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Abstract

We prove that the only proper right ideal of the universal enveloping
algebra of a finite–dimensional central simple Lie triple system over a field
of characteristic zero is its augmentation ideal.

1 Introduction

In this paper we will assume that the base field is algebraically closed of charac-
teristic zero.

Any Lie algebra with the trilinear product [x, y, z] = [[x, y], z] can be con-
sidered as a Lie triple system. A Lie triple system (abbreviated as L.t.s.) is a
vector space T equipped with a trilinear product [x, y, z] satisfying the followings
identities:

[x, x, y] = 0, (1)
[x, y, z] + [y, z, x] + [z, x, y] = 0, (2)

[a, b[x, y, z]] = [[a, b, x], y, z] + [x, [a, b, y], z] + [x, y, [a, b, z]]. (3)

The first and the second identities are reminiscent of Lie algebras. The third
identity says that the maps Da,b : x 7→ [a, b, x] are derivations of T . These maps
are called inner derivations and they form the Lie algebra of inner derivations
InnDer(T ). Roughly, Lie triple systems may be thought of as subspaces of Lie
algebras stable under the product [[x, y], z]. This is due to the fact that for any
Lie triple system T the vector space L(T ) = InnDer(T ) ⊕ T is a Lie algebra
with the product defined by [a, b] = Da,b and [Da,b, c] = [[a, b], c] = [a, b, c] for
any a, b, c ∈ T , and by the condition that InnDer(T ) a subalgebra. The map
σ : Da,b + c 7→ Da,b − c is an automorphism of L(T ) with σ2 = Id. Thus, Lie
triple systems are often considered as the negative eigenspaces of involutions of
Lie algebras. The classification of these involutions has led to the classification
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of semisimple L.t.s. by Lister [2]. Later, Faulkner obtained Lister’s classification
of simple L.t.s. by means of Dynkin diagrams [1].

Given any (unital) nonassociative algebra A the generalized left alternative
nucleus

LNalt(A) = {a ∈ A | (a, x, y) = −(x, a, y)∀x, y ∈ A},

where (x, y, z) = (xy)z − x(yz), is a L.t.s. with the product [a, b, c] = a(bc) −
b(ac) − c(ab) + c(ba). In analogy with the usual universal enveloping alge-
bras of Lie algebras, for any L.t.s. T there exists a unital algebra U(T ) and
a monomorphism of L.t.s. ι : T → LNalt(U(T )) with the additional property
ι(a)ι(b)− ι(b)ι(a) = 0 for any a, b ∈ T . The pair (U(T ), ι) is universal with re-
spect to homomorphisms of L.t.s. T → LNalt(A) with this property. To simplify
the notation we will write a instead of ι(a). Thus,

[a, b, c] = a(bc)− b(ac) = a(bc)− (ab)c + (ba)c− b(ac) = −2(a, b, c)

in U(T ).
The universal enveloping algebra U(T ) is a nonassociative Hopf algebra or

H–bialgebra (see [4, 5]) in the sense that it is a nonassociative bialgebra with a
left and a right division x\y and x/y defined by∑

x(1)\x(2)y = ε(x)y =
∑

x(1) · x(2)\y,∑
yx(1)/x(2) = ε(x)y =

∑
y/x(1) · x(2),

where ε denotes the counit and
∑

x(1) ⊗ x(2) stands for the image of x under
the comultiplication [6]. U(T ) is a coassociative, cocommutative bialgebra, the
subspace of primitive elements being T , and it admits a Poincaré–Birkhoff–Witt
type basis. Associativity is, however, replaced by the weaker identity∑

x(1)(y · x(2)z) =
∑

x(1)(yx(2)) · z.

The graded algebra Gr(T ) associated to the coradical filtration

U(T ) =
∞⋃

n=0

U(T )n,

where U(T )n is the linear span of all possible products of at most n elements
in T , is isomorphic to the symmetric algebra S(T ) on T . A map similar to the
antipode of universal enveloping algebras of Lie algebras is also available since
the automorphism a 7→ −a of any L.t.s. T induces an automorphism x 7→ S(x)
of U(T ) of order 2. The left and right division are written as

x\y = S(x)y and y/x =
∑

S(x(3)) · (x(1)y)S(x(2)).

For any non-trivial L.t.s. T its universal enveloping algebra U(T ) is infinite–
dimensional. For finite–dimensional unital algebras A the existence of embed-
dings ι : T → LNalt(A) with the property ι(a)ι(b)−ι(b)ι(a) = 0 ∀a, b ∈ T , (Ado’s
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Theorem) was studied in [3]: it turns out that only finite–dimensional nilpotent
L.t.s. may admit such embeddings. The lack of such embeddings is equivalent
to the non-existence of ideals of finite codimension in U(T ) with trivial inter-
section with T . This result motivated in [3] the following conjecture, verified in
several cases by direct calculations in Poincaré–Birkhoff–Witt bases:

Conjecture. The only proper ideal of the universal enveloping algebra of a
simple Lie triple system is its augmentation ideal.

The goal of this paper is to prove this conjecture by establishing the following
stronger result:

Theorem 1.1. The only proper right ideal of the universal enveloping algebra
of a finite–dimensional simple Lie triple system over a field of characteristic
zero is its augmentation ideal.

The behavior of the left ideals is, however, rather different. The Harish-
Chandra isomorphism for symmetric spaces, recast in our setting, implies that
the right associative nucleus of U(T ), each of whose elements determines a left
ideal, is isomorphic as an algebra to the algebra of invariants of the restricted
Weyl group of the symmetric Lie algebra (L(T ), σ). By the Theorem of Kostant
and Rallis on separation of variables for isotropy representations, U(T ) is a free
right module for the right associative nucleus. This subject will be discussed in
detail elsewhere.

Acknowledgment. I would like to express my gratitude to Jacob Mostovoy
for careful reading of the manuscript.

2 The proof

In the course of the proof we use some results whose proofs are postponed to
later sections for clarity.

Recall that for any c ∈ T the subalgebra generated by c is associative, so cn

is a well defined element of U(T ). In fact, (ci, cj , x) = 0 for any x ∈ U(T ) [3].

Lemma 2.1. For any n ≥ 0 and a, b, c ∈ T , we have

(cn, a, b) ≡ ncn−1(c, a, b) (modU(T )n−2).

The meaning of this lemma is better understood by defining Ra,b : T → T
c 7→ [c, a, b] or its extension to the whole U(T )

Ra,b(x) = −2(x, a, b).

These maps preserve the filtration of U(T ), so they induce corresponding maps
Rgr

a,b of zero degree on the graded algebra Gr(U(T )) =
⊕∞

n=0 U(T )n/U(T )n−1,
which is isomorphic to S(T ). Since the powers {cn | c ∈ T, n ≥ 0} span S(T ),
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Lemma 2.1 says that Rgr
a,b is the derivation on S(T ) induced by the map c 7→

[c, a, b] on T .
The unifying feature of simple L.t.s. that we use in our proof is recorded in

the following theorem:

Theorem 2.2. Let T be a finite–dimensional simple L.t.s. over a field of char-
acteristic zero. Then End(T ) is the Lie algebra generated by the maps Ra,b : c 7→
[c, a, b] (a, b ∈ T ).

Any finite–dimensional simple L.t.s. contains a two–dimensional subsystem
S2 = span〈e, f〉 with the product given by

[e, f, e] = 2e and [e, f, f ] = −2f.

We can reduce the proof of Theorem 1.1 to the case T = S2 as follows. Any
nonzero right ideal I of U(T ) is filtered by In = I ∩ U(T )n so it gives rise to a
(two–sided) graded ideal

Igr =
∞⊕

n=0

(In + U(T )n−1)/U(T )n−1
∼=

∞⊕
n=0

In/In−1

that is stable under the derivations Rgr
a,b ∀a, b ∈ T . By Theorem 2.2, the action

of these operators on Gr(T ) can be identified with the natural action of End(T )
on S(T ). This module decomposes as direct sum of irreducible modules S(T ) ∼=
⊕∞n=0V (nλ1) where V (nλ1) corresponds to the homogeneous polynomials of
degree n. Since Igr is a submodule as well as a graded ideal then there must
exist N such that

Igr =
∞⊕

n=N

U(T )n/U(T )n−1.

In terms of I we get the decomposition

U(T ) = U(T )N−1 ⊕ I (4)

which shows that the codimension of I is finite. Therefore, given a subsystem
S2 = span〈e, f〉 ⊆ T , the right ideal I ∩ U(S2) ⊆ U(S2) ⊆ U(T ) has finite
codimension in U(S2). Assuming the truth of Theorem 1.1 in the case of S2,
we get that I ∩ T 6= 0. Since T is simple this intersection generates all T under
the action of the operators Ra,b. Thus, I is either the augmentation ideal or the
whole U(T ) as desired.

3 Proof of Lemma 2.1

The main tool in computing products in U(T ) is the operator identity

Lax+xa = LaLx + LxLa (5)
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for all a ∈ T and x ∈ U(T ) [3]. To use it we first observe that

acn = ac · cn−1 − (a, c, cn−1) = ca · cn−1 − (a, c, cn−1)
= c · acn−1 + (c, a, cn−1)− (a, c, cn−1) = c · acn−1 − 2(a, c, cn−1)
= −2(a, c, cn−1)− 2c · (a, c, cn−2)− · · · − 2cn−2(a, c, c) + cna,

so

cna =
1
2
(acn + cna) +

n−2∑
i=0

ci(a, c, cn−1−i).

The associator (cn, a, b) is then written as

(cn, a, b) =
1
2
Lacn+cna(b) +

n−2∑
i=0

Lci(a,c,cn−1−i)(b)− LcnLa(b)

that by (5) gives

(cn, a, b) =
1
2
[La, Lcn ](b) +

n−2∑
i=0

Lci(a,c,cn−1−i)(b)

=
1
2

n−1∑
i=0

Li
c[La, Lc]Ln−1−i

c (b) +
n−2∑
i=0

Lci(a,c,cn−1−i)(b)

where we have used that Lcn = Ln
c . Since Da,b = [La, Lb] is a derivation of

U(T ) [3] we get

(cn, a, b) =
1
2

n−1∑
i=0

ciDa,c(cn−1−ib) +
n−2∑
i=0

ci(a, c, cn−1−i) · b

=
1
2

(
n−1∑
i=0

ci ·Da,c(cn−1−i)b + ci · cn−1−i[a, c, b]

)

+
n−2∑
i=0

ci(a, c, cn−1−i) · b

=
n

2
cn−1[a, c, b] +

1
2

n−2∑
i=0

ci ·Da,c(dn−1−i)b

−1
2

n−2∑
i=0

ciDa,c(cn−1−i) · b

=
n

2
cn−1[a, c, b]− 1

2

n−2∑
i=0

(ci, Da,c(cn−1−i), b). (6)

The derivation Da,c preserves the filtration of U(T ) so (ci, Da,c(cn−1−i), b) ∈
U(T )n−2 and (cn, a, b) ≡ n

2 cn−1[a, c, b] = −ncn−1(a, c, b) = ncn−1(c, a, b) mod-
ulo U(T )n−2.
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4 The two–dimensional case

The case T = S2 is simple and illustrative because we can perform computations
in the Poincaré–Birkhoff–Witt basis {eif j | i, j ≥ 0}. In this case Theorem 2.2
encodes the following correspondence between maps and coordinate matrices in
the basis {e, f}:

Re,e ≡
(

0 −2
0 0

)
, Re,f ≡

(
0 0
0 2

)
, Rf,e ≡

(
2 0
0 0

)
and Rf,f ≡

(
0 0
−2 0

)
.

Fix I a nonzero right ideal of U(S2). By (4), I contains an element of the form
eN + α1e

N−1 + · · ·+ αN−1e + αN . Moreover, since (6) implies that Rf,e(en) =
−2(en, f, e) = 2nen then I must contain the power eN , although eN−1 6∈ I. The
result is a consequence of the following proposition which shows that in this
situation N = 1 or N = 0, so I is either the augmentation ideal or the whole
U(S2).

Proposition 4.1. In U(S2) we have that (en, f, f)e = nenf − n(n − 1)en−1

∀n ≥ 0.

Proof. The cases n = 0 and n = 1 are obvious, so we assume that n ≥ 2. On
one hand, (en, f, f)e is an eigenvector of De,f with eigenvalue 2n− 2, so it is a
linear combination of {en−1+if i | i ≥ 0}. Since it also belongs to U(S2)n+1, we
deduce that (en, f, f)e = αenf + βen−1 for some α, β ∈ F . On the other hand,
by (6) (en, f, f)e = nen−1f · e = nenf − n[e, en−1f ] and, by Lemma 24 in [3],
this is congruent to nenf − n(n − 1)en−1 modulo U(S2)n−3. Therefore, α = n
and β = −n(n− 1).

5 Proof of Theorem 2.2

Let T be a finite–dimensional simple L.t.s. and L = L(T ) = InnDer(T ) ⊕ T
— its standard embedding Lie algebra. The results of the previous section
allow us to assume that dim T ≥ 3. By [2] L(T ) is a semisimple Lie algebra
so its Killing form K( , ) is nondegenerate. The corresponding automorphism
σ of order 2 preserves the Killing form so InnDer(T ) and T are orthogonal and
the restriction of K( , ) to these subspaces is nondegenerate. The adjoint of
Ra,b = adb ada |T relative to K( , ) is Rb,a and

2 tr(Ra,b) = 2 tr(adb ada |T ) = K(a, b).

As an InnDer(T )–module, T is either irreducible or it decomposes into a
direct sum of two irreducible submodules T = T1⊕T2 with the further restriction
that [T1, T1] = 0 = [T2, T2]. In the latter case the center Z(InnDer(T )) of
InnDer(T ) is one–dimensional and it is spanned by the map acting as the identity
Id on T1 and as − Id on T2. The skew–symmetry of this map with respect to the
Killing form implies that T1 and T2 are isotropic relative to the Killing form, so
T2

∼= T ∗1 , the dual module of T1.
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One important property of simple L.t.s. that we will use is that for any
0 6= xη ∈ Tη with η a nonzero weight of T relative to some Cartan subalgebra of
InnDer(T ) there exists x−η ∈ T−η such that span〈xη, x−η, [xη, x−η]〉 is a three–
dimensional Lie algebra isomorphic to sl(2) [1]. In particular, [xη, x−η, xη] 6= 0.

Let L be the Lie algebra generated by {Ra,b | a, b ∈ T}. We will use the
notation

τx,y : z 7→ K(y, z)x, σx,y = τx,y + τy,x, and λx,y = τx,y − τy,x.

Assume that T is a InnDer(T )–irreducible module. Fix µ to be the highest
weight of T relative to a basis of a root system of InnDer(T ) and 0 6= xµ ∈ Tµ.
For any weight η of T and xη ∈ Tη, [xη, xµ, xµ] ∈ T2µ+η so it vanishes if η 6= −µ.
Since in case that η = −µ we have already noticed that [x−µ, xµ, xµ] 6= 0, then
Rxµ,xµ

is a nonzero multiple of τxµ,xµ
. Therefore, τxµ,xµ

as well as τx−µ,x−µ
and

λxµ,x−µ = [τxµ,xµ , τx−µ,x−µ ] belong to L.
For any map d ∈ so(T ) skew–symmetric with respect to the Killing form we

have that [d, τx,y] = τd(x),y + τx,d(y) so by using root vectors of positive roots,
and due to the irreducibility of T , we easily get that λxµ,y ∈ L for any y ∈ T .
From this we can obtain that so(T ) = span〈λx,y |x, y ∈ T 〉 ⊆ L.

The traceless map 0 6= Rxµ,xµ
∈ L is symmetric with respect to the Killing

form. By the usual decomposition of sl(T ) into the direct sum of two irreducible
submodules (symmetric and skew–symmetric maps) with respect to the action
of so(T ) by commutation it follows that sl(T ) ⊆ L. Since 2 tr(Rx,x) = K(x, x)
then L also contains the identity, so L = End(T ).

Let us assume now that T is not irreducible. We have

End(T ) = End(T )0 ⊕ End(T )1

with
End(R)0 = {f ∈ End(T ) | f(Tj) ⊆ Tj , j = 1, 2}

(even maps) and

End(R)1 = {f ∈ End(T ) | f(Tj) ⊆ T3−j , j = 1, 2}

(odd maps).
Fix µ to be the highest weight of T1 with respect to a basis of a root system

of InnDer(T ), 0 6= xµ ∈ (T1)µ and 0 6= x−µ ∈ (T2)−µ (recall that T2
∼= T ∗1 ).

Since [T1, T1] = 0 and T2
∼= (T1)∗ then [xη, xµ, xµ] = 0 for any weight η 6= −µ.

As before, this implies that λxµ,x−µ
∈ L which ultimately gives that

so(T )0 := so(T ) ∩ End(T )0 = λT1,T2 ⊆ L .

The dimension of T1 is ≥ 2, so under commutation End(T )0 is the sum of three
irreducible so(T )0–modules: so(T )0, the traceless even symmetric maps and the
scalar maps. As above {Rx,y + Ry,x |x ∈ T1, y ∈ T2} is not contained inside
sl(T ), so Id ∈ L. In order to prove that End0(T ) ⊆ L we only have to check that
L0 6= so(T )0⊕F Id. By the contrary, if Rx,y+Ry,x ⊆ F Id for any x ∈ T1, y ∈ T2

7



then taking traces we obtain that Rx,y + Ry,x = K(x,y)
dim T1

Id. Given x′ ∈ T1, by
(2)

K(x, y)
dim T1

x′ = [x′, x, y] + [x′, y, x] = [x′, y, x] = [x, y, x′] =
K(x′, y)
dim T1

x

which contradicts that dim T1 ≥ 2. Therefore, End0(T ) ⊆ L.
End1(T ) decomposes as the direct sum of two irreducible submodules under

the action of End0(T ) by commutation, namely those maps that kill T1 and
those that kill T2. Since Rxµ,xµ

and Rx−µ,x−µ
are nonzero elements of these

types then End1(T ) ⊆ L, so L = End(T ) as desired.
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[3] J. Mostovoy and J.M. Pérez–Izquierdo, Ideals in non–associative univer-
sal enveloping algebras of Lie triple systems, math.RA/0506179.
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