A NOTE ON LINEAR CODES AND NONASSOCIATIVE ALGEBRAS OBTAINED FROM SKEW POLYNOMIAL RINGS

S. PUMPLÜN

Abstract. Different approaches to construct linear codes using skew-polynomials can be unified by using the nonassociative algebras built from skew-polynomial rings by Petit.

Introduction

In recent years, several classes of linear codes were obtained from skew-polynomial rings (also called Ore rings). Using this approach, self-dual codes were found with better minimal distances than the previously best known minimal distances for certain lengths. While the classical cyclic codes of length m over a finite field \mathbb{F}_{q} are obtained from ideals in the commutative ring $\mathbb{F}_{q}[t] /\left(t^{m}-1\right)$, and constacyclic codes from ideals in the commutative ring $\mathbb{F}_{q}[t] /\left(t^{m}-1\right), d \in \mathbb{F}_{q}$, ideal σ-codes are associated with left ideals $\mathbb{F}_{q}[t ; \sigma] g /\left(t^{m}-1\right)$ in the non-commutative ring $\mathbb{F}_{q}[t ; \sigma] /\left(t^{m}-1\right)$ with $t^{m}-1 \in R$ a two-sided element in the twisted polynomial ring $\mathbb{F}_{q}[t ; \sigma]$ and $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ and treated in [4]. Because $t^{m}-1$ is required to be a two-sided element in order for $\mathbb{F}_{q}[t ; \sigma] /\left(t^{m}-1\right)$ to be a ring, this enforces restrictions on the possible lengths of the codes obtained: $t^{m}-1$ is two-sided if and only if the order n of σ divides m [10, (15)].

If $R f$ denotes the left ideal generated by an element $f \in R, R$ a ring, then $R / R f$ is a left R-module. In [3], linear codes associated with left R-submodules $R g / R f$ of $R / R f$ are considered, where $R=\mathbb{F}_{q}[t ; \sigma]$ and g is a right divisor of f. These codes are called module σ-codes. Another generalization is then discussed in [1] and [6], where codes obtained from submodules of the R-module $R / R f$ for some monic polynomial $f \in R$ are investigated, where now $R=\mathbb{F}_{q}[t, \sigma, \delta]$.

In this note, we show that all these approaches can be unified by looking at the codes mentioned above as associated to the left ideals of the nonassociative algebra S_{f} defined by Petit [10]. For a unital division ring D (which here will be a finite field), and a polynomial f in the skew-polynomial ring $R=D[t ; \sigma, \delta]$, Petit defined a nonassociative ring on the set $R_{m}=\{h \in D[t ; \sigma, \delta] \mid \operatorname{deg}(h)<m\}$, using right division $g \circ h=g h \bmod _{r} f$ to define the algebra multiplication. $S_{f}=\left(R_{m}, \circ\right)$ is a nonassociative algebra over $F_{0}=\{a \in D \mid a h=$ $h a$ for all $\left.h \in S_{f}\right\}$ whose left ideals are generated by the polynomials g which are right divisors of f.

The scenarios treated with respect to the linear codes mentioned above all require f to be reducible, so the corresponding, not necessarily associative, algebra S_{f} is not allowed to be

[^0]a division algebra here. The cyclic submodules studied in [2], [1] are exactly the left ideals in the algebra S_{f}. The (σ, δ)-codes of [6] are the codes \mathcal{C} associated to a left ideal of S_{f} generated by a right divisor g of f with $f \in K[t ; \sigma, \delta]$. We show that if σ is an automorphism of $K=\mathbb{F}_{q}$ and \mathcal{C} a linear code over \mathbb{F}_{q} of length m, then \mathcal{C} is a σ-constacyclic code with constant d iff the skew-polynomial representation $\mathcal{C}(t)$ with elements $a(t)$ obtained from $\left(a_{0}, \ldots, a_{m-1}\right) \in \mathcal{C}$ is a left ideal of S_{f} with $f=t^{m}-d \in R=\mathbb{F}_{q}[t ; \sigma]$, generated by a monic right divisor g of f in R.

1. Preliminaries

1.1. Nonassociative algebras. Let F be a field and let A be a finite-dimensional F-vector space. We call A an algebra over F if there exists an F-bilinear map $A \times A \rightarrow A,(x, y) \mapsto x \cdot y$, denoted simply by juxtaposition $x y$, the multiplication of A. An algebra A is called unital if there is an element in A, denoted by 1 , such that $1 x=x 1=x$ for all $x \in A$. We will only consider unital algebras.

An algebra $A \neq 0$ is called a division algebra if for any $a \in A, a \neq 0$, the left multiplication with $a, L_{a}(x)=a x$, and the right multiplication with $a, R_{a}(x)=x a$, are bijective. A is a division algebra if and only if A has no zero divisors ([12], pp. 15, 16).

For an F-algebra A, associativity in A is measured by the associator $[x, y, z]=(x y) z-$ $x(y z)$. The left nucleus of A is defined as $\operatorname{Nuc}_{l}(A)=\{x \in A \mid[x, A, A]=0\}$, the middle nucleus of A is defined as $\operatorname{Nuc}_{m}(A)=\{x \in A \mid[A, x, A]=0\}$ and the right nucleus of A is defined as $\operatorname{Nuc}_{r}(A)=\{x \in A \mid[A, A, x]=0\}$. Their intersection $\operatorname{Nuc}(A)=\{x \in$ $A \mid[x, A, A]=[A, x, A]=[A, A, x]=0\}$ is the nucleus of $A . \operatorname{Nuc}(A)$ is an associative subalgebra of A containing $F 1$ and $x(y z)=(x y) z$ whenever one of the elements x, y, z is in $\operatorname{Nuc}(A)$. The center of A is $\mathrm{C}(A)=\{x \in A \mid x \in \operatorname{Nuc}(A)$ and $x y=y x$ for all $y \in A\}$.
1.2. Skew-polynomial rings. In the following, we use the terminology used by Jacobson [7] and Petit [10]. Let D be a unital associative division ring, σ a ring endomorphism of D and δ a left σ-derivation of D, i.e. an additive map such that

$$
\delta(a b)=\sigma(a) \delta(b)+\delta(a) b
$$

for all $a, b \in D$, implying $\delta(1)=0$. The skew-polynomial ring $D[t ; \sigma, \delta]$ is the set of polynomials

$$
a_{0}+a_{1} t+\cdots+a_{n} t^{n}
$$

with $a_{i} \in D$, where addition is defined term-wise and multiplication by

$$
t a=\sigma(a) t+\delta(a) \quad(a \in D)
$$

That means,

$$
a t^{n} b t^{m}=\sum_{j=0}^{n} a\left(S_{n, j} b\right) t^{m+j}
$$

$(a, b \in D)$, where the map $S_{n, j}$ is defined recursively via

$$
S_{n, j}=\delta\left(S_{n-1, j}\right)+\sigma\left(S_{n-1, j-1}\right)
$$

with $S_{0,0}=i d_{D}, S_{1,0}=\delta, S_{1,1}=\sigma$ and so $S_{n, j}$ is the sum of all polynomials in σ and δ of degree j in σ and degree $n-j$ in $\delta[7, \mathrm{p} .2]$. If $\delta=0$, then $S_{n, j}=\sigma^{n}$. $D[t ; \sigma]=D[t ; \sigma, 0]$ is called a twisted polynomial ring and $D[t ; \delta]=D[t ; i d, \delta]$ a differential polynomial ring. For the special case that $\sigma=i d$ and $\delta=0$, we obtain the usual ring of left polynomials $D[t]=D[t ; i d, 0]$, often also denoted $D_{L}[t]$ in the literature, with its multiplication given by

$$
\left(\sum_{i=1}^{s} a_{i} t^{i}\right)\left(\sum_{i=1}^{t} b_{i} t^{i}\right)=\sum_{i, j} a_{i} b_{j} t^{i+j}
$$

If D has finite dimension over its center and σ is a ring automorphism of D, then $R=$ $D[t ; \sigma, \delta]$ is either a twisted polynomial or a differential polynomial ring by a linear change of variables [7, Thm. 1.2.21]. Note also that if σ and δ are F-linear maps then $D[t ; \sigma, \delta] \cong D[t]$ by a linear change of variables.

For $f=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ with $a_{n} \neq 0$ define $\operatorname{deg}(f)=n$ and $\operatorname{deg}(0)=-\infty$. Then $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. An element $f \in R$ is irreducible in R if it is no unit and it has no proper factors, i.e if there do not exist $g, h \in R$ with $\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$ such that $f=g h$.
$R=D[t ; \sigma, \delta]$ is a left principal ideal domain and there is a right-division algorithm in R [7, p. 3]: for all $g, f \in R, g \neq 0$, there exist unique $r, q \in R$, and $\operatorname{deg}(r)<\operatorname{deg}(f)$, such that

$$
g=q f+r
$$

If σ is a ring automorphism then $R=D[t ; \sigma, \delta]$ is a left and right principal ideal domain (a PID) [7, p. 6] and there is also a left-division algorithm in R [7, p. 3 and Prop. 1.1.14]. (We point out that our terminology is the one used by Petit in [10] and in the coding literature we cite; it is different from Jacobson's, who calls what we call left a right-division algorithm and vice versa.)

If σ is a ring automorphism, two non-zero elements $f, g \in R$ are called $\operatorname{similar}(f \sim g)$ if and only if there exist $h, q, u \in R$ such that

$$
1=h f+q g \text { and } u^{\prime} f=g u
$$

for some $u^{\prime} \in R$ if and only if $R / R f=R / R g$ [7, p. 11]. If σ is a ring automorphism, $R=D[t ; \sigma, \delta]$ is a PID, hence any element $f \in R, f \neq 0$ which is not a unit in R, can be written as $f=p_{1} \cdots p_{s}$ with irreducible $p_{i} \in R$. If $f=p_{1} \cdots p_{s}=p_{1}^{\prime} \cdots p_{t}^{\prime}$, where the p_{i} and the p_{i}^{\prime} are irreducible, then $s=t$ and there exists a permutation $\pi \in S_{s}$ such that $p_{i} \sim p_{\pi(i)}^{\prime}$ for all i. This is the Fundamental Theorem of Arithmetic in a PID [7, Theorem 1.2.9]. Obviously, $f \sim g$ implies that $\operatorname{deg}(f)=\operatorname{deg}(g)$.

2. How to obtain nonassociative division algebras from skew-polynomial RINGS

Let D be a unital associative division algebra and $f \in D[t ; \sigma, \delta]$ of degree m.
Definition 1. (cf. $[10,(7)])$ Let $\bmod _{r} f$ denote the remainder of right division by f. Then

$$
R_{m}=\{g \in D[t ; \sigma, \delta] \mid \operatorname{deg}(g)<m\}
$$

together with the multiplication

$$
g \circ h=g h \bmod _{r} f
$$

becomes a unital nonassociative algebra $S_{f}=\left(R_{m}, \circ\right)$ over $F_{0}=\{a \in D \mid a h=h a$ for all $h \in$ $\left.S_{f}\right\}$. This algebra is also denoted by $R / R f[10,11]$ if we want to make clear which ring R is involved in the construction.

Note that F_{0} is a subfield of $D[10,(7)]$.
Remark 1. Suppose that $\delta=0$.
(i) If $\operatorname{deg}(g) \operatorname{deg}(h)<m$ then the multiplication of f and g in S_{f} is the same as the multiplication in $R[10,(10)]$. Moreover, for $f(t)=t^{m}-\sum_{i=0}^{m-1} d_{i} t^{i} \in R=D[t ; \sigma]$, we have

$$
t^{m}=\sum_{i=0}^{m-1} d_{i} t^{i}
$$

in S_{f}, so that for $i+j>m$,

$$
t^{i} t^{j}=t^{i+j-m} \sum_{i=0}^{m-1} d_{i} t^{i}
$$

For $f(t)=t^{m}-d_{0} \in R$, multiplication in S_{f} is thus defined via

$$
\left(a t^{i}\right)\left(b t^{j}\right)= \begin{cases}a \sigma^{j}(b) t^{i+j} & \text { if } i+j<m \\ a \sigma^{j}(b) t^{(i+j)-m} d_{0} & \text { if } i+j \geq m\end{cases}
$$

for all $a, b \in D$ and then linearly extended.
(ii) Given a cyclic Galois field extension K / F of degree m with $\operatorname{Gal}(K / F)=\langle\sigma\rangle$, the cyclic algebra $(K / F, \sigma, d)$ is the algebra S_{f} with $R=K\left[t ; \sigma^{-1}\right]$ and $f(t)=t^{m}-d($ cf. [10, p. 13-13]), and is nonassociative iff $d \notin F$.

Theorem 2. (cf. [10]) Let $f \in R=D[t ; \sigma, \delta]$.
(i) If S_{f} is not associative then

$$
\operatorname{Nuc}_{l}\left(S_{f}\right)=\operatorname{Nuc}_{m}\left(S_{f}\right)=D \text { and } \operatorname{Nuc}_{r}\left(S_{f}\right)=\{g \in R \mid f g \in R f\}
$$

(ii) Let $f \in R$ be irreducible and S_{f} a finite-dimensional F_{0}-vector space or a finitedimensional right $\operatorname{Nuc}_{r}\left(S_{f}\right)$-module. Then S_{f} is a division algebra.
(iii) S_{f} is associative if and only if f is a two-sided element if and only if $R f$ is a two-sided ideal

If f is irreducible then S_{f} is an associative algebra if and only if $f \in C(R)$.
(iv) Let $f=t^{m}-\sum_{i=0}^{m-1} d_{i} t^{i} \in R=D[t ; \sigma]$. Then $f(t)$ is a two-sided element of S_{f} if and only if $\sigma^{m}(z) d_{i}=d_{i} \sigma^{i}(z)$ for all $z \in D, 0 \leq i<m$ and $\sigma\left(d_{i}\right)=d_{i}$ for all $i, 0 \leq i<m$.

3. Linear codes associated to left ideals of S_{f}

Let K be a finite field, σ an automorphism of K and $F=\operatorname{Fix}(\sigma),[K: F]=n$. By a linear base change we can always assume $\delta=0$. However, [1] and [6] show that this limits the choices of available codes.

Unless specified otherwise, let $R=K[t ; \sigma, \delta]$ and $f \in R$ be a monic polynomial of degree m. Analogously as for instance in [3], [4], [1], [2], we associate to an element $a(t)=\sum_{i=0}^{m-1} a_{i} t^{i}$
in S_{f} the vector $\left(a_{0}, \ldots, a_{m-1}\right)$. Our codes \mathcal{C} of length m consist of all $\left(a_{0}, \ldots, a_{m-1}\right)$ obtained this way from the elements $a(t)=\sum_{i=0}^{m-1} a_{i} t^{i}$ in a left ideal I of S_{f}. Conversely, for a linear code \mathcal{C} of length n we denote by $\mathcal{C}(t)$ the set of skew-polynomials $a(t)=\sum_{i=0}^{m-1} a_{i} t^{i} \in$ S_{f} associated to the codewords $\left(a_{0}, \ldots, a_{n}\right) \in \mathcal{C}$.

Proposition 3. Let D be a unital associative division ring and $R=D[t ; \sigma, \delta]$.
(i) All left ideals in S_{f} are generated by some monic right divisor g of f in R.
(ii) If S_{f} is irreducible, then S_{f} has no non-trivial left ideals.

Proof. (i) The proof is analogous to the one of [5, Lemma 1], only that now we are working in the nonassociative ring S_{f} : Let I be a left ideal of S_{f}. If $I=\{0\}$ then $I=(0)$. So suppose $I \neq(0)$ and choose a monic non-zero polynomial g in $I \subset R_{m}$ of minimal degree. For $p \in I \subset R_{m}$, a right division by g yields unique $r, q \in R$ with $\operatorname{deg}(r)<\operatorname{deg}(g)$ such that

$$
p=q g+r
$$

and hence $r=p-q g \in I$. Since we chose $g \in I$ to have minimal degree, we conclude that $r=0$, implying $p=q g$ and so $I=R g$.
(ii) follows from (i).

We conclude that the cyclic submodules studied in [2], [1] are exactly the left ideals in the algebra S_{f}. The (σ, δ)-codes of $[6]$ are the $\operatorname{codes} \mathcal{C}$ associated to a left ideal of S_{f} generated by a non-trivial right divisor g of f with $f \in K[t ; \sigma, \delta]$. Note that when we look at the nonassociative case, where f is not two-sided anymore, it can happen that f is irreducible in $K[t ; \sigma, \delta]$, hence does not have any non-trivial right divisors g.

Remark 4. Let $m \geq 2$. Since for $a(t) \in S_{f}$ also $t a(t) \in S_{f}$, we obtain for instance for $f(t)=t^{m}-d \in K[t ; \sigma]$ that
$t a(t)=\sigma\left(a_{0}\right) t+\sigma\left(a_{1}\right) t^{2}+\cdots+\sigma\left(a_{m-1}\right) t^{m}=\sigma\left(a_{m-1}\right) d+\sigma\left(a_{0}\right) t+\sigma\left(a_{1}\right) t^{2}+\cdots+\sigma\left(a_{m-2}\right) t^{m-1}$ in S_{f}, so that

$$
\left(a_{0}, \ldots, a_{m-1}\right) \in \mathcal{C} \Rightarrow\left(\sigma\left(a_{m-1}\right) d, \sigma\left(a_{0}\right), \ldots, \sigma\left(a_{m-2}\right)\right) \in \mathcal{C}
$$

is a σ-constacyclic code (even if S_{f} is division). With the same argument, every left ideal $R g$ in S_{f} with $g \in R$ a right divisor of $f=t^{m}-d$ yields a σ-constacyclic code \mathcal{C} for $d \neq 1$ and a σ-cyclic code for $d=1$.

In [5, Theorem 1] it is shown that the code words of a σ-cyclic code are coefficient tuples of elements $a(t)=\sum_{i=0}^{m-1} a_{i} t^{i} \in \mathbb{F}_{q}[t ; \sigma] /\left(t^{m}-1\right)$, which are left multiples of some element $g \in \mathbb{F}_{q}[t ; \sigma] /\left(t^{m}-1\right)$ which is a right divisor of f, under the assumption that the order n of σ divides m. The assumption that n divides m guarantees that $R f$ is a two-sided ideal, i.e. that S_{f} is associative, but is not required:

Theorem 5. Let σ be an automorphism of $K=\mathbb{F}_{q}$ and \mathcal{C} a linear code over \mathbb{F}_{q} of length m. Then \mathcal{C} is a σ-constacyclic code (with constant d) iff the skew-polynomial representation $\mathcal{C}(t)$ with elements $a(t)$ obtained from $\left(a_{0}, \ldots, a_{m-1}\right) \in \mathcal{C}$ is a left ideal of S_{f} with $f=t^{m}-d \in$ $R=\mathbb{F}_{q}[t ; \sigma]$, generated by a monic right divisor g of f in R.

Proof. \Leftarrow : This is Remark 8 .
\Rightarrow : The argument is analogous to the proof of [5, Theorem 1]: If we have a σ-constacyclic code \mathcal{C}, then its elements define polynomials $a(t) \in \mathbb{F}_{q}[t ; \sigma]=K[t ; \sigma]$. These form a left ideal $\mathcal{C}(t)$ of S_{f} with $f=t^{m}-d \in \mathbb{F}_{q}[t ; \sigma]$: The code is linear and so the skew-polynomial representation $\mathcal{C}(t)$ is an additive group. For $\left(a_{0}, \ldots, a_{m-1}\right) \in \mathcal{C}$,

$$
t a(t)=\sigma\left(a_{0}\right) t+\sigma\left(a_{1}\right) t^{2}+\cdots+\sigma\left(a_{m-1}\right) t^{m}
$$

and since $f=t^{m}-d$ we get in $S_{f}=R / R f$ that

$$
t a(t)=\sigma\left(a_{m-1}\right) d+\sigma\left(a_{0}\right) t+\sigma\left(a_{1}\right) t^{2}+\cdots+\sigma\left(a_{m-2}\right) t^{m-1}
$$

Since \mathcal{C} is σ-constacyclic with constant $d, \operatorname{ta}(t) \in \mathcal{C}(t)$. Clearly, by iterating this argument, also $t^{s} a(t) \in \mathcal{C}(t)$ for all $s \leq m-1$. By iteration and linearity of \mathcal{C}, thus $h(t) a(t) \in \mathcal{C}(t)$ for all $h(t) \in R_{m}$, so $\mathcal{C}(t)$ is closed under multiplication and a left ideal of S_{f}.

Corollary 6. Let σ be an automorphism of $K=\mathbb{F}_{q}$ and \mathcal{C} a linear code over \mathbb{F}_{q} of length m. Then \mathcal{C} is a σ-cyclic code iff the skew-polynomial representation $\mathcal{C}(t)$ with elements $a(t)$ obtained from $\left(a_{0}, \ldots, a_{m-1}\right) \in \mathcal{C}$ is a left ideal of S_{f} generated by a monic right divisor g of $f=t^{m}-1 \in R=\mathbb{F}_{q}[t ; \sigma]$.

Remark 7. Let $f(t) \in R=K[t ; \sigma]$ and $F=\operatorname{Fix}(\sigma)$. Let $f=t^{m}-d$. Then f is a two-sided element (thus S_{f} associative and f reducible) iff m divides the order n of σ and $d \in F$. For $d=1$ in particular, f is two-sided iff m divides the order n of σ.

When f is not two-sided anymore, it can happen that f is irreducible in $K[t ; \sigma]$, hence does not have any non-trivial right divisors g. Any right divisor g of degree k of, for instance, $f=t^{m}-d$ can be used to construct a σ-constacyclic $[m, m-k]$-code (with constant d). We note:
(i) $f(t)=t^{3}-d$ is reducible in R if and only if

$$
\sigma(z)^{2} \sigma(z) z=d \text { or } \sigma(z)^{2} \sigma(z) z=d
$$

for some $z \in K[10,(18)]$. (Thus $t^{3}-1$ is always reducible in $K[t ; \sigma]$.)
(ii) Suppose m is prime and F contains a primitive m th root of unity. Then $f(t)=t^{m}-d$ is reducible in R if and only if

$$
d=\sigma^{m-1}(z) \cdots \sigma(z) z \text { or } \sigma^{m-1}(d)=\sigma^{m-1}(z) \cdots \sigma(z) z
$$

for some $z \in K[10,(19)]$. (Thus $t^{m}-1$ is always reducible in $K[t ; \sigma]$, if F contains a primitive m th root of unity.)
(iii) Let K / F have degree $m, \operatorname{Gal}(K / F)=\langle\sigma\rangle$ and $R=K[t ; \sigma], f=t^{m}-d$ with $d \notin F$.
(a) If the elements $1, d, \ldots, d^{m}$ are linearly dependent over F, then f is reducible.
(b) If m is prime then f is irreducible [13] and thus there are no σ-constacyclic codes with constant d apart from the $[m, m]$-code associated with S_{f} itself.

We note that when working over finite fields, the division algebras S_{f} are finite semifields which are closely related to the semifields constructed by Johnson and Jha [8] obtained by employing semi-linear transformations. Results for these semifields and their spreads might be useful for future linear code constructions.

References

[1] D. Boucher, F. Ulmer, Linear codes using skew polynomials with automorphisms and derivations, Des. Codes Cryptogr. 70 (2014), no. 3, 405431.
[2] D. Boucher, F. Ulmer, Self-dual skew codes and factorization of skew polynomials, J. Symbolic Comput. 60 (2014), 4761.
[3] D. Boucher, F. Ulmer, Codes as modules over skew polynomial rings. Cryptography and coding, 3855, Lecture Notes in Comput. Sci., 5921, Springer, Berlin, 2009.
[4] D. Boucher, F. Ulmer, Coding with skew polynomial rings, J. Symbolic Comput. 44 (2009), no. 12, 1644-1656.
[5] D. Boucher, W. Geiselmann, F. Ulmer, Skew-cyclic codes, AAECC (18) (2007), 370-389.
[6] M. Boulagouaz, A. Leroy, (σ, δ)-codes, Adv. Math. Commun. 7 (4) (2013), 463474.
[7] N. Jacobson, "Finite-dimensional division algebras over fields," Springer Verlag, Berlin-Heidelberg-New York, 1996.
[8] V. Jha, N. L. Johnson, emphAn analogue of the Albert-Knuth theorem on the orders of finite semifields, and a complete solution to Cofman's subplane problem, Algebras, Group, Geom. 6 (1) (1989), 1- 35.
[9] M. Lavrauw, J. Sheekey, Semifields from skew-polynomial rings, Adv. Geom. 13 (4) (2013), 583-604.
[10] J.-C. Petit, Sur certains quasi-corps généralisant un type d'anneau-quotient, Séminaire Dubriel. Algèbre et théorie des nombres 20 (1966-67), 1-18.
[11] J.-C. Petit, Sur les quasi-corps distributifes à base momogène, C. R. Acad. Sc. Paris 266 (1968), Série A, 402-404.
[12] R.D. Schafer, "An Introduction to Nonassociative Algebras," Dover Publ., Inc., New York, 1995.
[13] A. Steele, " Nonassociative cyclic algebras," to appear in Israel J. Math., available at http://molle.fernuni-hagen.de/~loos/jordan/archive/nonassoc_cyclic/index.html.
E-mail address: susanne.pumpluen@nottingham.ac.uk
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

[^0]: Date: 17.7.2014.
 Key words and phrases. Skew-polynomials, Ore rings, finite rings, nonassociative algebras, linear code, σ-constacyclic code, σ-constacyclic code, (σ, δ)-code.

