# Lie structure in semiprime superalgebras with superinvolution 

Jesús Laliena *and Sara Sacristán<br>Departamento de Matemáticas y Computación<br>Universidad de La Rioja<br>26004, Logroño. Spain<br>jesus.laliena@dmc.unirioja.es ssacrist@ya.com


#### Abstract

In this paper we investigate the Lie structure of the Lie superalgebra $K$ of skew elements of a semiprime associative superalgebra $A$ with superinvolution. We show that if $U$ is a Lie ideal of $K$, then either there exists an ideal $J$ of $A$ such that the Lie ideal $[J \cap K, K]$ is nonzero and contained in $U$, or $A$ is a subdirect sum of $A^{\prime}, A^{\prime \prime}$, where the image of $U$ in $A^{\prime}$ is central, and $A^{\prime \prime}$ is a subdirect product of orders in simple superalgebras, each at most 16 -dimensional over its center.


Keywords: associative superalgebras, semiprime superalgebras, superinvolutions, skewsymmetric elements, Lie structure.

## 1 Introduction.

The study of the relationship between the structure of an associative algebra $A$ and that of the Lie algebra $A^{-}$was started by I. N. Herstein (see [5], [6]) and W. E. Baxter (see [1]). Afterwards, several authors have made different contributions and generalizations to the subject (see for instance [2], [9], [11] ).

Regarding superalgebras, this line of research was motivated by the classification of the finite dimensional simple Lie superalgebras given by V. Kac ([8]), particularly the types given from simple associative superalgebras and from simple associative superalgebras with superinvolution. In [3], thinking in simple associative superalgebras with superinvolution, C. Gómez-Ambrosi and I. Shestakov investigated the

[^0]Lie structure of the set of skew elements, $K$, of a simple associative superalgebra, $A$, with superinvolution over a field of characteristic not 2 . These results were later extended to prime associative superalgebras with superinvolution ([4]). It was specifically proved that the Lie ideals of $K$ and $[K, K]$ are of the kind $[J \cap K, K]$ for a nonzero ideal $J$ of $A$, if $A$ is nontrivial, that is with a nonzero odd part, and if $A$ is not a central order in a Clifford superalgebra with at most 4 generators.

This paper is devoted to the description of the Lie ideals of $K$, the set of skew elements of a semiprime associative superalgebra, $A$, with superinvolution * over a commutative unital ring $\phi$ of scalars with $\frac{1}{2} \in \phi$.

We notice that the Lie structure of prime superalgebras and simple superalgebras without superinvolution was studied by F. Montaner (see [12]) and S. Montgomery (see [13]).

For a complete introduction to the basic definitions and examples of superalgebras, superinvolutions and prime and semiprime superalgebras, we refer the reader to [3] and [12].

Throughout the paper, unless otherwise stated, $A$ will denote a nontrivial semiprime associative superalgebra with superinvolution * over a commutative unital ring $\phi$ of scalars with $\frac{1}{2} \in \phi$. By a nontrivial superalgebra we understand a superalgebra with nonzero odd part. $Z$ will denote the even part of the center of $A, H$ the Jordan superalgebra of symmetric elements of $A$, and $K$ the Lie superalgebra of skew elements of $A$. If $P$ is a subset of $A$, we will denote by $P_{H}=P \cap H$ and $P_{K}=$ $P \cap K$. The following containments are straightforward to check, and they will be used throughout without explicit mention: $[K, K] \subseteq K, \quad[K, H] \subseteq H, \quad[H, H] \subseteq$ $K, \quad H \circ H \subseteq H, \quad H \circ K \subseteq K$ and $K \circ K \subseteq H$.

We recall that a superinvolution * is said to be of the first kind if $Z_{H}=Z$, and of the second kind if $Z_{H} \neq Z$.

If $Z \neq 0$, one can consider the localization $Z^{-1} A=\left\{z^{-1} a: 0 \neq z \in Z, a \in A\right\}$. If $A$ is prime, then $Z^{-1} A$ is a central prime associative superalgebra over the field $Z^{-1} Z$. We call this superalgebra the central closure of $A$. We also say that $A$ is a central order in $Z^{-1} A$. While this terminology is not the standard one, for which the definition involves the extended centroid, if $Z \neq 0$ both notions coincide (for more specifications see 1.6 in [12]).

Let $A$ be a prime superalgebra, and let $V=Z_{H}-\{0\}$ be the subset of regular symmetric elements. Note that if $Z \neq 0, Z_{H} \neq 0$. Also $Z^{-1} A=V^{-1} A$, since for all $0 \neq z \in Z, a \in A$ we have $z^{-1} a=\left(z z^{*}\right)^{-1}\left(z^{*} a\right)$. It will be more convenient for us, in order to extend the superinvolution in a natural way, to work with $V$ rather than with $Z$. We may consider $V^{-1} A$ as a superalgebra over the field $V^{-1} Z_{H}$. Then the superinvolution on $A$ is extended to a superinvolution of the same kind on $V^{-1} A$ over $V^{-1} Z_{H}$ via $\left(v^{-1} a\right)^{*}=v^{-1} a^{*}$. It is then easy to check that $H\left(V^{-1} A, *\right)=V^{-1} H$ and $K\left(V^{-1} A, *\right)=V^{-1} K$. Moreover, $Z\left(V^{-1} A\right)_{0}=V^{-1} Z$ and $V^{-1} Z \cap V^{-1} H=V^{-1} Z_{H}$. We will say that the superalgebra $V^{-1} A$ over the field $V^{-1} Z_{H}$ is the *-central closure
of $A$.
We notice that in every semiprime superalgebra $A$, the intersection of all the prime ideals $P$ of $A$ is zero. Consequently $A$ is a subdirect product of its prime images. If each prime image of $A$ is a central order in a simple superalgebra at most $n^{2}$ dimensional over its center, we say that $A$ verifies $S(n)$.

If $M$ is a subsupermodule of $A$, we denote by $\bar{M}$ the subalgebra of $A$ generated by $M$. We will say that $M$ is dense if $\bar{M}$ contains a nonzero ideal of $A$.

In this paper, we prove that if $K$ is the Lie superalgebra of skew elements of a semiprime associative superalgebra with superinvolution, $A$, and $U$ is a Lie ideal of $K$, then one of the following alternatives must hold: either $U$ must contain a nonzero Lie ideal $[J \cap K, K]$, for $J$ an ideal of $A$, or $A$ is a subdirect sum of $A^{\prime}, A^{\prime \prime}$, where the image of $U$ in $A^{\prime \prime}$ is central and $A^{\prime}$ satisfies $S(4)$.

The following results are instrumental for the paper:
Lemma 1.1. ([6], lemma 1.1.9) If $A$ is a semiprime algebra and $[a,[a, A]]=0$, then $a \in Z(A)$.

Lemma 1.2. ([12], lemmata 1.2, 1.3) If $A=A_{0} \oplus A_{1}$ is a prime superalgebra, then $A$ and $A_{0}$ are semiprime and either $A$ is prime or $A_{0}$ is prime (as algebras).

Lemma 1.3. ([12], lemma 1.8) Let $A=A_{0} \oplus A_{1}$ be a prime superalgebra. Then
(i) If $x_{1} \in A_{1}$ centralizes a nonzero ideal $I$ of $A_{0}$, then $x_{1} \in Z(A)$.
(ii) If $x_{1}^{2}$ belongs to the center of a nonzero ideal $I$ of $A_{0}$, then $x_{1}^{2} \in Z(A)$.

Lemma 1.4. ([4], Corollary 2) Let $A$ be a semiprime superalgebra and La Lie ideal of $A$. Then either $[L, L]=0$, or $L$ is dense in $A$.

Lemma 1.5. ([4], Theorem 2.1) Let $A$ be a prime nontrivial associative superalgebra. If $L$ is a Lie ideal of $A$, then either $L \subseteq Z$ or $L$ is dense in $A$, except if $A$ is a central order in a 4-dimensional Clifford superalgebra.

We remark that the bracket product in lemma 1.1 is the usual one: $[a, b]=a b-b a$, but the bracket product in lemmata 1.3,1.4,1.5 is the superbracket $\left[x_{i}, y_{j}\right]_{s}=x_{i} y_{j}-$ $(-1)^{i j} y_{j} x_{i}$ for $x_{i} \in A_{i}, y_{j} \in A_{j}$ homogenous elements. In fact, the superbracket product coincides with the usual bracket if one of the arguments belongs to the even part of $A$. In the following, to simplify the notation, we will denote both in the usual way [, ] but we will understand that it is the superbracket if we are in a superalgebra.

## 2 Lie structure of K.

Let $A$ be an associative superalgebra and $M, S$ be subgroups of $A$. Define ( $M$ : $S)=\{a \in A: a S \subseteq M\}$.

Let $U$ be a Lie ideal of $K$. We recall (see lemma 4.1 in [3]) that $K^{2}$ is a Lie ideal of $A$.

Lemma 2.1. If $A$ is semiprime, then either $U$ is dense in $A$ or $[u \circ v, w]=0$ for every $u, v, w \in U$.

Proof: We have

$$
[u \circ v, k]=u \circ[v, k]+(-1)^{\bar{k} \bar{v}}[u, k] \circ v \in \bar{U}
$$

for every $u, v \in U$ and $k \in K$. And also for any $u, v \in U$ and $h \in H$ we get

$$
[u \circ v, h]=[u, v \circ h]+(-1)^{\bar{u} \bar{v}}[v, u \circ h] \in U,
$$

because $K \circ H \subseteq K$. Since $A=H \oplus K$ it follows that $[u \circ v, A] \subseteq \bar{U}$ for any $u, v \in U$. But for any $a \in A$

$$
[u \circ v, w a]=[u \circ v, w] a+(-1)^{(\bar{u}+\bar{v}) \bar{w}} w[u \circ v, a]
$$

and so $[u \circ v, w] A \subseteq \bar{U}$ for every $u, v, w \in U$, that is, $[u \circ v, w] \in(\bar{U}: A)$. We notice that from the above equations we can also deduce that $[u \circ v, w] a \in \bar{K}^{2}$ and so $[u \circ v, w] \in\left(\bar{K}^{2}: A\right)$.

We claim that $A\left(\overline{K^{2}}: A\right) \subseteq\left(\overline{K^{2}}: A\right)$. Indeed, for any $x \in\left(\overline{K^{2}}: A\right), a, b \in A$

$$
a x b=(-1)^{(\bar{x}+\bar{b}) \bar{a}}(x b) a+[a, x b] \in \bar{K}^{2},
$$

because $\left[\bar{K}^{2}, A\right] \subseteq \bar{K}^{2}$ (for any $\left.t, s \in K^{2},[t s, a]=t[s, a]+(-1)^{\bar{s} \bar{a}}[t, a] s \in \bar{K}^{2}\right)$. Hence $A\left(\bar{K}^{2}: A\right) A \subseteq\left(\bar{K}^{2}: A\right) A \subseteq \bar{K}^{2}$. But $K(\bar{U}: A) \subseteq(\bar{U}: A)$ because for any $x \in(\bar{U}: A), k \in K, a \in A$

$$
(k x) a=[k, x a]+(-1)^{(\bar{x}+\bar{a}) \bar{k}}(x a) k \in \bar{U},
$$

because $[K, \bar{U}] \subseteq \bar{U}$, and so $\bar{K}^{2}(\bar{U}: A) \subseteq(\bar{U}: A)$. Therefore, we finally get

$$
A\left(\bar{K}^{2}: A\right) A(\bar{U}: A) A \subseteq \bar{K}^{2}(\bar{U}: A) A \subseteq \bar{U}
$$

and since $[u \circ v, w] \in(\bar{U}: A)$ and also $[u \circ v, w] \in\left(\overline{K^{2}}: A\right)$ it follows that $A[u \circ$ $v, w] A[u \circ v, w] A \subseteq \bar{U}$. Thus, since $A$ is semiprime, either $[u \circ v, w]=0$ for any $u, v, w \in U$ or $U$ is dense in $A$.

We note that the ideal contained in $\bar{U}$ in the above Lemma, $J=A[u \circ v, w] A[u \circ$ $v, w] A$, is also a $*$-ideal, that is, $J^{*} \subseteq J$.

Lemma 2.2. Let $A$ be semiprime, and let $U$ be a Lie ideal of $K$ such that $[U \circ U, U]=$ 0 . Then
(i) $u \circ v \in Z$ for every $u, v \in U_{0}$.
(ii) $u \circ v=0$ for every $u, v \in U_{1}$.

Proof: Assertion (i) is proved as in Theorem 5.3 of [3], and (ii) as in Theorem 3.2 of [4].

Next we deal with the second case of lemma 2.1, that is, when $[u \circ v, w]=0$ for any $u, v, w \in U$ (and therefore when $u \circ v \in Z$ for every $u, v \in U_{0}$, and $u \circ v=0$ for every $u, v \in U_{1}$ ), and we will study the prime images of $A$.

Let $P$ be a prime ideal of $A$. We will suppose first that $P^{*} \neq P$. In this case $\left(P^{*}+P\right) / P$ is a nonzero proper ideal of $A / P$ and we claim that $\left(P^{*}+P\right) / P \subseteq$ $(K+P) / P$. Indeed, if $y \in P^{*}$ then $y+P=\left(y-y^{*}\right)+y^{*}+P \in(K+P) / P$. Also if $U$ is a Lie ideal of $K$ we have that $(U+P) / P$ is an abelian subgroup of $A / P$ and satisfies

$$
\left[(U+P) / P,\left(P^{*}+P\right) / P\right] \subseteq([U, K]+P) / P \subseteq(U+P) / P
$$

Therefore $(U+P) / P$ is a Lie ideal of $\left(P^{*}+P\right) / P$, and $\left(P^{*}+P\right) / P$ is an ideal in $A / P$, a prime superalgebra. Of course if $u \circ v \in Z$ for every $u, v \in U_{0}$ and $u \circ v=0$ for any $u, v \in U_{1}$, then the same property is satisfied in $A / P$, that is, $(u+P) \circ(v+P) \in$ $Z_{0}(A / P)$ for every $u+P, v+P \in\left(U_{0}+P\right) / P$, and $(u+P) \circ(v+P)=0$ for any $u+P, v+P \in\left(U_{1}+P\right) / P$. Let us analyze this situation. We notice that the assumption that $A / P$ has a superinvolution is not required. We state first a useful lemma.

Lemma 2.3. Let $A$ be a prime superalgebra, I a nonzero ideal of $A$ and $U$ a subset of $A$ such that $[U, I]=0$. Then $U \subseteq Z$.

Proof: For any $u_{k} \in U_{k}, a_{i} \in A_{i}, y_{j} \in I_{j}$, applying $[U, I]=0$ we get

$$
u_{k}\left(a_{i} y_{j}\right)=(-1)^{(i+j) k}\left(a_{i} y_{j}\right) u_{k}=(-1)^{i k} a_{i}\left(u_{k} y_{j}\right)
$$

Since $A$ is prime it follows that $u_{k} a_{i}=(-1)^{i k} a_{i} u_{k}$. On the other hand, given $u_{1} \in U_{1}$ we have $\left[u_{1}, I_{0}\right]=0$, and applying lemma 1.3 (i), $u_{1} \in Z_{1}(A)$. Hence for every $u_{1} \in U_{1}, a_{1} \in A_{1}$ we have $u_{1} a_{1}=a_{1} u_{1}=-a_{1} u_{1}$, that is, $a_{1} u_{1}=0$, and, because $u_{1} \in Z(A)$ and the primeness of $A, U_{1}=0$ and $U \subseteq Z$.

Theorem 2.4. Let $A$ be a prime superalgebra, and let $I$ be a nonzero proper ideal of $A$. Suppose that $U$ is an abelian subgroup of $A$ such that $[U, I] \subseteq U, u \circ v \in Z$ for every $u, v \in U_{0}$, and $u \circ v=0$ for every $u, v \in U_{1}$. Then either $A$ is commutative, or $A$ is a central order in a 4-dimensional simple superalgebra, or $U \subseteq Z$.

Proof: Let $T=\{x \in A:[x, A] \subseteq[U, I]\}$. Since

$$
[[[U, I],[U, I]], A] \subseteq[[U, I],[[U, I], A]] \subseteq[[U, I], I] \subseteq[U, I]
$$

we have $[[U, I],[U, I]] \subseteq T$. We notice that $T$ is subring because for any $t, s \in T$,

$$
[t s, a]=[t, s a]+(-1)^{\bar{s} \bar{s}+\bar{a} \bar{t}}[s, a t] \in[U, I] .
$$

Let $T^{\prime}$ be the subring generated by $[[U, I],[U, I]]$. Since

$$
[[[U, I],[U, I]], I] \subseteq[[U, I],[[U, I], I]] \text { subseteq }[[U, I],[U, I]]
$$

it follows that $\left[T^{\prime}, I\right] \subseteq T^{\prime}$. We consider now two cases: a) $\left[T^{\prime}, I\right]=0$, and b) $\left[T^{\prime}, I\right] \neq 0$.
a) If $\left[T^{\prime}, I\right]=0$, then $[[[U, I],[U, I]], I]=0$. By lemma 2.3 we get $[[U, I],[U, I]] \subseteq$ $Z$, and so $[[U, I],[U, I]]_{1}=0$.

We claim that in this situation either $U \subseteq Z$, or $A$ is commutative, or $A$ is a central order in a 4-dimensional simple superalgebra. We present the proof of this in 6 steps.

1. $[U, I]_{0} \subseteq Z$. By hypothesis $u \circ v \in Z$ for any $u, v \in U_{0}$, so since $[U, I] \subseteq U$ it follows that $u v \in Z$ for any $u, v \in[U, I]_{0}$. Hence, for any $u, v \in[U, I]_{0}$, we have

$$
[u, v][u, v]=[u, v[u, v]]-v[u,[u, v]]=[u,[v u, v]]-[u,[v, v] u]=0
$$

because $[u, v], v u \in Z$. Therefore, from the primeness of $A,[u, v]=0$ for any $u, v \in[U, I]_{0}$. So since $\left[[U, I],[U, I]_{1}=0,[u,[u, I]]=0\right.$ for any $u \in[U, I]_{0}$, and therefore, by lemma 1.2 and theorem 1 in $[7], u \in Z(I)$, that is $[U, I]_{0} \subseteq Z$ because $A$ is prime.
2. $\left[U_{0}, I_{0}\right]=0$. By step 1 we have $\left[u_{0},\left[u_{0}, I_{0}\right]\right]=0$ for any $u_{0} \in U_{0}$, and again by theorem 1 in [7] and lemma 1.2, we obtain that $\left[U_{0}, I_{0}\right]=0$.
3. $U_{1} U_{1} \subseteq Z$. Let $u_{1} \in U_{1}, y_{1} \in I_{1}$, since $\left[U_{1}, I_{1}\right] \subseteq[U, I]_{0} \subseteq Z$ we get

$$
\left[u_{1}^{2}, y_{1}\right]=u_{1}\left[u_{1}, y_{1}\right]-\left[u_{1}, y_{1}\right] u_{1}=u_{1}\left[u_{1}, y_{1}\right]-u_{1}\left[u_{1}, y_{1}\right]=0 .
$$

Therefore, since $u_{1} \circ v_{1}=0$ for any $u_{1}, v_{1} \in U_{1}, 0=\left[\left(u_{1}+v_{1}\right)^{2}, y_{1}\right]=\left[u_{1} v_{1}+v_{1} u_{1}, y_{1}\right]=$ $2\left[u_{1} v_{1}, y_{1}\right]$ for any $y_{1} \in I_{1}$. And, since $\left[u_{1}, v_{1}\right]=2 u_{1} v_{1} \in U_{0}$ because $u_{1} \circ v_{1}=0$ for
any $u_{1}, v_{1} \in U_{1}$, we have $\left[u_{1} v_{1}, I_{0}\right]=0$ for any $u_{1}, v_{1} \in U_{1}$ by step 2 . So $\left[u_{1} v_{1}, I\right]=0$ for any $u_{1}, v_{1} \in U_{1}$, and then $u_{1} v_{1} \in Z$, because of lemma 2.3.
4. $I_{1}\left(U_{1}\right)^{3} \subseteq Z$. From the steps 1 and 3 for any $u_{1}, v_{1}, w_{1} \in U_{1}, y_{1} \in I_{1}$ we get $\left.{ }_{[ } u_{1}, y_{1}\right] v_{1} w_{1} \in Z$, but

$$
\begin{aligned}
{\left[u_{1}, y_{1}\right] v_{1} w_{1} } & =\left[u_{1}, y_{1} v_{1}\right] w_{1}+y_{1}\left[u_{1}, v_{1}\right] w_{1} \\
& =\left[u_{1} w_{1}, y_{1} v_{1}\right]-u_{1}\left[w_{1}, y_{1} v_{1}\right]+y_{1}\left[u_{1}, v_{1} w_{1}\right]+y_{1} v_{1}\left[u_{1}, w_{1}\right]
\end{aligned}
$$

and since $\left[u_{1} w_{1}, y_{1} v_{1}\right]=0, y_{1}\left[u_{1}, v_{1} w_{1}\right]=0$, by step 3 and $u_{1}\left[w_{1}, y_{1} v_{1}\right] \in U_{1}\left[U_{1}, I_{0}\right] \subseteq$ $U_{1} U_{1} \subseteq Z$, we obtain that $y_{1} v_{1}\left[u_{1}, w_{1}\right] \in Z$, that is $I_{1}\left(U_{1}\right)^{3} \subseteq Z$ because $u_{1} \circ w_{1}=0$.
5. Either $U_{1} U_{1}=0$ or $A$ is commutative. By step 4 we have an ideal of $A_{0}$, $I_{1} u_{1}^{3}$, contained in $Z$, and so $\left[A_{1}, I_{1} u_{1}^{3}\right]=0$, and by lemma 1.3 either $A_{1} \subseteq Z(A)_{1}$ or $I_{1} u_{1}^{3}=0$ for any $u_{1} \in U_{1}$.

If $A_{1} \subseteq Z_{1}(A)$ then $A_{1}^{2} \subseteq Z$, and since $A$ is prime and $A_{1}+A_{1}^{2}$ is a nonzero ideal contained in $Z(A)$, because $A$ is nontrivial, we deduce that $A$ is commutative.

If $I_{1} u_{1}^{3}=0$, since $0=I_{1} u_{1}^{3}=\left(I_{1} u_{1}\right)\left(u_{1}^{2} A\right)$ and $u_{1}^{2} A$ is an ideal of $A$ because $u_{1}^{2} \in Z$ by step 3 , then from the primeness of $A$ either $I_{1} u_{1}=0$ or $u_{1}^{2}=0$ for any $u_{1} \in U_{1}$. But if $u_{1}^{2}=0$ for every $u_{1} \in U_{1}$ we get $U_{1} U_{1}=0$ because $u_{1} \circ v_{1}=0$ for any $u_{1}, v_{1} \in U_{1}$ and if $I_{1} u_{1}=0$ then $0=I_{1}\left(u_{1} v_{1}\right)$ for every $u_{1}, v_{1} \in U_{1}$. From step 3 and because $A$ is prime we obtain that either $U_{1} U_{1}=0$ or $I_{1}=0$. But $I_{1}=0$ contradicts that $A$ is prime because then $I A_{1}=0$ and so $I\left(A_{1}+A_{1}^{2}\right)=0$ with $A_{1}+A_{1}^{2}$ a nonzero ideal of $A$. Therefore $U_{1} U_{1}=0$ in any case, when $I_{1} u_{1}^{3}=0$.
6. Either $U \subseteq Z$, or $A$ is commutative, or $A$ is a central order in a 4-dimensional simple superalgebra. We consider $\left[v_{1}, z_{1}\right] I$ with $v_{1} \in U_{1}, z_{1} \in I_{1}$. It is an ideal of $A$ by step 1 . For any $u_{0} \in U_{0}, v_{1} \in U_{1}$ and $y_{1}, z_{1} \in I_{1}$ we have

$$
\left[u_{0}, y_{1}\right]\left[v_{1}, z_{1}\right] I=\left[u_{0}, y_{1}\right] v_{1} z_{1} I+\left[u_{0}, y_{1}\right] z_{1} v_{1} I
$$

with $\left[u_{0}, y_{1}\right] v_{1} z_{1} I=0$ by step 5 and

$$
\left[u_{0}, y_{1}\right] z_{1} v_{1} I=-y_{1}\left[u_{0}, z_{1}\right] v_{1} I+\left[u_{0}, y_{1} z_{1}\right] v_{1} I=0
$$

by steps 2 and 5 . Since $A$ is prime we obtain that either i) $\left[U_{1}, I_{1}\right]=0$ or ii) $\left[U_{1}, I_{1}\right] \neq 0$, and then $\left[U_{0}, I_{1}\right]=0$.
i) If $\left[U_{1}, I_{1}\right]=0$ then for any $u_{1} \in U_{1}, u_{1} I_{1}$ is a nilpotent ideal of $A_{0}$ because by step $5\left(u_{1} I_{1}\right)\left(u_{1} I_{1}\right)=u_{1}^{2} I_{1}=0$, and since $A_{0}$ is semiprime by lemma 1.2 , we deduce that $u_{1} I_{1}=0$. But then $u_{1} I_{0} A_{1} \subseteq u_{1} I_{1}=0$ and also $u_{1} I_{0} A_{1}^{2}=0$, that is, $u_{1} I_{0}\left(A_{1}+A_{1}^{2}\right)=0$ with $A_{1}+A_{1}^{2}$ a nonzero ideal of $A$. By the primeness of $A$, $u_{1} I_{0}=0$, and so $u_{1} I=0$ and $U_{1}=0$. Therefore $[U, I]=\left[U_{0}, I\right]=\left[U_{0}, I_{0}\right]$, and $\left[U_{0}, I_{0}\right]=0$ by step 2 , so by lemma $2.3, U_{0} \subseteq Z$.
ii) If $\left[U_{1}, I_{1}\right] \neq 0$, then $\left[U_{0}, I_{1}\right]=0$ and so by step $2\left[U_{0}, I_{0}\right]=0$ and from lemma 2.3, $U_{0} \subseteq Z$. Also $Z \neq 0$ and we may localize $A$ by $Z$ and consider in $Z^{-1} A$, the Lie subalgebra $Z^{-1}(Z U)$ and the ideal $Z^{-1} I$, which satisfy the hypothesis of the theorem. Now we have also that $0 \neq Z^{-1} Z$ is a field. By step $1, \quad\left[U_{1}, I_{1}\right] \subseteq Z$, and hence

$$
0 \neq\left[Z^{-1}(Z U)_{1}, Z^{-1} I_{1}\right] \subseteq Z^{-1} I_{0} \cap Z^{-1} Z
$$

Therefore $Z^{-1} I$ has invertible elements and so $Z^{-1} I=Z^{-1} A$. But then $Z^{-1}(Z U)$ is a Lie ideal of $Z^{-1} A$. Since $\left[Z^{-1}(Z U), Z^{-1}(Z U)\right]=0$ because $U_{0} \subseteq Z$ and because of step 5 , it follows from theorem 3.2 and its proof in [12] that either $Z^{-1}(Z U) \subseteq Z^{-1} Z$ or $A$ is a central order in the matrix algebra $M_{1,1}\left(Z^{-1} Z\right)$. In the last case $A$ is a central order in a 4-dimensional simple superalgebra, and in the first case $Z^{-1}(Z U) \subseteq Z^{-1} Z$ and we can deduce from the primeness of $A$ that $U \subseteq Z$.

Therefore in case a) we have obtained that either $U \subseteq Z$, or $A$ is commutative, or $A$ is a central order in a 4 -dimensional simple superalgebra
b) We suppose now that $\left[T^{\prime}, I\right] \neq 0$. We recall that $\left[T^{\prime}, I\right] \subseteq T^{\prime}$. Consider $\left[\left[T^{\prime}, I\right], T^{\prime}\right]$. We claim that $I\left[\left[T^{\prime}, I\right], T^{\prime}\right] I \subseteq T^{\prime}$. Indeed, let $x \in T^{\prime}, y \in\left[T^{\prime}, I\right]$ and $a \in I$. Since $\left[T^{\prime}, I\right] \subseteq T^{\prime}$ and $T^{\prime}$ is a subring,

$$
[x, y] a=[x, y a]-(-1)^{\bar{x} \bar{y}} y[x, a] \in T^{\prime} .
$$

Now, let $b \in I$; we get

$$
\begin{aligned}
b[x, y] a= & {[b,[x, y]] a+(-1)^{(\bar{x}+\bar{y}) \bar{b}}[x, y] b a } \\
= & -(-1)^{\bar{y}(\bar{b}+\bar{x})}[y,[b, x]] a-(-1)^{\bar{b} \bar{x}+\bar{b} \bar{y}}[x,[y, b]] a \\
& +(-1)^{(\bar{x}+\bar{y}) \bar{b}}[x, y] b a \in T^{\prime} .
\end{aligned}
$$

Therefore, by the primeness of $A, T^{\prime}$ is dense if $\left[\left[T^{\prime}, I\right], T^{\prime}\right] \neq 0$.
If $\left[\left[T^{\prime}, I\right], T^{\prime}\right]=0$, then

$$
\left[[[U, I],[U, I]]_{0},\left[[[U, I],[U, I]]_{0}, I\right]\right]=0
$$

so by theorem 1 in $[7],\left[\left[[U, I],[U, I]_{0}, I\right]=0\right.$, and applying now lemma 2.3 we have $\left[[U, I],[U, I]_{0} \subseteq Z\right.$. We denote $V=[[U, I],[U, I]]$ and we have that $V$ satisfies the same conditions as $U$, that is, $V$ is an abelian subgroup of $A$ such that $[V, I] \subseteq V$, $u \circ v \in Z$ for every $u, v \in V_{0}$, and $u \circ v=0$ for every $u, v \in V_{1}$, because $V \subseteq U$. Since $V_{0} \subseteq Z$ we observe that $V$ has, like $U$ in case a) steps 1 and 2 , the following properties: $[V, I]_{0} \subseteq V_{0} \subseteq Z$ and $\left[V_{0}, I_{0}\right]=0$. From this we can prove steps $3,4,5$ and 6 in a) exactly in the same way but now taking $V$ instead of $U$. So we obtain that either $A$ is commutative, or $A$ is a central order in a 4 -dimensional simple superalgebra, or $V \subseteq Z$. But if $V \subseteq Z$ we can apply case a) and we obtain that
either $U \subseteq Z$, or $A$ is commutative, or $A$ is a central order in a 4-dimensional simple superalgebra.

It remains to consider the case when $T^{\prime}$ is dense in $A$. We denote by $J=$ $I\left[\left[T^{\prime}, I\right], T^{\prime}\right] I$ and so $J \subseteq T^{\prime}$. From the definition of $T$ and because $T^{\prime} \subseteq T$ we know that $\left[T^{\prime}, A\right] \subseteq[U, I]$, and therefore $[J, A] \subseteq[U, I] \subseteq U$. By hypothesis $u \circ v \in Z$ for any $u, v \in U_{0}$, so $u \circ v \in Z$ for any $u, v \in[J, A]_{0}$.

We assume first that $u \circ v=0$ for any $u, v \in[J, A]_{0}$. Then $1 / 2(u \circ u)=u^{2}=0$ for any $u \in[J, A]_{0}$ and since $A_{0}$ is semiprime by lemma 1.2 , we can apply lemma 1 in $[10]$ and we have $[J, A]_{0}=0$. Therefore $[J, A]=[J, A]_{1}$ and then $[J, A]$ is a Lie ideal of $A$ such that $[[J, A],[J, A]]=0$. From theorem 3.2 and its proof in [12] it follows that either $[J, A] \subseteq Z$ or $A$ is a central order in a 4 -dimensional matrix superalgebra. If $[J, A] \subseteq Z$, since $[J, A]=[J, A]_{1}$, we get $[J, A]=0$ and now by lemma 2.3, $J \subseteq Z$, and so $A$ is commutative.

Suppose now that there exist $u, v \in[J, A]_{0}$ such that $u \circ v \neq 0$. Then $Z \neq 0$, and we may form the localization $Z^{-1} A$. Since $[J, A] \subseteq[U, I] \subseteq U$ we have $\left[Z^{-1} J, Z^{-1} A\right] \subseteq\left[Z^{-1}(Z U), Z^{-1} I\right] \subseteq Z^{-1}(Z U)$, and so from the hypothesis of the theorem for any $u, v \in\left[Z^{-1} J, Z^{-1} A\right]_{0}$ we get $u \circ v \in Z^{-1} Z \cap Z^{-1} J$. But $Z^{-1} Z$ is a field and so $Z^{-1} J$ has some invertible element forcing $Z^{-1} J=Z^{-1} A$. Therefore $\left[Z^{-1} J, Z^{-1} A\right]=\left[Z^{-1} A, Z^{-1} A\right] \subseteq Z^{-1}(Z U)$ and again by the hypothesis of the theorem it follows that $\left[Z^{-1} A, Z^{-1} A\right]_{1} \circ\left[Z^{-1} A, Z^{-1} A\right]_{1}=0$. We apply now lemma 2.6 in [12] and we obtain that $Z^{-1} A$ is commutative (superalgebras of the type (b) and (c) in the lemma do not satisfy the condition $\left[Z^{-1} A, Z^{-1} A\right]_{1} \circ\left[Z^{-1} A, Z^{-1} A\right]_{1}=0$ ), and so $A$ is commutative. This finishes the proof.

Next we consider the cases when $P^{*}=P$ and the involution on $A / P$ is of the second kind or of the first kind.

Lemma 2.5. Let $A$ be a prime superalgebra with a superinvolution $*$ of the second kind. Let $U$ be a Lie ideal of $K$ such that $u \circ v \in Z$ for every $u, v \in U_{0}$, and $u \circ v=0$ for every $u, v \in U_{1}$. Then either $U \subseteq Z$ or $A$ satisfies $S(2)$.

Proof: If $*$ is of the second kind we know that $Z_{H}=\left\{x \in Z: x^{*}=x\right\} \neq Z$. We may localize $A$ by $V$ and replace $U$ by $V^{-1}\left(Z_{H} U\right)$ and $A$ by $V^{-1} A$. The hypothesis remains unchanged, so we keep for this superalgebra the same notation $A$, and now $Z$ is a field. Let $0 \neq t \in Z_{K}$. Then $H=t K$ and $A=t K+K$. It follows that $[Z U, A] \subseteq Z U, u \circ v \in Z$ for every $u, v \in Z U_{0}$, and $u \circ v=0$ for every $u, v \in Z U_{1}$. By theorem 2.4, either $Z U \subseteq Z$, which implies that $U \subseteq Z$, or $A$ satisfies $S(2)$.

Lemma 2.6. Let $A$ be a prime superalgebra with a superinvolution $*$ of the first kind. Let $U$ be a Lie ideal of $K$ such that $u \circ v \in Z$ for every $u, v \in U_{0}$, and $u \circ v=0$ for every $u, v \in U_{1}$. Then either $U \subseteq Z$ or $A$ satisfies $S(4)$.

Proof: If $u^{2}=0$ for every $u \in U_{0}$, applying theorem 3.3 in [4] we obtain that $U=0$. Suppose then that $u^{2} \neq 0$ for some $u \in U_{0}$. By theorem 3.4 in [4] we get that either $U \subseteq Z$ or $A$ is a central order in a Clifford algebra with either 2 or 4 generators.

Combining the above results we obtain

Theorem 2.7. Let $A$ be a semiprime superalgebra and $U$ a Lie ideal of $K$ with $u \circ v \in Z$ for every $u, v \in U_{0}$, and $u \circ v=0$ for every $u, v \in U_{1}$. Then $A$ is the subdirect sum of two semiprime homomorphic images $A^{\prime}, A^{\prime \prime}$, such that $A^{\prime}$ satisfies $S(4)$ and the image of $U$ in $A^{\prime \prime}$ is central.

Proof: Let $T^{\prime}=\{P: P$ is a prime ideal of $A$ such that $A / P$ satisfies $S(4)\}$ and let $T^{\prime \prime}=\{P: P$ is a prime ideal of $A$ such that the image of $U$ in $A / P$ is central $\}$.

If we consider $P$ a prime ideal of $A$ such that $P^{*} \neq P$ we know from theorem 2.8 that either $A / P$ is a central order in a simple superalgebra at most 4-dimensional over its center, or $(U+P) / P$ is central. If we consider $P$ a prime ideal of $A$ such that $P^{*}=P$, it follows from lemmata $2.5,2.6$ that either $A / P$ is a central order in a simple superalgebra at most 16-dimensional over its center, or the image of $U$ in $A / P$ is central.

So every prime ideal of $A$ belongs either $T^{\prime}$ or $T^{\prime \prime}$. Then $A^{\prime}$ is obtained by taking the quotient of $A$ by the intersection of all the prime ideals in $T^{\prime}$, and $A^{\prime \prime}$ is obtained by taking the quotient of $A$ by the intersection of all the prime ideals in $T^{\prime \prime}$. This proves the theorem.

We finally arrive at the main theorem on the Lie structure of $K$.

Theorem 2.8. Let $A$ be a semiprime superalgebra with superinvolution *, and let $U$ be a Lie ideal of $K$. Then either $A$ is a subdirect sum of two semiprime homomorphic images $A^{\prime}, A^{\prime \prime}$, with $A^{\prime}$ satisfying $S(4)$ and the image of $U$ in $A^{\prime \prime}$ being central, or $U \supseteq[J \cap K, K] \neq 0$ for some ideal $J$ of $A$.

Proof: From lemmata 2.1 and 2.2 we know that either $U$ is dense in $A$, and so there exist a nonzero ideal $J$ such that $J \subseteq \bar{U}$, or $u \circ v \in Z$ for every $u, v \in U_{0}$, and $u \circ v=0$ for every $u, v \in U_{1}$. In the second case we obtain by theorem 2.7 the first part of the theorem. So suppose that $J \subseteq \bar{U}$.

The identity

$$
[x y, z]=[x, y z]+(-1)^{\bar{x} \bar{y}+\bar{x} \bar{z}}[y, z x]
$$

can be used to show that $[\bar{U}, A]=[U, A]$. Hence $[J \cap K, K] \subseteq[\bar{U}, A]=[U, A]=$ $[U, H]+[U, K]$. But $[U, H] \subseteq H$, and $[U, K] \subseteq K$, so $[J \cap K, K] \subseteq[U, K] \subseteq U$.

Finally, suppose that $[J \cap K, K]=0$, then $[u \circ v, w]=0$ for any $u, v, w \in$ $J \cap K$ because $[u v, w]=u[v, w]+(-1)^{\bar{v} \bar{w}}[u, w] v=0$. So by lemmata 2.1, 2.2 and theorem 2.7 it follows that for each prime image, $A / P$, of $A$ either its center contains $((J \cap K)+P) / P$, or $A / P$ is a central order in a simple superalgebra at most 16-dimensional over its center.

We claim that if the image of $J \cap K$ in $A / P$ for some prime ideal $P$ of $A$ is central, then $A$ is as described in the first part of the conclusion of the theorem.

Let $P$ be a prime ideal such that $P^{*} \neq P$. If $(J+P) / P \neq 0$, then since $A / P$ is a prime superalgebra we get $\left(\left(J \cap P^{*}\right)+P\right) / P \neq 0$, and so we have $\left(\left(J \cap P^{*}\right)+P\right) / P \subseteq$ $((J \cap K)+P) / P \subseteq Z_{0}(A / P)$, that is, $A / P$ is commutative. So $A / P$ is commutative unless $J \subseteq P$. And if $J \subseteq P$, then by the proof of lemma 2.1 we know that $A[u \circ v, w] A[u \circ v, w] A \subseteq P$ for any $u, v, w \in U$, and because $P$ is a prime ideal we deduce that $[u \circ v, w] \in P$ for any $u, v, w \in U$. But now by Lemma 2.2 and since $[u \circ v, w]+P=0$ for any $u, v, w \in U$, it follows that $A / P$ satisfies the conditions $u \circ v \in Z$ for any $u, v \in((U+P) / P)_{0}$ and $u \circ v=0$ for any $u, v \in((U+P) / P)_{1}$. By theorem 2.4 we obtain that either $(U+P) / P \subseteq Z_{0}(A / P)$, or $A / P$ satisfies $S(4)$.

And if $P$ is a prime ideal such that $P^{*}=P$ then $A / P$ has a superinvolution induced by * and $K(A / P)=(K+P) / P$. In this case if $((J \cap K)+P) / P=0$ we get $(J+P) / P \subseteq(H+P) / P=H(A / P)$, and therefore $(J+P) / P$ is supercommutative. But then for any $a, b \in A / P$ and $y, z \in(J+P) / P$ it follows that

$$
\begin{aligned}
y a b z & =(-1)^{(\bar{b}+\bar{z})(\bar{y}+\bar{a})}(b z)(y a)=(-1)^{\bar{b}(\bar{y}+\bar{a})} b(y a) z \\
& =(-1)^{\bar{b} \bar{y}+\bar{b} \bar{a}+(\bar{a}+\bar{z}) \bar{y}} b(a z) y=(-1)^{\bar{b} \bar{a}} y b a z,
\end{aligned}
$$

and since $A / P$ is prime $a b=(-1)^{\bar{a} \bar{b}} b a$, that is, $A / P$ is supercommutative. Now from lemma 1.9 in [12], $A / P$ is a central order in a simple superalgebra at most 4-dimensional over its center. And if $((J \cap K)+P) / P \neq 0$ then $Z_{0}(A / P) \neq 0$, so by localizing at $V=\left(Z_{0}(A / P) \cap H(A / P)\right)-\{0\}$ we can suppose that $Z_{0}(A / P)$ is a field, which we denote by $Z$. We will replace $V^{-1}(A / P)$ by $A / P$ and $V^{-1}((J+P) / P)$ by $(J+P) / P$. Then if $0 \neq t \in((J \cap K)+P) / P$ we have $t H=K$ with $H=$ $H(A / P), K=K(A / P)$, so $K=t H \subseteq K \cap J \subseteq Z$, and also $t H=K \subseteq Z$ and $H \subseteq t^{-1} Z \subseteq Z$. Therefore $A / P$ is a field.

Finally we have

Corollary 2.9. Let $A$ be a semiprime superalgebra with superinvolution $*$, and let $U$ be a Lie ideal of $K$. Then either $[J \cap K, K] \subseteq U$ where $J$ is a nonzero ideal of $A$ or there exists a semiprime ideal $T$ of $A$ such that $A / A n n T$ satisfies $S(4)$ and $(U+T) / T \subseteq Z_{0}(A / T)$.

Proof: By theorem 2.8 we have that either the first conclusion holds, or, for each prime ideal $P$ of $A$, either $A / P$ satisfies $S(4)$ or $(U+P) / P \subseteq Z_{0}(A / P)$. Let $T$ be the intersection of the prime ideals $P$ of $A$ such that $(U+P) / P \subseteq Z_{0}(A / P)$. Then $A n n T$ contains the intersection of those prime ideals $P$ such that $A / P$ satisfies $S(4)$. So we get that $A / A n n T$ satisfies $S(4)$, and this proves the result.

## References

[1] W.E. Baxter, Lie simplicity of a special case of associative rings II, Trans. Amer. Math. Soc. 87 (1958) 63-75.
[2] T. E. Erickson, The Lie structure in prime rings with involution, J. Algebra 21 (1972) 523-534.
[3] C. Gómez-Ambrosi and I. P. Shestakov, On the Lie structure of the skew elements of a simple superalgebra with superinvolution, J. Algebra 208 (1998) 43-71.
[4] C. Gómez-Ambrosi, I.P. Shestakov, J. Laliena, On the Lie structure of the Skew Elements of a Prime Superalgebra with Superinvolution, Comm. Algebra 28(7) (2000) 3277-3291.
[5] I.N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago 1969.
[6] I.N. Herstein, Rings with Involution, The University of Chicago Press, Chicago 1976.
[7] I.N. Herstein, On the Lie Structure of an Associative Ring, J. Algebra 14 (1970), 561-571.
[8] V. G. Kac, Lie superalgebras, Adv. Math. 26 (1977) 8-96.
[9] C. Lanski, Lie structure in semi-prime rings with involution, Comm. Algebra 4 (8) (1976) 731-746.
[10] C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific Journal of Mathematics 48 (1) (1972) 117-186.
[11] W.S. Martindale III and C.R. Miers, Herstein's Lie Theory revisited, J. Algebra 98 (1986) 14-37.
[12] F. Montaner, On the Lie structure of associative superalgebras, Comm. Algebra 26(7) (1998) 2337-2349.
[13] S. Montgomery, Constructing simple Lie superalgebras from associative graded algebras, J. Algebra 195 (1997) 558-579.


[^0]:    *The first author has been supported by the Spanish Ministerio de Educación y Ciencia (MTM 2004-08115-CO4-02) and both by the Comunidad Autónoma de La Rioja (ANGI 2005/05).

