A NOTE ON LINEAR CODES AND NONASSOCIATIVE ALGEBRAS
OBTAINED FROM SKEW POLYNOMIAL RINGS

S. PUMPLUN

ABSTRACT. Different approaches to construct linear codes using skew-polynomials can
be unified by using the nonassociative algebras built from skew-polynomial rings by Petit.

INTRODUCTION

In recent years, several classes of linear codes were obtained from skew-polynomial rings
(also called Ore rings). Using this approach, self-dual codes were found with better minimal
distances than the previously best known minimal distances for certain lengths. While
the classical cyclic codes of length m over a finite field IF, are obtained from ideals in the
commutative ring F,[t]/(t"™ — 1), and constacyclic codes from ideals in the commutative ring
F,[t]/(t™ — 1), d € Fy, ideal o-codes are associated with left ideals Fy[t; o]g/(t"™ — 1) in the
non-commutative ring F,[t; o]/(t™ — 1) with " — 1 € R a two-sided element in the twisted
polynomial ring Fy[¢;0] and o € Aut(F,) and treated in [4]. Because t" — 1 is required to
be a two-sided element in order for Fy[t; o]/(t™ — 1) to be a ring, this enforces restrictions
on the possible lengths of the codes obtained: " — 1 is two-sided if and only if the order n
of o divides m [10, (15)].

If Rf denotes the left ideal generated by an element f € R, R a ring, then R/Rf is a
left R-module. In [3], linear codes associated with left R-submodules Rg/Rf of R/Rf are
considered, where R = Fy[t; o] and g is a right divisor of f. These codes are called module
o-codes. Another generalization is then discussed in [1] and [6], where codes obtained from
submodules of the R-module R/Rf for some monic polynomial f € R are investigated,
where now R = Ft, 0, 4].

In this note, we show that all these approaches can be unified by looking at the codes
mentioned above as associated to the left ideals of the nonassociative algebra S defined by
Petit [10]. For a unital division ring D (which here will be a finite field), and a polynomial
f in the skew-polynomial ring R = DJt; 0, 6], Petit defined a nonassociative ring on the set
R,, = {h € DJt;o0,0]|deg(h) < m}, using right division g o h = gh mod, f to define the
algebra multiplication. Sy = (R, o) is a nonassociative algebra over Fy = {a € D|ah =
ha for all h € Sy} whose left ideals are generated by the polynomials g which are right
divisors of f.

The scenarios treated with respect to the linear codes mentioned above all require f to be

reducible, so the corresponding, not necessarily associative, algebra Sy is not allowed to be
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a division algebra here. The cyclic submodules studied in [2], [1] are exactly the left ideals
in the algebra Sy. The (o,d)-codes of [6] are the codes C associated to a left ideal of Sy
generated by a right divisor g of f with f € K[t; 0,6]. We show that if o is an automorphism
of K = F, and C a linear code over I, of length m, then C is a o-constacyclic code with
constant d iff the skew-polynomial representation C(t) with elements a(t) obtained from
(@o,...,am—1) € Cis a left ideal of Sy with f =¢™ —d € R =F,[t; 0], generated by a monic
right divisor g of f in R.

1. PRELIMINARIES

1.1. Nonassociative algebras. Let F be a field and let A be a finite-dimensional F-vector
space. We call A an algebra over F if there exists an F-bilinear map Ax A — A, (z,y) — z-y,
denoted simply by juxtaposition zy, the multiplication of A. An algebra A is called unital
if there is an element in A, denoted by 1, such that 1z = z1 = z for all z € A. We will only
consider unital algebras.

An algebra A # 0 is called a division algebra if for any a € A, a # 0, the left multiplication
with a, L,(z) = ax, and the right multiplication with a, R,(z) = xa, are bijective. A is a
division algebra if and only if A has no zero divisors ([12], pp. 15, 16).

For an F-algebra A, associativity in A is measured by the associator [z,y,z] = (vy)z —
x(yz). The left nucleus of A is defined as Nuc;(4) = {x € A|[z, A, A] = 0}, the middle
nucleus of A is defined as Nuc,,(A) = {x € A|[A,z, A] = 0} and the right nucleus of
A is defined as Nuc,(A) = {z € A|[A, A,z] = 0}. Their intersection Nuc(4) = {z €
Allx, A A] = [A,xz,A] = [A,A,z] = 0} is the nucleus of A. Nuc(A4) is an associative
subalgebra of A containing F'1 and z(yz) = (zy)z whenever one of the elements z,y, z is in
Nuc(A). The center of Ais C(A) = {z € A|z € Nuc(A) and zy = yx for all y € A}.

1.2. Skew-polynomial rings. In the following, we use the terminology used by Jacobson
[7] and Petit [10]. Let D be a unital associative division ring, o a ring endomorphism of D

and ¢ a left o-derivation of D, i.e. an additive map such that
d(ab) = o(a)d(b) + d(a)b
for all a,b € D, implying 6(1) = 0. The skew-polynomial ring DIt; o, d] is the set of polyno-
mials
ap+ art + -+ apt”

with a; € D, where addition is defined term-wise and multiplication by
ta=o(a)t+06(a) (a€ D).

That means,
n

at™bt™ =" a(Sy o)t

Jj=0

(a,b € D), where the map S, ; is defined recursively via

Sn.j =0(Sn=1,) +(Sn-1,-1),
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with So o =4dp, Si0 =10, S1,1 = 0 and so S, ; is the sum of all polynomials in ¢ and § of
degree j in o and degree n — j in 6 [7, p. 2]. If 6 = 0, then S, ; = 6. D[t;0] = D[t;0,0]
is called a twisted polynomial ring and D[t;§] = D[t;id,d] a differential polynomial ring.
For the special case that ¢ = id and § = 0, we obtain the usual ring of left polynomials
DJt] = D[t;id, 0], often also denoted Dy [t] in the literature, with its multiplication given by

s t
(Z aiti)(z biti) = Z aibth_j.
i=1 i=1 i,J

If D has finite dimension over its center and ¢ is a ring automorphism of D, then R =
Dlt; 0, 0] is either a twisted polynomial or a differential polynomial ring by a linear change of
variables [7, Thm. 1.2.21]. Note also that if o and § are F-linear maps then D[t; o, 6] = D[t
by a linear change of variables.

For f = ag + a1t + - - + a,t™ with a, # 0 define deg(f) = n and deg(0) = —oco. Then
deg(fg) = deg(f) + deg(g). An element f € R is irreducible in R if it is no unit and it has
no proper factors, i.e if there do not exist g, h € R with deg(g),deg(h) < deg(f) such that
f=gh.

R = D[t;0,0] is a left principal ideal domain and there is a right-division algorithm in R
[7, p. 3]: for all g, f € R, g # 0, there exist unique 7, ¢ € R, and deg(r) < deg(f), such that

g=aqf +r.

If o is a ring automorphism then R = DJt; 0,d] is a left and right principal ideal domain (a
PID) [7, p. 6] and there is also a left-division algorithm in R [7, p. 3 and Prop. 1.1.14]. (We
point out that our terminology is the one used by Petit in [10] and in the coding literature
we cite; it is different from Jacobson’s, who calls what we call left a right-division algorithm
and vice versa.)

If o is a ring automorphism, two non-zero elements f,g € R are called similar (f ~ g) if
and only if there exist h,q,u € R such that

1="hf+qgand v'f = gu

for some v € R if and only if R/Rf = R/Rg [7, p. 11]. If o is a ring automorphism,
R = D[t;0,0] is a PID, hence any element f € R, f # 0 which is not a unit in R, can
be written as f = p; ---ps with irreducible p; € R. If f = py---ps = p) ---p}, where the
p; and the p; are irreducible, then s = ¢t and there exists a permutation = € S, such that
p; ~ p;(i) for all 4. This is the Fundamental Theorem of Arithmetic in a PID [7, Theorem

1.2.9]. Obviously, f ~ g implies that deg(f) = deg(g).

2. HOW TO OBTAIN NONASSOCIATIVE DIVISION ALGEBRAS FROM SKEW-POLYNOMIAL
RINGS
Let D be a unital associative division algebra and f € D[t; o, d] of degree m.

Definition 1. (cf. [10, (7)]) Let mod, f denote the remainder of right division by f. Then

Ry = {g € D[t;0,0]|deg(g) < m}
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together with the multiplication

goh=ghmod,f
becomes a unital nonassociative algebra Sy = (Ry,,0) over Fy = {a € D|ah = ha for all h €
S¢}. This algebra is also denoted by R/Rf [10, 11] if we want to make clear which ring R

is involved in the construction.
Note that Fp is a subfield of D [10, (7)].

Remark 1. Suppose that § = 0.
(i) If deg(g)deg(h) < m then the multiplication of f and g in Sy is the same as the multi-
plication in R [10, (10)]. Moreover, for f(t) =t™ — Z;T:Ol dit' € R = DI[t; 0], we have

m—1
=" dit’
=0

in Sy, so that for ¢ +j > m,
m—1
£ =TT Nt
i=0
For f(t) =t™ —dy € R, multiplication in S is thus defined via

ac’ (b)titi ifi+j<m,

(at")(bt') = o
acd (D)tEHD="dy if i 4§ > m,

for all a,b € D and then linearly extended.

(ii) Given a cyclic Galois field extension K/F of degree m with Gal(K/F) = (o), the cyclic
algebra (K /F, 0,d) is the algebra Sy with R = K[t;o~!] and f(t) = t™—d (cf. [10, p. 13-13]),
and is nonassociative iff d ¢ F.

Theorem 2. (cf. [10]) Let f € R = D[t;0,4].
(i) If Sy is not associative then

Nuc;(Sf) = Nuc,,(Sy) = D and Nuc,.(Sf) ={g € R| fg € Rf}.

(ii) Let f € R be irreducible and Sy a finite-dimensional Fy-vector space or a finite-
dimensional right Nuc, (S¢)-module. Then Sy is a division algebra.
(i1i) Sy is associative if and only if f is a two-sided element if and only if Rf is a two-sided
tdeal

If f is irreducible then Sy is an associative algebra if and only if f € C(R).
() Let f =t™ — Z:-i_ol dit' € R = D[t;o]. Then f(t) is a two-sided element of S¢ if and
only if o™ (2)d; = d;o'(2) for all z € D, 0 <i <m and o(d;) = d; for all i, 0 <i < m.

3. LINEAR CODES ASSOCIATED TO LEFT IDEALS OF Sf

Let K be a finite field, o0 an automorphism of K and F' = Fix(o), [K : F] = n. By a
linear base change we can always assume § = 0. However, [1] and [6] show that this limits
the choices of available codes.

Unless specified otherwise, let R = K[t;0,d] and f € R be a monic polynomial of degree

m. Analogously as for instance in [3], [4], [1], [2], we associate to an element a(t) = Z?:Ol a;tt
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in Sy the vector (ag,...,am—1). Our codes C of length m consist of all (ag,...,am-1)
m—1

obtained this way from the elements a(t) = Y./ " a;t* in a left ideal I of Sy. Conversely, for
m—1

a linear code C of length n we denote by C(t) the set of skew-polynomials a(t) = > /" " a;t’ €

Sy associated to the codewords (ao, .. .,a,) € C.

Proposition 3. Let D be a unital associative division ring and R = DIt; 0, 4].
(i) All left ideals in Sy are generated by some monic right divisor g of f in R.
(i) If Sy is irreducible, then Sy has no non-trivial left ideals.

Proof. (i) The proof is analogous to the one of [5, Lemma 1], only that now we are working
in the nonassociative ring Sy: Let I be a left ideal of Sy. If I = {0} then I = (0). So
suppose I # (0) and choose a monic non-zero polynomial g in I C R, of minimal degree.

For p € I C Ry, a right division by g yields unique r, ¢ € R with deg(r) < deg(g) such that

P=qg+r

and hence r = p — qg € I. Since we chose g € I to have minimal degree, we conclude that
r =0, implying p = gq¢g and so I = Rg.
(ii) follows from (i). O

We conclude that the cyclic submodules studied in [2], [1] are exactly the left ideals in the
algebra Sy. The (o, d)-codes of [6] are the codes C associated to a left ideal of Sy generated
by a non-trivial right divisor g of f with f € KJt;0,6]. Note that when we look at the
nonassociative case, where f is not two-sided anymore, it can happen that f is irreducible

in K[t; 0, 4], hence does not have any non-trivial right divisors g.

Remark 4. Let m > 2. Since for a(t) € Sy also ta(t) € S¢, we obtain for instance for
f(t) =t™ —d € K[t; o] that

ta(t) = o(ag)t+o(a)t> + 40 (am_1)t"™ = o(am_1)d+o(ao)t+o(a)t? +- -+ (@ _o)t™ "
in Sy, so that
(ao, ceey am,l) eC=> (a(am,l)d,a(ao), Ce ,J(amfz)) eC

is a o-constacyclic code (even if Sy is division). With the same argument, every left ideal
Rg in Sy with g € R a right divisor of f =t — d yields a o-constacyclic code C for d # 1
and a o-cyclic code for d = 1.

In [5, Theorem 1] it is shown that the code words of a o-cyclic code are coefficient tuples
of elements a(t) = Z;T:Ol a;t’ € Fylt;o]/(t™ — 1), which are left multiples of some element
g € Fy[t;0]/(t™ — 1) which is a right divisor of f, under the assumption that the order n of
o divides m. The assumption that n divides m guarantees that Rf is a two-sided ideal, i.e.
that Sy is associative, but is not required:

Theorem 5. Let o be an automorphism of K = F, and C a linear code over Fy of length m.
Then C is a o-constacyclic code (with constant d) iff the skew-polynomial representation C(t)
with elements a(t) obtained from (ao,...,am—1) € C is a left ideal of Sy with f =t" —d €
R =F,[t; o], generated by a monic right divisor g of f in R.
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Proof. «<: This is Remark 8.

=: The argument is analogous to the proof of [5, Theorem 1]: If we have a o-constacyclic
code C, then its elements define polynomials a(t) € F,[t;0] = K[t;0]. These form a left
ideal C(t) of Sy with f = ¢™ — d € F,[t;o]: The code is linear and so the skew-polynomial
representation C(t) is an additive group. For (ag,...,am-1) € C,

ta(t) = o(ag)t + o(a)t> + - - 4 o(am_1)t™
and since f =t" —d we get in Sy = R/Rf that
ta(t) = o(am_1)d + o(ag)t + o(a)t> + - - + o (am_o)t™ L.

Since C is o-constacyclic with constant d, ta(t) € C(t). Clearly, by iterating this argument,
also t*a(t) € C(¢) for all s < m — 1. By iteration and linearity of C, thus h(t)a(t) € C(t) for
all h(t) € Ry, so C(t) is closed under multiplication and a left ideal of S¢. O

Corollary 6. Let o be an automorphism of K =F, and C a linear code over F, of length
m. Then C is a o-cyclic code iff the skew-polynomial representation C(t) with elements a(t)
obtained from (ag,...,am—1) € C is a left ideal of Sy generated by a monic right divisor g
of f=t"—1e€ R=TF,[t;o].

Remark 7. Let f(t) € R = K|[t;o] and F = Fix(c). Let f =t™ —d. Then f is a two-sided
element (thus S associative and f reducible) iff m divides the order n of o and d € F. For
d =1 in particular, f is two-sided iff m divides the order n of o.

When f is not two-sided anymore, it can happen that f is irreducible in K[¢; o], hence
does not have any non-trivial right divisors g. Any right divisor g of degree k of, for instance,
f =1t —d can be used to construct a o-constacyclic [m, m — k]-code (with constant d). We

note:
(i) f(t) =t — d is reducible in R if and only if

0(2)%0(2)z =d or 0(2)%0(2)z =d

for some z € K [10, (18)] . (Thus #3 — 1 is always reducible in K[t;o].)
(ii) Suppose m is prime and F' contains a primitive mth root of unity. Then f(t) =t™ —d

is reducible in R if and only if
d=0c""12)---0(2)zor 6™ Hd) = 0™ (2) - 0(2)z

for some z € K [10, (19)]. (Thus t"™ — 1 is always reducible in K[t; o], if F' contains a
primitive mth root of unity.)

(iii) Let K/F have degree m, Gal(K/F) = (o) and R = K[t;o], f =t™ —d with d ¢ F.

(a) If the elements 1,d,...,d" are linearly dependent over F, then f is reducible.

(b) If m is prime then f is irreducible [13] and thus there are no o-constacyclic codes with
constant d apart from the [m, m]-code associated with S itself.

We note that when working over finite fields, the division algebras Sy are finite semifields
which are closely related to the semifields constructed by Johnson and Jha [8] obtained by
employing semi-linear transformations. Results for these semifields and their spreads might
be useful for future linear code constructions.
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