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Abstract. We study the automorphisms of Jha-Johnson semifields obtained from an

invariant irreducible twisted polynomial f ∈ K[t;σ], where K = Fqn is a finite field

and σ an automorphism of K of order n. We compute all automorphisms and some

automorphism groups when f ∈ K[t;σ] has degree m and n ≥ m − 1, in particular

obtaining the automorphisms of Sandler and Hughes-Kleinfeld semifields. Partial results

are obtained for n < m − 1. We include the automorphisms of some Knuth semifields

(which do not arise from skew polynomial rings).

Isomorphism between Jha-Johnson semifields are considered as well.

Introduction

Semifields are finite unital nonassociative division algebras. Since two semifields coordi-
natize the same non-Desarguesian projective plane if and only if they are isotopic, semifields
are usually classified up to isotopy rather than up to isomorphism and consequently, usually
only their autotopism group is computed.

Among the semifields with known automorphism groups are the three-dimensional semi-
fields over a field of characteristic not 2 (Dickson [12] and Menichetti [20, 21]), and the
semifields with 16 elements (Kleinfeld [16] and Knuth [17]). Burmester [9] investigated the
automorphisms of Dickson commutative semifields of order p2n, p 6= 2, and Zemmer [30]
proved the existence of commutative semifields with a cyclic automorphism group of order
2n. More recent results can be found for instance in [1, 2, 3, 4, 5, 6, 7, 8].

With the exception of one subcase, the autotopism groups of all Jha-Johnson semifields
were computed by Dempwolff [13]. One of our motivations for computing the automorphism
groups of a certain family of Jha-Johnson semifields is a question by C. H. Hering [14]: Given
a finite group G, does there exist a semifield such that G is a subgroup of its automorphism
group?

Let K be a field, σ an automorphism of K with fixed field F , R = K[t;σ] a twisted
polynomial ring and f ∈ R. In 1967, Petit [22, 23] studied a class of unital nonassociative
algebras Sf obtained by employing an invariant irreducible f ∈ R = K[t;σ].

If K is a finite field, these nonassociative algebras are Jha-Johnson semifields (also called
cyclic semifields) and were studied by Wene [29] and more recently, Lavrauw and Sheekey
[19].
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While each Jha-Johnson semifield is isotopic to some such algebra Sf it is not necessarily
itself isomorphic to an algebra Sf . We will focus on those Jha-Johnson semifields which are,
and apply the results from [11] to investigate their automorphisms.

The structure of the paper is as follows: In Section 1, we introduce the basic terminology
and define the algebras Sf .

Given a finite field K = Fqn , an automorphism σ of K of order n with F = Fix(σ) = Fq
and an irreducible polynomial f ∈ K[t;σ] of degree m that is not invariant (i.e., where
K[t;σ]f is not a two-sided ideal), we investigate the automorphisms of the Jha-Johnson
semifields Sf in Section 2. We describe all of them if n ≥ m − 1 and get a partial result if
n < m− 1 (Theorems 3 and 5).

The automorphism groups of Sandler semifields [24] (obtained by choosing n ≥ m and
f(t) = tm − a ∈ K[t;σ], a ∈ K \ F ) are particularly relevant: for all Jha-Johnson semifields
Sg with g(t) = tm −

∑m−1
i=0 bit

i ∈ K[t;σ] and b0 = a, AutF (Sg) is a subgroup of AutF (Sf )
(Theorem 4). We obtain first results on the automorphism groups, and give examples when
it is trivial and when AutF (Sf ) ∼= Z/nZ (Theorem 7). Inner automorphisms of Jha-Johnson
semifields are considered in Section 3.

In Section 4 we consider the special case that n = m and f(t) = tm − a. In this case, the
algebras Sf are examples of Sandler semifields and also called nonassociative cyclic algebras
(K/F, σ, a). The automorphisms of A = (K/F, σ, a) extending id are inner and form a
cyclic group isomorphic to ker(NK/F ). We show when AutF (A) ∼= ker(NK/F ) and hence
consists only of inner automorphisms, when AutF (A) contains or equals the dicyclic group
Dicr of order 4r = 2q + 2, or when AutF (A) ∼= Z/(s/m)Z oq Z/(m2)Z contains or equals a
semidirect product, where s = (qm− 1)/(q− 1), m > 2 (Theorems 23 and 24). We compute
the automorphisms for the Hughes-Kleinfeld and most of the Knuth semifields in Section
5. Not all Knuth semifields are algebras Sf , however, the automorphisms behave similarly
in all but one case. We compute the automorphism groups in some examples, improving
results obtained by Wene [28].

In Section 6 we briefly investigate the isomorphisms between two semifields Sf and Sg.
In particular, we classify nonassociative cyclic algebras of prime degree up to isomorphism.

Sections of this work are part of the first and last author’s PhD theses [10, 27] written
under the supervision of the second author.

1. Preliminaries

1.1. Nonassociative algebras. Let F be a field and let A be an F -vector space. A is an
algebra over F if there exists an F -bilinear map A×A→ A, (x, y) 7→ x · y, denoted simply
by juxtaposition xy, the multiplication of A. An algebra A is called unital if there is an
element in A, denoted by 1, such that 1x = x1 = x for all x ∈ A. We will only consider
unital algebras without saying so explicitly.

The associator of A is given by [x, y, z] = (xy)z−x(yz). The left nucleus of A is defined as
Nucl(A) = {x ∈ A | [x,A,A] = 0}, the middle nucleus of A is Nucm(A) = {x ∈ A | [A, x,A] =
0} and the right nucleus of A is Nucr(A) = {x ∈ A | [A,A, x] = 0}. Nucl(A), Nucm(A), and
Nucr(A) are associative subalgebras of A. Their intersection Nuc(A) = {x ∈ A | [x,A,A] =
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[A, x,A] = [A,A, x] = 0} is the nucleus of A. Nuc(A) is an associative subalgebra of A
containing F1 and x(yz) = (xy)z whenever one of the elements x, y, z lies in Nuc(A). The
center of A is C(A) = {x ∈ A |x ∈ Nuc(A) and xy = yx for all y ∈ A}.

An algebra A 6= 0 is called a division algebra if for any a ∈ A, a 6= 0, the left multiplication
with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are bijective. If A has
finite dimension over F , A is a division algebra if and only if A has no zero divisors [25, pp.
15, 16]. A semifield is a finite-dimensional division algebra over a finite field. An element
0 6= a ∈ A has a left inverse al ∈ A, if Ra(al) = ala = 1, and a right inverse ar ∈ A, if
La(ar) = aar = 1. If mr = ml then we denote this element by m−1.

An automorphism G ∈ AutF (A) is an inner automorphism if there is an element m ∈ A
with left inverse ml such that G(x) = (mlx)m for all x ∈ A. The set of inner automorphisms
{Gm |m ∈ Nuc(A) invertible} is a subgroup of AutF (A). Note that if the nucleus of A
is commutative, then for all 0 6= n ∈ Nuc(A), Gn(x) = (n−1x)n = n−1xn is an inner
automorphism of A such that Gn|Nuc(A) = idNuc(A).

1.2. Semifields obtained from skew polynomial rings. Let K be a field and σ an
automorphism of K. The twisted polynomial ring R = K[t;σ] is the set of polynomials

a0 + a1t+ · · ·+ ant
n

with ai ∈ K, where addition is defined term-wise and multiplication by ta = σ(a)t for all
a ∈ K. For f = a0 +a1t+ · · ·+amtm with am 6= 0 define deg(f) = m and put deg(0) = −∞.
Then deg(fg) = deg(f) + deg(g). An element f ∈ R is irreducible in R if it is not a unit and
it has no proper factors, i.e if there do not exist g, h ∈ R with deg(g),deg(h) < deg(f) such
that f = gh.
R = K[t;σ] is a left and right principal ideal domain and there is a right division algorithm

in R: for all g, f ∈ R, g 6= 0, there exist unique r, q ∈ R with deg(r) < deg(f), such that

g = qf + r.

From now on, we assume that

K = Fqn

is a finite field, q = pr for some prime p, σ an automorphism of K of order n > 1 and

F = Fix(σ) = Fq,

i.e. K/F is a cyclic Galois extension of degree n with Gal(K/F ) = 〈σ〉. The norm NK/F :
K× → F× is surjective, and ker(NK/F ) is a cyclic group of order

s =
qn − 1
q − 1

.

Let f ∈ R = K[t;σ] have degree m. Let modrf denote the remainder of right division by
f . Then the additive abelian group

Rm = {g ∈ K[t;σ] |deg(g) < m}

together with the multiplication

g ◦ h = gh modrf
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is a unital nonassociative algebra Sf = (Rm, ◦) over F [22, (7)]. Sf is also denoted by R/Rf
if we want to make clear which ring R is involved in the construction. In the following, we
call the algebras Sf Petit algebras and denote their multiplication simply by juxtaposition.
Without loss of generality, we will only consider monic f(t), since Sf = Saf for all non-zero
a ∈ K.

Let

f(t) = tm −
m−1∑
i=0

ait
i ∈ K[t;σ].

Sf is a semifield if and only if f is irreducible, and a proper semifield (i.e., not associative)
if and only if f is not invariant (i.e., the left ideal Rf generated by f is not two-sided), cf.
[22, (2), p. 13-03, (5), (9)], or [19].

If Sf is a proper semifield then Nucl(Sf ) = Nucm(Sf ) = K = Fqn and

Nucr(Sf ) = {g ∈ R | fg ∈ Rf} = Fqm

[19]. Sf has order qmn. The powers of t are associative if and only if tmt = ttm if and only
if t ∈ Nucr(Sf ) if and only if ft ∈ Rf.

For proper semifields, [11, Proposition 3] yields:

Proposition 1. Let f(t) ∈ F [t] = F [t;σ] ⊂ K[t;σ] be monic, irreducible and not invariant.
Then

F [t]/(f(t)) ∼= F ⊕ Ft⊕ · · · ⊕ Ftm−1 = Nucr(Sf ).

In particular, this means Nuc(Sf ) = F. Moreover, we have ft ∈ Rf which is equivalent to
the powers of t being associative, which again is equivalent to tmt = ttm.

Remark 2. Note that f(t) ∈ K[t;σ] \ F [t;σ] is never invariant and that if f(t) ∈ F [t] ⊂
K[t;σ] has degree m < n, then f(t) is never invariant, either. For n = m the only invariant
f(t) ∈ F [t] are of the form f(t) = tm − a, and these polynomials are not irreducible. So for
n = m, all irreducible polynomials in F [t] are not invariant.

If the semifield A = K[t;σ]/K[t;σ]f has a nucleus which is larger than its center F , then
the inner automorphisms {Gc | 0 6= c ∈ Nuc(A)} form a non-trivial subgroup of AutF (Sf )
[28, Lemma 2, Theorem 3] and each such inner automorphism Gc extends idNuc(A).

We will assume throughout the paper that f ∈ K[t;σ] is irreducible of degree m ≥ 2,
since if f has degree 1 then simply Sf ∼= K, and that σ 6= id.

We will always choose irreducible polynomials f ∈ K[t;σ] which are not invariant, which
is equivalent to Sf being a proper semifield. Each Jha-Johnson semifield is isotopic to some
Petit algebra Sf [19, Theorem 16] but not necessarily a Petit algebra itself. We will focus on
those Jha-Johnson semifields which are Petit algebras Sf , and apply the results from [11].

2. Automorphisms of Jha-Johnson semifields Sf

Assume as before that K = Fqn , F = Fix(σ) = Fq, and that

f(t) = tm −
m−1∑
i=0

ait
i ∈ K[t;σ]
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has degree m, is monic, irreducible and not invariant. Sf is a Jha-Johnson semifield over
F = Fq [19].

Theorem 3. Let n ≥ m − 1. Then H is an automorphism of Sf if and only if H = Hτ,k

where

Hτ,k(
m−1∑
i=0

xit
i) = τ(x0) + τ(x1)kt+ τ(x2)kσ(k)t2 + · · ·+ τ(xm−1)kσ(k) · · ·σm−2(k)tm−1

with τ = σj ∈ Gal(K/F ) for some j, 0 ≤ j ≤ n− 1, and k ∈ K× satisfying

(1) τ(ai) =
(m−1∏
l=i

σl(k)
)
ai

for all i ∈ {0, . . . ,m− 1}.

This follows from [11, Theorem 4]. We point out that for n ≥ m− 1, the automorphisms
in AutF (Sf ) are therefore canonically induced by the F -automorphism G of R = K[t;σ]
which satisfy G(f(t)) = af(t) for some a ∈ K× [19, Lemma 1].

An algebra Sf with f(t) = tm − a ∈ K[t;σ], a ∈ K \ F and n ≥ m is called a Sandler
semifield [24]. For m = n, these algebras are also called nonassociative cyclic (division)
algebras of degree m, as they can be seen as canonical generalizations of associative cyclic
algebras. These algebras are treated in Section 4.

The automorphism groups of Sandler semifields are particularly relevant, as for all Jha-
Johnson semifields Sg with g(t) = tm −

∑m−1
i=0 bit

i ∈ K[t;σ], n ≥ m and b0 ∈ K \ F ,
AutF (Sg) is a subgroup of the automorphism group of the Sandler semifield obtained using
f(t) = tm − b0:

Theorem 4. Let n ≥ m− 1 and

g(t) = tm −
m−1∑
i=0

bit
i ∈ K[t;σ]

be irreducible and not invariant.
(i) If b0 ∈ K \ F and f(t) = tm − b0 ∈ K[t;σ] then

AutF (Sg) ⊂ AutF (Sf )

is a subgroup.
(ii) Let f(t) = tm−

∑m−1
i=0 ait

i ∈ K[t;σ] be irreducible and not invariant such that bi ∈ {0, ai}
for all i ∈ {0, . . . ,m− 1}. Then

AutF (Sg) ⊂ AutF (Sf )

is a subgroup.

This is a direct consequence of [11, Theorem 8].
Even when n < m− 1 we still get the following result from [11, Theorem 5]:

Theorem 5. Let n < m− 1.
(i) For all k ∈ K× satisfying Equation (1), the maps Hτ,k from Theorem 3 form a subgroup
of AutF (Sf ).
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(ii) Let H ∈ AutF (Sf ) and N = Nucr(Sf ). Then H|K = σj for some σj ∈ Gal(K/F ),
H|N ∈ AutF (N) and H(t) = g(t) with

g(t) = k1t+ k1+nt
1+n + k1+2nt

1+2n + . . .+ k1+snt
1+sn

for some k1+ln ∈ K, 0 ≤ l ≤ s. Moreover, g(t)i is well defined for all i ≤ m − 1, i.e., all
powers of g(t) are associative for all i ≤ m− 1, and

g(t)g(t)m−1 =
m−1∑
i=0

σj(ai)g(t)i.

Thus for h(t) =
∑m−1
i=0 xit

i,

H(h(t)) = H(
m−1∑
i=0

xit
i) =

m−1∑
i=0

σj(xi)g(t)i.

Theorem 6. Let n < m− 1 and g(t) = tm −
∑m−1
i=0 bit

i ∈ K[t;σ] be irreducible and not be
invariant.
(i) If b0 ∈ K \ F , then

{H ∈ AutF (Sg) |H = Hτ,k} is a subgroup of {H ∈ AutF (Sf ) |H = Hτ,k}

for f(t) = tm − b0 ∈ K[t;σ].
(ii) Let f(t) = tm−

∑m−1
i=0 ait

i ∈ K[t;σ] be irreducible and not invariant such that bi ∈ {0, ai}
for all i ∈ {0, . . . ,m− 1} Then

{H ∈ AutF (Sg) |H = Hτ,k} is a subgroup of {H ∈ AutF (Sf ) |H = Hτ,k}.

This follows from [11, Theorem 9].
Using [11, Remark 12] and [11, Theorem 11] together with Theorem 5, we can now

describe the automorphism groups in some first cases:

Theorem 7. Let f(t) = tm −
∑m−1
i=0 ait

i ∈ K[t;σ]. Suppose am−1 ∈ F×, or that two
consecutive coefficients as and as+1 lie in F×.
(i) For n ≥ m− 1 we distinguish two cases:
If If ai 6∈ Fix(τ) for all τ 6= id and all non-zero ai, i 6= m− 1, then

AutF (Sf ) = {id}

is trivial.
If f(t) ∈ F [t] ⊂ K[t;σ] then any automorphism H of Sf has the form Hτ,1 where τ ∈
Gal(K/F ), and

AutF (Sf ) ∼= Z/nZ.

(ii) Let n < m− 1. If f(t) ∈ F [t] ⊂ K[t;σ] is not invariant, then for all τ ∈ Gal(K/F ), the
maps Hτ,1 are automorphisms of Sf and Z/nZ is isomorphic to a subgroup of AutF (Sf ).

For the case that f(t) ∈ F [t], [11, Theorem 19] explains the generator of the cyclic
automorphism (sub) group:
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Theorem 8. Let f(t) ∈ F [t] ⊂ K[t;σ].
(i) 〈Hσ,1〉 is a cyclic subgroup of AutF (Sf ) of order n.
(ii) Suppose n ≥ m− 1 and am−1 ∈ F×. Then

AutF (Sf ) = 〈Hσ,1〉 ∼= Z/nZ

and any automorphism extends exactly one τ ∈ Gal(K/F ).
(iii) Suppose n = m is prime, a0 6= 0 and at least one of a1, . . . , am−1 is non-zero. Then

AutF (Sf ) = 〈Hσ,1〉 ∼= Z/nZ.

Proposition 9. [11, Corollaries 13, 14] Let f(t) = tm − a ∈ K[t;σ], a ∈ K \ F and
τ ∈ Gal(K/F ).
(i) For all k ∈ K× with

τ(a) =
(m−1∏
l=0

σl(k)
)
a,

the maps Hτ,k are automorphisms of Sf . In particular, here NK/F (k) is an mth root of
unity. If n ≥ m− 1 these are all automorphisms of Sf .
(ii) For all g(t) = tm −

∑m−1
i=0 ait

i ∈ K[t;σ] with a0 = a,

{H ∈ AutF (Sg) |H = Hτ,k} is a subgroup of {H ∈ AutF (Sf ) |H = Hτ,k}.

If n ≥ m − 1 then these groups are the automorphism groups of Sg and Sf , hence in that
case AutF (Sg) is a subgroup of AutF (Sf ).

In particular, we obtain from Proposition 9:

Corollary 10. Let n ≥ m − 1 and f(t) = tm − a ∈ K[t;σ] with a ∈ K \ F . Let m and
(q − 1) be coprime.
(i) There are at most s = (qn − 1)/(q − 1) automorphisms extending each τ = σj.
(ii) For all g(t) = tm −

∑m−1
i=0 ait

i ∈ K[t;σ] with a0 = a, AutF (Sg) is a subgroup of
AutF (Sf ).

Proof. (i) We know that H ∈ AutF (Sf ) if and only if H = Hσj ,k where j ∈ {0, . . . , n− 1}
and k ∈ K× is such that

σj(a) =
(m−1∏
l=0

σl(k)
)
a

by Proposition 9. In particular, NK/F (k) = 1. So there are at most s = (qn − 1)/(q − 1)
automorphisms extending each σj .
(ii) is obvious. �

3. Inner automorphisms

Let f ∈ K[t;σ] have degree m, and be monic, irreducible and not invariant. [28, Corollary
5] yields immediately:

Proposition 11. Suppose N = Nuc(Sf ) = Fql for some integer 1 < l ≤ n. Then Sf has at
least

(ql − 1)/(q − 1)
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inner automorphisms, determined by those ql elements in its nucleus that do not lie in F .
They all are extensions of idN .
In particular, if Sf has nucleus K then there are

s = (qn − 1)/(q − 1)

inner automorphisms of Sf and all extend idK ; thus all have the form Hid,k for a suitable
k ∈ K×.

Theorem 12. [11, Theorem 16]. (i) Every automorphism Hid,k ∈ AutF (Sf ) such that
NK/F (k) = 1 is an inner automorphism.
(ii) If

n ≥ m− 1 and am−1 6= 0

or if

n = m, ai = 0 for all i 6= 0 and a0 ∈ K \ F

these are all the automorphisms extending idK .

For n < m−1 every automorphism Hid,k ∈ AutF (Sf ) extending idK such that NK/F (k) =
1 is an inner automorphism as well. Since Theorem 5 is weaker than Theorem 3, these might
not be all automorphisms extending idK , there might be others.

Let

∆σ(l) = {σ(c)lc−1 | c ∈ K×}

denote the σ-conjugacy class of l [18]. By Hilbert’s Theorem 90,

ker(NK/F ) = ∆σ(1).

In particular, for every a ∈ F× there exist exactly s = (qn− 1)/(q− 1) elements u ∈ K with
NK/F (u) = a.

Proposition 13. Let n ≥ m− 1. Then there exist at most

|ker(NK/F )| = (qn − 1)/(q − 1)

distinct automorphisms of Sf of the form Hid,k such that NK/F (k) = 1. These are inner.

Proof. Every automorphism Hid,k ∈ AutF (Sf ) extending idK such that NK/F (k) = 1 is an
inner automorphism by Theorem 12. More precisely, for any k, l ∈ K× with NK/F (k) =
1 = NK/F (l) there are c, d ∈ K× such that k = c−1σ(c), l = d−1σ(d), and Hid,k = Gc,
Hid,l = Gd (cf. the proof of [11, Theorem 16]). We have

Hid,k = Hid,l if and only if c−1σ(c) = d−1σ(d).

Therefore there exist at most |ker(NK/F )| = |∆σ(1)| distinct automorphisms of Sf of the
form Hid,k. �

Proposition 13 and Proposition 11 imply the following estimates for the number of inner
automorphisms of Sf :
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Theorem 14. Let n ≥ m− 1.
(i) If Sf has nucleus K then it has s = (qn − 1)/(q − 1) inner automorphisms extending
idK . These form a cyclic subgroup of AutF (Sf ) isomorphic to ker(NK/F ).
(ii) If N = Nuc(Sf ) = Fql , l > 1 is strictly contained in K, then Sf has t inner automor-
phisms extending idN , with

ql − 1
q − 1

≤ t ≤ qn − 1
q − 1

.

Proof. By Proposition 13, there are at most |ker(NK/F )| = (qn − 1)/(q − 1) distinct auto-
morphisms Hid,k of Sf and all of these are inner and extend idK . By Proposition 11, we
can distinguish the following cases:
(i) Sf has nucleus K = Fqn and at least s = (qn − 1)/(q − 1) inner automorphisms, all
extending idK , those determined by the elements in its nucleus which do not lie in F . Then
there are exactly s inner automorphisms.
(ii) Sf has nucleus N = Fql ⊂ K for some integer l > 1. Then Sf has at least (ql−1)/(q−1)
inner automorphisms (which extend idN ). �

4. Nonassociative cyclic algebras

In this section and unless specifically noted otherwise, let

f(t) = tm − a ∈ K[t;σ], a ∈ K \ F

be irreducible, σ have order n = m and let

A = (K/F, σ, a) = K[t;σ]/K[t;σ](tm − a).

Then A is an example of a Sandler semifield [24], also called a nonassociative cyclic (division)
algebra of degree m. Here Nucl(A) = Nucm(A) = Nucr(A) = K. Moreover,

(K/F, σ, a) ∼= (K/F, σ, b)

if and only if
σi(a) = kb for some 0 ≤ i ≤ m− 1 and some k ∈ F×

[11, Corollary 34].
Recall that (K/F, σ, a) has exactly s = (qm−1)/(q−1) inner automorphisms, all of them

extending idK (Theorem 14). These are given by the F -automorphisms Hid,l for all l ∈ K
such that NK/F (l) = 1. The subgroup they generate is cyclic and isomorphic to ker(NK/F ).

4.1. [11, Theorem 22] becomes:

Theorem 15. Suppose m|(q − 1) and let ω denote a non-trivial mth root of unity in F .
(i) 〈Hid,ω〉 is a cyclic subgroup of AutF (A) of order at most m. If ω is a primitive mth root
of unity, then 〈Hid,ω〉 has order m.
(ii) Suppose NK/F (l) = ω is a primitive mth root of unity and σ(a) = ωa. Then the subgroup
generated by H = Hσ,l has order m2.
(iii) For each mth root of unity ω ∈ F , l ∈ K with NK/F (l) = ω and a j ∈ {1, . . . ,m − 1}
such that σj(a) = ωa, there is an automorphism Hσj ,l extending σj.

From [11, Theorem 21] we obtain:
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Proposition 16. A Galois automorphism σj 6= id can be extended to an automorphism
H ∈ AutF (A) if and only if there is some l ∈ K such that

σj(a) = NK/F (l)a.

In that case, H = Hσj ,l and if m is prime then NK/F (l) = ω is a primitive mth root of
unity and there exist s = (qm − 1)/(q − 1) such extensions.

Theorem 17. [11, Theorem 24] Let K/F have prime degree m. Suppose that F contains a
primitive mth root of unity, where m is coprime to the characteristic of F and so K = F (d)
where d is a root of an irreducible polynomial tm − c ∈ F [t]. Then H is an automorphism
of A extending σj 6= id if and only if H = Hσj ,k for some k ∈ K×, where NK/F (k) is a
primitive mth root of unity and a = cdl for some c ∈ F× and some power dl.

For more general polynomials than f this yields:

Corollary 18. Suppose that F contains a primitive mth root of unity, where m is coprime
to the characteristic of F and so K = F (d) where d is a root of some tm − c ∈ F [t]. Let

g(t) = tm −
m−1∑
i=0

ait
i ∈ K[t;σ]

and a0 ∈ K \ F , such that a0 6= cdi for any 0 ≤ i ≤ m − 1, c ∈ F×. Then every F -
automorphism of Sg leaves K fixed, is inner and

AutF (Sg) ⊂ ker(NK/F )

is a subgroup, thus cyclic with at most s = (qm − 1)/(q − 1) elements.

This follows from [11, Corollary 25].

Corollary 19. Suppose that F does not contain an mth root of unity (i.e., m and (q − 1)
are coprime). Let

g(t) = tm −
m−1∑
i=0

ait
i ∈ K[t;σ]

and a0 ∈ K \ F . Then every F -automorphism of Sg leaves K fixed, is inner and

AutF (Sg) ⊂ ker(NK/F )

is a subgroup, thus cyclic with at most s = (qm − 1)/(q − 1) elements. In particular, if
ker(NK/F ) has prime order, then either AutF (Sg) is trivial or AutF (Sg) ∼= ker(NK/F ).

Indeed, we do not even require m to be prime, since this is not needed in [11, Corollary
25]. (For an alternative proof, use Theorem 4).

In fact, we can also rephrase our results as follows:

Proposition 20. Let α be a primitive element of K, i.e. K× = 〈α〉.
(i) 〈Gα〉 is a cyclic subgroup of AutF (A) of order s = (qm − 1)/(q − 1), containing inner
automorphisms.
(ii) Suppose one of the following holds:

• m and (q − 1) are coprime.
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• m is prime and F a field where m is coprime to the characteristic of F , containing a
primitive mth root of unity. Let K = F (d) be a cyclic field extension of F of degree
m. Let a ∈ K \ F and a 6= λdi for every i ∈ {0, . . . ,m− 1}, λ ∈ F×.

Then

AutF (A) = 〈Gα〉.

Proof. If K× = 〈α〉 then F× = 〈αs〉 for s = (qm − 1)/(q − 1). In particular αs ∈ F× but
αj /∈ F for all smaller j. The result now follows from [11, Theorem 21(iii)] �

For more general choices of twisted polynomials this means:

Theorem 21. With the assumptions of Proposition 20 (ii) on K/F and a, for each irre-
ducible

g(t) = tm −
m−1∑
i=0

ait
i with a0 = a ∈ K \ F,

AutF (Sg) is a subgroup of ker(NK/F ) and therefore cyclic of order at most s = (qm−1)/(q−
1).

This is a consequence of Theorem 4.

4.2. The automorphism groups of some nonassociative cyclic algebras. In this
subsection, we assume that F is a field where m is coprime to the characteristic of F , and
that F contains a primitive mth root of unity ω, so that K = F (d). Let s = (qm−1)/(q−1).

Lemma 22. Suppose m|(q − 1) then:
(i) m|s.
(ii) If m is odd then m2 - (ls) for all l ∈ {1, . . . ,m− 1}.
(iii) If r = (q − 1)/m is even then m2 - (ls) for all l ∈ {1, . . . ,m− 1}.

Proof. (i) We prove first that

(2) (q − 1)|
((m−1∑

i=0

qi
)
−m

)
for all m ≥ 2 by induction:

Clearly (2) holds for m = 2. Suppose (2) holds for some m ≥ 2, then

(3)
( m∑
i=0

qi
)
− (m+ 1) =

(m−1∑
i=0

qi
)
−m+ qm − 1 =

(m−1∑
i=0

qi
)
−m+

(m−1∑
i=0

qi
)
(q − 1).

Now, (q − 1)|
((∑m−1

i=0 qi
)
−m

)
and so (2) holds by induction. In particular

m|
((m−1∑

i=0

qi
)
−m

)
,

therefore m divides (m−1∑
i=0

qi
)
−m+m = s
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as required.
(ii) and (iii): Write q = 1 + rm for some r ∈ N, then

qj = (1 + rm)j =
j∑
i=0

(
j

i

)
(rm)i ≡

1∑
i=0

(
j

i

)
(rm)i mod (m2)

≡ (1 + jrm) mod (m2)

for all j ≥ 1. Therefore

ls = l

m−1∑
j=0

qj ≡ l
(
1 +

m−1∑
j=1

(1 + jrm)
)

mod (m2)

≡
(
lm+ lrm

(m− 1)m
2

)
mod (m2),

for all l ∈ {1, . . . ,m− 1}. If m is odd or r = (q − 1)/m is even then

lr(m− 1)
2

∈ Z

which means

ls ≡ lm mod (m2) 6≡ 0 mod (m2),

that is, m2 - (ls) for all l ∈ {1, . . . ,m− 1}.
�

Recall that the semidirect product

Z/mZ ol Z/nZ = 〈x, y |xm = 1, yn = 1, yxy−1 = xl〉

of Z/mZ and Z/nZ corresponds to the choice of an integer l with ln ≡ 1 mod m. Recall that
the dicyclic group Dicr is a non-abelian group of order 4r. The smallest dicyclic group Dic2

of order 4r = 8 (this only happens if q = 3) is isomorphic to the quaternion group. More
generally, when r is a power of 2, the dicyclic group Dicr of order 4r = 2q+ 2 is isomorphic
to the generalized quaternion group.

Theorem 23. Suppose m is odd or r = (q − 1)/m is even. Let A = (K/F, σ, a) where
a = λdi for some i ∈ {1, . . . ,m − 1}, λ ∈ F×. Then AutF (A) is a group of order ms and
contains a subgroup isomorphic to the semidirect product

(4) Z/
( s
m

)
Z oq Z/(mµ)Z,

where µ = m/gcd(i,m). Moreover if i and m are coprime, then

(5) AutF (A) ∼= Z/
( s
m

)
Z oq Z/(m2)Z.

Proof. Let τ : K → K, k 7→ kq, then

τ j(a) = ωija,

for all j ∈ {0, . . . ,m − 1} where ω ∈ F× is a primitive mth root of unity by [11, Lemma
23]. As τ generates Gal(K/F ), the automorphisms of A are precisely the maps Hτj ,k, where
j ∈ {0, . . . ,m−1} and k ∈ K× are such that τ j(a) = NK/F (k)a by Proposition 16. Moreover
there are exactly s elements k ∈ K× with NK/F (k) = ωij by Proposition 16, and each of
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these elements corresponds to a unique automorphism of A. Therefore AutF (A) is a group
of order ms.

Choose k ∈ K× such that NK/F (k) = ωi so that Hτ,k ∈ AutF (Sf ). As τ has order m,
Hτ,k ◦ . . . ◦Hτ,k (m-times) becomes Hid,b where b = ωi = NK/F (k). Notice ωi is a primitive
µth root of unity where µ = m/gcd(i,m), then Hid,b has order µ and so the subgroup of
AutF (Sf ) generated by Hτ,k has order mµ.
〈Gα〉 is a cyclic subgroup of AutF (Sf ) of order s by Proposition 20 where α is a primitive

element of K. Furthermore, m|s by Lemma 22 and so 〈Gαm〉 is a cyclic subgroup of AutF (A)
of order s/m. We will prove AutF (A) contains the semidirect product

(6) 〈Gαm〉oq 〈Hτ,k〉 :

The inverse of Hτ,k in AutF (A) is Hτ−1,τ−1(k−1) and a tedious calculation shows that

Hτ,k ◦Gαm ◦H−1
τ,k = Gαmq = (Gαm)q.

Notice qm = qs − s + 1, i.e. qm ≡ 1 mod s, and so qmµ ≡ 1 mod s. Then m|s by
Lemma 22, hence qmµ ≡ 1 mod (s/m). In order to prove (6), we are left to show that
〈Hτ,k〉 ∩ 〈Gαm〉 = {id}.

Suppose for contradiction 〈Hτ,k〉 ∩ 〈Gαm〉 6= {id}, then Hid,ωl ∈ 〈Gαm〉 for some l ∈
{1, . . . ,m − 1}. Therefore 〈Gαm〉 contains a subgroup of order m/gcd(l,m) generated by
Hid,ωl and so (m/gcd(l,m))|(s/m). This means m2|(sgcd(l,m)), a contradiction by Lemma
22.

Therefore AutF (A) contains the subgroup

〈Gαm〉oq 〈Hτ,k〉 ∼= Z/
( s
m

)
Z oq Z/(mµ)Z.

If gcd(i,m) = 1 this subgroup has order ms and since |AutF (A)| = ms, this is all of
AutF (A). �

When m is prime we conclude:

Theorem 24. Suppose A = (K/F, σ, a) has prime degree m, char(F ) 6= m, and m|(q − 1).
Let a = λdi for some i ∈ {1, . . . ,m− 1}, λ ∈ F×.

(i) If m = 2 then AutF (A) is the dicyclic group Dicr of order 4r = 2q + 2.
(ii) If m > 2 then

(7) AutF (A) ∼= Z/
( s
m

)
Z oq Z/(m2)Z.

Proof. (i) We already know that AutF (A) has order 2(q + 1). Let α ∈ K be a primitive
element. Then 〈Gα〉 is a subgroup of AutF (A) of order s by Proposition 20. Furthermore,
since σ(a) = −a, there are precisely s = q+1 automorphisms Hσ,k where k ∈ K is such that
NK/F (k) = −1. Pick any such k ∈ K. Then an easy calculation shows that AutF (A) ∼= Dicr,
i.e. that

AutF (A) = 〈Hσ,k, Gα | G2r
α = 1, H2

σ,k = Grα, H
−1
σ,kGαHσ,k = G−1

α 〉.

(ii) follows immediately from Theorem 23. �
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Note that if m = 2 and 4 divides s = q + 1 then AutF (A) is not a semidirect product,
since in this case 〈Hσ,k〉 ∩ 〈Gα2〉 6= {id}.

In particular, we know the automorphism groups for nonassociative quaternion algebras
over finite fields F of characteristic not 2:

Corollary 25. Let F have characteristic not 2, K/F be quadratic and A = (K/F, σ, a).
(i) If 2 does not divide q − 1, or if 2 divides q − 1 and a 6= λ

√
c for any λ ∈ F×, then

AutF (A) ∼= Z/(q + 1)Z

and all automorphisms are inner.
(ii) If 2 divides q − 1, denote K = F (

√
c). If a = λ

√
c for some λ ∈ F×, then AutF (A) is

the dicyclic group of order 2q + 2.

5. The automorphisms of Hughes-Kleinfeld and Knuth semifields

Let K/F be a Galois field extension of degree n. Choose η, µ ∈ K and a nontrivial
automorphism σ ∈ AutF (K). For x, y, u, v ∈ K the following four multiplications make the
F -vector space K ⊕K into an algebra over F :

Kn1 : (x, y) ◦ (u, v) = (xu+ ησ(v)σ−2(y), vx+ yσ(u) + µσ(v)σ−1(y)),

Kn2 : (x, y) ◦ (u, v) = (xu+ ησ−1(v)σ−2(y), vx+ yσ(u) + µvσ−1(y)),

Kn3 : (x, y) ◦ (u, v) = (xu+ ησ−1(v)y, vx+ yσ(u) + µvy),

HK : (x, y) ◦ (u, v) = (xu+ ησ(y)v, yu+ σ(x)v + µσ(y)v).

The unital algebras given by each of the above multiplications are denoted Kn1(K,σ, η, µ),
Kn2(K,σ, η, µ), Kn3(K,σ, η, µ) and HK(K,σ, η, µ), respectively. We call them algebras of
type Kn1, Kn2, Kn3 and HK. The first three algebras were defined by Knuth and the last
one by Hughes and Kleinfeld [15], [17]. Each of the algebras is a division algebra if and only
if the equation

wσ(w) + µw − η

has no solutions in K [15], [17], which is equivalent to

f(t) = t2 − µt− η ∈ K[t;σ]

being irreducible. For F = Fq, K = Fqn and irreducible f(t) (i.e. η 6= 0), we thus obtain
semifields. Writing (u, v) = u+ tv, we have

HK(K, τ, η, µ) = Sf with f(t) = t2 − µt− η ∈ K[t; τ ]

and
Kn2(K,σ, η, µ) =f S with f(t) = t2 − µt− η ∈ K[t;σ].

Suppose that either σ2 6= id or that µ 6= 0. Then the following is well-known (cf. [15],
[17]):

• Nucm(A) = Nucr(A) = K and Nucl(A) = Fq2 for A = Kn2(K,σ, η, µ)
• Nucl(A) = Nucr(A) = K for A = Kn3(K,σ, η, µ) but K is not contained in the

middle nucleus.
• Nucm(A) = Nucl(A) = K and Nucr(A) = Fq2 for A = HK(K,σ, η, µ).
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• K is not contained in the left, right or middle nucleus of Kn1(L, σ, η, µ).

HenceKn1(K,σ, η, µ), Kn2(K,σ, η, µ), Kn3(K,σ, η, µ), HK(K,σ, η, µ) are mutually non-
isomorphic algebras unless σ2 = id and µ = 0, in which case they are the same algebra with
multiplication

(x, y) ◦ (u, v) = (xu+ ηyσ(v), xv + yσ(u)).

In this case σ has order two and K has a subfield E such that [K : E] = 2 and Gal(K/E) =
{id, σ}. Hence, the multiplication given above defines a quaternion algebra over E which is
associative if η ∈ E, and a nonassociative cyclic algebra of degree 2 if η ∈ K \ E.

Since HK(K,σ, η, µ) = Sf and Kn2(K,σ, η, µ) =f S for f(t) = t2 − µt− η ∈ K[t;σ] we
know that Kn2(K,σ, η, µ) = Sg for g(t) = t2 − µ′t− η′ ∈ K[t;σ−1] [19, Corollary 4]. Thus
w.l.o.g. it suffices to determine the automorphisms for any HK(K,σ, η, µ) = Sf , as they
will be the same for any algebra Kn2(K,σ, η, µ) = HK(K,σ−1, η′, µ′).

We now describe all automorphisms for the algebras of typeHK(K,σ, η, µ), Kn2(K,σ, η, µ)
andKn3(K,σ, η, µ). We also exhibit some automorphisms for the algebra of typeKn1(K,σ, η, µ).
This complements and improves the results in [28].

Theorem 26. (i) All automorphisms of A = HK(K,σ, η, µ) are of the form Hτ,b, i.e.

(x, y) 7→ (τ(x), bτ(y)),

where τ ∈ AutF (K) and b ∈ K× such that

ηbσ(b) = τ(η) and µσ(b) = τ(µ).

(ii) All automorphisms of A = Kn3(K,σ, η, µ) are of the form Hτ,b, i.e.

(x, y) 7→ (τ(x), bτ(y)),

where τ ∈ AutF (K) and b ∈ K× such that

ησ−1(b)σ−2(b) = τ(η) and µσ−1(b) = τ(µ).

In both (i) and (ii), if b ∈ K× then NK/F (b) = ±1 and if µ 6= 0, even NK/F (b) = 1.

Proof. (i) This follows from Theorem 3. Furthermore, ηbσ(b) = τ(η) implies NK/F (ηb2) =
NK/F (η), i.e NK/F (b2) = NK/F (b)2 = 1 since η 6= 0, thus NK/F (b) = ±1. If η ∈ F× then
ηbσ(b) = τ(η) yields ηbσ(b) = η, hence bσ(b) = 1. The equation µσ(b) = τ(µ) implies
NK/F (µb) = NK/F (µ), i.e NK/F (b) = 1 for µ 6= 0.
(ii) is proved analogous to (i) with the same arguments as used in the proof of Theorem
3. �

Theorem 7 immediately yields:

Corollary 27. Let µ ∈ F× and A = HK(K,σ, η, µ), A = Kn2(K,σ, η, µ), or A =
Kn3(K,σ, η, µ).
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(i) If η ∈ K \ F then AutF (A) = {id}.
(ii) If η ∈ F and f(t) is not invariant then

AutF (A) ∼= Z/nZ.

Proof. Here f(t) = t2 − µt− η ∈ K[t;σ] and our results for Sf imply the statement for the
first two types. The argument for the third type is analogous though: if µ ∈ F× then b = 1,
thus η = τ(η) forces τ = id or η× ∈ F . If η ∈ K \ F thus τ = id and AutF (A) = {id}. If
η ∈ F and f(t) is not invariant then AutF (A) ∼= Gal(K/F ) ∼= Z/nZ. �

For µ ∈ K \F , the size of the automorphism group depends on the position of the η and
µ within K:

Proposition 28. Let A be one of the algebras HK(K,σ, η, µ),Kn2(K,σ, η, µ) or Kn3(K,σ, η, µ)
where µ 6= 0. Then AutF (A) is isomorphic to the subgroup of Gal(K/F ) which fixes the
element µσ(µ)σ(η)−1, i.e.

AutF (A) ∼= {τ ∈ Gal(K/F ) | τ

(
µσ(µ)
σ(η)

)
=
µσ(µ)
σ(η)

} via Hτ,b 7→ τ.

Proof. Suppose for instance A = HK(K,σ, η, µ). Take the automorphism Hτ,b. By Propo-
sition 26, µσ(b) = τ(µ) and ηbσ(b) = τ(η). (Note that since µ 6= 0, the element b ∈ K is
determined completely by the action of τ on µ.) Substituting in b = σ−1(τ(µ))σ−1(µ)−1

and rearranging gives

σ(η)τ(µ)σ(τ(µ)) = σ(τ(η))µσ(µ).

This implies

τ

(
µσ(µ)
σ(η)

)
=
µσ(µ)
σ(η)

.

�

For Kn1(K,σ, η, µ), K is not contained in any of the nuclei. However, if we assume that
an automorphism of Kn1(K,σ, η, µ) restricts to an automorphism of K, then it must be of
a similar form to the above automorphisms:

Proposition 29. Suppose H is an automorphism of A = Kn1(L, σ, η, µ) which restricts to
an automorphism τ ∈ AutF (K). Then for all (x, y) ∈ A

H((x, y)) = (τ(x), bτ(y))

for some b ∈ K×, such that ησ−1(b)σ−2(b) = τ(η) and µσ(b)σ−1(b) = τ(µ)b. In particular,
NK/F (b) = ±1 and if µ 6= 0, NK/F (b) = 1. If η ∈ F× then σ−1(b)σ−2(b) = 1.

The proof is similar to that of Proposition 26.
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6. Isomorphisms between semifields

6.1. If K and L are finite fields and

Sf = K[t;σ]/K[t;σ]f(t) ∼= L[t;σ′]/L[t;σ′]g(t) = Sg

two isomorphic Jha-Johnson semifields with f ∈ K[t;σ] and g ∈ L[t;σ′] both monic, irre-
ducible and not invariant, then

K ∼= L, deg(f) = deg(g) and Fix(σ) ∼= Fix(σ′),

since isomorphic algebras have the same dimensions, and isomorphic nuclei and center.
Moreover, if G is an automorphism of R = K[t;σ], f(t) ∈ R is irreducible and g(t) =

G(f(t)), then G induces an isomorphism Sf ∼= Sg [19, Theorem 7]. In the following we focus
on the situation that F = Fq, K = Fqn , Gal(K/F ) = 〈σ〉 and use

f(t) = tm −
m−1∑
i=0

ait
i, g(t) = tm −

m−1∑
i=0

bit
i ∈ K[t;σ].

[11, Theorems 28 and 29] yield in this setting a generalization of [29, Theorem 4.2 and
5.4] which proved this statement only for m = 2, 3.:

Theorem 30. (i) Suppose n ≥ m−1. Then Sf ∼= Sg if and only if there exists τ ∈ Gal(K/F )
and k ∈ K× such that

(8) τ(ai) =
(m−1∏
l=i

σl(k)
)
bi

for all i ∈ {0, . . . ,m− 1}. Every such τ and k yield a unique isomorphism Gτ,k : Sf → Sg,

Gτ,k(
m−1∑
i=0

xit
i) = τ(x0) +

m−1∑
i=1

τ(xi)
i−1∏
l=0

σl(k)ti.

(ii) Suppose n < m − 1. If there exists τ ∈ Gal(K/F ) and k ∈ K× such that Equation (8)
holds for all i ∈ {0, . . . ,m− 1} then Sf ∼= Sg with an isomorphism Gτ,k : Sf → Sg as in (i).

As a direct consequence of Theorem 30 we obtain:

Corollary 31. Let n ≥ m− 1.
(i) If Sf ∼= Sg then ai = 0 if and only if bi = 0, for all i ∈ {0, . . . ,m− 1}.
(ii) If there exists an i ∈ {0, . . . ,m − 1} such that ai = 0 but bi 6= 0 or vice versa, then
Sf 6∼= Sg.

[11, Corollaries 33, 34] yield for instance:

Corollary 32. Suppose n ≥ m− 1 and that one of the following holds:
(i) There exists i ∈ {0, . . . ,m− 1} such that bi 6= 0 and

NK/F (aib−1
i ) 6∈ F×(m−i);

(ii) NK/F (a0) 6= NK/F (b0) in F×/F×m;
(iii) bm−1 6= 0 and NK/F (am−1b

−1
m−1) 6∈ F×;

(iv) m = n, a0 ∈ F× and b0 ∈ K \ F .
Then Sf � Sg.
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Corollary 33. Let n = m, f(t) = tm − a, g(t) = tm − b ∈ K[t;σ] where a, b ∈ K \ F .
(i) Sf ∼= Sg if and only if there exists τ ∈ Gal(K/F ) and k ∈ K× such that

τ(a) = NK/F (k)b.

(ii) If a 6= αb for all α ∈ F× or if NK/F (a/b) 6∈ F×m then Sf 6∼= Sg.

6.2. The isomorphism classes of nonassociative cyclic algebras of prime degree.
As an example, we count how many nonisomorphic semifields (K/F, σ, a) there are for a
given field extension K/F .

Example 34. Let F = F2 and let K = F4, then we can write

K = {0, 1, x, 1 + x}

where x2 + x+ 1 = 0. Thus for (K/F, σ, a) we can either choose a = x or a = 1 + x. Both
choices will give a division algebra. We also know that (K/F, σ, a) ∼= (K/F, σ, b) if and only
if σ(a) = NK/F (l)b or a = NK/F (l)b. NK/F : L× → F× is surjective, so NK/F (l) = 1 for all
l ∈ K×. The statement then reduces to (K/F, σ, a) ∼= (K/F, σ, b) if and only if σ(a) = b or
a = b. Now

σ(x) = x2 = 1 + x.

Therefore (K/F, σ, x) ∼= (K/F, σ, 1 + x), so there is only one nonassociative (quaternion)
algebra up to isomorphism which can be constructed using K/F . Its automorphism group
consists of inner automorphisms and is isomorphic to 〈Gx〉 ∼= Z/3Z.

More generally we obtain:

Theorem 35. (i) If m does not divide q − 1 then there are exactly

qm − q
m(q − 1)

non-isomorphic semifields (K/F, σ, a) of degree m.
(ii) If m divides q − 1 and is prime then there are exactly

m− 1 +
qm − q − (q − 1)(m− 1)

m(q − 1)

non-isomorphic semifields (K/F, σ, a) of degree m.

Proof. Define an equivalence relation on the set K \ F by

a ∼ b if and only if (K/F, σ, a) ∼= (K/F, σ, b).

For each a ∈ K \ F we have

(K/F, σ, a) ∼= (K/F, σ, σi(a))

for 0 ≤ i ≤ m− 1 and
(K/F, σ, a) ∼= (K/F, σ, ka)

for k ∈ F×. If the elements kσi(a) for 0 ≤ i ≤ m− 1 and k ∈ F× are all distinct, then the
equivalence class of a has m(q− 1) elements. If they are not all distinct then σi(a) = ka for
some i, i 6= 0, and some k ∈ F× ([11, Lemma 23]). If σi(a) = ka (i 6= 0) then k is an mth
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root of unity, k 6= 1. This happens if and only if m divides q − 1.
(i) If m does not divide q − 1 then from qm − q elements in K \ F we get

qm − q
m(q − 1)

equivalence classes.
(ii) If m divides q − 1 then F contains all primitive mth roots of unity and so K = F (d)
where d is a root of an irreducible polynomial tm − c ∈ F [t]. By [11, Lemma 23], the only
elements a ∈ K \ F with σi(a) = ka are the elements dj , 1 ≤ j ≤ m − 1, and their F -
scalar multiples. Moreover, for each dj , σi(dj) = ζijdj and ζij ∈ F , so there are only q − 1
distinct elements in the equivalence class of each dj . Hence the (q− 1)(m− 1) elements kdj

(k ∈ F× and j ∈ {1, . . . ,m − 1}) form exactly r − 1 equivalence classes. Since these are
all the elements in K \ F which are eigenvectors for the automorphisms σi, the remaining
qm − q − (q − 1)(m− 1) elements will form

qm − q − (q − 1)(m− 1)
m(q − 1)

equivalence classes. In total, we obtain

m− 1 +
qm − q − (q − 1)(m− 1)

m(q − 1)

equivalence classes. �

Example 36. Let F = F3 and K = F9, i.e.

K = F [x]/(x2 − 2) = {0, 1, 2, x, 2x, x+ 1, x+ 2, 2x+ 1, 2x+ 2}.

There are two non-isomorphic semifields which are nonassociative quaternion algebras with
nucleus K, given by A1 = (K/F, σ, x) and A2 = (K/F, σ, x + 1). Now AutF (A1) ∼= Z/4Z
whereas AutF (A2) has order 8 and is isomorphic to the group of quaternion units, the
smallest dicyclic group Dic2, by Theorem 24.

By Corollary 35, these are the only non-isomorphic semifields (K/F, σ, a) of order 81.
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