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Abstract. Different approaches to construct linear codes using skew-polynomials can

be unified by using the nonassociative algebras built from skew-polynomial rings by Petit.

Introduction

In recent years, several classes of linear codes were obtained from skew-polynomial rings
(also called Ore rings). Using this approach, self-dual codes were found with better minimal
distances than the previously best known minimal distances for certain lengths. While
the classical cyclic codes of length m over a finite field Fq are obtained from ideals in the
commutative ring Fq[t]/(tm−1), and constacyclic codes from ideals in the commutative ring
Fq[t]/(tm − 1), d ∈ Fq, ideal σ-codes are associated with left ideals Fq[t;σ]g/(tm − 1) in the
non-commutative ring Fq[t;σ]/(tm − 1) with tm − 1 ∈ R a two-sided element in the twisted
polynomial ring Fq[t;σ] and σ ∈ Aut(Fq) and treated in [4]. Because tm − 1 is required to
be a two-sided element in order for Fq[t;σ]/(tm − 1) to be a ring, this enforces restrictions
on the possible lengths of the codes obtained: tm − 1 is two-sided if and only if the order n
of σ divides m [10, (15)].

If Rf denotes the left ideal generated by an element f ∈ R, R a ring, then R/Rf is a
left R-module. In [3], linear codes associated with left R-submodules Rg/Rf of R/Rf are
considered, where R = Fq[t;σ] and g is a right divisor of f . These codes are called module
σ-codes. Another generalization is then discussed in [1] and [6], where codes obtained from
submodules of the R-module R/Rf for some monic polynomial f ∈ R are investigated,
where now R = Fq[t, σ, δ].

In this note, we show that all these approaches can be unified by looking at the codes
mentioned above as associated to the left ideals of the nonassociative algebra Sf defined by
Petit [10]. For a unital division ring D (which here will be a finite field), and a polynomial
f in the skew-polynomial ring R = D[t;σ, δ], Petit defined a nonassociative ring on the set
Rm = {h ∈ D[t;σ, δ] |deg(h) < m}, using right division g ◦ h = gh modrf to define the
algebra multiplication. Sf = (Rm, ◦) is a nonassociative algebra over F0 = {a ∈ D | ah =
ha for all h ∈ Sf} whose left ideals are generated by the polynomials g which are right
divisors of f .

The scenarios treated with respect to the linear codes mentioned above all require f to be
reducible, so the corresponding, not necessarily associative, algebra Sf is not allowed to be
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a division algebra here. The cyclic submodules studied in [2], [1] are exactly the left ideals
in the algebra Sf . The (σ, δ)-codes of [6] are the codes C associated to a left ideal of Sf
generated by a right divisor g of f with f ∈ K[t;σ, δ]. We show that if σ is an automorphism
of K = Fq and C a linear code over Fq of length m, then C is a σ-constacyclic code with
constant d iff the skew-polynomial representation C(t) with elements a(t) obtained from
(a0, . . . , am−1) ∈ C is a left ideal of Sf with f = tm−d ∈ R = Fq[t;σ], generated by a monic
right divisor g of f in R.

1. Preliminaries

1.1. Nonassociative algebras. Let F be a field and let A be a finite-dimensional F -vector
space. We call A an algebra over F if there exists an F -bilinear map A×A→ A, (x, y) 7→ x·y,
denoted simply by juxtaposition xy, the multiplication of A. An algebra A is called unital
if there is an element in A, denoted by 1, such that 1x = x1 = x for all x ∈ A. We will only
consider unital algebras.

An algebra A 6= 0 is called a division algebra if for any a ∈ A, a 6= 0, the left multiplication
with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are bijective. A is a
division algebra if and only if A has no zero divisors ([12], pp. 15, 16).

For an F -algebra A, associativity in A is measured by the associator [x, y, z] = (xy)z −
x(yz). The left nucleus of A is defined as Nucl(A) = {x ∈ A | [x,A,A] = 0}, the middle
nucleus of A is defined as Nucm(A) = {x ∈ A | [A, x,A] = 0} and the right nucleus of
A is defined as Nucr(A) = {x ∈ A | [A,A, x] = 0}. Their intersection Nuc(A) = {x ∈
A | [x,A,A] = [A, x,A] = [A,A, x] = 0} is the nucleus of A. Nuc(A) is an associative
subalgebra of A containing F1 and x(yz) = (xy)z whenever one of the elements x, y, z is in
Nuc(A). The center of A is C(A) = {x ∈ A |x ∈ Nuc(A) and xy = yx for all y ∈ A}.

1.2. Skew-polynomial rings. In the following, we use the terminology used by Jacobson
[7] and Petit [10]. Let D be a unital associative division ring, σ a ring endomorphism of D
and δ a left σ-derivation of D, i.e. an additive map such that

δ(ab) = σ(a)δ(b) + δ(a)b

for all a, b ∈ D, implying δ(1) = 0. The skew-polynomial ring D[t;σ, δ] is the set of polyno-
mials

a0 + a1t+ · · ·+ ant
n

with ai ∈ D, where addition is defined term-wise and multiplication by

ta = σ(a)t+ δ(a) (a ∈ D).

That means,

atnbtm =
n∑
j=0

a(Sn,jb)tm+j

(a, b ∈ D), where the map Sn,j is defined recursively via

Sn,j = δ(Sn−1,j) + σ(Sn−1,j−1),
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with S0,0 = idD, S1,0 = δ, S1,1 = σ and so Sn,j is the sum of all polynomials in σ and δ of
degree j in σ and degree n − j in δ [7, p. 2]. If δ = 0, then Sn,j = σn. D[t;σ] = D[t;σ, 0]
is called a twisted polynomial ring and D[t; δ] = D[t; id, δ] a differential polynomial ring.
For the special case that σ = id and δ = 0, we obtain the usual ring of left polynomials
D[t] = D[t; id, 0], often also denoted DL[t] in the literature, with its multiplication given by

(
s∑
i=1

ait
i)(

t∑
i=1

bit
i) =

∑
i,j

aibjt
i+j .

If D has finite dimension over its center and σ is a ring automorphism of D, then R =
D[t;σ, δ] is either a twisted polynomial or a differential polynomial ring by a linear change of
variables [7, Thm. 1.2.21]. Note also that if σ and δ are F -linear maps then D[t;σ, δ] ∼= D[t]
by a linear change of variables.

For f = a0 + a1t + · · · + ant
n with an 6= 0 define deg(f) = n and deg(0) = −∞. Then

deg(fg) = deg(f) + deg(g). An element f ∈ R is irreducible in R if it is no unit and it has
no proper factors, i.e if there do not exist g, h ∈ R with deg(g),deg(h) < deg(f) such that
f = gh.
R = D[t;σ, δ] is a left principal ideal domain and there is a right-division algorithm in R

[7, p. 3]: for all g, f ∈ R, g 6= 0, there exist unique r, q ∈ R, and deg(r) < deg(f), such that

g = qf + r.

If σ is a ring automorphism then R = D[t;σ, δ] is a left and right principal ideal domain (a
PID) [7, p. 6] and there is also a left-division algorithm in R [7, p. 3 and Prop. 1.1.14]. (We
point out that our terminology is the one used by Petit in [10] and in the coding literature
we cite; it is different from Jacobson’s, who calls what we call left a right-division algorithm
and vice versa.)

If σ is a ring automorphism, two non-zero elements f, g ∈ R are called similar (f ∼ g) if
and only if there exist h, q, u ∈ R such that

1 = hf + qg and u′f = gu

for some u′ ∈ R if and only if R/Rf = R/Rg [7, p. 11]. If σ is a ring automorphism,
R = D[t;σ, δ] is a PID, hence any element f ∈ R, f 6= 0 which is not a unit in R, can
be written as f = p1 · · · ps with irreducible pi ∈ R. If f = p1 · · · ps = p′1 · · · p′t, where the
pi and the p′i are irreducible, then s = t and there exists a permutation π ∈ Ss such that
pi ∼ p′π(i) for all i. This is the Fundamental Theorem of Arithmetic in a PID [7, Theorem
1.2.9]. Obviously, f ∼ g implies that deg(f) = deg(g).

2. How to obtain nonassociative division algebras from skew-polynomial

rings

Let D be a unital associative division algebra and f ∈ D[t;σ, δ] of degree m.

Definition 1. (cf. [10, (7)]) Let modrf denote the remainder of right division by f . Then

Rm = {g ∈ D[t;σ, δ] |deg(g) < m}
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together with the multiplication
g ◦ h = gh modrf

becomes a unital nonassociative algebra Sf = (Rm, ◦) over F0 = {a ∈ D | ah = ha for all h ∈
Sf}. This algebra is also denoted by R/Rf [10, 11] if we want to make clear which ring R
is involved in the construction.

Note that F0 is a subfield of D [10, (7)].

Remark 1. Suppose that δ = 0.
(i) If deg(g)deg(h) < m then the multiplication of f and g in Sf is the same as the multi-
plication in R [10, (10)]. Moreover, for f(t) = tm −

∑m−1
i=0 dit

i ∈ R = D[t;σ], we have

tm =
m−1∑
i=0

dit
i

in Sf , so that for i+ j > m,

titj = ti+j−m
m−1∑
i=0

dit
i.

For f(t) = tm − d0 ∈ R, multiplication in Sf is thus defined via

(ati)(btj) =

aσj(b)ti+j if i+ j < m,

aσj(b)t(i+j)−md0 if i+ j ≥ m,

for all a, b ∈ D and then linearly extended.
(ii) Given a cyclic Galois field extension K/F of degree m with Gal(K/F ) = 〈σ〉, the cyclic
algebra (K/F, σ, d) is the algebra Sf with R = K[t;σ−1] and f(t) = tm−d (cf. [10, p. 13-13]),
and is nonassociative iff d 6∈ F .

Theorem 2. (cf. [10]) Let f ∈ R = D[t;σ, δ].
(i) If Sf is not associative then

Nucl(Sf ) = Nucm(Sf ) = D and Nucr(Sf ) = {g ∈ R | fg ∈ Rf}.

(ii) Let f ∈ R be irreducible and Sf a finite-dimensional F0-vector space or a finite-
dimensional right Nucr(Sf )-module. Then Sf is a division algebra.
(iii) Sf is associative if and only if f is a two-sided element if and only if Rf is a two-sided
ideal

If f is irreducible then Sf is an associative algebra if and only if f ∈ C(R).
(iv) Let f = tm −

∑m−1
i=0 dit

i ∈ R = D[t;σ]. Then f(t) is a two-sided element of Sf if and
only if σm(z)di = diσ

i(z) for all z ∈ D, 0 ≤ i < m and σ(di) = di for all i, 0 ≤ i < m.

3. Linear codes associated to left ideals of Sf

Let K be a finite field, σ an automorphism of K and F = Fix(σ), [K : F ] = n. By a
linear base change we can always assume δ = 0. However, [1] and [6] show that this limits
the choices of available codes.

Unless specified otherwise, let R = K[t;σ, δ] and f ∈ R be a monic polynomial of degree
m. Analogously as for instance in [3], [4], [1], [2], we associate to an element a(t) =

∑m−1
i=0 ait

i
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in Sf the vector (a0, . . . , am−1). Our codes C of length m consist of all (a0, . . . , am−1)
obtained this way from the elements a(t) =

∑m−1
i=0 ait

i in a left ideal I of Sf . Conversely, for
a linear code C of length n we denote by C(t) the set of skew-polynomials a(t) =

∑m−1
i=0 ait

i ∈
Sf associated to the codewords (a0, . . . , an) ∈ C.

Proposition 3. Let D be a unital associative division ring and R = D[t;σ, δ].
(i) All left ideals in Sf are generated by some monic right divisor g of f in R.
(ii) If Sf is irreducible, then Sf has no non-trivial left ideals.

Proof. (i) The proof is analogous to the one of [5, Lemma 1], only that now we are working
in the nonassociative ring Sf : Let I be a left ideal of Sf . If I = {0} then I = (0). So
suppose I 6= (0) and choose a monic non-zero polynomial g in I ⊂ Rm of minimal degree.
For p ∈ I ⊂ Rm, a right division by g yields unique r, q ∈ R with deg(r) < deg(g) such that

p = qg + r

and hence r = p − qg ∈ I. Since we chose g ∈ I to have minimal degree, we conclude that
r = 0, implying p = qg and so I = Rg.
(ii) follows from (i). �

We conclude that the cyclic submodules studied in [2], [1] are exactly the left ideals in the
algebra Sf . The (σ, δ)-codes of [6] are the codes C associated to a left ideal of Sf generated
by a non-trivial right divisor g of f with f ∈ K[t;σ, δ]. Note that when we look at the
nonassociative case, where f is not two-sided anymore, it can happen that f is irreducible
in K[t;σ, δ], hence does not have any non-trivial right divisors g.

Remark 4. Let m ≥ 2. Since for a(t) ∈ Sf also ta(t) ∈ Sf , we obtain for instance for
f(t) = tm − d ∈ K[t;σ] that

ta(t) = σ(a0)t+σ(a1)t2+· · ·+σ(am−1)tm = σ(am−1)d+σ(a0)t+σ(a1)t2+· · ·+σ(am−2)tm−1

in Sf , so that

(a0, . . . , am−1) ∈ C ⇒ (σ(am−1)d, σ(a0), . . . , σ(am−2)) ∈ C

is a σ-constacyclic code (even if Sf is division). With the same argument, every left ideal
Rg in Sf with g ∈ R a right divisor of f = tm − d yields a σ-constacyclic code C for d 6= 1
and a σ-cyclic code for d = 1.

In [5, Theorem 1] it is shown that the code words of a σ-cyclic code are coefficient tuples
of elements a(t) =

∑m−1
i=0 ait

i ∈ Fq[t;σ]/(tm − 1), which are left multiples of some element
g ∈ Fq[t;σ]/(tm − 1) which is a right divisor of f , under the assumption that the order n of
σ divides m. The assumption that n divides m guarantees that Rf is a two-sided ideal, i.e.
that Sf is associative, but is not required:

Theorem 5. Let σ be an automorphism of K = Fq and C a linear code over Fq of length m.
Then C is a σ-constacyclic code (with constant d) iff the skew-polynomial representation C(t)
with elements a(t) obtained from (a0, . . . , am−1) ∈ C is a left ideal of Sf with f = tm − d ∈
R = Fq[t;σ], generated by a monic right divisor g of f in R.
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Proof. ⇐: This is Remark 8.
⇒: The argument is analogous to the proof of [5, Theorem 1]: If we have a σ-constacyclic

code C, then its elements define polynomials a(t) ∈ Fq[t;σ] = K[t;σ]. These form a left
ideal C(t) of Sf with f = tm − d ∈ Fq[t;σ]: The code is linear and so the skew-polynomial
representation C(t) is an additive group. For (a0, . . . , am−1) ∈ C,

ta(t) = σ(a0)t+ σ(a1)t2 + · · ·+ σ(am−1)tm

and since f = tm − d we get in Sf = R/Rf that

ta(t) = σ(am−1)d+ σ(a0)t+ σ(a1)t2 + · · ·+ σ(am−2)tm−1.

Since C is σ-constacyclic with constant d, ta(t) ∈ C(t). Clearly, by iterating this argument,
also tsa(t) ∈ C(t) for all s ≤ m− 1. By iteration and linearity of C, thus h(t)a(t) ∈ C(t) for
all h(t) ∈ Rm, so C(t) is closed under multiplication and a left ideal of Sf . �

Corollary 6. Let σ be an automorphism of K = Fq and C a linear code over Fq of length
m. Then C is a σ-cyclic code iff the skew-polynomial representation C(t) with elements a(t)
obtained from (a0, . . . , am−1) ∈ C is a left ideal of Sf generated by a monic right divisor g
of f = tm − 1 ∈ R = Fq[t;σ].

Remark 7. Let f(t) ∈ R = K[t;σ] and F = Fix(σ). Let f = tm− d. Then f is a two-sided
element (thus Sf associative and f reducible) iff m divides the order n of σ and d ∈ F . For
d = 1 in particular, f is two-sided iff m divides the order n of σ.

When f is not two-sided anymore, it can happen that f is irreducible in K[t;σ], hence
does not have any non-trivial right divisors g. Any right divisor g of degree k of, for instance,
f = tm− d can be used to construct a σ-constacyclic [m,m− k]-code (with constant d). We
note:
(i) f(t) = t3 − d is reducible in R if and only if

σ(z)2σ(z)z = d or σ(z)2σ(z)z = d

for some z ∈ K [10, (18)] . (Thus t3 − 1 is always reducible in K[t;σ].)
(ii) Suppose m is prime and F contains a primitive mth root of unity. Then f(t) = tm − d
is reducible in R if and only if

d = σm−1(z) · · ·σ(z)z or σm−1(d) = σm−1(z) · · ·σ(z)z

for some z ∈ K [10, (19)]. (Thus tm − 1 is always reducible in K[t;σ], if F contains a
primitive mth root of unity.)
(iii) Let K/F have degree m, Gal(K/F ) = 〈σ〉 and R = K[t;σ], f = tm − d with d 6∈ F .
(a) If the elements 1, d, . . . , dm are linearly dependent over F , then f is reducible.
(b) If m is prime then f is irreducible [13] and thus there are no σ-constacyclic codes with
constant d apart from the [m,m]-code associated with Sf itself.

We note that when working over finite fields, the division algebras Sf are finite semifields
which are closely related to the semifields constructed by Johnson and Jha [8] obtained by
employing semi-linear transformations. Results for these semifields and their spreads might
be useful for future linear code constructions.
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