ROOT-GRADED LIE ALGEBRAS WITH COMPATIBLE GRADING

Yoji Yoshii
Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, K1N 6N5
Canada

Abstract

Lie algebras graded by a finite irreducible reduced root system Δ will be generalized to predivision (Δ, G)-graded Lie algebras for an abelian group G. In this paper such algebras are classified, up to central extensions, when $\Delta=\mathrm{A}_{l}$ for $l \geq 3, \mathrm{D}$ or E , and $G=\mathbb{Z}^{n}$.

Introduction

The concept of a Lie algebra over a field F of characteristic 0 graded by a finite irreducible reduced root system Δ or a Δ-graded Lie algebra was introduced by Berman and Moody [3]. It is a Lie algebra L together with a finite dimensional split simple Lie algebra \mathfrak{g}, a split Cartan subalgebra \mathfrak{h} of \mathfrak{g} and the root system Δ, so that \mathfrak{g} has the root space decomposition $\mathfrak{g}=\mathfrak{h} \oplus\left(\oplus_{\mu \in \Delta} \mathfrak{g}_{\mu}\right)$ with $\mathfrak{h}=\mathfrak{g}_{0}$, satisfying the following three conditions:
(i) L contains \mathfrak{g} as a subalgebra;
(ii) $L=\oplus_{\mu \in \Delta \cup\{0\}} L_{\mu}$, where $L_{\mu}=\{x \in L \mid[h, x]=\mu(h) x$ for all $h \in \mathfrak{h}\}$; and
(iii) $L_{0}=\sum_{\mu \in \Delta}\left[L_{\mu}, L_{-\mu}\right]$.

The subalgebra \mathfrak{g} is called the grading subalgebra of L.
Berman and Moody classified Δ-graded Lie algebras, up to central extensions, when Δ has type $\mathrm{A}_{l}, l \geq 2, \mathrm{D}$ or E in [3], and then Benkart and Zelmanov completed the classification for the other types in [5]. (In [7], using the connection to Jordan pairs, Δ-graded Lie algebras were classified, where $\Delta \neq \mathrm{E}_{8}, \mathrm{~F}_{4}$ or G_{2}. The results in [7] hold for root systems Δ of infinite rank, as well as for Lie algebras over rings.)

Let $L=\oplus_{\mu \in \Delta \cup\{0\}} L_{\mu}$ be a Δ-graded Lie algebra over F and let G be an abelian group. We say that L admits a compatible G-grading or simply L is a (Δ, G)-graded Lie algebra if $L=\oplus_{g \in G} L^{g}$ is a G-graded Lie algebra such that $\mathfrak{g} \subset L^{0}$. Then we have

$$
L=\bigoplus_{\mu \in \Delta \cup\{0\}} \bigoplus_{g \in G} L_{\mu}^{g}
$$

where $L_{\mu}^{g}=L_{\mu} \cap L^{g}$ (see Definition 2.5). Let $Z(L)$ be the centre of L and let

$$
\left\{h_{\mu} \in \mathfrak{h} \mid \mu \in \Delta\right\}
$$

be the set of coroots. Then L is called a division (Δ, G)-graded Lie algebra if for any $\mu \in \Delta$ and any $0 \neq x \in L_{\mu}^{g}$, there exists $y \in L_{-\mu}^{-g}$ such that $[x, y] \equiv h_{\mu}$ modulo $Z(L)$.

Let us explain the case $\Delta=\mathrm{A}_{l}$ for $l \geq 3$ in order to describe our motivation of this paper. By [3], an A_{l}-graded Lie algebra covers $\operatorname{psl}_{l+1}(A)$ for some unital associative algebra A (see Definition 2.9). Then Berman, Gao and Krylyuk showed in [4] that the core of an extended affine Lie algebra of type A_{l} for $l \geq 3$ is an A_{l}-graded Lie algebra and covers $s l_{l+1}\left(\mathbb{C}_{\boldsymbol{q}}\right)$ where $\mathbb{C}_{\boldsymbol{q}}=\mathbb{C}_{\boldsymbol{q}}\left[t_{1}^{ \pm}, \ldots, t_{n}^{ \pm}\right]$is a certain \mathbb{Z}^{n}-graded associative algebra, called a quantum torus over \mathbb{C} (see $\S 2$ below). We will see that $L=s l_{l+1}\left(\mathbb{C}_{\boldsymbol{q}}\right)$ is a division $\left(\mathrm{A}_{l}, \mathbb{Z}^{n}\right)$-graded Lie algebra over \mathbb{C} so that $L=\oplus_{\mu \in \Delta \cup\{0\}} \oplus_{\alpha \in \mathbb{Z}^{n}} L_{\mu}^{\alpha}$. Moreover, L satisfies

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}} L_{\mu}^{\alpha}=1 \quad \text { for all } \mu \in \Delta \text { and } \alpha \in \mathbb{Z}^{n} \tag{*}
\end{equation*}
$$

Our goal is to describe division $\left(\mathrm{A}_{l}, \mathbb{Z}^{n}\right)$-graded Lie algebras without assuming (*). This generalizes the core of an extended affine Lie algebra of type A_{l} (see Example 2.8(c)). One of the main results of the paper, which is contained in Proposition 2.13 is the following:

Result 1. Let $l \geq 3$. Then any division $\left(A_{l}, G\right)$-graded Lie algebra covers psl $_{l+1}(P)$ where P is a division G-graded associative algebra.

For a group G, a division G-graded algebra is defined as a G-graded algebra whose nonzero homogeneous elements are all invertible. A division G-graded associative algebra over a field F can be considered as a crossed product algebra $D * G$ for an associative division algebra D over F (see $\S 1$). Our next goal is to describe $D * \mathbb{Z}^{n}$. For this purpose, we introduce the following definition: A triple $(D, \boldsymbol{\varphi}, \boldsymbol{q})$ is called a division \mathbb{Z}^{n}-grading triple over F if
(1) D is an associative division algebra over F;
(2) $\boldsymbol{\varphi}=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ is an n-tuple of F-automorphisms φ_{i} of D; and
(3) $\boldsymbol{q}=\left(q_{i j}\right)$ is an $n \times n$ matrix over D satisfying, for all $1 \leq i, j, k \leq n$,

$$
\begin{aligned}
& q_{i i}=1 \quad \text { and } \quad q_{j i}^{-1}=q_{i j} \\
& \varphi_{j} \varphi_{i}=\mathrm{I}\left(q_{i j}\right) \varphi_{i} \varphi_{j} \\
& \varphi_{k}\left(q_{i j}\right)=q_{j k} \varphi_{j}\left(q_{i k}\right) q_{i j} \varphi_{i}\left(q_{k j}\right) q_{k i} \\
& 2
\end{aligned}
$$

where $\mathrm{I}\left(q_{i j}\right)$ is the inner automorphism of D determined by $q_{i j}$, i.e.,

$$
\mathrm{I}\left(q_{i j}\right)(d)=q_{i j} d q_{i j}^{-1} \quad \text { for } d \in D
$$

We will show that any $D * \mathbb{Z}^{n}$ can be constructed from a division \mathbb{Z}^{n}-grading triple ($D, \boldsymbol{\varphi}, \boldsymbol{q}$).
Let us briefly explain how this works. First we consider the simplest example of $D * \mathbb{Z}^{n}$, namely, the ring $D\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ of Laurent polynomials over D in n-variables. Note that $D\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]=\oplus_{\boldsymbol{\alpha} \in \mathbb{Z}^{n}} D t_{\boldsymbol{\alpha}}$ is a \mathbb{Z}^{n}-graded algebra, where $t_{\boldsymbol{\alpha}}=t_{1}^{\alpha_{1}} \cdots t_{n}^{\alpha_{n}}$ for $\boldsymbol{\alpha}=$ $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$, and the multiplication rule is determined by

$$
t_{i} d=d t_{i} \quad \text { and } \quad t_{j} t_{i}=t_{i} t_{j} \quad \text { for all } d \in D \text { and all } i, j
$$

Then one sees that $D * \mathbb{Z}^{n}$ has the same \mathbb{Z}^{n}-grading as in $D\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$, i.e., $D * \mathbb{Z}^{n}=$ $\oplus_{\boldsymbol{\alpha} \in \mathbb{Z}^{n}} D t_{\boldsymbol{\alpha}}$ as a D-vector space. It is easily seen that the multiplication rule in $D * \mathbb{Z}^{n}$ determines a division \mathbb{Z}^{n}-grading triple $(D, \boldsymbol{\varphi}, \boldsymbol{q})$ as follows:

$$
\begin{equation*}
t_{i} d=\varphi_{i}(d) t_{i} \quad \text { and } \quad t_{j} t_{i}=q_{i j} t_{i} t_{j}, \quad \text { for all } 1 \leq i, j \leq n, \tag{**}
\end{equation*}
$$

as the defining relations in the quantum torus $F_{\boldsymbol{q}}=F_{\boldsymbol{q}}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ for $\boldsymbol{q}=\left(q_{i j}\right)$.
Conversely, for a division \mathbb{Z}^{n}-grading triple $(D, \boldsymbol{\varphi}, \boldsymbol{q})$, let $D_{\boldsymbol{\varphi}, \boldsymbol{q}}=D_{\boldsymbol{\varphi}, \boldsymbol{q}}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ be the same \mathbb{Z}^{n}-graded D-vector space as $D\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ above. We will show that the relations $(* *)$ determine an associative multiplication on $D_{\varphi, \boldsymbol{q}}$. Thus we will get the following:

Result 2. For any division \mathbb{Z}^{n}-grading triple $(D, \boldsymbol{\varphi}, \boldsymbol{q})$, there exists a crossed product $D_{\varphi, \boldsymbol{q}}=$ $D_{\varphi, \boldsymbol{q}}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ such that $D_{\boldsymbol{\varphi}, \boldsymbol{q}}=\oplus_{\boldsymbol{\alpha} \in \mathbb{Z}^{n}} D t_{\boldsymbol{\alpha}}$ has the same \mathbb{Z}^{n}-grading as $D\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ above, and the multiplication rule is determined by (**). Conversely, any crossed product $D * \mathbb{Z}^{n}$ is isomorphic to $D_{\varphi, \boldsymbol{q}}$ for some $\boldsymbol{\varphi}$ and \boldsymbol{q} (see Theorem 3.3 for more precise statements).

Note that if $D=F$, then $\boldsymbol{\varphi}=\mathbf{1}=(\mathrm{id}, \ldots, \mathrm{id})$ and $F_{\mathbf{1}, \boldsymbol{q}}=F_{\boldsymbol{q}}$ is the quantum torus.
Consequently, one gets that any division $\left(\mathrm{A}_{l}, \mathbb{Z}^{n}\right)$-graded Lie algebra for $l \geq 3$ covers $\operatorname{psl}_{l+1}\left(D_{\varphi, q}\right)$. We will also classify division $\left(\Delta, \mathbb{Z}^{n}\right)$-graded Lie algebras when $\Delta=\mathrm{D}$ or E , which is simpler than the case A. Moreover, our concept of "division" can be generalized to "predivision" (see Definition 2.7). Results 1 and 2 above will be proved in this more general set-up.

The organization of the paper is as follows. In $\S 1$ we review basic concepts of graded algebras and crossed product algebras. In $\S 2$ we prove some properties of (Δ, G)-graded Lie algebras. Then predivision or division (Δ, G)-graded Lie algebras are defined. After describing some examples of them, we classify predivision (Δ, G)-graded Lie algebras for $\Delta=\mathrm{A}_{l}(l \geq 3), \mathrm{D}$ and E types. In $\S 3$ we classify crossed product algebras $R * \mathbb{Z}^{n}$. Finally in $\S 4$ we give a summary of our results.

$\S 1$ Basic Concepts

For any group G and any G-graded algebra $L=\oplus_{g \in G} L_{g}$, we denote

$$
\operatorname{supp} L:=\left\{g \in G \mid L_{g} \neq(0)\right\}
$$

Then we have $L=\oplus_{g \in G^{\prime}} L_{g}$ where $G^{\prime}=\langle\operatorname{supp} L\rangle$ is the subgroup of G generated by supp L. Because of this, we will in the following always assume

$$
\begin{equation*}
G=\langle\operatorname{supp} L\rangle \tag{1.1}
\end{equation*}
$$

Whenever a class of algebras has a notion of invertibility, one can make the following definition:

Definition 1.2. Let G be a group. A G-graded algebra $P=\oplus_{g \in G} P_{g}$ is called a predivision G-graded algebra if P_{g} contains an invertible element for all $g \in \operatorname{supp} P$. Also, P is called a division G-graded algebra if all nonzero homogeneous elements are invertible.

One can easily check that if P is a predivision G-graded associative algebra, then supp $P=$ G and P is strongly graded, i.e., $P_{g} P_{h}=P_{g h}$ for all $g, h \in G$. This is not true if P is a Jordan algebra (see [9]). Predivision G-graded associative algebras are realized as crossed product algebras, which we recall here:

Definition 1.3. Let R be a unital associative algebra over a field F and G a group. Let $R * G$ be the free left R-module with basis $\bar{G}=\{\bar{g} \mid g \in G\}$, a copy of G. Define a multiplication on $R * G$ by linear extension of

$$
(r \bar{g})(s \bar{h})=r \sigma_{g}(s) \tau(g, h) \overline{g h},
$$

for $r, s \in R$ and $g, h \in G$, where

$$
\begin{aligned}
\text { (action) } & \sigma: G \longrightarrow \operatorname{Aut}_{F}(R), \quad \text { the group of } F \text {-automorphisms of } R, \\
\text { (twisting) } & \tau: G \times G \longrightarrow U(R), \quad \text { the group of units of } R,
\end{aligned}
$$

are arbitrary maps and $\sigma_{g}:=\sigma(g)$. It is easily seen that $R * G$ is an algebra over $F . R * G=$ (R, G, σ, τ) is called a crossed product algebra over F if the multiplication is associative. If there is no action or twisting, that is, if $\sigma_{g}=$ id and $\tau(g, h)=1$ for all $g, h \in G$, then $R * G=R[G]$ is the ordinary group algebra. If the action is trivial, then $R * G=: R^{t}[G]$ is called a twisted group algebra. Finally, if the twisting is trivial, then $R * G=: R G$ is called a skew group algebra.

Remark 1.4. If a crossed product algebra $R * G$ is commutative, then the action is clearly trivial, and so $R * G=R^{t}[G]$.

The following lemma characterizes σ and τ (see [8], Lemma 1.1 p.2). We denote by $\mathrm{I}(d)$ the inner automorphism determined by $d \in U(R)$, i.e., $\mathrm{I}(d)(r)=d r d^{-1}$ for $r \in R$.
1.5. The associativity of $R * G$ is equivalent to the following two conditions: for all $g, h, k \in$ G,
(i) $\sigma_{g} \sigma_{h}=\mathrm{I}(\tau(g, h)) \sigma_{g h}$,
(ii) $\sigma_{g}(\tau(h, k)) \tau(g, h k)=\tau(g, h) \tau(g h, k)$.

Remark 1.6. If R is commutative, then the action $\sigma: G \longrightarrow \operatorname{Aut}_{F}(R)$ becomes a group homomorphism by condition (i) in 1.5. So the action is really a "group action" in usual sense. Also, for a skew group algebra $R G$, the action becomes a group homomorphism for the same reason. Conversely, any group action $G \longrightarrow \operatorname{Aut}_{F}(R)$ defines a skew group algebra $R G$.

If $d: G \longrightarrow U(R)$ assigns to each element $g \in G$ a unit d_{g}, then $\tilde{G}=\left\{d_{g} \bar{g} \mid g \in G\right\}$ yields another R-basis for $R * G$ so that $R * G$ is a crossed product algebra for the new basis. One calls this a diagonal change of basis ([8], p.3). Any crossed product algebra has an identity element. It is of the form $1=u \bar{e}$ for some unit u in R where e is the identity element of G ([8], Exercise 2 p.9). We can and will assume that $1=\bar{e}$, via a diagonal change of basis, and so $\tau(g, e)=\tau(e, g)=1$ for all $g \in G$. The embedding of R into $R * G$ is then given by $r \mapsto r \bar{e}$. Also, we have ([8], p.3)
$r \bar{g}$ is invertible if and only if $r \in U(R)$.
Now, it is clear that a crossed product algebra $R * G=\oplus_{g \in G} R \bar{g}$ is a predivision G graded associative algebra. Conversely, suppose that $A=\oplus_{g \in G} A_{g}$ is a predivision G-graded associative algebra over F. Then we have $A=\oplus_{g \in G} R x_{g}$ where $R=A_{e}$ and an invertible element $x_{g} \in A_{g}$, which exists since A is predivision graded and $\operatorname{supp} A=G$. Moreover, for $h \in G$, we have $x_{g} x_{h}=x_{g} x_{h}\left(x_{g h}\right)^{-1} x_{g h}$. So we can put $\tau(g, h):=x_{g} x_{h}\left(x_{g h}\right)^{-1} \in U(R)$. Then we have $x_{g} x_{h}=\tau(g, h) x_{g h}$. Also, let $I\left(x_{g}\right)$ be the inner automorphism determined by x_{g} and let $\sigma_{g}:=\left.I\left(x_{g}\right)\right|_{R}$. Then, σ_{g} is clearly an F-automorphism of R and for $r, r^{\prime} \in R$,

$$
\left(r x_{g}\right)\left(r^{\prime} x_{h}\right)=r\left(x_{g} r^{\prime} x_{g}^{-1}\right) x_{g} x_{h}=r \sigma_{g}\left(r^{\prime}\right) x_{g} x_{h}=r \sigma_{g}\left(r^{\prime}\right) \tau(g, h) x_{g h}
$$

Hence A is a crossed product algebra $R * G$ determined by these σ and τ. So the two concepts, a crossed product algebra $R * G$ and a predivision G-graded associative algebra,
coincide (see [8], Exercise 2 p.18). In particular, a division G-graded associative algebra is a crossed product algebra $R * G$ where R is a division algebra.

By Remark 1.4, a predivision G-graded commutative associative algebra $Z=\oplus_{g \in G} Z_{g}$ (G is necessarily abelian) is a twisted group algebra $K^{t}[G]$ where $K:=Z_{e}$. Moreover (see [8], Exercise 6 p.10):
1.8. If the abelian group G is free, then Z is a group algebra $K[G]$. In particular, when $G=\mathbb{Z}^{n}, Z$ is the algebra $K\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right]$ of Laurent polynomials for invertible elements $z_{i} \in Z_{\varepsilon_{i}}, i=1, \ldots, n$, where $\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ is a basis of \mathbb{Z}^{n}.

$\S 2$ Predivision (Δ, G)-graded Lie algebras

In this section F is a field of characteristic 0 and Δ is a finite irreducible reduced root system. The concept of a Δ-graded Lie algebra $L=\oplus_{\mu \in \Delta \cup\{0\}} L_{\mu}$ over F as a triple $(L, \mathfrak{g}, \mathfrak{h})$ has been defined in the introduction. When no confusion is likely to arise we will use the abbreviation L for $(L, \mathfrak{g}, \mathfrak{h})$. Also, we note that the centre $Z(L)$ of L is contained in L_{0}.

A homomorphism (resp. an isomorphism) $\varphi: L \longrightarrow L^{\prime}$ of Δ-graded Lie algebras $L=$ $(L, \mathfrak{g}, \mathfrak{h})$ and $L^{\prime}=\left(L^{\prime}, \mathfrak{g}^{\prime}, \mathfrak{h}^{\prime}\right)$, which have the same type Δ, is called a Δ-homomorphism (resp. a Δ-isomorphism) if $\varphi(\mathfrak{g})=\mathfrak{g}^{\prime}$ and $\varphi(\mathfrak{h})=\mathfrak{h}^{\prime}$ (cf. Definition 1.20 in [3]). Then one can check that $\varphi\left(L_{\alpha}\right) \subset L_{\alpha}^{\prime}$ for all $\alpha \in \Delta$, and so $\varphi\left(L_{0}\right) \subset L_{0}^{\prime}$. In other words, a Δ-homomorphism is graded.

Recall that a cover $\tilde{L}=(\tilde{L}, \pi)$ of a Lie algebra L is an epimorphism $\pi: \tilde{L} \longrightarrow L$ of Lie algebras so that \tilde{L} is perfect, i.e., $\tilde{L}=[\tilde{L}, \tilde{L}]$, and $\operatorname{ker} \pi$ is contained in the centre of \tilde{L}.
Definition 2.1. Let \tilde{L} and L be Δ-graded Lie algebras. If $\pi: \tilde{L} \longrightarrow L$ is a cover and a Δ-homomorphism, $\tilde{L}=(\tilde{L}, \pi)$ is called a Δ-cover of L. Also, for Δ-graded Lie algebras L and L^{\prime}, if there exist a Δ-graded Lie algebra \tilde{L} and maps $\pi: \tilde{L} \longrightarrow L$ and $\pi^{\prime}: \tilde{L} \longrightarrow L^{\prime}$ such that (\tilde{L}, π) and $\left(\tilde{L}, \pi^{\prime}\right)$ are both Δ-covers, we say that L and L^{\prime} are Δ-isogeneous.

Example 2.2. Let $L=(L, \mathfrak{g}, \mathfrak{h})$ be a Δ-graded Lie algebra with centre $Z(L)$. Then, for any subspace V of $Z(L), L / V=(L / V, \mathfrak{g}+V, \mathfrak{h}+V)$ is a Δ-graded Lie algebra, and the canonical epimorphism $L \longrightarrow L / V$ is a Δ-cover. In particular, L and L / V are Δ-isogeneous.

We will show that if L and L^{\prime} are Δ-isogeneous, then $L / Z(L)$ and $L^{\prime} / Z\left(L^{\prime}\right)$ are Δ isomorphic, i.e., there exists a Δ-isomorphism between them.
Lemma 2.3. Let $\pi: \tilde{L} \longrightarrow L$ be a cover. Then $Z(\tilde{L})=\pi^{-1}(Z(L))$. Hence, if $\omega: L \longrightarrow$ $L / Z(L)$ is the canonical epimorphism, we have $\operatorname{ker}(\omega \circ \pi)=Z(\tilde{L})$.
Proof. For $\tilde{x} \in \tilde{L}$ we have $\tilde{x} \in \pi^{-1}(Z(L)) \Leftrightarrow \pi([\tilde{x}, \tilde{L}])=0 \Leftrightarrow[x, \tilde{L}] \subset \operatorname{ker} \pi$. Since $\operatorname{ker} \pi \subset$ $Z(\tilde{L})$ and \tilde{L} is perfect, it follows that $\tilde{x} \in Z(\tilde{L})$, whence $\pi^{-1}(Z(L)) \subset Z(\tilde{L})$. The other
inclusion is clear. The map $\omega \circ \pi: \tilde{L} \longrightarrow L / Z(L)$ is a cover. Perfectness of L implies that $L / Z(L)$ is centreless, whence $\operatorname{ker}(\omega \circ \pi)=Z(\tilde{L})$.

Corollary 2.4. Suppose that L and L^{\prime} are Δ-isogeneous. Then $L / Z(L)$ and $L^{\prime} / Z\left(L^{\prime}\right)$ are Δ-isomorphic.

Proof. By assumption, there exists a Δ-graded Lie algebra $\tilde{L}=(\tilde{L}, \tilde{\mathfrak{g}}, \tilde{\mathfrak{h}})$ such that $\pi: \tilde{L}=$ $(L, \mathfrak{g}, \mathfrak{h}) \longrightarrow L$ and $\pi^{\prime}: \tilde{L} \longrightarrow L^{\prime}=\left(L^{\prime}, \mathfrak{g}^{\prime}, \mathfrak{h}^{\prime}\right)$ are both Δ-covers. Let $\omega: L \longrightarrow L / Z(L)$ and $\omega^{\prime}: L^{\prime} \longrightarrow L^{\prime} / Z\left(L^{\prime}\right)$ be the canonical epimorphisms. Then, by Lemma 2.3, we have $\operatorname{ker}(\omega \circ \pi)=Z(\tilde{L})=\operatorname{ker}\left(\omega^{\prime} \circ \pi^{\prime}\right)$. Hence there exists the induced isomorphism

$$
\begin{aligned}
\varphi: L / Z(L) & =(L / Z(L), \mathfrak{g}+Z(L), \mathfrak{h}+Z(L)) \\
& \longrightarrow L^{\prime} / Z\left(L^{\prime}\right)=\left(L^{\prime} / Z\left(L^{\prime}\right), \mathfrak{g}^{\prime}+Z\left(L^{\prime}\right), \mathfrak{h}^{\prime}+Z\left(L^{\prime}\right)\right)
\end{aligned}
$$

such that $\varphi \circ \omega \circ \pi=\omega^{\prime} \circ \pi^{\prime}$. In particular, $\varphi(\mathfrak{g}+Z(L))=\varphi \circ \omega \circ \pi(\tilde{\mathfrak{g}})=\omega^{\prime} \circ \pi^{\prime}(\tilde{\mathfrak{g}})=\mathfrak{g}^{\prime}+Z\left(L^{\prime}\right)$ and similarly $\varphi(\mathfrak{h}+Z(L))=\mathfrak{h}^{\prime}+Z\left(L^{\prime}\right)$. Therefore, φ is a Δ-isomorphism.

Now we define new concepts.
Definition 2.5. Let $L=(L, \mathfrak{g}, \mathfrak{h})=\oplus_{\mu \in \Delta \cup\{0\}} L_{\mu}$ be a Δ-graded Lie algebra over F. Let G be an abelian group. We say that L admits a compatible G-grading or simply L is a (Δ, G) graded Lie algebra if $L=\oplus_{g \in G} L^{g}$ is a G-graded Lie algebra such that $\mathfrak{g} \subset L^{0}$. In this case, L^{g} is a \mathfrak{h}-module for all $g \in G$ via the adjoint action. Hence we have $L^{g}=\oplus_{\mu \in \Delta \cup\{0\}} L_{\mu}^{g}$ where $L_{\mu}^{g}=L_{\mu} \cap L^{g}$ (see [6] Proposition 1, p.92). Therefore, $L_{\mu}=\oplus_{g \in G} L_{\mu}^{g}$ and

Remark 2.6. (i) The compatible G-grading is completely determined by L_{μ}^{g} for all $\mu \in \Delta$ and $g \in G$ since $L_{0}^{g}=\sum_{\mu \in \Delta} \sum_{g=h+k}\left[L_{\mu}^{h}, L_{-\mu}^{k}\right]$.
(ii) Let $\operatorname{supp} L_{\mu}:=\left\{g \in G \mid L_{\mu}^{g} \neq(0)\right\}$. Recall supp $L=\left\{g \in G \mid L^{g} \neq(0)\right\}$ as defined in the beginning of $\S 1$. If $g \in \operatorname{supp} L$, then $L_{0}^{g} \neq(0)$ or there exists some $\mu \in \Delta$ such that $L_{\mu}^{g} \neq(0)$. If $L_{\mu}^{g} \neq(0)$, we have $g \in \operatorname{supp} L_{\mu}$. If $L_{0}^{g} \neq(0)$, then $g=h+k \in \operatorname{supp} L_{\mu}+\operatorname{supp} L_{-\mu}$ for some $\mu \in \Delta$ and $h, k \in G$ by (i). Thus since $0 \in \operatorname{supp} L_{-\mu}$, we obtain

$$
\operatorname{supp} L \subset \bigcup_{\mu \in \Delta}\left(\operatorname{supp} L_{\mu}+\operatorname{supp} L_{-\mu}\right)
$$

Definition 2.7. Let $L=(L, \mathfrak{g}, \mathfrak{h})$ be a (Δ, G)-graded Lie algebra with centre $Z(L)$ and let

$$
\left\{h_{\mu} \in \mathfrak{h} \mid \mu \in \Delta\right\}
$$

be the set of coroots. Then L is called predivision if
(pd) for any $\mu \in \Delta$ and any $L_{\mu}^{g} \neq(0)$, there exist $x \in L_{\mu}^{g}$ and $y \in L_{-\mu}^{-g}$ such that $[x, y] \equiv h_{\mu}$ modulo $Z(L)$;
and division if
(d) for any $\mu \in \Delta$ and any $0 \neq x \in L_{\mu}^{g}$, there exists $y \in L_{-\mu}^{-g}$ such that $[x, y] \equiv h_{\mu}$ modulo $Z(L)$.

Note that (d) implies (pd), i.e., 'division' \Longrightarrow 'predivision'. If $\operatorname{dim}_{F} L_{\mu}^{g} \leq 1$ for all $\mu \in \Delta$ and $g \in G$, then two concepts, 'predivision' and 'division', coincide.

Example 2.8. (a) A Δ-graded Lie algebra is a predivision (Δ, G_{0})-graded algebra for the trivial group $G_{0}=\{0\}$.
(b) The core of an extended affine Lie algebra of reduced type Δ with nullity n is a division (Δ, Λ)-graded Lie algebra over \mathbb{C}, where Λ is a free abelian group of rank n. Indeed, it is known that such a core is a Δ-graded Lie algebra over \mathbb{C}, say $L=\oplus_{\mu \in \Delta \cup\{0\}} L_{\mu}$, and each L_{μ} has a decomposition $L_{\mu}=\oplus_{\delta \in \Lambda} L_{\mu}^{\delta}$, where Λ is defined as the group generated by the isotropic roots δ (we use the notation L_{μ}^{δ} instead of $L_{\mu+\delta}$ which is normally used in the theory of extended affine Lie algebras). It turns out that Λ is a lattice of rank n with $\langle\operatorname{supp} L\rangle=\Lambda$ (for details see [2]). Let $L^{\delta}:=\oplus_{\mu \in \Delta \cup\{0\}} L_{\mu}^{\delta}$. Then the grading subalgebra \mathfrak{g} is contained in L^{0} so that $L=\oplus_{\delta \in \Lambda} L^{\delta}$ gives a compatible Λ-grading. Thus L is a (Δ, Λ)-graded Lie algebra.

We recall one of the basic properties of extended affine Lie algebras (see [1]): For any $\mu \in \Delta, \delta \in \Lambda$ and any $0 \neq e_{\mu}^{\delta} \in L_{\mu}^{\delta}$, there exist some $f_{\mu}^{\delta} \in L_{-\mu}^{-\delta}$ and $h_{\mu}^{\delta} \in L_{0}^{0}$ such that $\left\langle e_{\mu}^{\delta}, f_{\mu}^{\delta}, h_{\mu}^{\delta}\right\rangle$ is an $s l_{2}$-triplet, and in particular $\left[e_{\mu}^{\delta}, f_{\mu}^{\delta}\right]=h_{\mu}^{\delta}$.

One can check that $h_{\mu}-h_{\mu}^{\delta} \in Z(L)$ for all coroots $h_{\mu}=h_{\mu}^{0}$ of \mathfrak{g}. Therefore L is a division (Δ, Λ)-graded Lie algebra. We note that $\operatorname{dim}_{\mathbb{C}} L_{\mu}^{\delta} \leq 1$ for all $\mu \in \Delta$ and $\delta \in \Lambda$, which is also one of the basic properties of extended affine Lie algebras.
(c) Let $Z=\oplus_{g \in G} Z_{g}$ be a G-graded commutative associative algebra over F and let $\mathfrak{g}=\mathfrak{h} \oplus\left(\oplus_{\mu \in \Delta} \mathfrak{g}_{\mu}\right)$ be a finite dimensional split simple Lie algebra over F of type Δ with the set $\left\{h_{\mu} \in \mathfrak{h} \mid \mu \in \Delta\right\}$ of coroots. Then $L:=\mathfrak{g} \otimes_{F} Z$ is a (Δ, G)-graded Lie algebra. In fact, $L=\oplus_{\mu \in \Delta \cup\{0\}}\left(\mathfrak{g}_{\mu} \otimes_{F} Z\right)$ for $\mathfrak{g}_{0}=\mathfrak{h}$ is a Δ-graded Lie algebra with grading subalgebra $\mathfrak{g}=\mathfrak{g} \otimes 1$. We put $L^{g}:=\mathfrak{g} \otimes_{F} Z_{g}$ for all $g \in G$. Then $\operatorname{supp} L=\operatorname{supp} Z$ and $L=\oplus_{g \in G} L^{g}$ is a G-graded Lie algebra with $\mathfrak{g} \subset L^{0}$, i.e, the G-grading is compatible. Hence L is a
(Δ, G)-graded Lie algebra. We call the compatible G-grading of $L=\mathfrak{g} \otimes_{F} Z$ the natural compatible G-grading obtained from the G-grading of Z.

Suppose that $Z=\oplus_{g \in G} K \bar{g}$ is a crossed product commutative algebra over F. Let $e \in \mathfrak{g}_{\mu}$ and $f \in \mathfrak{g}_{-\mu}$ such that $[e, f]=h_{\mu}$. Then $e \otimes \bar{g} \in L_{\mu}^{g}, f \otimes \bar{g}^{-1} \in L_{-\mu}^{-g}$ and

$$
\left[e \otimes \bar{g}, f \otimes \bar{g}^{-1}\right]=[e, f] \otimes \bar{g} \bar{g}^{-1}=h_{\mu} \otimes 1=h_{\mu}
$$

for all $g \in G$, and so L is a predivision (Δ, G)-graded Lie algebra over F. Note that $Z(L)=(0)$. Also, if K is a field, then L is a division (Δ, G)-graded Lie algebra.

Suppose that $\tilde{L}=(\tilde{L}, \tilde{\mathfrak{g}}, \tilde{\mathfrak{h}})=\oplus_{g \in G} \tilde{L}^{g}$ is a (Δ, G)-graded Lie algebra and that $\pi: \tilde{L} \longrightarrow L$ is a cover of a Lie algebra L. Then $L=(L, \pi(\tilde{\mathfrak{g}}), \pi(\tilde{\mathfrak{h}}))$ becomes a Δ-graded Lie algebra so that (\tilde{L}, π) is a Δ-cover of L. Moreover, if $\operatorname{ker} \pi$ is G-graded, then L admits the induced compatible G-grading $L=\oplus_{g \in G} \pi\left(\tilde{L}^{g}\right)$. In particular, since the centre $Z(\tilde{L})$ is always G-graded, $\tilde{L} / Z(\tilde{L})$ is a (Δ, G)-graded Lie algebra.
Definition 2.9. Let P be a unital associative algebra over F and let $\mathfrak{g l}_{l+1}(P)$ be the Lie algebra consisting of all $(l+1) \times(l+1)$ matrices over P under the commutator product $(l \geq 1)$. Let $e_{i j}(a) \in \mathfrak{g l}_{l+1}(P)$ whose (i, j)-entry is a and the other entries are all 0 . We define $s l_{l+1}(P)$ as the subalgebra of $\mathfrak{g l}_{l+1}(P)$ generated by $e_{i j}(a)$ for all $a \in P$ and $1 \leq i \neq j \leq l+1$. The centre $Z\left(s l_{l+1}(P)\right)$ of $s l_{l+1}(P)$ consists of $\sum_{i=1}^{l+1} e_{i i}(a)$ for $a \in[P, P] \cap Z(P)$ where $[P, P]$ is the span of all commutators in P and $Z(P)$ is the centre of P. We define $p s l_{l+1}(P)$ as $s l_{l+1}(P) / Z\left(s l_{l+1}(P)\right)$.

It is well-known that $s l_{l+1}(P)$ is an A_{l}-graded Lie algebra (see [3]): Denote $\left\{e_{i j}(b) \mid b \in B\right\}$ by $e_{i j}(B)$ for any subset $B \subset P$. Let

$$
s l_{l+1}(F)=\mathfrak{h} \oplus \bigoplus_{1 \leq i \neq j \leq l+1} e_{i j}(F 1) \subset s l_{l+1}(P),
$$

be the split simple Lie algebra over F of type A_{l} where \mathfrak{h} is the Cartan subalgebra consisting of diagonal matrices of $s l_{l+1}(F)$. Let $\varepsilon_{i}: \mathfrak{h} \longrightarrow F$ be the projection onto the (i, j)-entry for $i=1, \ldots, l+1$, and $\Delta:=\left\{\varepsilon_{i}-\varepsilon_{j} \mid i \neq j\right\}$, which is a root system of type A_{l}. Then

$$
s l_{l+1}(P)=L_{0} \oplus\left(\bigoplus_{\varepsilon_{i}-\varepsilon_{j} \in \Delta} e_{i j}(P)\right)
$$

where $L_{0}=\sum_{\varepsilon_{i}-\varepsilon_{j} \in \Delta}\left[e_{i j}(P), e_{j i}(P)\right]$, is an A_{l}-graded Lie algebra with grading subalgebra $s l_{l+1}(F)$. Let $Z:=Z\left(s l_{l+1}(P)\right)$. We can and will identify $s l_{l+1}(F)+Z$ with $s l_{l+1}(F)$ and $e_{i j}(P)+Z$ with $e_{i j}(P)$, and so

$$
\operatorname{psl}_{l+1}(P)=\left(L_{0} / Z\right) \oplus\left(\bigoplus_{\varepsilon_{i}-\varepsilon_{j} \in \Delta} e_{i j}(P)\right)
$$

is also an A_{l}-graded Lie algebra with the same grading subalgebra $s l_{l+1}(F)$.

Example 2.10. Let $L=s l_{l+1}(P)$ be the A_{l}-graded Lie algebra over F with grading subalgebra $s l_{l+1}(F)$ described above. If $P=\oplus_{g \in G} P_{g}$ is a G-graded algebra, then L admits a compatible G-grading. Indeed, let

$$
L^{g}:=\left\{\sum_{i, j} e_{i j}\left(P_{g}\right) \mid \sum_{i, j} e_{i j}\left(P_{g}\right) \subset L\right\} .
$$

Then $L=\oplus_{g \in G} L^{g}$, and it is a G-graded Lie algebra with $s l_{l+1}(F) \subset L^{0}$. Note that $\operatorname{supp} L \supset \operatorname{supp} P$, and so $\langle\operatorname{supp} L\rangle=G$. Also, $p s l_{l+1}(P)$ admits the induced compatible G-grading. We call the compatible G-grading of L or $p s l_{l+1}(P)$ the natural compatible G-grading obtained from the G-grading of P. This grading is the unique G-grading so that

$$
L_{\varepsilon_{i}-\varepsilon_{j}}^{g}=e_{i j}\left(P_{g}\right)=p s l_{l+1}(P)_{\varepsilon_{i}-\varepsilon_{j}}^{g} \quad \text { for all } \varepsilon_{i}-\varepsilon_{j} \in \Delta \text { and } g \in G
$$

If $P=\oplus_{g \in G} R \bar{g}$ is a crossed product algebra, then

$$
\left[e_{i j}(\bar{g}), e_{j i}\left(\bar{g}^{-1}\right)\right]=e_{i i}(1)-e_{j j}(1)=\left[e_{i j}(1), e_{j i}(1)\right]=h_{\varepsilon_{i}-\varepsilon_{j}}
$$

for all $g \in G$. Thus L and $\operatorname{psl}_{l+1}(P)$ with the natural compatible G-gradings from the G-grading of P are predivision $\left(\mathrm{A}_{l}, G\right)$-graded Lie algebras over F. Also, if R is a division algebra, then the $\left(\mathrm{A}_{l}, G\right)$-graded Lie algebras L and $p s l_{l+1}(P)$ are division.

Lemma 2.11. (i) Let P be a unital associative algebra. Suppose that $l \geq 2$ and that the A_{l} graded Lie algebra psl $_{l+1}(P)$ described above admits a predivision (resp. division) compatible G-grading. Then P is a predivision (resp. division) G-graded algebra, and the G-grading of $p^{\operatorname{sl}} l_{l+1}(P)$ is the natural compatible G-grading obtained from the G-grading of P.
(ii) Let Z be a unital commutative associative algebra. Suppose that the Δ-graded Lie algebra $\mathfrak{g} \otimes_{F} Z$ described in Example 2.8(c) admits a predivision (resp. division) compatible G-grading. Then Z is a predivision (resp. division) G-graded algebra, and the G-grading of $\mathfrak{g} \otimes_{F} Z$ is the natural compatible G-grading obtained from the G-grading of Z.

Proof. (i): By assumption, $p s l_{l+1}(P)=p s l_{l+1}(P)_{0} \oplus\left(\oplus_{\varepsilon_{i}-\varepsilon_{j} \in \Delta} e_{i j}(P)\right)$ admits a predivision (resp. division) compatible G-grading, say

$$
p s l_{l+1}(P)=p s l_{l+1}(P)_{0} \oplus\left(\oplus_{\varepsilon_{i}-\varepsilon_{j} \in \Delta} \oplus_{g \in G} e_{i j}(P)^{g}\right) .
$$

Let

$$
P_{g}^{i j}:=\left\{p \in P \mid e_{i j}(p) \in e_{i j}(P)^{g}\right\} \quad \text { for } i \neq j .
$$

We claim that $P_{g}^{i j}=P_{g}^{r s}$ for all $\varepsilon_{r}-\varepsilon_{s} \in \Delta$.

In general, it is well-known that for any distinct $\alpha, \beta \in \Delta=\mathrm{A}_{l}, l \geq 2$, D or E , there exists a sequence $\alpha_{1}, \ldots, \alpha_{t} \in \Delta$ so that $\alpha_{1}=\alpha, \alpha_{t}=\beta$ and $\alpha_{i+1}-\alpha_{i} \in \Delta$ for $i=1, \ldots, t-1$.

Now, it is enough to show that $P_{g}^{i j} \subset P_{g}^{r s}$. Let $p \in P_{g}^{i j}$. We apply the above for $\alpha=\varepsilon_{i}-\varepsilon_{j}$ and $\beta=\varepsilon_{r}-\varepsilon_{s}$. For $p \in P_{g}^{i j}$,

$$
\left[\because\left[\left[e_{i j}(p), e_{\alpha_{2}-\alpha_{1}}(1)\right], e_{\alpha_{3}-\alpha_{2}}(1)\right], \ldots, e_{\alpha_{t}-\alpha_{t-1}}(1)\right]= \pm e_{\alpha_{t}}(p)= \pm e_{r s}(p) \in e_{r s}(P)^{g}
$$

since $\left[e_{i j}(p), e_{k l}(1)\right]=\delta_{j k} e_{i l}(p)-\delta_{l i} e_{k j}(p)$ and $e_{\alpha_{i+1}-\alpha_{i}}(1) \in L_{\alpha_{i+1}-\alpha_{i}}^{0}$. Hence $p \in P_{g}^{r s}$ and our claim is settled.

Thus one can write $P_{g}=P_{g}^{i j}$ and $P=\oplus_{g \in G} P_{g}$. Since, for $p \in P_{g}$ and $q \in P_{h}(g, h \in G)$,

$$
\left[e_{i j}(p), e_{j k}(q)\right]=e_{i k}(p q) \in e_{i k}(P)^{g+h} \quad \text { for } i \neq k
$$

we have $p q \in P_{g+h}$. Also, one can see that $\operatorname{supp} L \subset \operatorname{supp} P+\operatorname{supp} P$ (see Remark 2.6(ii)), and so $\langle\operatorname{supp} P\rangle \supset\langle\operatorname{supp} L\rangle=G$, whence $\langle\operatorname{supp} P\rangle=G$. Therefore, P is a G-graded algebra. Note that $e_{i j}(P)^{g}=e_{i j}\left(P_{g}\right)$ for all $\varepsilon_{i}-\varepsilon_{j} \in \Delta$ and $g \in G$, and hence the G-grading is natural (see Remark 2.6(i)).

By (pd), for any $\varepsilon_{i}-\varepsilon_{j} \in \Delta$ and any $g \in \operatorname{supp} P$, there exist $e_{i j}(p) \in e_{i j}\left(P_{g}\right)$ and $e_{j i}(q) \in e_{j i}\left(P_{-g}\right)$ such that

$$
\left[e_{i j}(p), e_{j i}(q)\right]=\left[e_{i j}(1), e_{j i}(1)\right]+z \quad \text { for some } z \in Z\left(s l_{l+1}(P)\right)
$$

Hence $e_{i i}(p q)-e_{j j}(q p)=e_{i i}(1)-e_{j j}(1)+\sum_{k=1}^{l+1} e_{k k}(a)$ for some $a \in P$, and so $a=0$ and $p q=q p=1$, i.e., p is invertible. Also, p is invertible in $P \Leftrightarrow p$ is invertible in P^{+}. Therefore, $P=\oplus_{g \in G} P_{g}$ is a predivision G-graded associative algebra. The statement for 'division' can be shown in the same manner.
(ii): Let $Z_{g}:=\left\{z \in Z \mid \mathfrak{g} \otimes z \subset\left(\mathfrak{g} \otimes_{F} Z\right)^{g}\right\}$. Then $Z=\oplus_{g \in G} Z_{g}$ becomes a G-graded algebra. The rest can be shown in the same manner as in (i).
Definition 2.12. Let $\tilde{L}=\oplus_{g \in G} \tilde{L}^{g}$ and $L=\oplus_{g \in G} L^{g}$ be (Δ, G)-graded Lie algebras and suppose that $\pi: \tilde{L} \longrightarrow L$ is a Δ-cover. If $L^{g}=\pi\left(\tilde{L}^{g}\right)$ for all $g \in G$, then $\tilde{L}=(\tilde{L}, \pi)$ is called a (Δ, G)-cover of L. Also, for (Δ, G)-graded Lie algebras L and L^{\prime}, if there exist a (Δ, G)-graded Lie algebra \tilde{L} and maps $\pi: \tilde{L} \longrightarrow L$ and $\pi^{\prime}: \tilde{L} \longrightarrow L^{\prime}$ such that (\tilde{L}, π) and $\left(\tilde{L}, \pi^{\prime}\right)$ are both (Δ, G)-covers, we say that L and L^{\prime} are (Δ, G)-isogeneous.

It is clear using Lemma 2.3 that if \tilde{L} is a (Δ, G)-cover of L, then
\tilde{L} is is predivision (resp. division) $\Longleftrightarrow L$ is predivision (resp. division).
Also, by the proof of Corollary 2.4, if L and L^{\prime} are (Δ, G)-isogeneous, then $L / Z(L)$ and $L^{\prime} / Z\left(L^{\prime}\right)$ are (Δ, G)-isomorphic, i.e., there exists a Δ-isomorphism which is also G-graded between them. In particular, $\tilde{L} / Z(\tilde{L})$ and $L / Z(L)$ above are (Δ, G)-isomorphic.

Proposition 2.13. (i) Let $l \geq 3$. Then a predivision (resp. division) $\left(A_{l}, G\right)$-graded Lie algebra L over F is an $\left(A_{l}, G\right)$-cover of $\operatorname{psl}_{l+1}(P)$ admitting the natural compatible G-grading obtained from the G-grading of a predivision (resp. division) G-graded associative algebra P over F. Hence $L / Z(L)$ and psl $_{l+1}(P)$ are (Δ, G)-isomorphic.
(ii) Let $\Delta=D$ or E and let \mathfrak{g} be a finite dimensional split simple Lie algebra L over F of type Δ. Then a predivision (resp. division) (Δ, G)-graded Lie algebra over F is a (Δ, G) cover of $\mathfrak{g} \otimes_{F} Z$ admitting the natural compatible G-grading obtained from the G-grading of a predivision (resp. division) G-graded commutative associative algebra Z over F. Hence $L / Z(L)$ and $\mathfrak{g} \otimes_{F} Z$ are (Δ, G)-isomorphic.

Proof. For (i), let L be a predivision $\left(\mathrm{A}_{l}, G\right)$-graded Lie algebra over F. Berman and Moody showed in [3] that L is A_{l}-isogeneous to $\left(s l_{l+1}(P), s l_{l+1}(F)\right)$ (the Steinberg Lie algebra $s t_{l+1}(P)$ serves as an A_{l}-cover of L and $s l_{l+1}(P)$). Hence, by Corollary $2.4, L / Z(L)$ is A_{l}-isomorphic to $p s l_{l+1}(P)$. Thus $\left(p s l_{l+1}(P), s l_{l+1}(F)\right)$ admits a compatible G-grading via the A_{l}-isomorphism from the compatible G-grading of $L / Z(L)$ induced by the compatible G-grading of L. Therefore, the statement follows from Lemma 2.11.
(ii): Let L be a predivision (Δ, G)-graded Lie algebra over F. Berman and Moody showed in [3] that L is a Δ-cover of $\mathfrak{g} \otimes_{F} Z$. Thus the statement follows from Lemma 2.11.

In this paper we will classify predivision $\left(\Delta, \mathbb{Z}^{n}\right)$-graded Lie algebras for $\Delta=\mathrm{A}_{l}, l \geq 3$, D or E, up to central extensions. By Proposition 2.13, it remains to classify crossed product algebras $R * \mathbb{Z}^{n}$. We determine such algebras as a generalization of quantum tori. Namely, let $\boldsymbol{q}=\left(q_{i j}\right)$ be an $n \times n$ matrix over F such that

$$
q_{i i}=1 \quad \text { and } \quad q_{j i}=q_{i j}^{-1} .
$$

The quantum torus $F_{\boldsymbol{q}}=F_{\boldsymbol{q}}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ determined by \boldsymbol{q} is defined as the associative algebra over F with $2 n$ generators $t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}$, and relations

$$
t_{i} t_{i}^{-1}=t_{i}^{-1} t_{i}=1 \quad \text { and } \quad t_{j} t_{i}=q_{i j} t_{i} t_{j}
$$

for all $1 \leq i, j \leq n$. Quantum tori are characterized as predivision \mathbb{Z}^{n}-graded associative algebras whose homogeneous spaces are all 1-dimensional (see [4]). Note that $F_{\boldsymbol{q}}$ is commutative $\Longleftrightarrow \boldsymbol{q}=\mathbf{1}$ whose entries are all 1, i.e., $F_{\mathbf{1}}=F\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ is the algebra of Laurent polynomials. Also, a quantum torus is a twisted group algebra $F^{t}\left[\mathbb{Z}^{n}\right]$.

$\S 3$ Classification of $R * \mathbb{Z}^{n}$

Throughout this section F is an arbitrary field and G is an arbitrary group. For a G graded algebra $S=\oplus_{g \in G} S_{g}$ over F in general, we denote by $\operatorname{GrAut}_{F}(S)$ the group of
graded automorphisms of S, i.e.,

$$
\operatorname{GrAut}_{F}(S):=\left\{\sigma \in \operatorname{Aut}_{F}(S) \mid \sigma\left(S_{g}\right)=S_{g} \text { for all } g \in G\right\}
$$

Lemma 3.1. Let $R * G=(R, G, \sigma, \tau)$ be a crossed product algebra over F and $(R * G) * M=$ $(R * G, M, \eta, \xi)$ a crossed product algebra over F for a group M, an action η and a twisting ξ. Suppose that $\eta(M) \subset \operatorname{GrAut}_{F}(R * G)$ and that $\xi(m, l) \in U(R)$ for all $m, l \in M$. Then, $(R * G) * M$ is a crossed product algebra $R *(G \times M)=\left(R,(G \times M), \sigma^{\prime}, \tau^{\prime}\right)$ over F for some action σ^{\prime} and twisting τ^{\prime}.

Proof. We have

$$
(R * G) * M=\oplus_{m \in M}(R * G) \bar{m}=\oplus_{m \in M}\left(\oplus_{g \in G} R \bar{g}\right) \bar{m}=\oplus_{(g, m) \in G \times M} R \overline{g m}
$$

as free R-modules, where $\overline{g m}=\bar{g} \bar{m}$. We define $\eta_{m}=\left.\eta(m)\right|_{R 1}$ an F-automorphism of R for every $m \in M$. Also for $h \in G, \bar{h}$ is a unit in $R * G$ (see 1.6). Since η_{m} is a graded automorphism of $R * G$ by our first assumption, $\eta(m)(\bar{h})=d_{m, h} \bar{h}$ for some $d_{m, h} \in U(R)$. Therefore, for $r \overline{g m} \in R \overline{g m}$ and $s \overline{h l} \in R \overline{h l}$, we have

$$
\begin{aligned}
(r \overline{g m})(s \overline{h l}) & =r \bar{g} \eta(m)(s \bar{h}) \bar{m} \bar{l} \\
& =r \bar{g} \eta_{m}(s) \eta(m)(\bar{h}) \xi(m, l) \overline{m l} \\
& =r \bar{g} \eta_{m}(s) d_{m, h} \bar{h} \xi(m, l) \overline{m l} \\
& =r \bar{g} \eta_{m}(s) d_{m, h} \sigma_{h}(\xi(m, l)) \overline{h m l} \quad \text { (by our second assumption) } \\
& =r \sigma_{g} \eta_{m}(s) \sigma_{g}\left(d_{m, h}\right) \sigma_{g h}(\xi(m, l)) \bar{g} \overline{h m l} \\
& =r \sigma_{g} \eta_{m}(s) \sigma_{g}\left(d_{m, h}\right) \sigma_{g h}(\xi(m, l)) \tau(g, h) \overline{g h} \overline{m l} .
\end{aligned}
$$

Thus we have the action

$$
\sigma^{\prime}: G \times M \longrightarrow \operatorname{Aut}_{F} R \quad \text { by } \quad \sigma_{(g, m)}^{\prime}=\sigma_{g} \eta_{m}
$$

and the twisting $\tau^{\prime}:(G \times M) \times(G \times M) \longrightarrow U(R)$ by

$$
\tau^{\prime}((g, m),(h, l))=\sigma_{g}\left(d_{m, h}\right) \sigma_{g h}(\xi(m, l)) \tau(g, h)
$$

Since the crossed product algebra $(R * G) * M$ is associative, we get

$$
(R * G) * M=R *(G \times M)=\left(R, G \times M, \sigma^{\prime}, \tau^{\prime}\right)
$$

A triple $(R, \boldsymbol{\varphi}, \boldsymbol{q})$ where R is a unital associative algebra over F,

$$
\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)
$$

is an n-tuple of F-automorphisms φ_{i} of R, and $\boldsymbol{q}=\left(q_{i j}\right)$ is an $n \times n$ matrix over R satisfying

$$
\begin{align*}
& q_{i i}=1 \text { for } 1 \leq i \leq n \text { and } q_{j i}^{-1}=q_{i j} \text { for } 1 \leq i<j \leq n, \tag{G1}\\
& \varphi_{j} \varphi_{i}=\mathrm{I}\left(q_{i j}\right) \varphi_{i} \varphi_{j} \text { for } 1 \leq i<j \leq n \tag{G2}\\
& \varphi_{k}\left(q_{i j}\right)=q_{j k} \varphi_{j}\left(q_{i k}\right) q_{i j} \varphi_{i}\left(q_{k j}\right) q_{k i} \text { for } 1 \leq i<j<k \leq n, \tag{G3}
\end{align*}
$$

is called a \mathbb{Z}^{n}-grading triple over F, and a division \mathbb{Z}^{n}-grading triple over F if R is a division algebra. It follows easily from (G1)-(G3) that
these equations hold for all i, j, k satisfying $1 \leq i, j, k \leq n$.
For a \mathbb{Z}^{n}-grading triple, we introduce several notations and prove some identities.

Notations.

$$
\begin{equation*}
\varepsilon_{i}=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{Z}^{n} \tag{N1}
\end{equation*}
$$

i.e., the i-th coordinate is 1 and the others are 0 .

$$
q_{i j}^{(m)}:= \begin{cases}q_{i j} \varphi_{i}\left(q_{i j}\right) \varphi_{i}^{2}\left(q_{i j}\right) \cdots \varphi_{i}^{m-1}\left(q_{i j}\right)=\prod_{l=0}^{m-1} \varphi_{i}^{l}\left(q_{i j}\right), & \text { if } m>0 \tag{N2}\\ 1, & \text { if } m=0 \\ \varphi_{i}^{-1}\left(q_{j i}\right) \varphi_{i}^{-2}\left(q_{j i}\right) \cdots \varphi_{i}^{m}\left(q_{j i}\right)=\prod_{l=-1}^{m} \varphi_{i}^{l}\left(q_{j i}\right), & \text { if } m<0\end{cases}
$$

For $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}^{n}$ and $k=0,1,2, \ldots, n$,

$$
\begin{align*}
\varphi^{(\boldsymbol{\alpha})_{k}}: & := \begin{cases}\mathrm{id}, & \text { if } k=0,1 \\
\varphi_{1}^{\alpha_{1}} \cdots \varphi_{k-1}^{\alpha_{k-1}}, & \text { if } k>1,\end{cases} \tag{N3}\\
& \text { and } \quad \varphi^{\alpha}:=\varphi_{1}^{\alpha_{1}} \cdots \varphi_{n}^{\alpha_{n}} .
\end{align*}
$$

$$
\begin{equation*}
q_{\boldsymbol{\varepsilon}_{1}, \boldsymbol{\alpha}}:=1 \quad \text { and } \quad q_{\varepsilon_{j}, \boldsymbol{\alpha}}:=\prod_{i=1}^{j-1} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i j}^{\left(\alpha_{i}\right)}\right) \quad \text { for } j>1 \tag{N4}
\end{equation*}
$$

$$
\begin{gather*}
q_{\boldsymbol{\varepsilon}_{j}, \boldsymbol{\alpha}}^{(m)}:= \begin{cases}\prod_{l=m-1}^{0} \varphi_{j}^{l}\left(q_{\boldsymbol{\varepsilon}_{j}, \boldsymbol{\alpha}}\right), & \text { if } m>0 \\
1, & \text { if } m=0 \\
\prod_{l=m}^{-1} \varphi_{j}^{l}\left(q_{\varepsilon_{j}, \boldsymbol{\alpha}}^{-1}\right), & \text { if } m<0 .\end{cases} \tag{N5}\\
q_{\boldsymbol{\alpha}, \boldsymbol{\beta}}:=\prod_{j=n}^{1} \varphi^{(\boldsymbol{\alpha})_{j}}\left(q_{\varepsilon_{j}, \boldsymbol{\beta}}^{\left(\alpha_{j}\right)}\right) . \tag{N6}
\end{gather*}
$$

Lemma 3.2. For $m \in \mathbb{Z}$ and $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$, we have

$$
\begin{equation*}
\varphi_{i}^{-m}\left(q_{i j}^{-(m)}\right)=q_{i j}^{(-m)} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \varphi_{j} \varphi_{i}^{m}=\mathrm{I}\left(q_{i j}^{(m)}\right) \varphi_{i}^{m} \varphi_{j}, \tag{2}\\
& \varphi_{j} \varphi^{(\boldsymbol{\alpha})_{i}}=\left\{\begin{array}{l}
\mathrm{I}\left(\prod_{l=1}^{i-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l j}^{\left(\alpha_{l}\right)}\right)\right) \varphi^{(\boldsymbol{\alpha})_{i}} \varphi_{j} \quad \text { for } j \geq i, \\
\mathrm{I}\left(\prod_{l=1}^{j-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l j}^{\left(\alpha_{l}\right)}\right)\right) \varphi^{\left(\boldsymbol{\alpha}+\varepsilon_{j}\right)_{i}} \quad \text { for } j<i,
\end{array}\right. \tag{3}
\end{align*}
$$

$$
\begin{equation*}
q_{i j}^{(m+1)}=q_{i j} \varphi_{i}\left(q_{i j}^{(m)}\right) \quad \text { and } \quad q_{i j}^{-(m+1)}=\varphi_{i}\left(q_{i j}^{-(m)}\right) q_{j i} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\varphi_{k}\left(q_{i j}^{(m)}\right)=q_{j k} \varphi_{j}\left(q_{i k}^{(m)}\right) q_{i j}^{(m)} \varphi_{i}^{m}\left(q_{k j}\right) q_{i k}^{-(m)} . \tag{5}
\end{equation*}
$$

Proof. For (1), we have from (N2),

$$
q_{i j}^{-(m)}= \begin{cases}\varphi_{i}^{m-1}\left(q_{j i}\right) \cdots \varphi_{i}\left(q_{j i}\right) q_{j i}=\prod_{l=m-1}^{1} \varphi_{i}^{l}\left(q_{j i}\right), & \text { if } m>0 \\ 1, & \text { if } m=0 \\ \varphi_{i}^{m}\left(q_{i j}\right) \cdots \varphi_{i}^{-2}\left(q_{i j}\right) \varphi_{i}^{-1}\left(q_{i j}\right)=\prod_{l=m}^{-1} \varphi_{i}^{l}\left(q_{i j}\right), & \text { if } m<0\end{cases}
$$

So we get

$$
\varphi_{i}^{-m}\left(q_{i j}^{-(m)}\right)= \begin{cases}\varphi_{i}^{-1}\left(q_{j i}\right) \cdots \varphi_{i}^{-m}\left(q_{j i}\right)=\prod_{l=-1}^{-m} \varphi_{i}^{l}\left(q_{j i}\right), & \text { if } m>0 \\ 1, & \text { if } m=0 \\ q_{i j} \varphi_{i}\left(q_{i j}\right) \cdots \varphi_{i}^{-m-1}\left(q_{i j}\right)=\prod_{l=1}^{-m-1} \varphi_{i}^{l}\left(q_{i j}\right), & \text { if } m<0\end{cases}
$$

which is exactly $q_{i j}^{(-m)}$.
For (2), the case $m=0$ is clear. Assume that $m>0$. Put $q:=q_{i j}$ for simplicity. Then we have

$$
\begin{aligned}
\varphi_{j} \varphi_{i}^{m} & =\varphi_{j} \varphi_{i}^{m-1} \varphi_{i} \\
& =\mathrm{I}\left(q^{(m-1)}\right) \varphi_{i}^{m-1} \varphi_{j} \varphi_{i} \quad \text { by induction on } m \\
& =\mathrm{I}\left(q^{(m-1)}\right) \varphi_{i}^{m-1} \mathrm{I}(q) \varphi_{i} \varphi_{j} \quad \text { by }(\mathrm{G} 2) \\
& =\mathrm{I}\left(q^{(m-1)}\right) \mathrm{I}\left(\varphi_{i}^{m-1}(q)\right) \varphi_{i}^{m} \varphi_{j} \\
& =\mathrm{I}\left(q^{(m)}\right) \varphi_{i}^{m} \varphi_{j} .
\end{aligned}
$$

Also, $\left(\varphi_{j} \varphi_{i}^{m}\right)^{-1}=\left(\mathrm{I}\left(q_{i j}^{(m)}\right) \varphi_{i}^{m} \varphi_{j}\right)^{-1}$ for $m>0$, and so

$$
\varphi_{i}^{-m} \varphi_{j}^{-1}=\varphi_{j}^{-1} \varphi_{i}^{-m}\left(\mathrm{I}\left(q_{i j}^{-(m)}\right)=\varphi_{j}^{-1} \mathrm{I}\left(\varphi_{i}^{-m}\left(q_{i j}^{-(m)}\right)\right) \varphi_{i}^{-m}=\varphi_{j}^{-1} \mathrm{I}\left(q_{i j}^{(-m)}\right) \varphi_{i}^{-m}\right.
$$

by (1). Hence we get $\varphi_{j} \varphi_{i}^{-m}=\mathrm{I}\left(q_{i j}^{(-m)}\right) \varphi_{i}^{-m} \varphi_{j}$, and (2) holds for all $m \in \mathbb{Z}$.

For (3), when $j \geq i$, using (2), we have

$$
\begin{aligned}
\varphi_{j} \varphi_{i}^{(\alpha)_{i}} & =\varphi_{j} \varphi_{1}^{\alpha_{1}} \cdots \varphi_{i-1}^{\alpha_{i-1}} \\
& =\mathrm{I}\left(q_{1 j}^{\left(\alpha_{1}\right)}\right) \varphi_{1}^{\alpha_{1}} \varphi_{j} \varphi_{2}^{\alpha_{2}} \cdots \varphi_{i-1}^{\alpha_{i-1}} \\
& =\mathrm{I}\left(q_{1 j}^{\left(\alpha_{1}\right)}\right) \varphi_{1}^{\alpha_{1}} \mathrm{I}\left(q_{2 j}^{\left(\alpha_{2}\right)}\right) \varphi_{2}^{\alpha_{2}} \varphi_{j} \varphi_{3}^{\alpha_{3}} \cdots \varphi_{i-1}^{\alpha_{i-1}} \\
& \cdots \cdots \\
& =\mathrm{I}\left(q_{1 j}^{\left(\alpha_{1}\right)}\right) \varphi_{1}^{\alpha_{1}} \mathrm{I}\left(q_{2 j}^{\left(\alpha_{2}\right)}\right) \varphi_{2}^{\alpha_{2}} \mathrm{I}\left(q_{3 j}^{\left(\alpha_{3}\right)}\right) \varphi_{3}^{\alpha_{3}} \cdots \mathrm{I}\left(q_{i-1, j}^{\left(\alpha_{i-1}\right)}\right) \varphi_{i-1}^{\alpha_{i-1}} \varphi_{j} \\
& =\mathrm{I}\left(\prod_{l=1}^{i-1} \varphi^{(\alpha)_{l}}\left(q_{l j}^{\left(\alpha_{l}\right)}\right)\right) \varphi^{(\alpha)_{i}} \varphi_{j} . \quad\left(\text { Note } \varphi^{(\alpha)_{o}}=\operatorname{id} \text { when } i=1\right)
\end{aligned}
$$

When $j<i$, we have

$$
\begin{aligned}
\varphi_{j} \varphi_{i}^{(\boldsymbol{\alpha})_{i}} & =\varphi_{j} \varphi_{1}^{\alpha_{1}} \cdots \varphi_{i-1}^{\alpha_{i-1}} \\
& =\mathrm{I}\left(q_{1 j}^{\left(\alpha_{1}\right)}\right) \varphi_{1}^{\alpha_{1}} \varphi_{j} \varphi_{2}^{\alpha_{2}} \cdots \varphi_{j}^{\alpha_{j}} \cdots \varphi_{i-1}^{\alpha_{i-1}} \\
& \cdots \cdots \\
& =\mathrm{I}\left(q_{1 j}^{\left(\alpha_{1}\right)}\right) \varphi_{1}^{\alpha_{1}} \cdots \mathrm{I}\left(q_{j-1, j}^{\left(\alpha_{j-1}\right)}\right) \varphi_{j-1}^{\alpha_{j-1}} \mathrm{I}\left(q_{j j}^{\left(\alpha_{j}\right)}\right) \varphi_{j}^{\alpha_{j}} \varphi_{j} \cdots \varphi_{i-1}^{\alpha_{i-1}} \\
& =\mathrm{I}\left(q_{1 j}^{\left(\alpha_{1}\right)}\right) \varphi_{1}^{\alpha_{1}} \cdots \mathrm{I}\left(q_{j-1, j}^{\left(\alpha_{j-1}\right)}\right) \varphi_{j-1}^{\alpha_{j-1}} \varphi^{\alpha_{j}+1} \cdots \varphi_{i-1}^{\alpha_{i-1}} \\
& =\mathrm{I}\left(\prod_{l=1}^{j-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l j}^{\left(\alpha_{l}\right)}\right)\right) \varphi^{\left(\alpha+\varepsilon_{j}\right)_{i}} . \quad\left(\operatorname{Note} \varphi^{(\boldsymbol{\alpha})_{0}}=\operatorname{id} \text { when } j=1\right)
\end{aligned}
$$

For the first formula of (4), the case $m=0$ is clear. We put $q:=q_{i j}, p:=q^{-1}$ and $\varphi:=\varphi_{i}$ for simplicity. For $m>0$, we have

$$
\begin{aligned}
q^{(m+1)} & =q \varphi(q) \varphi^{2}(q) \cdots \varphi^{m}(q) \\
& =q \varphi\left(q \varphi(q) \cdots \varphi^{m-1}(q)\right)=q \varphi\left(q^{(m)}\right)
\end{aligned}
$$

For $m=-1$, we have $q^{(-1+1)}=1$, while $q \varphi\left(q^{(-1)}\right)=q \varphi \varphi^{-1}(p)=1$. For $m<-1$, we have

$$
\begin{aligned}
q^{(m+1)} & =\varphi^{-1}(p) \varphi^{-2}(p) \cdots \varphi^{m+1}(p) \\
& =q p \varphi^{-1}(p) \varphi^{-2}(p) \cdots \varphi^{m+1}(p) \\
& =q \varphi\left(\varphi^{-1}(p) \varphi^{-2}(p) \cdots \varphi^{m}(p)\right)=q \varphi\left(q^{(m)}\right) .
\end{aligned}
$$

The second formula follows from the first since $q_{i j}^{-(m+1)}=\left(q_{i j}^{(m+1)}\right)^{-1}$.

For (5), the case $m=0$ is clear. Assume that $m>0$. Then we have

$$
\begin{aligned}
\varphi_{k}\left(q_{i j}^{(m)}\right) & \\
& =\varphi_{k}\left(q_{i j}\right) \varphi_{k} \varphi_{i}\left(q_{i j}^{(m-1)}\right) \quad \text { by }(4) \\
& =\varphi_{k}\left(q_{i j}\right) q_{i k} \varphi_{i} \varphi_{k}\left(q_{i j}^{(m-1)}\right) q_{k i} \quad \text { by }(\mathrm{G} 2) \\
& =q_{j k} \varphi_{j}\left(q_{i k}\right) q_{i j} \varphi_{i}\left(q_{k j}\right) q_{k i} q_{i k} \varphi_{i}\left(q_{j k} \varphi_{j}\left(q_{i k}^{(m-1)}\right) q_{i j}^{(m-1)} \varphi_{i}^{m-1}\left(q_{k j}\right)\left(q_{i k}^{-(m-1)}\right)\right) q_{k i}
\end{aligned}
$$

by (G3) and induction on m

$$
\begin{aligned}
& =q_{j k} \varphi_{j}\left(q_{i k}\right) q_{i j} \varphi_{i} \varphi_{j}\left(q_{i k}^{(m-1)}\right) \varphi_{i}\left(q_{i j}^{(m-1)}\right) \varphi_{i}^{m}\left(q_{k j}\right) \varphi_{i}\left(q_{i k}^{-(m-1)}\right) q_{k i} \\
& =q_{j k} \varphi_{j}\left(q_{i k}\right) q_{i j} q_{j i} \varphi_{j} \varphi_{i}\left(q_{i k}^{(m-1)}\right) q_{i j} \varphi_{i}\left(q_{i j}^{(m-1)}\right) \varphi_{i}^{m}\left(q_{k j}\right) q_{i k}^{-(m)}
\end{aligned}
$$

by (G2) and (3)

$$
\begin{aligned}
& =q_{j k} \varphi_{j}\left(q_{i k}\right) \varphi_{j} \varphi_{i}\left(q_{i k}^{(m-1)}\right) q_{i j}^{(m)} \varphi_{i}^{m}\left(q_{k j}\right) q_{i k}^{-(m)} \quad \text { by (4) } \\
& =q_{j k} \varphi_{j}\left(q_{i k}^{(m)}\right) q_{i j}^{(m)} \varphi_{i}^{m}\left(q_{k j}\right) q_{i k}^{-(m)} \quad \text { by (4). }
\end{aligned}
$$

Also, one has $\left(\varphi_{k}\left(q_{i j}^{(m)}\right)\right)^{-1}=\left(q_{j k} \varphi_{j}\left(q_{i k}^{(m)}\right) q_{i j}^{(m)} \varphi_{i}^{m}\left(q_{k j}\right) q_{i k}^{-(m)}\right)^{-1}$ for $m>0$, and so $\varphi_{k}\left(q_{j i}^{-(m)}\right)=$ $q_{i k}^{(m)} \varphi_{i}^{m}\left(q_{j k}\right) q_{i j}^{-(m)} \varphi_{j}\left(q_{i k}^{-(m)}\right) q_{k j}$. Applying φ_{i}^{-m} in both hands, we get

$$
\begin{aligned}
\varphi_{i}^{-m} \varphi_{k}\left(q_{i j}^{-(m)}\right) & =\varphi_{i}^{-m}\left(q_{i k}^{(m)} \varphi_{i}^{m}\left(q_{j k}\right) q_{i j}^{-(m)} \varphi_{j}\left(q_{i k}^{-(m)}\right) q_{k j}\right) \\
& =\varphi_{i}^{-m}\left(q_{i k}^{(m)}\right) q_{j k} q_{i j}^{(-m)} \varphi_{i}^{-m} \varphi_{j}\left(q_{i k}^{-(m)}\right) \varphi_{i}^{-m}\left(q_{k j}\right) \quad \text { by }(1) .
\end{aligned}
$$

Then, by (1) and (2), we have

$$
I\left(q_{i k}^{-(-m)}\right) \varphi_{k}\left(q_{i j}^{(-m)}\right)=q_{i k}^{-(-m)} q_{j k} q_{i j}^{(-m)} I\left(q_{i j}^{-(-m)}\right) \varphi_{j}\left(q_{i k}^{(-m)}\right) \varphi_{i}^{-m}\left(q_{k j}\right),
$$

and we obtain

$$
\varphi_{k}\left(q_{i j}^{(-m)}\right)=q_{j k} \varphi_{j}\left(q_{i k}^{(-m)}\right) q_{i j}^{(-m)} \varphi_{i}^{-m}\left(q_{k j}\right) q_{i k}^{-(-m)} \quad \text { for } m>0 .
$$

Hence, (5) holds for all $m \in \mathbb{Z}$.
Now we are ready to state our theorem.

Theorem 3.3. Let $(R, \boldsymbol{\varphi}, \boldsymbol{q})$ be a \mathbb{Z}^{n}-grading triple and let $R_{\varphi, \boldsymbol{q}}:=\oplus_{\boldsymbol{\alpha} \in \mathbb{Z}^{n}} R t_{\boldsymbol{\alpha}}$ be a free left R-module with basis $\left\{t_{\boldsymbol{\alpha}} \mid \boldsymbol{\alpha} \in \mathbb{Z}^{n}\right\}$. Then there exists a unique associative multiplication on $R_{\varphi, \boldsymbol{q}}$ such that, for $t_{i}:=t_{\boldsymbol{\varepsilon}_{i}}, i=1, \ldots, n, \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $r \in R$,

$$
\begin{equation*}
t_{\boldsymbol{\alpha}}=t_{1}^{\alpha_{1}} \cdots t_{n}^{\alpha_{n}}, \quad t_{i} t_{i}^{-1}=t_{i}^{-1} t_{i}=1, \quad t_{i} r=\varphi_{i}(r) t_{i} \quad \text { and } \quad t_{j} t_{i}=q_{i j} t_{i} t_{j} \tag{3.4}
\end{equation*}
$$

Moreover, for $r t_{\boldsymbol{\alpha}}, r^{\prime} t_{\boldsymbol{\beta}} \in R_{\boldsymbol{\varphi}, \boldsymbol{q}}$, we have

$$
r t_{\boldsymbol{\alpha}} r^{\prime} t_{\boldsymbol{\beta}}=r \varphi^{\boldsymbol{\alpha}}\left(r^{\prime}\right) q_{\boldsymbol{\alpha}, \boldsymbol{\beta}} t_{\boldsymbol{\alpha}+\boldsymbol{\beta}}
$$

where $\varphi^{\boldsymbol{\alpha}}$ and $q_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$ are defined in (N3) and (N6). In particular, $R_{\varphi, \boldsymbol{q}}$ is a crossed product algebra $R * \mathbb{Z}^{n}$ with

$$
\begin{aligned}
\text { (action) } & \sigma: \mathbb{Z}^{n} \longrightarrow A^{2} t_{F}(R) \quad \text { by } \quad \sigma(\boldsymbol{\alpha})=\varphi^{\boldsymbol{\alpha}} \\
\text { (twisting) } & \tau: \mathbb{Z}^{n} \times \mathbb{Z}^{n} \longrightarrow U(R) \quad \text { by } \quad \tau(\boldsymbol{\alpha}, \boldsymbol{\beta})=q_{\boldsymbol{\alpha}, \boldsymbol{\beta}}
\end{aligned}
$$

Conversely, for any crossed product algebra $R * \mathbb{Z}^{n}$, there exists a \mathbb{Z}^{n}-grading triple $(R, \boldsymbol{\varphi}, \boldsymbol{q})$ such that $R * \mathbb{Z}^{n}=R_{\boldsymbol{\varphi}, \boldsymbol{q}}$.

Proof. We first consider a crossed product algebra $R * \mathbb{Z}$. Let $t:=\overline{1} \in R * \mathbb{Z}$. Then, t^{m} is a unit in $R \bar{m}$ for all $m \in \mathbb{Z}$. Using the diagonal basis change, one can obtain an R-basis $\left\{t^{m} \mid m \in \mathbb{Z}\right\}$. So we have $t^{m} t^{l}=t^{m+l}$ for all $m, l \in \mathbb{Z}$. Hence, $R * \mathbb{Z}=R \mathbb{Z}$ is a skew group algebra. Let ψ be the action of 1, i.e., $t(r 1)=\psi(r) t$ for $r \in R$. (Note that $1=\overline{0}$.) Then the action of m is ψ^{m}, i.e.,

$$
t^{m}(r 1)=\psi^{m}(r) t^{m}
$$

Conversely, it is clear that any F-automorphism ψ of R determines a skew group algebra $R \mathbb{Z}$ by the action $m \mapsto \psi^{m}$ (see Remark 1.3). We denote this $R \mathbb{Z}$ by $R[t ; \psi]$.

Let $R^{(1)}:=R\left[t_{1} ; \psi_{1}\right]$ where $\psi_{1}=\varphi_{1}$. Let ψ_{2} be a graded F-automorphism ψ_{2} of $R^{(1)}$ and $R^{(2)}:=R^{(1)}\left[t_{2} ; \psi_{2}\right]$. Then, by Lemma 3.1, we get $R^{(2)}=(R \mathbb{Z}) \mathbb{Z}=R * \mathbb{Z}^{2}$. Repeating this process n times, one can construct $R * \mathbb{Z}^{n}$ inductively. Namely, for a crossed product algebra $R^{(k-1)}=R * \mathbb{Z}^{k-1}$, if we specify an F-graded automorphism ψ_{k} of $R^{(k-1)}$, then

$$
R^{(k)}:=R^{(k-1)}\left[t_{k} ; \psi_{k}\right]=R * \mathbb{Z}^{k}
$$

and we obtain $R^{(n)}=R * \mathbb{Z}^{n}$. Thus, our task is to specify ψ_{k} on $R^{(k-1)}$ and to show that ψ_{k} is a graded F-automorphism where $k \geq 2$. We note that

$$
\left\{t_{1}^{\alpha_{1}} \cdots t_{k-1}^{\alpha_{k-1}} \left\lvert\, \begin{array}{c}
\left.\left(\alpha_{1}, \ldots, \alpha_{k-1}\right) \in \mathbb{Z}^{k-1}\right\} \\
18
\end{array}\right.\right.
$$

is a basis of the free R-module $R^{(k-1)}$. For convenience, we put

$$
t^{(\boldsymbol{\alpha})_{k}}=t_{1}^{\alpha_{1}} \cdots t_{k-1}^{\alpha_{k-1}}
$$

and define an F-linear transformation ψ_{k} on $R^{(k-1)}$ by

$$
\psi_{k}\left(r t^{(\boldsymbol{\alpha})_{k}}\right)=\varphi_{k}(r)\left[\prod_{i=1}^{k-1} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\right] t^{(\boldsymbol{\alpha})_{k}} \quad \text { for } \quad r \in R,
$$

which is clearly graded. If $\psi_{k}\left(r t^{(\boldsymbol{\alpha})_{k}}\right)=0$, then $\varphi_{k}(r)=0$, and hence $r=0$, and so ψ_{k} is injective. Since

$$
\psi_{k}\left(\varphi_{k}^{-1}\left(r\left[\prod_{i=1}^{k-1} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\right]^{-1}\right) t^{(\boldsymbol{\alpha})_{k}}\right)=r t^{(\boldsymbol{\alpha})_{k}}
$$

ψ_{k} is surjective. Therefore, ψ_{k} is an F-linear graded isomorphism on $R^{(k-1)}$. So it remains to prove that ψ_{k} is a homomorphism. For this purpose, we use a well-known fact.
3.5. Let A and B be unital associative algebras over F and f a F-linear map from A into B. Let $\left\{t_{i}\right\}_{i \in I}$ be a generating set of the F-algebra A. Then, f is a homomorphism if and only if $f\left(t_{i} y\right)=f\left(t_{i}\right) f(y)$ for all $i \in I$ and $y \in A$. Moreover, if $\left\{t_{i}^{ \pm 1}\right\}_{i \in I}$ is a generating set of A, then f is a homomorphism if and only if $f\left(t_{i} y\right)=f\left(t_{i}\right) f(y)$ and $f\left(t_{i}^{-1}\right)=f\left(t_{i}\right)^{-1}$ for all $i \in I$ and $y \in A$.

We have a generating set $R \cup\left\{t_{1}^{ \pm 1}, \ldots, t_{k-1}^{ \pm 1}\right\}$ of $R^{(k-1)}$ over F, and

$$
\begin{aligned}
\psi_{k}\left(t_{j}^{-1}\right) & =q_{j k}^{(-1)} t_{j}^{-1}=\varphi_{j}^{-1}\left(q_{k j}\right) t_{j}^{-1} \\
& =\left(t_{j} \varphi_{j}^{-1}\left(q_{j k}\right)\right)^{-1}=\left(q_{j k} t_{j}\right)^{-1}=\psi_{k}\left(t_{j}\right)^{-1}
\end{aligned}
$$

So, by 3.5 , we only need to show that, for all $r, r^{\prime} \in R$ and $1 \leq j \leq k-1$,

$$
\begin{align*}
& \psi_{k}\left(r r^{\prime} t^{(\boldsymbol{\alpha})_{k}}\right)=\psi_{k}(r) \psi_{k}\left(r^{\prime} t^{(\boldsymbol{\alpha})_{k}}\right), \tag{A}\\
& \psi_{k}\left(t_{j} r t^{(\boldsymbol{\alpha})_{k}}\right)=\psi_{k}\left(t_{j}\right) \psi_{k}\left(r t^{(\boldsymbol{\alpha})_{k}}\right) . \tag{B}
\end{align*}
$$

For (A), we have

$$
\begin{aligned}
& \psi_{k}\left(r r^{\prime} t^{(\boldsymbol{\alpha})_{k}}\right)=\varphi_{k}\left(r r^{\prime}\right) \prod_{i=1}^{k-1} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right) t^{(\boldsymbol{\alpha})_{k}} \\
&=\varphi_{k}(r) \varphi_{k}\left(r^{\prime}\right) \prod_{i=1}^{k-1} \varphi^{(\boldsymbol{\alpha})_{i}}\left(d_{i k}^{\left(\alpha_{i}\right)}\right) t^{(\boldsymbol{\alpha})_{k}} \\
&=\psi_{k}(r) \psi_{k}\left(r^{\prime} t^{(\boldsymbol{\alpha})_{k}}\right) . \\
& 19
\end{aligned}
$$

For (B), we first note that there is the embedding of $R^{(j)}$ into $R^{(k-1)}$ for $1 \leq j \leq k-1$, and so

$$
t_{j} t^{(\boldsymbol{\alpha})_{j}}=\psi_{j}\left(t^{(\boldsymbol{\alpha})_{j}}\right) t_{j}=\left[\prod_{i=1}^{j-1} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i j}^{\left(\alpha_{i}\right)}\right)\right] t^{(\boldsymbol{\alpha})_{j}} t_{j} .
$$

Thus we have

$$
\begin{aligned}
\psi_{k}\left(t_{j} r t^{(\boldsymbol{\alpha})_{k}}\right) & =\psi_{k}\left(\varphi_{j}(r) t_{j} t^{(\boldsymbol{\alpha})_{k}}\right) \\
& =\psi_{k}\left(\varphi_{j}(r) \psi_{j}\left(t^{(\boldsymbol{\alpha})_{j}}\right) t_{j}^{\alpha_{j}+1} \cdots t_{k-1}^{\alpha_{k-1}}\right) \\
& =\psi_{k}\left(\varphi_{j}(r)\left[\prod_{i=1}^{j-1} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i j}^{\left(\alpha_{i}\right)}\right)\right] t^{\left(\boldsymbol{\alpha}+\boldsymbol{\varepsilon}_{j}\right)_{k}}\right) \\
& =\varphi_{k} \varphi_{j}(r)\left[\prod_{i=1}^{j-1} \varphi_{k} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i j}^{\left(\alpha_{i}\right)}\right)\right]\left[\prod_{i=1}^{k-1} \varphi^{\left(\boldsymbol{\alpha}+\boldsymbol{\varepsilon}_{j}\right)_{i}}\left(q_{i k}^{\left(\alpha_{i}+\delta_{i j}\right)}\right)\right] t^{\left(\boldsymbol{\alpha}+\boldsymbol{\varepsilon}_{j}\right)_{k}} \\
: & =A B C t^{\left(\boldsymbol{\alpha}+\boldsymbol{\varepsilon}_{j}\right)_{k}},
\end{aligned}
$$

where $A=\varphi_{k} \varphi_{j}(r), B=\prod_{i=1}^{j-1} \varphi_{k} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i j}^{\left(\alpha_{i}\right)}\right)$ and $C=\prod_{i=1}^{k-1} \varphi^{\left(\boldsymbol{\alpha}+\varepsilon_{j}\right)_{i}}\left(q_{i k}^{\left(\alpha_{i}+\delta_{i j}\right)}\right)$. First of all, we have

$$
A=\varphi_{k} \varphi_{j}(r)=q_{j k} \varphi_{j} \varphi_{k}(r) q_{k j} \quad \text { by (G2). }
$$

Secondly, by Lemma 3.2(3) and (5), we have

$$
\begin{aligned}
& \varphi_{k} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i j}^{\left(\alpha_{i}\right)}\right) \\
& =\left[\prod_{l=1}^{i-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l k}^{\left(\alpha_{l}\right)}\right)\right] \varphi^{(\boldsymbol{\alpha})_{i}} \varphi_{k}\left(q_{i j}^{\left(\alpha_{i}\right)}\right)\left[\prod_{l=1}^{i-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(d_{l k}^{\left(\alpha_{l}\right)}\right)\right]^{-1} \\
& =\left[\prod_{l=1}^{i-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l k}^{\left(\alpha_{l}\right)}\right)\right] \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{j k} \varphi_{j}\left(q_{i k}^{\left(\alpha_{i}\right)}\right) q_{i j}^{\left(\alpha_{i}\right)} \varphi_{i}^{\alpha_{i}}\left(q_{k j}\right) q_{i k}^{-\left(\alpha_{i}\right)}\right)\left[\prod_{l=1}^{i-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l k}^{\left(\alpha_{l}\right)}\right)\right]^{-1} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{k i}^{-\left(\alpha_{i}\right)}\right)\left[\prod_{l=1}^{i-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l k}^{\left(\alpha_{l}\right)}\right)\right]^{-1} & =\left[\prod_{l=1}^{i} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l k}^{\left(\alpha_{l}\right)}\right)\right]^{-1} \\
\text { and } \quad \varphi^{(\boldsymbol{\alpha})_{i}} \varphi_{i}^{\alpha_{i}}\left(q_{k j}\right) & =\varphi^{(\boldsymbol{\alpha})_{i+1}}\left(q_{k j}\right) .
\end{aligned}
$$

So we have

$$
\begin{aligned}
& \left(\varphi_{k} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i j}^{\left(\alpha_{i}\right)}\right)\right) \\
& =\left[\prod_{l=1}^{i-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l k}^{\left(\alpha_{l}\right)}\right)\right] \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{j k}\right) \varphi^{(\boldsymbol{\alpha})_{i}}\left(\varphi_{j}\left(q_{i k}^{\left(\alpha_{i}\right)}\right) q_{i j}^{\left(\alpha_{i}\right)}\right) \varphi^{(\boldsymbol{\alpha})_{i+1}}\left(q_{k j}\right)\left[\prod_{l=1}^{i} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l k}^{\left(\alpha_{l}\right)}\right)\right]^{-1} .
\end{aligned}
$$

Thus, after cancellations, we get

$$
\begin{aligned}
B & =\prod_{i=1}^{j-1} \varphi_{k} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i j}^{\left(\alpha_{i}\right)}\right) \\
& =q_{j k}\left[\prod_{i=1}^{j-1} \varphi^{(\boldsymbol{\alpha})_{i}}\left(\varphi_{j}\left(q_{i k}^{\left(\alpha_{i}\right)}\right) q_{i j}^{\left(\alpha_{i}\right)}\right)\right] \varphi^{(\boldsymbol{\alpha})_{j}}\left(q_{k j}\right)\left[\prod_{i=1}^{j-1} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\right]^{-1}
\end{aligned}
$$

Thirdly, we have

$$
\begin{aligned}
C & =\prod_{i=1}^{k-1} \varphi^{\left(\boldsymbol{\alpha}+\boldsymbol{\varepsilon}_{j}\right)_{i}}\left(q_{i k}^{\left(\alpha_{i}+\delta_{i j}\right)}\right) \\
& =\left[\prod_{i=1}^{j-1} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\right] \varphi^{(\boldsymbol{\alpha})_{j}}\left(q_{j k}^{\left(\alpha_{j}+1\right)}\right) \prod_{i=j+1}^{k-1} \varphi^{\left(\boldsymbol{\alpha}+\varepsilon_{j}\right)_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right) \\
& =\left[\prod_{i=1}^{j-1} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\right] \varphi^{(\boldsymbol{\alpha})_{j}}\left(q_{j k} \varphi_{j}\left(q_{j k}^{\left(\alpha_{j}\right)}\right)\right) \prod_{i=j+1}^{k-1} \varphi^{\left(\boldsymbol{\alpha}+\varepsilon_{j}\right)_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right),
\end{aligned}
$$

by Lemma 3.2(4). Consequently, after cancellations and noting that $q_{i i}=1$, we obtain

$$
\begin{aligned}
\psi_{k}\left(t_{j} r t^{(\boldsymbol{\alpha})_{k}}\right) & =A B C t^{\left(\boldsymbol{\alpha}+\varepsilon_{j}\right)_{k}} \\
(*) & =q_{j k} \varphi_{j} \varphi_{k}(r)\left[\prod_{i=1}^{j} \varphi^{(\boldsymbol{\alpha})_{i}}\left(\varphi_{j}\left(q_{i k}^{\left(\alpha_{i}\right)}\right) q_{i j}^{\left(\alpha_{i}\right)}\right)\right]\left[\prod_{i=j+1}^{k-1} \varphi^{\left(\boldsymbol{\alpha}+\varepsilon_{j}\right)_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\right] t^{\left(\boldsymbol{\alpha}+\varepsilon_{j}\right)_{k}} .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\psi_{k}\left(t_{j}\right) \psi_{k}\left(r t^{(\boldsymbol{\alpha})_{k}}\right) & =q_{j k} t_{j} \varphi_{k}(r)\left[\prod_{i=1}^{k-1} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\right] t^{(\boldsymbol{\alpha})_{k}} \\
& =q_{j k} \varphi_{j}\left[\varphi_{k}(r) \prod_{i=1}^{k-1} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\right] t_{j} t^{(\boldsymbol{\alpha})_{k}} \\
& =q_{j k} \varphi_{j} \varphi_{k}(r)\left[\prod_{i=1}^{k-1} \varphi_{j} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\right]\left[\prod_{l=1}^{j-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l j}^{\left(\alpha_{l}\right)}\right)\right] t^{\left(\boldsymbol{\alpha}+\boldsymbol{\varepsilon}_{j}\right)_{k}} .
\end{aligned}
$$

We rewrite $D:=\prod_{i=1}^{k-1} \varphi_{j} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)$. To find an expression for D, we use the following lemma:

Lemma 3.6. Let A be a unital associative algebra, $a_{0}=1, a_{1}, \ldots, a_{k} \in A$ units and $b_{1}, \ldots, b_{k} \in A$. Then we have

$$
\begin{align*}
\prod_{i=1}^{k}\left(I\left(\prod_{l=1}^{i-1} a_{l}\right)\left(b_{i}\right)\right) & =\left(\prod_{i=1}^{k} b_{i} a_{i}\right) b_{k}\left(\prod_{l=1}^{k-1} a_{l}\right)^{-1} \tag{1}\\
\prod_{i=j+1}^{k}\left(I\left(\prod_{l=1}^{j-1} a_{l}\right)\left(b_{i}\right)\right) & =I\left(\prod_{l=1}^{j-1} a_{l}\right)\left(\prod_{i=j+1}^{k} b_{i}\right) \tag{2}
\end{align*}
$$

Proof. (1) is straightforward and (2) is obvious.
By Lemma 3.2(3), we have, for $i \leq j$,

$$
\varphi_{j} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)=\mathrm{I}\left(\prod_{l=1}^{i-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l j}^{\left(\alpha_{l}\right)}\right)\right)\left(\varphi^{(\boldsymbol{\alpha})_{i}} \varphi_{j}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\right)
$$

So, by Lemma 3.6(1), we get using $q_{j j}=1$ that

$$
\prod_{i=1}^{j} \varphi_{j} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)=\left[\prod_{i=1}^{j} \varphi^{(\boldsymbol{\alpha})_{i}}\left(\varphi_{j}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\left(q_{i j}^{\left(\alpha_{i}\right)}\right)\right)\right]\left[\prod_{l=1}^{j-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l j}^{\left(\alpha_{l}\right)}\right)\right]^{-1}
$$

By Lemma 3.2(3), we have, for $j<i$,

$$
\varphi_{j} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)=\mathrm{I}\left(\prod_{l=1}^{j-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l j}^{\left(\alpha_{l}\right)}\right)\right)\left(\varphi^{\left(\boldsymbol{\alpha}+\boldsymbol{\varepsilon}_{j}\right)_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\right)
$$

So, by Lemma 3.6(2), we get

$$
\prod_{i=j+1}^{k-1} \varphi_{j} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)=\mathrm{I}\left(\prod_{l=1}^{j-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l j}^{\left(\alpha_{l}\right)}\right)\right)\left(\prod_{i=j+1}^{k-1} \varphi^{\left(\boldsymbol{\alpha}+\boldsymbol{\varepsilon}_{j}\right)_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\right)
$$

Hence we get

$$
\begin{aligned}
D & =\prod_{i=1}^{k-1} \varphi_{j} \varphi^{(\boldsymbol{\alpha})_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right) \\
& =\left[\prod_{i=1}^{j} \varphi^{(\boldsymbol{\alpha})_{i}}\left(\varphi_{j}\left(q_{i k}^{\left(\alpha_{i}\right)}\right) q_{i j}^{\left(\alpha_{i}\right)}\right)\right]\left[\prod_{i=j+1}^{k-1} \varphi_{22}^{\left(\boldsymbol{\alpha}+\varepsilon_{j}\right)_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\right]\left[\prod_{l=1}^{j-1} \varphi^{(\boldsymbol{\alpha})_{l}}\left(q_{l j}^{\left(\alpha_{l}\right)}\right)\right]^{-1} .
\end{aligned}
$$

Consequently, we obtain

$$
\begin{aligned}
& \psi_{k}\left(t_{j}\right) \psi_{k}\left(r t^{(\boldsymbol{\alpha})_{k}}\right) \\
& \quad=q_{j k} \varphi_{j} \varphi_{k}(r)\left[\prod_{i=1}^{j} \varphi^{(\boldsymbol{\alpha})_{i}}\left(\varphi_{j}\left(q_{i k}^{\left(\alpha_{i}\right)}\right) q_{i j}^{\left(\alpha_{i}\right)}\right)\right]\left[\prod_{i=j+1}^{k-1} \varphi^{\left(\boldsymbol{\alpha}+\boldsymbol{\varepsilon}_{j}\right)_{i}}\left(q_{i k}^{\left(\alpha_{i}\right)}\right)\right] t^{\left(\boldsymbol{\alpha}+\boldsymbol{\varepsilon}_{j}\right)_{k}},
\end{aligned}
$$

which is exactly $(*)$. Hence we have shown (B) and constructed a crossed product algebra $R * \mathbb{Z}^{k}=R^{(k)}$ for $k=1, \ldots, n$ from $(R, \boldsymbol{\varphi}, \boldsymbol{q})$.

Let us put $R_{\boldsymbol{\varphi}, \boldsymbol{q}}:=R^{(n)}=\oplus_{\boldsymbol{\alpha} \in \mathbb{Z}^{n}} R t_{\boldsymbol{\alpha}}$ where $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$ and $t_{\boldsymbol{\alpha}}=t_{1}^{\alpha_{1}} \cdots t_{n}^{\alpha_{n}}$. Since $\left.\psi_{k}\right|_{R}=\varphi_{k}$ for $k=1, \ldots, n$, we have $t_{i} r=\varphi_{i}(r) t_{i}$. Also, we have $t_{j} t_{i}=\psi_{j}\left(t_{i}\right) t_{j}=$ $q_{i j} t_{i} t_{j}$ for $1 \leq i<j \leq n$, and so $t_{j} t_{i}=q_{i j} t_{i} t_{j}$ for all $1 \leq i, j \leq n$. Hence, our $R_{\varphi, q}$ satisfies (3.4). The uniqueness of the multiplication on $R_{\boldsymbol{\varphi}, \boldsymbol{q}}$ is clear since $R \cup\left\{t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right\}$ is a generating set of $R_{\varphi, \boldsymbol{q}}$.

Now, one can easily check that $\psi_{j}^{\alpha_{j}}\left(t^{(\boldsymbol{\beta})_{j}}\right)=q_{\boldsymbol{\varepsilon}_{j}, \boldsymbol{\beta}}^{\left(\alpha_{j}\right)} t^{(\boldsymbol{\beta})_{j}}$. So for $r t_{\boldsymbol{\alpha}}, r^{\prime} t_{\boldsymbol{\beta}} \in R_{\boldsymbol{\varphi}, \boldsymbol{q}}$, we get

$$
\begin{aligned}
r t_{\boldsymbol{\alpha}} r^{\prime} t_{\boldsymbol{\beta}} & =r \varphi^{\boldsymbol{\alpha}}\left(r^{\prime}\right) t_{\boldsymbol{\alpha}} t_{\boldsymbol{\beta}} \\
& =r \varphi^{\boldsymbol{\alpha}}\left(r^{\prime}\right) t^{(\boldsymbol{\alpha})_{n}} t_{n}^{\alpha_{n}} t^{(\boldsymbol{\beta})_{n}} t_{n}^{\beta_{n}} \\
& =r \varphi^{\boldsymbol{\alpha}}\left(r^{\prime}\right) t^{(\boldsymbol{\alpha})_{n}} \psi_{n}^{\alpha_{n}}\left(t^{(\boldsymbol{\beta})_{n}}\right) t_{n}^{\alpha_{n}+\beta_{n}} \\
& =r \varphi^{\boldsymbol{\alpha}}\left(r^{\prime}\right) t^{(\boldsymbol{\alpha})_{n}} q_{\varepsilon_{n}, \boldsymbol{\beta}}^{\left(\alpha_{n}\right)} t^{(\boldsymbol{\beta})_{n}} t_{n}^{\alpha_{n}+\beta_{n}} \\
& =r \varphi^{\boldsymbol{\alpha}}\left(r^{\prime}\right) \varphi^{(\boldsymbol{\alpha})_{n}}\left(q_{\boldsymbol{\varepsilon}_{n}, \boldsymbol{\beta}}^{\left(\alpha_{n}\right)}\right) t^{(\boldsymbol{\alpha})_{n}} t^{(\boldsymbol{\beta})_{n}} t_{n}^{\alpha_{n}+\beta_{n}} \\
& \cdots \cdots \\
& =r \varphi^{\boldsymbol{\alpha}}\left(r^{\prime}\right) \varphi^{(\boldsymbol{\alpha})_{n}}\left(q_{\boldsymbol{\varepsilon}_{n}, \boldsymbol{\beta}}^{\left(\alpha_{n}\right)}\right) \cdots \varphi^{(\boldsymbol{\alpha})_{2}}\left(q_{\boldsymbol{\varepsilon}_{2}, \boldsymbol{\beta}}^{\left(\alpha_{2}\right)}\right) t_{1}^{\alpha_{1}+\beta_{1}} \cdots t_{n}^{\alpha_{n}+\beta_{n}} \\
& =r \varphi^{\boldsymbol{\alpha}}\left(r^{\prime}\right) q_{\boldsymbol{\alpha}, \boldsymbol{\beta}} t_{\boldsymbol{\alpha}+\boldsymbol{\beta}} .
\end{aligned}
$$

Conversely, for any crossed product algebra $R * \mathbb{Z}^{n}=\left(R, \mathbb{Z}^{n}, \tau, \sigma\right)=\oplus_{\boldsymbol{\alpha} \in \mathbb{Z}^{n}} R \overline{\boldsymbol{\alpha}}$, we take a new R-basis $\left\{t_{\boldsymbol{\alpha}} \mid \boldsymbol{\alpha} \in \mathbb{Z}^{n}\right\}$ of $R * \mathbb{Z}^{n}$ where $t_{\boldsymbol{\alpha}}=\overline{\boldsymbol{\varepsilon}}_{1}{ }^{\alpha_{1}} \cdots \overline{\boldsymbol{\varepsilon}}_{n}{ }^{\alpha_{n}}$. We set $q_{i j}:=\tau\left(\varepsilon_{j}, \boldsymbol{\varepsilon}_{i}\right)$ for $1 \leq i \leq j \leq n, q_{j i}:=q_{i j}^{-1}$ and $\varphi_{i}:=\sigma_{\varepsilon_{i}}$. Note that $\tau\left(\varepsilon_{i}, \boldsymbol{\varepsilon}_{j}\right)=1$ for $i \leq j$. Then one can check that the triple $(R, \boldsymbol{\varphi}, \boldsymbol{q})$ is a \mathbb{Z}^{n}-grading triple:
(G1) is clear. Let $t_{i}:=\bar{\varepsilon}_{i}$ for $i=1, \ldots, n$. Then, for $i \leq j$ and $r \in R$, we have $t_{j} t_{i} r=$ $\varphi_{j} \varphi_{i}(r) t_{j} t_{i}=\varphi_{j} \varphi_{i}(r) q_{i j} t_{i} t_{j}$ and $t_{j} t_{i} r=q_{i j} t_{i} t_{j} r=q_{i j} \varphi_{i} \varphi_{j}(r) t_{i} t_{j}$. Hence, $\varphi_{j} \varphi_{i}(r) q_{i j}=$ $q_{i j} \varphi_{i} \varphi_{j}(r)$, i.e., (G2) holds. For $i \leq j \leq k$, we have $t_{k} t_{j} t_{i}=t_{k} q_{i j} t_{i} t_{j}=\varphi_{k}\left(q_{i j}\right) q_{i k} t_{i} t_{k} t_{j}=$ $\varphi_{k}\left(q_{i j}\right) q_{i k} \varphi_{i}\left(q_{j k}\right) t_{i} t_{j} t_{k}$ and $t_{k} t_{j} t_{i}=q_{j k} t_{j} t_{k} t_{i}=q_{j k} \varphi_{j}\left(q_{i k}\right) t_{j} t_{i} t_{k}=q_{j k} \varphi_{j}\left(q_{i k}\right) q_{i j} t_{i} t_{j} t_{k}$. Hence, $\varphi_{k}\left(q_{i j}\right) q_{i k} \varphi_{i}\left(q_{j k}\right)=q_{j k} \varphi_{j}\left(q_{i k}\right) q_{i j}$, i.e., (G3) holds.

Finally, it is clear that $R * \mathbb{Z}^{n}=\oplus_{\boldsymbol{\alpha} \in \mathbb{Z}^{n}} R t_{\boldsymbol{\alpha}}$ satisfies (3.4). Therefore, we obtain $R * \mathbb{Z}^{n}=$ $R_{\varphi, q}$.

Thus the following is clear:

Corollary 3.7. Let $(D, \boldsymbol{\varphi}, \boldsymbol{q})$ be a division \mathbb{Z}^{n}-grading triple. Then, $D_{\boldsymbol{\varphi}, \boldsymbol{q}}$ is a division \mathbb{Z}^{n}-graded algebra. Conversely, for any division \mathbb{Z}^{n}-graded algebra A, there exists a division \mathbb{Z}^{n}-grading triple $(D, \boldsymbol{\varphi}, \boldsymbol{q})$ such that $A=D_{\boldsymbol{\varphi}, \boldsymbol{q}}$.

Remark. What we have shown in Theorem 3.3 can be written in the following way:
Let $B:=\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ and $C:=\left\{\left(\varepsilon_{j}, \varepsilon_{i}\right) \mid 1 \leq i<j \leq n\right\}$. Suppose that maps

$$
\sigma: B \longrightarrow \operatorname{Aut}_{F}(R) \quad \text { and } \quad \tau: C \longrightarrow U(R)
$$

satisfy
(a) $\quad \sigma_{\varepsilon_{j}} \sigma_{\varepsilon_{i}}=\mathrm{I}\left(\tau\left(\varepsilon_{j}, \varepsilon_{i}\right)\right) \sigma_{\varepsilon_{i}} \sigma_{\varepsilon_{j}} \quad$ and

$$
\begin{equation*}
\sigma_{\boldsymbol{\varepsilon}_{k}}\left(\tau\left(\boldsymbol{\varepsilon}_{j}, \boldsymbol{\varepsilon}_{i}\right)\right) \tau\left(\varepsilon_{k}, \boldsymbol{\varepsilon}_{i}\right) \sigma_{\varepsilon_{i}}\left(\tau\left(\varepsilon_{k}, \boldsymbol{\varepsilon}_{j}\right)\right)=\tau\left(\varepsilon_{k}, \boldsymbol{\varepsilon}_{j}\right) \sigma_{\varepsilon_{j}}\left(\tau\left(\varepsilon_{k}, \boldsymbol{\varepsilon}_{i}\right)\right) \tau\left(\boldsymbol{\varepsilon}_{j}, \boldsymbol{\varepsilon}_{i}\right) \tag{b}
\end{equation*}
$$

for all $1 \leq i<j<k \leq n$. Then there exist unique action $\tilde{\sigma}: \mathbb{Z}^{n} \longrightarrow \operatorname{Aut}_{F}(R)$ and twisting $\tilde{\tau}: \mathbb{Z}^{n} \times \mathbb{Z}^{n} \longrightarrow U(R)$ such that $\left.\tilde{\sigma}\right|_{B}=\sigma,\left.\tilde{\tau}\right|_{C}=\tau$ and

$$
\begin{equation*}
\tilde{\tau}\left(\alpha_{1} \varepsilon_{1}+\cdots+\alpha_{i} \varepsilon_{i}, \alpha_{j} \varepsilon_{j}+\cdots+\alpha_{n} \varepsilon_{n}\right)=1 \quad \text { for all } 1 \leq i \leq j \leq n \tag{c}
\end{equation*}
$$

Conversely, for any crossed product algebra $R * \mathbb{Z}^{n}$, we can use the diagonal basis change so that the action and twisting satisfy (a), (b) and (c).

In a certain situation, the condition (G3) for a \mathbb{Z}^{n}-grading triple is not needed.
Lemma 3.8. Let R be a unital associative algebra over $F, \varphi=\left(I\left(d_{1}\right), \ldots, I\left(d_{n}\right)\right)$ an n tuple of inner automorphisms φ_{i} of R for some $d_{1}, \ldots, d_{n} \in U(R)$ and $\boldsymbol{q}=\left(q_{i j}\right)$ an $n \times n$ matrix over F. Suppose that a triple $(R, \boldsymbol{\varphi}, \boldsymbol{q})$ satisfies (G1) and (G2). Then, $(R, \boldsymbol{\varphi}, \boldsymbol{q})$ is a \mathbb{Z}^{n}-grading triple.

Proof. We only need to check (G3). By (G1) and (G2), we have, for all $1 \leq i, j \leq n$, $I\left(d_{j}\right) I\left(d_{i}\right)=I\left(q_{i j}\right) I\left(d_{i}\right) I\left(d_{j}\right)$. So for all $r \in R, d_{j} d_{i} r d_{i}^{-1} d_{j}^{-1}=q_{i j} d_{i} d_{j} r d_{j}^{-1} d_{i}^{-1} q_{j i}$ and hence $r d_{i}^{-1} d_{j}^{-1} q_{i j} d_{i} d_{j}=d_{i}^{-1} d_{j}^{-1} q_{i j} d_{i} d_{j} r$, i.e., $d_{i}^{-1} d_{j}^{-1} q_{i j} d_{i} d_{j}=: c_{i j}$ is in the centre of R. Note that $c_{j i}^{-1}=c_{i j}$. Thus we have

$$
q_{i j}=c_{i j}\left[d_{j}, d_{i}\right]
$$

for all i, j, where $\left[d_{j}, d_{i}\right]=d_{j}^{-1} d_{i}^{-1} d_{j} d_{i}$. Using this identity, we get (G3): for all $1 \leq i<j<$ $k \leq n$,

$$
\begin{aligned}
& q_{j k} \varphi_{j}\left(q_{i k}\right) q_{i j} \varphi_{i}\left(q_{k j}\right) q_{k i} \\
= & c_{j k}\left[d_{k}, d_{j}\right] d_{j} c_{i k}\left[d_{k}, d_{i}\right] d_{j}^{-1} c_{i j}\left[d_{j}, d_{i}\right] d_{i} c_{k j}\left[d_{j}, d_{k}\right] d_{i}^{-1} c_{k i}\left[d_{i}, d_{k}\right] \\
= & d_{k} c_{i j}\left[d_{j}, d_{i}\right] d_{k}^{-1}=\varphi_{k}\left(q_{i j}\right) .
\end{aligned}
$$

By this lemma, if R is a finite dimensional central simple associative algebra, the defining identities of a \mathbb{Z}^{n}-grading triple are just (G1) and (G2).

Remark 3.9. (1) For a \mathbb{Z}^{n}-grading triple $(R, \boldsymbol{\varphi}, \boldsymbol{q})$, if $\boldsymbol{\varphi}=\mathbf{1}:=(\mathrm{id}, \ldots$, id), then the crossed product algebra $R_{1, \boldsymbol{q}}$ has the trivial action by Theorem 3.3. So, $R_{1, \boldsymbol{q}}=R^{t}\left[\mathbb{Z}^{n}\right]$ is a twisted group algebra.
(2) For a \mathbb{Z}^{n}-grading triple $(R, \boldsymbol{\varphi}, \boldsymbol{q})$, if $\boldsymbol{q}=\mathbf{1}_{n}=\mathbf{1}:=\left(\begin{array}{ccc}1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1\end{array}\right)$, then a crossed product algebra $R_{\varphi, 1}$ has the trivial twisting by Theorem 3.3. So, $R_{\varphi, 1}=R \mathbb{Z}^{n}$ is a skew group algebra.
(3) By (G2), $(R, \boldsymbol{\varphi}, \mathbf{1})$ is a \mathbb{Z}^{n}-grading triple if and only if

$$
\begin{equation*}
\varphi_{j} \varphi_{i}=\varphi_{i} \varphi_{j} \quad \text { for all } i, j \tag{*}
\end{equation*}
$$

Finally, we give some examples.
Example. (1) Let $F_{\boldsymbol{q}}$ be an arbitrary quantum torus and R an arbitrary associative algebra. Then it is easy to see that $R \otimes_{F} F_{\boldsymbol{q}}$ is a predivision \mathbb{Z}^{n}-graded associative algebra (division \mathbb{Z}^{n}-graded if R is a division algebra) and is isomorphic to $R_{\mathbf{1}, \boldsymbol{q}}$. Note also if R is a field, then this example becomes a quantum torus over R. Conversely, for a division \mathbb{Z}^{n}-grading triple $(D, \boldsymbol{\varphi}, \boldsymbol{q})$, if $\boldsymbol{\varphi}=\mathbf{1}$, then $I\left(q_{i j}\right)=\mathrm{id}$ for all $q_{i j}$, by (G2). Hence $q_{i j}$ is in the centre of D, say K, and we can show that $D_{1, \boldsymbol{q}} \cong D \otimes_{K} K_{\boldsymbol{q}}$. Therefore, $D_{\varphi, q}$ is a tensor product with D and some quantum torus if and only if $\varphi=\mathbf{1}$.
(2) Let $Q=\langle\boldsymbol{i}, \boldsymbol{j}\rangle$ be a quaternion algebra over a field, where \boldsymbol{i} and \boldsymbol{j} are the standard generators, $\boldsymbol{\varphi}=\boldsymbol{\varphi}_{3}=(\mathrm{I}(\boldsymbol{i}), \mathrm{I}(\boldsymbol{j}), \mathrm{I}(\boldsymbol{i j}))$ and $\mathbf{1}=\mathbf{1}_{3}$. Then one can easily check $(*)$ in Remark 3.9(3), and hence $Q_{\varphi, 1}$ is a predivision \mathbb{Z}^{3}-graded associative algebra.
(3) Let $K=\mathbb{Q}\left(\zeta_{5}\right)$ be a cyclotomic extension of \mathbb{Q} (the field of rational numbers) where $\zeta:=\zeta_{5}$ is a primitive 5 th root of unity, and φ the automorphism of K defined by $\varphi(\zeta)=\zeta^{2}$. Let $\varphi=\left(\varphi, \varphi^{2}, \varphi^{3}\right)$ and

$$
\boldsymbol{q}=\left(\begin{array}{ccc}
1 & \zeta & \zeta^{2} \\
\zeta^{-1} & 1 & \zeta^{-1} \\
\zeta^{3} & \zeta & 1
\end{array}\right)
$$

Then one can easily check that $(K, \boldsymbol{\varphi}, \boldsymbol{q})$ is a division \mathbb{Z}^{3}-grading triple, and hence $K_{\varphi, \boldsymbol{q}}$ is a division \mathbb{Z}^{3}-graded associative algebra over \mathbb{Q}.
(4) Let $\mathbb{H}=\langle\boldsymbol{i}, \boldsymbol{j}\rangle$ be Hamilton's quaternion over \mathbb{R} (the field of real numbers), i.e., the unique quaternion division algebra over \mathbb{R}. Put $\boldsymbol{k}:=\boldsymbol{i j}$. Let $\boldsymbol{\varphi}=\left(\mathrm{I}\left(d_{1}\right), \mathrm{I}\left(d_{2}\right), \mathrm{I}\left(d_{3}\right)\right)$ where
$d_{1}=1+\boldsymbol{i}, d_{2}=1+\boldsymbol{j}$ and $d_{3}=1+\boldsymbol{k}$. We put $q_{i j}=2\left[d_{j}, d_{i}\right]$ for $1 \leq i<j \leq 3, q_{j i}=q_{i j}^{-1}$ and $q_{i i}=1$. Then, ($\left.\mathbb{H}, \boldsymbol{\varphi}, \boldsymbol{q}\right)$ satisfies (G1) and (G2), and

$$
\boldsymbol{q}=\left(\begin{array}{ccc}
1 & 1-\boldsymbol{i}+\boldsymbol{j}-\boldsymbol{k} & 1-\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k} \\
(1-\boldsymbol{i}+\boldsymbol{j}-\boldsymbol{k})^{-1} & 1 & 1-\boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k} \\
(1-\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k})^{-1} & (1-\boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k})^{-1} & 1
\end{array}\right) .
$$

By Lemma 3.8, this is a division \mathbb{Z}^{3}-grading triple and hence $\mathbb{H}_{\varphi, q}$ is a division \mathbb{Z}^{3}-graded associative algebra over \mathbb{R}.

$\S 4$ Conclusion

By 1.8, Example 2.8(c), Example 2.10, Proposition 2.13, Theorem 3.3 and Corollary 3.7, one can summarize our results as follows:

Corollary. (i) Any predivision (resp. division) $\left(A_{l}, \mathbb{Z}^{n}\right)$-graded Lie algebra over F for $l \geq 3$ is an $\left(A_{l}, \mathbb{Z}^{n}\right)$-cover of $p s l_{l+1}\left(R_{\boldsymbol{\varphi}, \boldsymbol{q}}\right)$ for some (resp. division) \mathbb{Z}^{n}-grading triple $(R, \boldsymbol{\varphi}, \boldsymbol{q})$ over F. Conversely, any $\operatorname{psl}_{l+1}\left(R_{\varphi, q}\right)$ for $l \geq 1$ is a predivision (resp. division) $\left(A_{l}, \mathbb{Z}^{n}\right)$-graded Lie algebra over F.
(ii) Any predivision (resp. division) $\left(\Delta, \mathbb{Z}^{n}\right)$-graded Lie algebra over F for $\Delta=D$ or E is $a\left(\Delta, \mathbb{Z}^{n}\right)$-cover of $\mathfrak{g} \otimes_{F} K\left[z_{1}^{ \pm}, \ldots, z_{n}^{ \pm}\right]$where \mathfrak{g} is a finite dimensional split simple Lie algebra over F of type D or E and K is a unital commutative associative algebra over F (resp. K is a field extension of F). Conversely, for any finite dimensional split simple Lie algebra \mathfrak{g} over F of any type $\Delta, \mathfrak{g} \otimes_{F} K\left[z_{1}^{ \pm}, \ldots, z_{n}^{ \pm}\right]$is a predivision (resp. division) $\left(\Delta, \mathbb{Z}^{n}\right)$-graded Lie algebra over F.

ACKNOWLEDGMENTS

The result in $\S 3$ is part of my Ph.D thesis, written at the University of Ottawa. I would like to thank my supervisor, Professor Erhard Neher, for his encouragement and suggestions.

REFERENCES

[1] B. Allison, S. Azam, S. Berman, Y. Gao and A. Pianzola, Extended affine Lie algebras and their root systems, Mem. Amer. Math. Soc. vol. 126, no. 603, Amer. Math. Soc., Providence, RI, 1997.
[2] B. Allison and Y. Gao, The root system and the core of an extended affine Lie algebra, (to appear).
[3] S. Berman and R.V. Moody, Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy, Invent. Math. 108 (1992), 323-347.
[4] S. Berman, Y. Gao and Y. Krylyuk, Quantum tori and the structure of elliptic quasisimple Lie algebras, J. Funct. Anal. 135 (1996), 339-389.
[5] G. Benkart and E. Zelmanov, Lie algebras graded by finite root systems and intersection matrix algebras, Invent. Math. 126 (1996), 1-45.
[6] R.V. Moody and A. Pianzola, Lie algebras with triangular decomposition, John Wiley, New York, 1995.
[7] E. Neher, Lie algebras graded by 3-graded root systems, Amer. J. Math. 118 (1996), 439-491.
[8] D. S. Passman, Infinite crossed products, Academic press, San Diego, 1989.
[9] Y. Yoshii, The coordinate algebra of extended affine Lie algebras of type A_{1}, (submitted).

