper we study the inner ideal structure of nondegener-

ate Lie algebras with essential socle, and characterize, in terms of the whole

algebra, when the socle is Artinian.

Introduction

Let L be a Lie algebra over a ring of scalars Φ. A Φ-submodule B of L is an
inner ideal if [B, [B,L]] ⊂ B, and B is abelian if [B,B] = 0. The initial motivation
to study inner ideals in Lie algebras was due to the fact that inner ideals are
closely related to ad-nilpotent elements, and certain restrictions of these elements
yield an elementary criterion for distinguishing the nonclassical from classical (finite
dimensional) simple Lie algebras over algebraic closed fields of characteristic greater
than 5 [2].

In [1], G. Benkart examines the Lie inner ideal structure of semiprime associative
rings, and of the skew elements of prime rings with involution. An extension of
these results was carried out by the authors in [6], where the inner ideals of infinite
dimensional finitary simple Lie algebras were described.

Inner ideals also become a key notion to develop a socle theory for nondegenerate
Lie algebras [9], and were used in [8] to construct gradings of Lie algebras: it requires
the existence of abelian inner ideals whose subquotient, a Jordan pair, is covered
by a finite grid, and it produces a grading of the Lie algebra by the weight lattice
of the root system associated to the covering grid.

Very recently, inner ideals, and their associated notions of kernel and comple-
ment, have allowed us to obtain [4] a Lie algebra analogue to the module theoretic
characterization of semiprime one-sided Artinian associative rings (R is unital and
completely reducible as a module), which parallels that due to O. Loos and E.
Neher for Jordan systems [13].

Any nondegenerate Artinian Jordan pair agrees with its socle [12]. However,
as mentioned in [4], there are examples of nondegenerate Artinian Lie algebras
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Andalućıa FQM264.

1
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which do not coincide with their socles, although any nondegenerate Artinian Lie
algebra has an essential Artinian socle [9]. In this paper we look into the inner
ideal structure of nondegenerate Lie algebras with essential socle, and study what
“having an essential Artinian socle” means for the whole algebra. This property
will be related to being complemented (the socle) or abelian complemented (the
whole algebra). Indeed, we show the following result:

Theorem For a nondegenerate Lie algebra L over a ring of scalars Φ containing
1

210 with essential socle S, the following conditions are equivalent:
(i) S is Artinian.
(ii) S is a complemented Lie algebra and has finitely many ideals.
(iii) L is abelian complemented and has finitely many simple ideals.

1. Lie algebras and Jordan pairs

1.1. Throughout this paper, and at least otherwise specified, we will be dealing
with Lie algebras L [10], [14] (with [x, y] denoting the Lie bracket and adx the
adjoint map determined by x), and Jordan pairs V = (V +, V −) [11] (with Jordan
triple products {x, y, z}, for x, z ∈ V σ, y ∈ V −σ, σ = ±) over a ring of scalars Φ
containing 1

6 . So Jordan pairs considered here are linear.

1.2. Let V = (V +, V −) be a Jordan pair. An element x ∈ V σ, σ = ±, is called
an absolute zero divisor if Qx = 0. Thus V is said to be nondegenerate if it has
no nonzero absolute zero divisors, semiprime if QB±B∓ = 0 implies B = 0, and
prime if QB±C∓ = 0 implies B = 0 or C = 0, for any ideals B = (B+, B−),
C = (C+, C−) of V . Similarly, given a Lie algebra L, x ∈ L is an absolute zero
divisor of L if ad2

x = 0, L is nondegenerate if it has no nonzero absolute zero
divisors, semiprime if [I, I] = 0 implies I = 0, and prime if [I, J ] = 0 implies
I = 0 or J = 0, for any ideals I, J of L. A Jordan pair or Lie algebra is strongly
prime if it is prime and nondegenerate. We note that any ideal of a nondegenerate
Lie algebra is again nondegenerate, see [16, Lemma 4]. A Lie algebra is simple if
it is nonabelian and contains no proper ideals.

1.3. Given a Jordan pair V = (V +, V −), an inner ideal of V is any Φ-submodule
I of V σ such that {I, V −σ, I} ⊂ I. Similarly, an inner ideal of a Lie algebra L is a
Φ-submodule B of L such that [B, [B,L]] ⊂ B. An abelian inner ideal is an inner
ideal B which is also an abelian subalgebra, i.e., [B,B] = 0.

1.4. The annihilator of an ideal I in a Lie algebra L is defined as Ann I = {x ∈
L | [x, I] = 0}. If L is nondegenerate, then Ann I = {x ∈ L | [x, [I, x]] = 0} and
I ∩ Ann I = 0 [5, 2.5]. In this case, essential ideals of L have zero annihilator and
hit nonzero inner ideals: if I is an essential ideal of L and B is an inner ideal of L,
then [B, [B, I]] ⊂ B ∩ I = 0 would imply B ⊂ Ann I = 0.

1.5. An ad-nilpotent element x ∈ L of index of nilpotency ≤ 3 is called a Jordan
element. In this case, ad2

x a is also a Jordan element for any a ∈ L [7, 2.3(viii)]. By
[2, 1.7(iii)], any Jordan element x ∈ L satisfies the following analogue of the Jordan
identity:

ad2
ad2

x y = ad2
x ad2

y ad2
x

for any y ∈ L. Clearly, any element of an abelian inner ideal is a Jordan element.
Conversely, [2, 1.8], any Jordan element b ∈ L yields the abelian inner ideals [b] :=
[b, [b, L]] and (b) := Φb + [b].
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Proposition 1.6. Let L be a nondegenerate Lie algebra ( 1
6 ∈ Φ), let I be an ideal

of L, and let x ∈ I be a Jordan element of I. Then x is a Jordan element of L.

Proof. Since ad3
x I = 0 and I is an ideal of L, ad4

x L = 0. So, for every a ∈ L,

0 = adad4
x a = X4A− 4X3AX + 6X2AX2 − 4XAX3 + AX4

= −4X3AX + 6X2AX2 − 4XAX3(1)

where capital letters denote the adjoint maps with respect to those elements. Since
ad2

x[x, a] is a Jordan element of I, for every y ∈ I we have

ad2
ad2

x[x,a] y = ad2
x ad2

[x,a] ad2
x y = (X2(XA−AX)2X2) y

= (−X2AX2AX2 + X2AXAX3) y = −X2AX2AX2 y

= (−2
3
X2AX3AX − 2

3
X2AXAX3) y = 0 (by (1)).

Then ad2
x[x, a] ∈ I ∩Ann I = 0, so x is a Jordan element of L. �

1.7. The socle of a nondegenerate Lie algebra L is defined as the sum of all minimal
inner ideals of L. By [9, Theorem 2.5], Soc L is an ideal of L and a direct sum
Soc L =

⊕
α Mα of simple ideals Mα of L. Moreover, each simple component

Mα of Soc L is either inner simple or contains an abelian minimal inner ideal [2,
Theorem 1.12].

A Lie algebra L is said to be Artinian if it satisfies the descending chain condition
on all inner ideals. Simple nondegenerate Artinian Lie algebras coincide with their
socles.

1.8. A Jordan element e ∈ L is called von Neumann regular if e ∈ ad2
e L. Assume

that 1
30 ∈ Φ. Then

(i) Any von Neumann regular element e of L can be extended to an idempotent
(e, f) (see [15, V.8.2] or [9, Proposition 1.18], i.e.,

ad3
e = ad3

f = 0, [[e, f ], e] = 2e and [[e, f ], f ] = −2f.

Note that the last two conditions imply that (e, [e, f ], f) is a sl(2)-triple.
(ii) Any idempotent (e, f) yields a 5-grading L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2

(called the Peirce decomposition of (e, f)), where each Li is the eigenspace of the ad-
semisimple element h := [e, f ] relative to the eigenvalue i, i = 0, ±1,±2. Moreover,
L2 = [e] and L−2 = [f ] [9, 1.18].

Proposition 1.9. Let L be a nondegenerate Lie algebra ( 1
30 ∈ Φ), let I be an ideal

of L, and let B be an abelian inner ideal of I. If any element of B is von Neumman
regular, then B is an inner ideal of L.

Proof. Since B is an abelian inner ideal of I, any x ∈ B is a Jordan element of
I, so, by 1.6, a Jordan element of L. Let y ∈ I be such that x = ad2

x y. By 1.5,
ad2

x L = ad2
ad2

x y L = ad2
x ad2

y ad2
x L ⊂ ad2

x I ⊂ B. �

1.10. Let M be an inner ideal of a Lie algebra L. The kernel of M is the set
KerM = {x ∈ L : [M, [M,x]] = 0}. For any abelian inner ideal M of L, the pair of
Φ-modules V = (M,L/KerM) with the triple products given by

{m, a, n} : = [[m,a], n] for every m,n ∈ M and a ∈ L

{a,m, b} : = [[a,m], b] for every m ∈ M and a, b ∈ L,
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where x denotes the coset of x relative to the submodule Ker M , is a Jordan pair
called the subquotient of L with respect to M , [8, Lemma 3.2].

1.11. A complement of an inner ideal M of L is another inner ideal N of L such that
L = M⊕KerN = N⊕KerM. A Lie algebra L is said to be (abelian) complemented
if any (abelian) inner ideal M of L has an (abelian) complement. It was shown in
[4, 3.7(iii)] that complemented Lie algebras are abelian complemented. Moreover,
subquotients of abelian complemented Lie algebras are complemented as Jordan
pairs [4, 3.4].

2. Lie algebras with essential socle

Lemma 2.1. Let L be a Lie algebra ( 1
30 ∈ Φ), let (e, f) be a nontrivial idempotent

of L with Peirce decomposition L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2, and let I be an
abelian inner ideal of L such that e ∈ I. Then

(i) I = I0 + I1 + I2, with Ii = Li ∩ I for each index i, and I0, I2 are inner
ideals of L.

(ii) If 0 6= y0 ∈ I0 is von Neumann regular, then so is e′ = y0 + e, and both
e, y0 ∈ [e′].

(iii) If L is nondegenerate and I0 = 0, then I1 is also an inner ideal of L.

Proof. (i) Since e ∈ [e] = L2 ⊂ I, for any y = y−2 + y−1 + y0 + y1 + y2 ∈ I we have
0 = [y, e] = [y−2, e] + [y−1, e] + [y0, e] ∈ L0 ⊕ L1 ⊕ L2. Hence

(1) [yi, e] = 0, for i = −2,−1, 0, 1, 2.

Then

y−2 = −1
2
[h, y−2] = −1

2
[[e, f ], y−2] = −1

2
[[e, y−2], f ] = 0,

y−1 = −[h, y−1] = −[[e, f ], y−1] = −[[e, y−1], f ] = 0.

Therefore, I ⊂ L0 ⊕ L1 ⊕ L2. Now y1 + 2y2 = [h, y] = [[e, f ], y] ∈ I. Hence
y1 = [h, y] − 2y2 ∈ I and y0 = y − y1 − y2 ∈ I. Thus I = I0 ⊕ I1 ⊕ I2, with
Ii = I ∩ Li.

Clearly, I2 = L2 (since [e] = L2 ⊂ I) is an inner ideal; let us now see that
I0 is also an inner ideal of L. By (1), [[y0, f ], e] = [[y0, e], f ] − [y0, h] = 0, so
0 = [[[y0, f ], e], f ] = [[y0, f ], h] = −2[y0, f ] and hence

(2) [y0, f ] = 0.

Now, given y0 ∈ I0, we have

(3) [y0, L2] ⊂ [I, I] = 0 (because I is abelian),

(4) [y0, L−2] = [y0, [f, [f, L2]]] = [f, [f, [y0, L2]]] = 0 (by (2)),

[y0, [y0, L−1]] ⊂ L−1 ∩ I = L−1 ∩ (I0 ⊕ I1 ⊕ I2) = 0, and

[y0, [y0, L1]] = [y0, [y0, [e, L−1]]] = [e, [y0, [y0, L−1]]] = 0 (by (1) and the fact,

proved in [2, 2.1], that L1 = [e, L−1]). So [y0, [y0, L]] = [y0, [y0, L0]] ⊂ I0, i.e., I0 is
an inner ideal of L.



INNER IDEAL STRUCTURE OF NEARLY ARTINIAN LIE ALGEBRAS 5

(ii) Let 0 6= y0 ∈ I0 be von Neumann regular. By grading properties, there exists
z0 ∈ L0 such that [y0, [y0, z0]] = −2y0. Set e′ := e + y0. Then, using (1)-(4), it is
routine to verify that e′ is a Jordan element of L, i.e., ad3

e′ = 0. We also have

[e′, [e′, f ]] = [e + y0, [e + y0, f ]] = [e, [e, f ]] + [e, [y0, f ]]

+ [y0, [e, f ]] + [y0, [y0, f ]] = [e, [e, f ]] = −2e,(5)

since [y0, [e, f ]] = [y0, h] = 0, and [y0, f ] = 0 by (2). We also have

[e′, [e′, z0]] = [e, [e, z0]] + [e, [y0, z0]] + [y0, [e, z0]]

+ [y0, [y0, z0]] = [y0, [y0, z0]] = −2y0,(6)

since [e, [e, z0]] = 0 by grading properties, and [e, [y0, z0]] = [y0, [e, z0]] ∈ [y0, L2] = 0
by (3). Therefore, e, y0 ∈ [e′], and e′ = − 1

2 [e′, [e′, f + z0]] is von Neumann regular.
(iii) Suppose that I0 = 0. Given y1 ∈ I1, we have

(7) [y1, [y1, L−2]] ⊂ I ∩ L0 = I0 = 0.

We also have, by grading properties, that

(8) [y1, [y1, Li]] = 0, for i=1, 2.

Since I is abelian, y1 ∈ I is a Jordan element, so, by 1.5 and (7),

ad2
ad2

y1
x0

L = ad2
ad2

y1
x0

L−2 = ad2
y1

ad2
x0

ad2
y1

L−2 = 0,

and hence [y1, [y1, L0]] = 0 by nondegeneracy of L. Then

[y1, [y1, L]] ⊂ [y1, [y1, L−1]] ⊂ I ∩ L1 = I1,

and I1 is an inner ideal of L. �

The following result extends one by G. Benkart [2, 1.12] for simple nondegenerate
Artinian Lie algebras over a field of characteristic 0 or p > 3.

Lemma 2.2. Let L be a simple nondegenerate Lie algebra ( 1
210 ∈ Φ) containing

minimal inner ideals. Then every proper inner ideal of L is abelian.

Proof. Let 0 6= B be a proper inner ideal of L. Since minimal inner ideals of
L are either abelian or inner-simple ideals [2, 1.12], L contains abelian minimal
inner ideals. Then, by the structure theorem of the simple Lie algebras containing
abelian minimal inner ideals [9, 5.1] (here characteristic greater than 7 is required),
there are three possibilities for L. If L is finite-dimensional over its centroid, then
it is Artinian and hence any proper inner ideal of L is abelian by [2, 1.13]; if
L = [R,R]/Z(R)∩ [R,R] (where R is a simple ring with minimal one-sided ideals),
then any proper inner ideal of L is of the form B/Z(R) ∩ [R,R], where B is a
proper inner ideal of [R,R] containing Z(R) ∩ [R,R], but proper inner ideals of
[R,R] are abelian by [1, 3.13]; if L = [K, K]/Z(R) ∩ [K, K] (where K is the set
of skew elements of a simple ring R with minimal one-sided ideals relative to an
involution ∗), then any proper ideal of L is of the form B/Z(R) ∩ [K, K], where
B is a proper inner ideal of [K, K]. It follows from [1, 4.21] (if the involution is of
the first kind), and from [1, 4.26] (if the involution is of the second kind), that B
is abelian. �

Proposition 2.3. Let L be a nondegenerate Lie algebra ( 1
210 ∈ Φ), and let Soc L =⊕

α Mα be the decomposition of Soc L into its simple components. Then every inner
ideal B of Soc L is an inner ideal of L. In fact, B = ⊕Bα, where for each index α
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either Bα = Mα is a simple component of Soc L or Bα is an abelian inner ideal of
L contained in Mα.

Proof. For each index α, denote by πα the projection of Soc L = ⊕Mα onto
Mα. Then Bα := πα(B) is an inner ideal of Mα. If Bα = Mα, then Mα =
[Mα, [Mα,Mα]] = [B, [B,Mα]] ⊂ B. Suppose then that Bα is a proper inner ideal
of Mα. By 2.2, Bα is an abelian inner ideal of Mα. Let bα = πα(b) ∈ Bα. Since
by [7, 4.2] bα is von Neumann regular, Bα is an inner ideal of L by 1.9, and
Bα = [Bα, [Bα,Mα]] = [B, [B,Mα]] ⊂ B. Hence B = ⊕Bα and it is an inner ideal
of L. �

Proposition 2.4. Let L be a nondegenerate Lie algebra ( 1
210 ∈ Φ). If Soc L is an

essential ideal of L, then every inner ideal B of L containing no nonzero ideals is
abelian.

Proof. Suppose first that L is simple. Then B is a proper inner ideal of L = Soc L
and hence B is abelian by 2.2.

Consider now the general case. By [9, 2.5], Soc L = ⊕Mα, where the Mα are
simple ideals of L coinciding with their socles. Since Mα is not contained in B,
B ∩Mα is a proper inner ideal of Mα. But Mα is simple , so B ∩Mα is abelian by
2.2. Let b ∈ B, b′ ∈ B ∩Mα and x ∈ L, and set a := [[b, b′], x]. We have

a = [[b, b′], x] = [[b, x], b′] + [b, [b′, x]] ∈ B ∩Mα, and

[b, a] = [b, [[b, x], b′]] + [b, [b, [b′, x]]] ∈ B ∩Mα.

Then [[b, b′], [[b, b′], x]] = [[b, b′], a] = [[b, a], b′] ∈ [B ∩Mα, B ∩Mα] = 0, and hence
[b, b′] = 0 by nondegeneracy of L. Therefore,

(9) [B,B ∩Mα] = 0.

Now let b, c ∈ B and y ∈ Mα, and set a′ := [[b, c], y]]. We have

a′ =[[b, c], y]] = [[b, y], c] + [b, [c, y]] ∈ B ∩Mα, and hence

[[b, c], [[b, c], y]] = [[b, c], a′] = [[b, a′], c] + [b, [c, a′]] = 0 by (9).

It follows from 1.4 that [B,B] ⊂ AnnMα for each Mα; but Soc L = ⊕Mα, so
[B,B] ⊂ Ann(Soc L) = 0, because Soc L is an essential ideal, and B is abelian as
required. �

3. Lie algebras with essential Artinian socle

Proposition 3.1. Let L be a nondegenerate Lie algebra ( 1
210 ∈ Φ) with essential

Artinian socle. Then L and Soc L share the same abelian inner ideals, so L satisfies
the descending chain condition on abelian inner ideals.

Proof. By 2.3 every abelian inner ideal of Soc L is an (abelian) inner ideal of L.
Conversely, let B be an abelian inner ideal of L. We claim that B is contained in
Soc L. We may assume that B 6= 0. Since Soc L is essential, B ∩ Soc L 6= 0 by
1.4. Set M := B ∩ Soc L and V := (M,L/KerM). Since Soc L is Artinian, M has
finite length and the nondegenerate Jordan pair V is also Artinian, [8, Proposition
3.5(v)]. Therefore, V satisfies the ascending chain condition on principal inner
ideals and hence there exists an element e ∈ M generating a principal inner ideal
[e] which is maximal in M . Moreover, since V is Artinian and nondegenerate, e is
von Neumann regular in V [11, 10.17], i.e, e is part of an idempotent (e, f̄) of V .
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Use [8, Proposition 5.4(d)] to extend (e, f̄) to an idempotent (e, f) of L, and let
L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 be its associated Peirce-decomposition. By 2.1(i),
B = B0 ⊕ B1 ⊕ B2, Bi = B ∩ Li and both B0 and B2 are abelian inner ideals of
L, and B2 is contained in Soc L, because e ∈ Soc L. Thus, to prove that the whole
B is contained in Soc L, it suffices to show that B0 = 0. Suppose otherwise that
B0 6= 0. By 1.4, B0 ∩ Soc L 6= 0, so it contains a von Neumann regular element b0

[7, 4.2]. Then, by 2.1(ii), e′ = e + b0 is a von Neumann regular element yielding a
principal inner ideal [e′] greater than [e] in M, which is a contradiction. So B0 = 0
and B = B2 + B1 ⊂ [e, [e, L]] + [e, L−1] ⊂ Soc L, as required. �

Now we prove the main result of this paper:

Theorem 3.2. Let L be a nondegenerate Lie algebra ( 1
210 ∈ Φ) with essential socle

S. Then the following conditions are equivalent:

(i) S is Artinian.
(ii) S is a complemented Lie algebra and has finitely many ideals.
(iii) L is abelian complemented and has finitely many simple ideals.

Proof. Note first that any of the hypothesis (i), (ii) or (iii) implies that S is a finite
direct sum of simple ideals Si coinciding with their socles.

(i)⇔(ii). It is [4, 3.7].
(ii)⇒(iii). Let B be an abelian inner ideal of L. By 3.1 B ⊂ S, and since S is

abelian complemented [4, 3.7(iii)], B has an abelian complement in S, i.e., there
exists an abelian inner ideal C of S such that S = B⊕KerS C = C⊕KerS B, but C
is actually an abelian inner ideal of L 2.3. We also note that B has finite length (B
does not contain any infinite properly ascending chain of inner ideals of L) because
S is Artinian [4, 3.7].

We claim that there exists a Φ-submodule W of L contained in KerL B∩KerL C
such that L = S⊕W . By [8, 3.5(iii)(v)] and [4, 2.7], V := (B,C) ∼= (B,S/ KerS B)
is a nondegenerate Artinian Jordan pair and hence it contains a maximal idempo-
tent (b, c). Note that b ∈ [b, [b, S]] = [b, [b, L]] and c ∈ [c, [c, S]] = [c, [c, L]], and
since, by 1.6, Jordan elements of S are Jordan elements of L, (b, c) is also an idem-
potent in L. Let L = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 be the Peirce decomposition of
(b, c) 1.8. By 2.1(i), B = B0 ⊕B1 ⊕B2 and C = C−2 ⊕ C−1 ⊕ C0. By maximality
of (b, c) in V , B0 = C0 = 0 (otherwise, taking 0 6= x ∈ B0, which is regular von
Neumann because the subquotient (B0, S/KerS B0) is Artinian, and using 2.1(ii)
we would obtain as in 3.1 that the principal inner ideal generated by x+ b is bigger
than [b, [b, S]], a contradiction). Hence it follows from 2.1(iii) that B1 and C−1 are
inner ideals of L. Since L−2⊕L−1⊕L1⊕L2 ⊂ S, any subspace W of L0 such that
L0 = (S ∩ L0) ⊕W satisfies L = S ⊕W . Moreover, W ⊂ L0 ⊂ KerL B ∩ KerL C:
[B, [B,L0]] = [B2, [B2, L0]] + [B2, [B1, L0]] + [B1, [B2, L0]] = 0 (by grading proper-
ties), and [B1, [B1, L0]] ⊂ B1 ∩ L2 = 0 (by grading properties and the fact that B1

is an inner ideal); similarly, [C, [C,L0]] = 0, which proves the claim.
Now B = B1 ⊕ B2 ⊂ S implies KerL C ∩ B = KerS C ∩ B = 0, and by above,

L = S ⊕ W = B ⊕ KerS C ⊕ W = B ⊕ KerL C, because W ⊂ KerL C; similarly,
L = C ⊕KerL B.

(iii)⇒(i). Since S has finitely many simple components, it suffices to show that
any simple component M of the socle is Artinian, equivalently, any proper (and
therefore abelian) inner ideal B of M (and therefore also of L) has finite length. By
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[8, 3.5(v)(vi)], V = (B,L/KerL B) ∼= (B,M/KerM B) is a simple nondegenerate
Artinian Jordan pair, so B has finite length, as required. �

Remark 3.3. Nondegenerate Artinian Lie algebras have essential Artinian socle,
[9, 2.6] and 2.3. However, a nodegenerate Lie algebra can have essential Artinian
socle and not be Artinian itself, equivalently (by [4, 3.7], not be complemented.
Consider the infinite dimensional division algebra ∆ = K((t;σ)) given by the σ-
twisted Laurent series algebra over a field extension of a base field F by a countable
set of indeterminates K = F (..., x−1, x0, x1, ...), σ(xn) = xn+1. Following the
proof of [3, Example 2], ∆ is infinite dimensional over [∆,∆] + Z(∆) (none of the
indeterminates {xi} belong to [∆,∆] + Z(∆)). Take L = ∆(−)/Z(∆). Then L is
strongly prime with inner-simple socle [∆,∆] + Z(∆)/Z(∆), [1, 3.15] and [2, 2.2].
But L has an infinite descending chain of inner ideals: take Ii = Soc L+

∑∞
k=i F ·ek,

where the cosets {ei + [∆,∆] + Z(∆)}i are linearly independent.

Remark 3.4. One might think that abelian complemented nondegenerate Lie al-
gebras coincide with Lie algebras where complementation holds on their essential
socle. But if {Si}i∈N is an infinite family of simple nondegenerate Artinian Lie al-
gebras containing abelian inner ideals, L =

∏
i∈N Si has an essential socle

⊕
i∈N Si

which is a complemented Lie algebra, but L is not abelian complemented itself.
Notice that infinite products of simple nondegenerate Artinian Lie algebras con-
taining abelian inner ideals cannot be abelian complemented: if so, take for every
i ∈ N a Jordan element xi ∈ Si and consider x = πi∈N(xi) ∈ L. Then B = [x, [x, L]]
is an abelian inner ideal of L whose subquotient S = (B,L/KerB) is a comple-
mented Jordan pair [4, 3.4]. By [13, 5.9] S coincides with its socle, so it satisfies
the descending chain condition on principal inner ideals, but there exists a infinite
descending chain of inner ideals Bn = {πi>n(xi), L/ KerB, πi>n(xi)} contained in
S.
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