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Abstract

Lie algebras graded by a finite irreducible reduced root system ∆ will be generalized to
predivision (∆, G)-graded Lie algebras for an abelian group G. In this paper such algebras
are classified, up to central extensions, when ∆ = Al for l ≥ 3, D or E, and G = Zn.

Introduction

The concept of a Lie algebra over a field F of characteristic 0 graded by a finite irreducible
reduced root system ∆ or a ∆-graded Lie algebra was introduced by Berman and Moody
[3]. It is a Lie algebra L together with a finite dimensional split simple Lie algebra g, a split
Cartan subalgebra h of g and the root system ∆, so that g has the root space decomposition
g = h⊕

(
⊕µ∈∆ gµ

)
with h = g0, satisfying the following three conditions:

(i) L contains g as a subalgebra;
(ii) L = ⊕µ∈∆∪{0} Lµ, where Lµ = {x ∈ L | [h, x] = µ(h)x for all h ∈ h}; and

(iii) L0 =
∑
µ∈∆ [Lµ, L−µ].

The subalgebra g is called the grading subalgebra of L.
Berman and Moody classified ∆-graded Lie algebras, up to central extensions, when ∆

has type Al, l ≥ 2, D or E in [3], and then Benkart and Zelmanov completed the classification
for the other types in [5]. (In [7], using the connection to Jordan pairs, ∆-graded Lie algebras
were classified, where ∆ 6= E8, F4 or G2. The results in [7] hold for root systems ∆ of infinite
rank, as well as for Lie algebras over rings.)
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Let L = ⊕µ∈∆∪{0} Lµ be a ∆-graded Lie algebra over F and let G be an abelian group.
We say that L admits a compatible G-grading or simply L is a (∆, G)-graded Lie algebra if
L = ⊕g∈G Lg is a G-graded Lie algebra such that g ⊂ L0. Then we have

L =
⊕

µ∈∆∪{0}

⊕
g∈G

Lgµ,

where Lgµ = Lµ ∩ Lg (see Definition 2.5). Let Z(L) be the centre of L and let

{hµ ∈ h | µ ∈ ∆}

be the set of coroots. Then L is called a division (∆, G)-graded Lie algebra if for any µ ∈ ∆
and any 0 6= x ∈ Lgµ, there exists y ∈ L−g−µ such that [x, y] ≡ hµ modulo Z(L).

Let us explain the case ∆ = Al for l ≥ 3 in order to describe our motivation of this paper.
By [3], an Al-graded Lie algebra covers psll+1(A) for some unital associative algebra A (see
Definition 2.9). Then Berman, Gao and Krylyuk showed in [4] that the core of an extended
affine Lie algebra of type Al for l ≥ 3 is an Al-graded Lie algebra and covers sll+1(Cq) where
Cq = Cq[t±1 , . . . , t

±
n ] is a certain Zn-graded associative algebra, called a quantum torus over

C (see §2 below). We will see that L = sll+1(Cq) is a division (Al,Zn)-graded Lie algebra
over C so that L = ⊕µ∈∆∪{0} ⊕α∈Zn Lαµ . Moreover, L satisfies

(∗) dimC Lαµ = 1 for all µ ∈ ∆ and α ∈ Zn.

Our goal is to describe division (Al,Zn)-graded Lie algebras without assuming (∗). This
generalizes the core of an extended affine Lie algebra of type Al (see Example 2.8(c)). One
of the main results of the paper, which is contained in Proposition 2.13 is the following:

Result 1. Let l ≥ 3. Then any division (Al, G)-graded Lie algebra covers psll+1(P ) where
P is a division G-graded associative algebra.

For a group G, a divisionG-graded algebra is defined as aG-graded algebra whose nonzero
homogeneous elements are all invertible. A division G-graded associative algebra over a field
F can be considered as a crossed product algebra D ∗G for an associative division algebra
D over F (see §1). Our next goal is to describe D ∗ Zn. For this purpose, we introduce the
following definition: A triple (D,ϕ, q) is called a division Zn-grading triple over F if

(1) D is an associative division algebra over F ;
(2) ϕ = (ϕ1, . . . , ϕn) is an n-tuple of F -automorphisms ϕi of D; and
(3) q = (qij) is an n× n matrix over D satisfying, for all 1 ≤ i, j, k ≤ n,

qii = 1 and q−1
ji = qij ,

ϕjϕi = I(qij)ϕiϕj ,

ϕk(qij) = qjkϕj(qik)qijϕi(qkj)qki,
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where I(qij) is the inner automorphism of D determined by qij , i.e.,

I(qij)(d) = qijdq
−1
ij for d ∈ D.

We will show that any D∗Zn can be constructed from a division Zn-grading triple (D,ϕ, q).
Let us briefly explain how this works. First we consider the simplest example of D ∗ Zn,

namely, the ring D[t±1
1 , . . . , t±1

n ] of Laurent polynomials over D in n-variables. Note that
D[t±1

1 , . . . , t±1
n ] = ⊕α∈Zn Dtα is a Zn-graded algebra, where tα = tα1

1 · · · tαnn for α =
(α1, . . . , αn) ∈ Zn, and the multiplication rule is determined by

tid = dti and tjti = titj for all d ∈ D and all i, j.

Then one sees that D ∗ Zn has the same Zn-grading as in D[t±1
1 , . . . , t±1

n ], i.e., D ∗ Zn =
⊕α∈Zn Dtα as a D-vector space. It is easily seen that the multiplication rule in D ∗ Zn

determines a division Zn-grading triple (D,ϕ, q) as follows:

(∗∗) tid = ϕi(d)ti and tjti = qijtitj , for all 1 ≤ i, j ≤ n,

as the defining relations in the quantum torus Fq = Fq[t±1
1 , . . . , t±1

n ] for q = (qij).
Conversely, for a division Zn-grading triple (D,ϕ, q), let Dϕ,q = Dϕ,q[t±1

1 , . . . , t±1
n ] be the

same Zn-graded D-vector space as D[t±1
1 , . . . , t±1

n ] above. We will show that the relations
(∗∗) determine an associative multiplication on Dϕ,q. Thus we will get the following:

Result 2. For any division Zn-grading triple (D,ϕ, q), there exists a crossed product Dϕ,q =
Dϕ,q[t±1

1 , . . . , t±1
n ] such that Dϕ,q = ⊕α∈Zn Dtα has the same Zn-grading as D[t±1

1 , . . . , t±1
n ]

above, and the multiplication rule is determined by (∗∗). Conversely, any crossed product
D ∗ Zn is isomorphic to Dϕ,q for some ϕ and q (see Theorem 3.3 for more precise state-
ments).

Note that if D = F , then ϕ = 1 = (id, . . . , id) and F1,q = Fq is the quantum torus.
Consequently, one gets that any division (Al,Zn)-graded Lie algebra for l ≥ 3 covers

psll+1(Dϕ,q). We will also classify division (∆,Zn)-graded Lie algebras when ∆ = D or E,
which is simpler than the case A. Moreover, our concept of “division” can be generalized to
“predivision” (see Definition 2.7). Results 1 and 2 above will be proved in this more general
set-up.

The organization of the paper is as follows. In §1 we review basic concepts of graded
algebras and crossed product algebras. In §2 we prove some properties of (∆, G)-graded
Lie algebras. Then predivision or division (∆, G)-graded Lie algebras are defined. After
describing some examples of them, we classify predivision (∆, G)-graded Lie algebras for
∆ = Al (l ≥ 3), D and E types. In §3 we classify crossed product algebras R ∗ Zn. Finally
in §4 we give a summary of our results.
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§1 Basic Concepts

For any group G and any G-graded algebra L = ⊕g∈G Lg, we denote

suppL := {g ∈ G | Lg 6= (0)}.

Then we have L = ⊕g∈G′ Lg where G′ = 〈suppL〉 is the subgroup of G generated by suppL.
Because of this, we will in the following always assume

(1.1) G = 〈suppL〉.

Whenever a class of algebras has a notion of invertibility, one can make the following
definition:

Definition 1.2. Let G be a group. A G-graded algebra P = ⊕g∈G Pg is called a predivision
G-graded algebra if Pg contains an invertible element for all g ∈ suppP . Also, P is called a
division G-graded algebra if all nonzero homogeneous elements are invertible.

One can easily check that if P is a predivisionG-graded associative algebra, then suppP =
G and P is strongly graded, i.e., PgPh = Pgh for all g, h ∈ G. This is not true if P is a
Jordan algebra (see [9]). Predivision G-graded associative algebras are realized as crossed
product algebras, which we recall here:

Definition 1.3. Let R be a unital associative algebra over a field F and G a group. Let
R ∗ G be the free left R-module with basis G = {g | g ∈ G}, a copy of G. Define a
multiplication on R ∗G by linear extension of

(rg)(sh) = rσg(s)τ(g, h)gh,

for r, s ∈ R and g, h ∈ G, where

(action) σ : G −→ AutF (R), the group of F -automorphisms of R,

(twisting) τ : G×G −→ U(R), the group of units of R,

are arbitrary maps and σg := σ(g). It is easily seen that R∗G is an algebra over F . R∗G =
(R,G, σ, τ) is called a crossed product algebra over F if the multiplication is associative. If
there is no action or twisting, that is, if σg = id and τ(g, h) = 1 for all g, h ∈ G, then
R ∗G = R[G] is the ordinary group algebra. If the action is trivial, then R ∗G =: Rt[G] is
called a twisted group algebra. Finally, if the twisting is trivial, then R ∗G =: RG is called
a skew group algebra.
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Remark 1.4. If a crossed product algebra R ∗G is commutative, then the action is clearly
trivial, and so R ∗G = Rt[G].

The following lemma characterizes σ and τ (see [8], Lemma 1.1 p.2). We denote by I(d)
the inner automorphism determined by d ∈ U(R), i.e., I(d)(r) = drd−1 for r ∈ R.

1.5. The associativity of R ∗G is equivalent to the following two conditions: for all g, h, k ∈
G,

(i) σgσh = I
(
τ(g, h)

)
σgh,

(ii) σg
(
τ(h, k)

)
τ(g, hk) = τ(g, h)τ(gh, k).

Remark 1.6. If R is commutative, then the action σ : G −→ AutF (R) becomes a group
homomorphism by condition (i) in 1.5. So the action is really a “group action” in usual
sense. Also, for a skew group algebra RG, the action becomes a group homomorphism for
the same reason. Conversely, any group action G −→ AutF (R) defines a skew group algebra
RG.

If d : G −→ U(R) assigns to each element g ∈ G a unit dg, then G̃ = {dgg | g ∈ G} yields
another R-basis for R ∗G so that R ∗G is a crossed product algebra for the new basis. One
calls this a diagonal change of basis ([8], p.3). Any crossed product algebra has an identity
element. It is of the form 1 = ue for some unit u in R where e is the identity element of
G ([8], Exercise 2 p.9). We can and will assume that 1 = e, via a diagonal change of basis,
and so τ(g, e) = τ(e, g) = 1 for all g ∈ G. The embedding of R into R ∗G is then given by
r 7→ re. Also, we have ([8], p.3)

(1.7) rg is invertible if and only if r ∈ U(R).

Now, it is clear that a crossed product algebra R ∗ G = ⊕g∈G Rg is a predivision G-
graded associative algebra. Conversely, suppose that A = ⊕g∈G Ag is a predivision G-graded
associative algebra over F . Then we have A = ⊕g∈G Rxg where R = Ae and an invertible
element xg ∈ Ag, which exists since A is predivision graded and suppA = G. Moreover, for
h ∈ G, we have xgxh = xgxh(xgh)−1xgh. So we can put τ(g, h) := xgxh(xgh)−1 ∈ U(R).
Then we have xgxh = τ(g, h)xgh. Also, let I(xg) be the inner automorphism determined by
xg and let σg := I(xg) |R. Then, σg is clearly an F -automorphism of R and for r, r′ ∈ R,

(rxg)(r′xh) = r(xgr′x−1
g )xgxh = rσg(r′)xgxh = rσg(r′)τ(g, h)xgh.

Hence A is a crossed product algebra R ∗ G determined by these σ and τ . So the two
concepts, a crossed product algebra R ∗ G and a predivision G-graded associative algebra,
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coincide (see [8], Exercise 2 p.18). In particular, a division G-graded associative algebra is
a crossed product algebra R ∗G where R is a division algebra.

By Remark 1.4, a predivision G-graded commutative associative algebra Z = ⊕g∈G Zg

(G is necessarily abelian) is a twisted group algebra Kt[G] where K := Ze. Moreover (see
[8], Exercise 6 p.10):

1.8. If the abelian group G is free, then Z is a group algebra K[G]. In particular, when
G = Zn, Z is the algebra K[z±1

1 , . . . , z±1
n ] of Laurent polynomials for invertible elements

zi ∈ Zεi , i = 1, . . . , n, where {ε1, . . . , εn} is a basis of Zn.

§2 Predivision (∆, G)-graded Lie algebras

In this section F is a field of characteristic 0 and ∆ is a finite irreducible reduced root
system. The concept of a ∆-graded Lie algebra L = ⊕µ∈∆∪{0} Lµ over F as a triple (L, g, h)
has been defined in the introduction. When no confusion is likely to arise we will use the
abbreviation L for (L, g, h). Also, we note that the centre Z(L) of L is contained in L0.

A homomorphism (resp. an isomorphism) ϕ : L −→ L′ of ∆-graded Lie algebras L =
(L, g, h) and L′ = (L′, g′, h′), which have the same type ∆, is called a ∆-homomorphism
(resp. a ∆-isomorphism) if ϕ(g) = g′ and ϕ(h) = h′ (cf. Definition 1.20 in [3]). Then
one can check that ϕ(Lα) ⊂ L′α for all α ∈ ∆, and so ϕ(L0) ⊂ L′0. In other words, a
∆-homomorphism is graded.

Recall that a cover L̃ = (L̃, π) of a Lie algebra L is an epimorphism π : L̃ −→ L of Lie
algebras so that L̃ is perfect, i.e., L̃ = [L̃, L̃], and kerπ is contained in the centre of L̃.

Definition 2.1. Let L̃ and L be ∆-graded Lie algebras. If π : L̃ −→ L is a cover and a
∆-homomorphism, L̃ = (L̃, π) is called a ∆-cover of L. Also, for ∆-graded Lie algebras L
and L′, if there exist a ∆-graded Lie algebra L̃ and maps π : L̃ −→ L and π′ : L̃ −→ L′ such
that (L̃, π) and (L̃, π′) are both ∆-covers, we say that L and L′ are ∆-isogeneous.

Example 2.2. Let L = (L, g, h) be a ∆-graded Lie algebra with centre Z(L). Then, for any
subspace V of Z(L), L/V = (L/V, g+V, h+V ) is a ∆-graded Lie algebra, and the canonical
epimorphism L −→ L/V is a ∆-cover. In particular, L and L/V are ∆-isogeneous.

We will show that if L and L′ are ∆-isogeneous, then L/Z(L) and L′/Z(L′) are ∆-
isomorphic, i.e., there exists a ∆-isomorphism between them.

Lemma 2.3. Let π : L̃ −→ L be a cover. Then Z(L̃) = π−1
(
Z(L)

)
. Hence, if ω : L −→

L/Z(L) is the canonical epimorphism, we have ker(ω ◦ π) = Z(L̃).

Proof. For x̃ ∈ L̃ we have x̃ ∈ π−1
(
Z(L)

)
⇔ π

(
[x̃, L̃]

)
= 0 ⇔ [x, L̃] ⊂ kerπ. Since kerπ ⊂

Z(L̃) and L̃ is perfect, it follows that x̃ ∈ Z(L̃), whence π−1
(
Z(L)

)
⊂ Z(L̃). The other
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inclusion is clear. The map ω ◦ π : L̃ −→ L/Z(L) is a cover. Perfectness of L implies that
L/Z(L) is centreless, whence ker(ω ◦ π) = Z(L̃). �

Corollary 2.4. Suppose that L and L′ are ∆-isogeneous. Then L/Z(L) and L′/Z(L′) are
∆-isomorphic.

Proof. By assumption, there exists a ∆-graded Lie algebra L̃ = (L̃, g̃, h̃) such that π : L̃ =
(L, g, h) −→ L and π′ : L̃ −→ L′ = (L′, g′, h′) are both ∆-covers. Let ω : L −→ L/Z(L)
and ω′ : L′ −→ L′/Z(L′) be the canonical epimorphisms. Then, by Lemma 2.3, we have
ker(ω ◦ π) = Z(L̃) = ker(ω′ ◦ π′). Hence there exists the induced isomorphism

ϕ : L/Z(L) =
(
L/Z(L), g + Z(L), h + Z(L)

)
−→L′/Z(L′) =

(
L′/Z(L′), g′ + Z(L′), h′ + Z(L′)

)
such that ϕ◦ω◦π = ω′◦π′. In particular, ϕ

(
g+Z(L)

)
= ϕ◦ω◦π(g̃) = ω′◦π′(g̃) = g′+Z(L′)

and similarly ϕ
(
h + Z(L)

)
= h′ + Z(L′). Therefore, ϕ is a ∆-isomorphism. �

Now we define new concepts.

Definition 2.5. Let L = (L, g, h) = ⊕µ∈∆∪{0} Lµ be a ∆-graded Lie algebra over F . Let G
be an abelian group. We say that L admits a compatible G-grading or simply L is a (∆, G)-
graded Lie algebra if L = ⊕g∈G Lg is a G-graded Lie algebra such that g ⊂ L0. In this case,
Lg is a h-module for all g ∈ G via the adjoint action. Hence we have Lg = ⊕µ∈∆∪{0} L

g
µ

where Lgµ = Lµ ∩ Lg (see [6] Proposition 1, p.92). Therefore, Lµ = ⊕g∈G Lgµ and

L =
⊕

µ∈∆∪{0}

⊕
g∈G

Lgµ.

Remark 2.6. (i) The compatible G-grading is completely determined by Lgµ for all µ ∈ ∆
and g ∈ G since Lg0 =

∑
µ∈∆

∑
g=h+k [Lhµ, L

k
−µ].

(ii) Let suppLµ := {g ∈ G | Lgµ 6= (0)}. Recall suppL = {g ∈ G | Lg 6= (0)} as defined
in the beginning of §1. If g ∈ suppL, then Lg0 6= (0) or there exists some µ ∈ ∆ such that
Lgµ 6= (0). If Lgµ 6= (0), we have g ∈ suppLµ. If Lg0 6= (0), then g = h+k ∈ suppLµ+suppL−µ
for some µ ∈ ∆ and h, k ∈ G by (i). Thus since 0 ∈ suppL−µ, we obtain

suppL ⊂
⋃
µ∈∆

(suppLµ + suppL−µ).
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Definition 2.7. Let L = (L, g, h) be a (∆, G)-graded Lie algebra with centre Z(L) and let

{hµ ∈ h | µ ∈ ∆}

be the set of coroots. Then L is called predivision if

(pd) for any µ ∈ ∆ and any Lgµ 6= (0), there exist x ∈ Lgµ and y ∈ L−g−µ such that
[x, y] ≡ hµ modulo Z(L);

and division if

(d) for any µ ∈ ∆ and any 0 6= x ∈ Lgµ, there exists y ∈ L−g−µ such that [x, y] ≡ hµ

modulo Z(L).

Note that (d) implies (pd), i.e., ‘division’ =⇒ ‘predivision’. If dimF L
g
µ ≤ 1 for all µ ∈ ∆

and g ∈ G, then two concepts, ‘predivision’ and ‘division’, coincide.

Example 2.8. (a) A ∆-graded Lie algebra is a predivision (∆, G0)-graded algebra for the
trivial group G0 = {0}.

(b) The core of an extended affine Lie algebra of reduced type ∆ with nullity n is a
division (∆,Λ)-graded Lie algebra over C, where Λ is a free abelian group of rank n. Indeed,
it is known that such a core is a ∆-graded Lie algebra over C, say L = ⊕µ∈∆∪{0} Lµ, and
each Lµ has a decomposition Lµ = ⊕δ∈Λ Lδµ, where Λ is defined as the group generated
by the isotropic roots δ (we use the notation Lδµ instead of Lµ+δ which is normally used in
the theory of extended affine Lie algebras). It turns out that Λ is a lattice of rank n with
〈suppL〉 = Λ (for details see [2]). Let Lδ := ⊕µ∈∆∪{0} L

δ
µ. Then the grading subalgebra

g is contained in L0 so that L = ⊕δ∈Λ Lδ gives a compatible Λ-grading. Thus L is a
(∆,Λ)-graded Lie algebra.

We recall one of the basic properties of extended affine Lie algebras (see [1]): For any
µ ∈ ∆, δ ∈ Λ and any 0 6= eδµ ∈ Lδµ, there exist some f δµ ∈ L−δ−µ and hδµ ∈ L0

0 such that
〈eδµ, f δµ, hδµ〉 is an sl2-triplet, and in particular [eδµ, f

δ
µ] = hδµ.

One can check that hµ−hδµ ∈ Z(L) for all coroots hµ = h0
µ of g. Therefore L is a division

(∆,Λ)-graded Lie algebra. We note that dimC Lδµ ≤ 1 for all µ ∈ ∆ and δ ∈ Λ, which is also
one of the basic properties of extended affine Lie algebras.

(c) Let Z = ⊕g∈G Zg be a G-graded commutative associative algebra over F and let
g = h⊕

(
⊕µ∈∆ gµ

)
be a finite dimensional split simple Lie algebra over F of type ∆ with

the set {hµ ∈ h | µ ∈ ∆} of coroots. Then L := g⊗F Z is a (∆, G)-graded Lie algebra. In
fact, L = ⊕µ∈∆∪{0} (gµ⊗F Z) for g0 = h is a ∆-graded Lie algebra with grading subalgebra
g = g⊗ 1. We put Lg := g⊗F Zg for all g ∈ G. Then suppL = suppZ and L = ⊕g∈G Lg

is a G-graded Lie algebra with g ⊂ L0, i.e, the G-grading is compatible. Hence L is a
8



(∆, G)-graded Lie algebra. We call the compatible G-grading of L = g ⊗F Z the natural
compatible G-grading obtained from the G-grading of Z.

Suppose that Z = ⊕g∈G Kg is a crossed product commutative algebra over F . Let e ∈ gµ

and f ∈ g−µ such that [e, f ] = hµ. Then e⊗ g ∈ Lgµ, f ⊗ g−1 ∈ L−g−µ and

[e⊗ g, f ⊗ g−1] = [e, f ]⊗ g g−1 = hµ ⊗ 1 = hµ

for all g ∈ G, and so L is a predivision (∆, G)-graded Lie algebra over F . Note that
Z(L) = (0). Also, if K is a field, then L is a division (∆, G)-graded Lie algebra.

Suppose that L̃ = (L̃, g̃, h̃) = ⊕g∈G L̃g is a (∆, G)-graded Lie algebra and that π : L̃ −→ L

is a cover of a Lie algebra L. Then L =
(
L, π(g̃), π(h̃)

)
becomes a ∆-graded Lie algebra so

that (L̃, π) is a ∆-cover of L. Moreover, if kerπ is G-graded, then L admits the induced
compatible G-grading L = ⊕g∈G π(L̃g). In particular, since the centre Z(L̃) is always
G-graded, L̃/Z(L̃) is a (∆, G)-graded Lie algebra.

Definition 2.9. Let P be a unital associative algebra over F and let gll+1(P ) be the Lie
algebra consisting of all (l + 1) × (l + 1) matrices over P under the commutator product
(l ≥ 1). Let eij(a) ∈ gll+1(P ) whose (i, j)-entry is a and the other entries are all 0. We define
sll+1(P ) as the subalgebra of gll+1(P ) generated by eij(a) for all a ∈ P and 1 ≤ i 6= j ≤ l+1.
The centre Z

(
sll+1(P )

)
of sll+1(P ) consists of

∑l+1
i=1 eii(a) for a ∈ [P, P ]∩Z(P ) where [P, P ]

is the span of all commutators in P and Z(P ) is the centre of P . We define psll+1(P ) as
sll+1(P )/Z

(
sll+1(P )

)
.

It is well-known that sll+1(P ) is an Al-graded Lie algebra (see [3]): Denote {eij(b) | b ∈ B}
by eij(B) for any subset B ⊂ P . Let

sll+1(F ) = h⊕
⊕

1≤i6=j≤l+1

eij(F1) ⊂ sll+1(P ),

be the split simple Lie algebra over F of type Al where h is the Cartan subalgebra consisting
of diagonal matrices of sll+1(F ). Let εi : h −→ F be the projection onto the (i, j)-entry for
i = 1, . . . , l + 1, and ∆ := {εi − εj | i 6= j}, which is a root system of type Al. Then

sll+1(P ) = L0 ⊕
( ⊕
εi−εj∈∆

eij(P )
)
,

where L0 =
∑
εi−εj∈∆ [eij(P ), eji(P )], is an Al-graded Lie algebra with grading subalgebra

sll+1(F ). Let Z := Z
(
sll+1(P )

)
. We can and will identify sll+1(F ) + Z with sll+1(F ) and

eij(P ) + Z with eij(P ), and so

psll+1(P ) = (L0/Z)⊕
( ⊕
εi−εj∈∆

eij(P )
)

is also an Al-graded Lie algebra with the same grading subalgebra sll+1(F ).
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Example 2.10. Let L = sll+1(P ) be the Al-graded Lie algebra over F with grading sub-
algebra sll+1(F ) described above. If P = ⊕g∈G Pg is a G-graded algebra, then L admits a
compatible G-grading. Indeed, let

Lg :=
{∑
i,j

eij(Pg) |
∑
i,j

eij(Pg) ⊂ L
}
.

Then L = ⊕g∈G Lg, and it is a G-graded Lie algebra with sll+1(F ) ⊂ L0. Note that
suppL ⊃ suppP , and so 〈suppL〉 = G. Also, psll+1(P ) admits the induced compatible
G-grading. We call the compatible G-grading of L or psll+1(P ) the natural compatible
G-grading obtained from the G-grading of P . This grading is the unique G-grading so that

Lgεi−εj = eij(Pg) = psll+1(P )gεi−εj for all εi − εj ∈ ∆ and g ∈ G.

If P = ⊕g∈G Rg is a crossed product algebra, then

[eij(g), eji(g−1)] = eii(1)− ejj(1) = [eij(1), eji(1)] = hεi−εj

for all g ∈ G. Thus L and psll+1(P ) with the natural compatible G-gradings from the
G-grading of P are predivision (Al, G)-graded Lie algebras over F . Also, if R is a division
algebra, then the (Al, G)-graded Lie algebras L and psll+1(P ) are division.

Lemma 2.11. (i) Let P be a unital associative algebra. Suppose that l ≥ 2 and that the Al-
graded Lie algebra psll+1(P ) described above admits a predivision (resp. division) compatible
G-grading. Then P is a predivision (resp. division) G-graded algebra, and the G-grading of
psll+1(P ) is the natural compatible G-grading obtained from the G-grading of P .

(ii) Let Z be a unital commutative associative algebra. Suppose that the ∆-graded Lie
algebra g⊗F Z described in Example 2.8(c) admits a predivision (resp. division) compatible
G-grading. Then Z is a predivision (resp. division) G-graded algebra, and the G-grading of
g⊗F Z is the natural compatible G-grading obtained from the G-grading of Z.

Proof. (i): By assumption, psll+1(P ) = psll+1(P )0⊕
(
⊕εi−εj∈∆ eij(P )

)
admits a predivision

(resp. division) compatible G-grading, say

psll+1(P ) = psll+1(P )0 ⊕
(
⊕εi−εj∈∆ ⊕g∈G eij(P )g

)
.

Let
P ijg := {p ∈ P | eij(p) ∈ eij(P )g} for i 6= j.

We claim that P ijg = P rsg for all εr − εs ∈ ∆.
10



In general, it is well-known that for any distinct α, β ∈ ∆ = Al, l ≥ 2, D or E, there exists
a sequence α1, . . . , αt ∈ ∆ so that α1 = α, αt = β and αi+1 − αi ∈ ∆ for i = 1, . . . , t− 1.

Now, it is enough to show that P ijg ⊂ P rsg . Let p ∈ P ijg . We apply the above for α = εi−εj
and β = εr − εs. For p ∈ P ijg ,

[··[[eij(p), eα2−α1(1)], eα3−α2(1)], . . . , eαt−αt−1(1)] = ±eαt(p) = ±ers(p) ∈ ers(P )g

since [eij(p), ekl(1)] = δjkeil(p)− δliekj(p) and eαi+1−αi(1) ∈ L0
αi+1−αi . Hence p ∈ P rsg and

our claim is settled.
Thus one can write Pg = P ijg and P = ⊕g∈G Pg. Since, for p ∈ Pg and q ∈ Ph (g, h ∈ G),

[eij(p), ejk(q)] = eik(pq) ∈ eik(P )g+h for i 6= k,

we have pq ∈ Pg+h. Also, one can see that suppL ⊂ suppP + suppP (see Remark 2.6(ii)),
and so 〈suppP 〉 ⊃ 〈suppL〉 = G, whence 〈suppP 〉 = G. Therefore, P is a G-graded algebra.
Note that eij(P )g = eij(Pg) for all εi−εj ∈ ∆ and g ∈ G, and hence the G-grading is natural
(see Remark 2.6(i)).

By (pd), for any εi − εj ∈ ∆ and any g ∈ suppP , there exist eij(p) ∈ eij(Pg) and
eji(q) ∈ eji(P−g) such that

[eij(p), eji(q)] = [eij(1), eji(1)] + z for some z ∈ Z
(
sll+1(P )

)
.

Hence eii(pq)− ejj(qp) = eii(1)− ejj(1) +
∑l+1
k=1 ekk(a) for some a ∈ P , and so a = 0 and

pq = qp = 1, i.e., p is invertible. Also, p is invertible in P ⇔ p is invertible in P+. Therefore,
P = ⊕g∈G Pg is a predivision G-graded associative algebra. The statement for ‘division’
can be shown in the same manner.

(ii): Let Zg := {z ∈ Z | g ⊗ z ⊂ (g ⊗F Z)g}. Then Z = ⊕g∈G Zg becomes a G-graded
algebra. The rest can be shown in the same manner as in (i). �

Definition 2.12. Let L̃ = ⊕g∈G L̃g and L = ⊕g∈G Lg be (∆, G)-graded Lie algebras and
suppose that π : L̃ −→ L is a ∆-cover. If Lg = π(L̃g) for all g ∈ G, then L̃ = (L̃, π) is
called a (∆, G)-cover of L. Also, for (∆, G)-graded Lie algebras L and L′, if there exist a
(∆, G)-graded Lie algebra L̃ and maps π : L̃ −→ L and π′ : L̃ −→ L′ such that (L̃, π) and
(L̃, π′) are both (∆, G)-covers, we say that L and L′ are (∆, G)-isogeneous.

It is clear using Lemma 2.3 that if L̃ is a (∆, G)-cover of L, then

L̃ is is predivision (resp. division) ⇐⇒ L is predivision (resp. division).

Also, by the proof of Corollary 2.4, if L and L′ are (∆, G)-isogeneous, then L/Z(L) and
L′/Z(L′) are (∆, G)-isomorphic, i.e., there exists a ∆-isomorphism which is also G-graded
between them. In particular, L̃/Z(L̃) and L/Z(L) above are (∆, G)-isomorphic.

11



Proposition 2.13. (i) Let l ≥ 3. Then a predivision (resp. division) (Al, G)-graded Lie
algebra L over F is an (Al, G)-cover of psll+1(P ) admitting the natural compatible G-grading
obtained from the G-grading of a predivision (resp. division) G-graded associative algebra P
over F . Hence L/Z(L) and psll+1(P ) are (∆, G)-isomorphic.

(ii) Let ∆ = D or E and let g be a finite dimensional split simple Lie algebra L over F of
type ∆. Then a predivision (resp. division) (∆, G)-graded Lie algebra over F is a (∆, G)-
cover of g⊗F Z admitting the natural compatible G-grading obtained from the G-grading of
a predivision (resp. division) G-graded commutative associative algebra Z over F . Hence
L/Z(L) and g⊗F Z are (∆, G)-isomorphic.

Proof. For (i), let L be a predivision (Al, G)-graded Lie algebra over F . Berman and Moody
showed in [3] that L is Al-isogeneous to

(
sll+1(P ), sll+1(F )

)
(the Steinberg Lie algebra

stl+1(P ) serves as an Al-cover of L and sll+1(P )). Hence, by Corollary 2.4, L/Z(L) is
Al-isomorphic to psll+1(P ). Thus

(
psll+1(P ), sll+1(F )

)
admits a compatible G-grading via

the Al-isomorphism from the compatible G-grading of L/Z(L) induced by the compatible
G-grading of L. Therefore, the statement follows from Lemma 2.11.

(ii): Let L be a predivision (∆, G)-graded Lie algebra over F . Berman and Moody showed
in [3] that L is a ∆-cover of g⊗F Z. Thus the statement follows from Lemma 2.11. �

In this paper we will classify predivision (∆,Zn)-graded Lie algebras for ∆ = Al, l ≥ 3,
D or E, up to central extensions. By Proposition 2.13, it remains to classify crossed product
algebras R ∗ Zn. We determine such algebras as a generalization of quantum tori. Namely,
let q = (qij) be an n× n matrix over F such that

qii = 1 and qji = q−1
ij .

The quantum torus Fq = Fq [t±1
1 , . . . , t±1

n ] determined by q is defined as the associative
algebra over F with 2n generators t±1

1 , . . . , t±1
n , and relations

tit
−1
i = t−1

i ti = 1 and tjti = qijtitj

for all 1 ≤ i, j ≤ n. Quantum tori are characterized as predivision Zn-graded associative
algebras whose homogeneous spaces are all 1-dimensional (see [4]). Note that Fq is commu-
tative⇐⇒ q = 1 whose entries are all 1, i.e., F1 = F [t±1

1 , . . . , t±1
n ] is the algebra of Laurent

polynomials. Also, a quantum torus is a twisted group algebra F t[Zn].

§3 Classification of R ∗ Zn

Throughout this section F is an arbitrary field and G is an arbitrary group. For a G-
graded algebra S = ⊕g∈G Sg over F in general, we denote by GrAutF (S) the group of

12



graded automorphisms of S, i.e.,

GrAutF (S) := {σ ∈ AutF (S) | σ(Sg) = Sg for all g ∈ G}.

Lemma 3.1. Let R∗G = (R,G, σ, τ) be a crossed product algebra over F and (R∗G)∗M =
(R ∗G,M, η, ξ) a crossed product algebra over F for a group M , an action η and a twisting
ξ. Suppose that η(M) ⊂ GrAutF (R ∗ G) and that ξ(m, l) ∈ U(R) for all m, l ∈ M . Then,
(R ∗G)∗M is a crossed product algebra R ∗ (G×M) =

(
R, (G×M), σ′, τ ′

)
over F for some

action σ′ and twisting τ ′.

Proof. We have

(R ∗G) ∗M = ⊕m∈M (R ∗G)m = ⊕m∈M (⊕g∈G Rg)m = ⊕(g,m)∈G×M Rgm

as free R-modules, where gm = g m. We define ηm = η(m) |R1 an F -automorphism of R
for every m ∈ M . Also for h ∈ G, h is a unit in R ∗ G (see 1.6). Since ηm is a graded
automorphism of R ∗ G by our first assumption, η(m)(h) = dm,hh for some dm,h ∈ U(R).
Therefore, for rgm ∈ Rgm and shl ∈ Rhl, we have

(rgm)(shl) = rgη(m)(sh)ml

= rgηm(s)η(m)(h)ξ(m, l)ml

= rgηm(s)dm,hhξ(m, l)ml

= rgηm(s)dm,hσh
(
ξ(m, l)

)
hml (by our second assumption)

= rσgηm(s)σg(dm,h)σgh
(
ξ(m, l)

)
ghml

= rσgηm(s)σg(dm,h)σgh
(
ξ(m, l)

)
τ(g, h)gh ml.

Thus we have the action

σ′ : G×M −→ AutF R by σ′(g,m) = σgηm,

and the twisting τ ′ : (G×M)× (G×M) −→ U(R) by

τ ′
(
(g,m), (h, l)

)
= σg(dm,h)σgh

(
ξ(m, l)

)
τ(g, h).

Since the crossed product algebra (R ∗G) ∗M is associative, we get

(R ∗G) ∗M = R ∗ (G×M) = (R,G×M,σ′, τ ′). �
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A triple (R,ϕ, q) where R is a unital associative algebra over F ,

ϕ = (ϕ1, . . . , ϕn)

is an n-tuple of F -automorphisms ϕi of R, and q = (qij) is an n×n matrix over R satisfying

qii = 1 for 1 ≤ i ≤ n and q−1
ji = qij for 1 ≤ i < j ≤ n,(G1)

ϕjϕi = I(qij)ϕiϕj for 1 ≤ i < j ≤ n,(G2)

ϕk(qij) = qjkϕj(qik)qijϕi(qkj)qki for 1 ≤ i < j < k ≤ n,(G3)

is called a Zn-grading triple over F , and a division Zn-grading triple over F if R is a division
algebra. It follows easily from (G1)-(G3) that

these equations hold for all i, j, k satisfying 1 ≤ i, j, k ≤ n.

For a Zn-grading triple, we introduce several notations and prove some identities.

Notations.

(N1) εi = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn,

i.e., the i-th coordinate is 1 and the others are 0.

(N2) q
(m)
ij :=


qijϕi(qij)ϕ2

i (qij) · · ·ϕm−1
i (qij) =

∏m−1
l=0 ϕli(qij), if m > 0

1, if m = 0
ϕ−1
i (qji)ϕ−2

i (qji) · · ·ϕmi (qji) =
∏m
l=−1 ϕli(qji), if m < 0,

and q
−(m)
ij := (q(m)

ij )−1.

For α = (α1, . . . , αn),β = (β1, . . . , βn) ∈ Zn and k = 0, 1, 2, . . . , n,

(N3) ϕ(α)k :=
{

id, if k = 0, 1
ϕα1

1 · · ·ϕ
αk−1
k−1 , if k > 1,

and ϕα := ϕα1
1 · · ·ϕαnn .

(N4) qε1,α := 1 and qεj ,α :=
j−1∏
i=1

ϕ(α)i(q(αi)
ij ) for j > 1.

(N5) q(m)
εj ,α

:=


∏0
l=m−1 ϕlj(qεj ,α), if m > 0

1, if m = 0∏−1
l=m ϕlj(q

−1
εj ,α

), if m < 0.

(N6) qα,β :=
1∏

j=n

ϕ(α)j (q(αj)
εj ,β

).
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Lemma 3.2. For m ∈ Z and α = (α1, . . . , αn) ∈ Zn, we have

ϕ−mi (q−(m)
ij ) = q

(−m)
ij ,(1)

ϕjϕ
m
i = I(q(m)

ij )ϕmi ϕj ,(2)

ϕjϕ
(α)i =

{
I
(∏i−1

l=1 ϕ(α)l(q(αl)
lj )

)
ϕ(α)iϕj for j ≥ i,

I
(∏j−1

l=1 ϕ(α)l(q(αl)
lj )

)
ϕ(α+εj)i for j < i,

(3)

q
(m+1)
ij = qijϕi(q

(m)
ij ) and q

−(m+1)
ij = ϕi(q

−(m)
ij )qji,(4)

ϕk(q(m)
ij ) = qjkϕj(q

(m)
ik )q(m)

ij ϕmi (qkj)q
−(m)
ik .(5)

Proof. For (1), we have from (N2),

q
−(m)
ij =


ϕm−1
i (qji) · · ·ϕi(qji)qji =

∏1
l=m−1 ϕli(qji), if m > 0

1, if m = 0

ϕmi (qij) · · ·ϕ−2
i (qij)ϕ−1

i (qij) =
∏−1
l=m ϕli(qij), if m < 0.

So we get

ϕ−mi (q−(m)
ij ) =


ϕ−1
i (qji) · · ·ϕ−mi (qji) =

∏−m
l=−1 ϕli(qji), if m > 0

1, if m = 0

qijϕi(qij) · · ·ϕ−m−1
i (qij) =

∏−m−1
l=1 ϕli(qij), if m < 0,

which is exactly q(−m)
ij .

For (2), the case m = 0 is clear. Assume that m > 0. Put q := qij for simplicity. Then
we have

ϕjϕ
m
i = ϕjϕ

m−1
i ϕi

= I(q(m−1))ϕm−1
i ϕjϕi by induction on m

= I(q(m−1))ϕm−1
i I(q)ϕiϕj by (G2)

= I(q(m−1))I
(
ϕm−1
i (q)

)
ϕmi ϕj

= I(q(m))ϕmi ϕj .

Also, (ϕjϕmi )−1 = (I(q(m)
ij )ϕmi ϕj)

−1 for m > 0, and so

ϕ−mi ϕ−1
j = ϕ−1

j ϕ−mi (I(q−(m)
ij ) = ϕ−1

j I
(
ϕ−mi (q−(m)

ij )
)
ϕ−mi = ϕ−1

j I(q(−m)
ij )ϕ−mi ,

by (1). Hence we get ϕjϕ−mi = I(q(−m)
ij )ϕ−mi ϕj , and (2) holds for all m ∈ Z.
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For (3), when j ≥ i, using (2), we have

ϕjϕ
(α)i
i = ϕjϕ

α1
1 · · ·ϕ

αi−1
i−1

= I(q(α1)
1j )ϕα1

1 ϕjϕ
α2
2 · · ·ϕ

αi−1
i−1

= I(q(α1)
1j )ϕα1

1 I(q(α2)
2j )ϕα2

2 ϕjϕ
α3
3 · · ·ϕ

αi−1
i−1

· · · · · ·

= I(q(α1)
1j )ϕα1

1 I(q(α2)
2j )ϕα2

2 I(q(α3)
3j )ϕα3

3 · · · I(q
(αi−1)
i−1,j )ϕαi−1

i−1 ϕj

= I(
i−1∏
l=1

ϕ(α)l(q(αl)
lj ))ϕ(α)iϕj . (Note ϕ(α)0 = id when i = 1)

When j < i, we have

ϕjϕ
(α)i
i = ϕjϕ

α1
1 · · ·ϕ

αi−1
i−1

= I(q(α1)
1j )ϕα1

1 ϕjϕ
α2
2 · · ·ϕ

αj
j · · ·ϕ

αi−1
i−1

· · · · · ·

= I(q(α1)
1j )ϕα1

1 · · · I(q
(αj−1)
j−1,j )ϕαj−1

j−1 I(q(αj)
jj )ϕαjj ϕj · · ·ϕ

αi−1
i−1

= I(q(α1)
1j )ϕα1

1 · · · I(q
(αj−1)
j−1,j )ϕαj−1

j−1 ϕ
αj+1 · · ·ϕαi−1

i−1

= I(
j−1∏
l=1

ϕ(α)l(q(αl)
lj ))ϕ(α+εj)i . (Note ϕ(α)0 = id when j = 1)

For the first formula of (4), the case m = 0 is clear. We put q := qij , p := q−1 and ϕ := ϕi

for simplicity. For m > 0, we have

q(m+1) = qϕ(q)ϕ2(q) · · ·ϕm(q)

= qϕ
(
qϕ(q) · · ·ϕm−1(q)

)
= qϕ(q(m)).

For m = −1, we have q(−1+1) = 1, while qϕ(q(−1)) = qϕϕ−1(p) = 1. For m < −1, we have

q(m+1) = ϕ−1(p)ϕ−2(p) · · ·ϕm+1(p)

= qpϕ−1(p)ϕ−2(p) · · ·ϕm+1(p)

= qϕ
(
ϕ−1(p)ϕ−2(p) · · ·ϕm(p)

)
= qϕ(q(m)).

The second formula follows from the first since q−(m+1)
ij = (q(m+1)

ij )−1.
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For (5), the case m = 0 is clear. Assume that m > 0. Then we have

ϕk(q(m)
ij )

= ϕk(qij)ϕkϕi(q
(m−1)
ij ) by (4)

= ϕk(qij)qikϕiϕk(q(m−1)
ij )qki by (G2)

= qjkϕj(qik)qijϕi(qkj)qkiqikϕi
(
qjkϕj(q

(m−1)
ik )q(m−1)

ij ϕm−1
i (qkj)(q

−(m−1)
ik )

)
qki

by (G3) and induction on m

= qjkϕj(qik)qijϕiϕj(q
(m−1)
ik )ϕi(q

(m−1)
ij )ϕmi (qkj)ϕi(q

−(m−1)
ik )qki

= qjkϕj(qik)qijqjiϕjϕi(q
(m−1)
ik )qijϕi(q

(m−1)
ij )ϕmi (qkj)q

−(m)
ik

by (G2) and (3)

= qjkϕj(qik)ϕjϕi(q
(m−1)
ik )q(m)

ij ϕmi (qkj)q
−(m)
ik by (4)

= qjkϕj(q
(m)
ik )q(m)

ij ϕmi (qkj)q
−(m)
ik by (4).

Also, one has
(
ϕk(q(m)

ij )
)−1=

(
qjkϕj(q

(m)
ik )q(m)

ij ϕmi (qkj)q
−(m)
ik

)−1 form > 0, and so ϕk(q−(m)
ji ) =

q
(m)
ik ϕmi (qjk)q−(m)

ij ϕj(q
−(m)
ik )qkj . Applying ϕ−mi in both hands, we get

ϕ−mi ϕk(q−(m)
ij ) = ϕ−mi

(
q

(m)
ik ϕmi (qjk)q−(m)

ij ϕj(q
−(m)
ik )qkj

)
= ϕ−mi (q(m)

ik )qjkq
(−m)
ij ϕ−mi ϕj(q

−(m)
ik )ϕ−mi (qkj) by (1).

Then, by (1) and (2), we have

I(q−(−m)
ik )ϕk(q(−m)

ij ) = q
−(−m)
ik qjkq

(−m)
ij I(q−(−m)

ij )ϕj(q
(−m)
ik )ϕ−mi (qkj),

and we obtain

ϕk(q(−m)
ij ) = qjkϕj(q

(−m)
ik )q(−m)

ij ϕ−mi (qkj)q
−(−m)
ik for m > 0.

Hence, (5) holds for all m ∈ Z. �

Now we are ready to state our theorem.
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Theorem 3.3. Let (R,ϕ, q) be a Zn-grading triple and let Rϕ,q := ⊕α∈Zn Rtα be a free
left R-module with basis {tα | α ∈ Zn}. Then there exists a unique associative multiplication
on Rϕ,q such that, for ti := tεi , i = 1, . . . , n, α = (α1, . . . , αn) and r ∈ R,

(3.4) tα = tα1
1 · · · tαnn , tit

−1
i = t−1

i ti = 1, tir = ϕi(r)ti and tjti = qijtitj .

Moreover, for rtα, r′tβ ∈ Rϕ,q, we have

rtαr
′tβ = rϕα(r′)qα,βtα+β,

where ϕα and qα,β are defined in (N3) and (N6). In particular, Rϕ,q is a crossed product
algebra R ∗ Zn with

(action) σ : Zn −→ AutF (R) by σ(α) = ϕα

(twisting) τ : Zn × Zn −→ U(R) by τ(α,β) = qα,β .

Conversely, for any crossed product algebra R ∗ Zn, there exists a Zn-grading triple
(R,ϕ, q) such that R ∗ Zn = Rϕ,q.

Proof. We first consider a crossed product algebra R ∗ Z. Let t := 1 ∈ R ∗ Z. Then, tm is
a unit in Rm for all m ∈ Z. Using the diagonal basis change, one can obtain an R-basis
{tm | m ∈ Z}. So we have tmtl = tm+l for all m, l ∈ Z. Hence, R ∗ Z = RZ is a skew group
algebra. Let ψ be the action of 1, i.e., t(r1) = ψ(r)t for r ∈ R. (Note that 1 = 0.) Then the
action of m is ψm, i.e.,

tm(r1) = ψm(r)tm.

Conversely, it is clear that any F -automorphism ψ of R determines a skew group algebra
RZ by the action m 7→ ψm (see Remark 1.3). We denote this RZ by R[t;ψ].

Let R(1) := R[t1;ψ1] where ψ1 = ϕ1. Let ψ2 be a graded F -automorphism ψ2 of R(1)

and R(2) := R(1)[t2;ψ2]. Then, by Lemma 3.1, we get R(2) = (RZ)Z = R ∗ Z2. Repeating
this process n times, one can construct R ∗ Zn inductively. Namely, for a crossed product
algebra R(k−1) = R ∗ Zk−1, if we specify an F -graded automorphism ψk of R(k−1), then

R(k) := R(k−1)[tk;ψk] = R ∗ Zk,

and we obtain R(n) = R ∗ Zn. Thus, our task is to specify ψk on R(k−1) and to show that
ψk is a graded F -automorphism where k ≥ 2. We note that

{tα1
1 · · · t

αk−1
k−1 | (α1, . . . , αk−1) ∈ Zk−1}
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is a basis of the free R-module R(k−1). For convenience, we put

t(α)k = tα1
1 · · · t

αk−1
k−1 ,

and define an F -linear transformation ψk on R(k−1) by

ψk(rt(α)k) = ϕk(r)
[ k−1∏
i=1

ϕ(α)i(q(αi)
ik )

]
t(α)k for r ∈ R,

which is clearly graded. If ψk(rt(α)k) = 0, then ϕk(r) = 0, and hence r = 0, and so ψk is
injective. Since

ψk

(
ϕ−1
k

(
r

[ k−1∏
i=1

ϕ(α)i(q(αi)
ik )

]−1)
t(α)k

)
= rt(α)k ,

ψk is surjective. Therefore, ψk is an F -linear graded isomorphism on R(k−1). So it remains
to prove that ψk is a homomorphism. For this purpose, we use a well-known fact.

3.5. Let A and B be unital associative algebras over F and f a F -linear map from A into
B. Let {ti}i∈I be a generating set of the F -algebra A. Then, f is a homomorphism if and
only if f(tiy) = f(ti)f(y) for all i ∈ I and y ∈ A. Moreover, if {t±1

i }i∈I is a generating set
of A, then f is a homomorphism if and only if f(tiy) = f(ti)f(y) and f(t−1

i ) = f(ti)−1 for
all i ∈ I and y ∈ A.

We have a generating set R ∪ {t±1
1 , . . . , t±1

k−1} of R(k−1) over F , and

ψk(t−1
j ) = q

(−1)
jk t−1

j = ϕ−1
j (qkj)t−1

j

= (tjϕ−1
j (qjk))−1 = (qjktj)−1 = ψk(tj)−1.

So, by 3.5, we only need to show that, for all r, r′ ∈ R and 1 ≤ j ≤ k − 1,

ψk(rr′t(α)k) = ψk(r)ψk(r′t(α)k),(A)

ψk(tjrt(α)k) = ψk(tj)ψk(rt(α)k).(B)

For (A), we have

ψk(rr′t(α)k) = ϕk(rr′)
k−1∏
i=1

ϕ(α)i(q(αi)
ik )t(α)k

= ϕk(r)ϕk(r′)
k−1∏
i=1

ϕ(α)i(d(αi)
ik )t(α)k

= ψk(r)ψk(r′t(α)k).
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For (B), we first note that there is the embedding of R(j) into R(k−1) for 1 ≤ j ≤ k− 1, and
so

tjt
(α)j = ψj(t(α)j )tj =

[ j−1∏
i=1

ϕ(α)i(q(αi)
ij )

]
t(α)j tj .

Thus we have

ψk(tjrt(α)k) = ψk
(
ϕj(r)tjt(α)k

)
= ψk

(
ϕj(r)ψj(t(α)j )tαj+1

j · · · tαk−1
k−1

)
= ψk

(
ϕj(r)

[ j−1∏
i=1

ϕ(α)i(q(αi)
ij )

]
t(α+εj)k

)

= ϕkϕj(r)
[ j−1∏
i=1

ϕkϕ
(α)i(q(αi)

ij )
][ k−1∏

i=1

ϕ(α+εj)i(q(αi+δij)
ik )

]
t(α+εj)k

: = ABCt(α+εj)k ,

where A = ϕkϕj(r), B =
∏j−1
i=1 ϕkϕ

(α)i(q(αi)
ij ) and C =

∏k−1
i=1 ϕ(α+εj)i(q(αi+δij)

ik ). First of
all, we have

A = ϕkϕj(r) = qjkϕjϕk(r)qkj by (G2).

Secondly, by Lemma 3.2(3) and (5), we have

ϕkϕ
(α)i(q(αi)

ij )

=
[ i−1∏
l=1

ϕ(α)l(q(αl)
lk )

]
ϕ(α)iϕk(q(αi)

ij )
[ i−1∏
l=1

ϕ(α)l(d(αl)
lk )

]−1

=
[ i−1∏
l=1

ϕ(α)l(q(αl)
lk )

]
ϕ(α)i

(
qjkϕj(q

(αi)
ik )q(αi)

ij ϕαii (qkj)q
−(αi)
ik

)[ i−1∏
l=1

ϕ(α)l(q(αl)
lk )

]−1

.

Note that

ϕ(α)i(q−(αi)
ki )

[ i−1∏
l=1

ϕ(α)l(q(αl)
lk )

]−1

=
[ i∏
l=1

ϕ(α)l(q(αl)
lk )

]−1

and ϕ(α)iϕαii (qkj) = ϕ(α)i+1(qkj).

So we have(
ϕkϕ

(α)i(q(αi)
ij )

)
=
[ i−1∏
l=1

ϕ(α)l(q(αl)
lk )

]
ϕ(α)i(qjk)ϕ(α)i

(
ϕj(q

(αi)
ik )q(αi)

ij

)
ϕ(α)i+1(qkj)

[ i∏
l=1

ϕ(α)l(q(αl)
lk )

]−1

.
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Thus, after cancellations, we get

B =
j−1∏
i=1

ϕkϕ
(α)i(q(αi)

ij )

= qjk

[ j−1∏
i=1

ϕ(α)i
(
ϕj(q

(αi)
ik )q(αi)

ij

)]
ϕ(α)j (qkj)

[ j−1∏
i=1

ϕ(α)i(q(αi)
ik )

]−1

.

Thirdly, we have

C =
k−1∏
i=1

ϕ(α+εj)i(q(αi+δij)
ik )

=
[ j−1∏
i=1

ϕ(α)i(q(αi)
ik )

]
ϕ(α)j (q(αj+1)

jk )
k−1∏
i=j+1

ϕ(α+εj)i(q(αi)
ik )

=
[ j−1∏
i=1

ϕ(α)i(q(αi)
ik )

]
ϕ(α)j

(
qjkϕj(q

(αj)
jk )

) k−1∏
i=j+1

ϕ(α+εj)i(q(αi)
ik ),

by Lemma 3.2(4). Consequently, after cancellations and noting that qii = 1, we obtain

ψk(tjrt(α)k) = ABCt(α+εj)k

= qjkϕjϕk(r)
[ j∏
i=1

ϕ(α)i
(
ϕj(q

(αi)
ik )q(αi)

ij

)][ k−1∏
i=j+1

ϕ(α+εj)i(q(αi)
ik )

]
t(α+εj)k .(∗)

On the other hand, we have

ψk(tj)ψk(rt(α)k) = qjktjϕk(r)
[ k−1∏
i=1

ϕ(α)i(q(αi)
ik )

]
t(α)k

= qjkϕj

[
ϕk(r)

k−1∏
i=1

ϕ(α)i(q(αi)
ik )

]
tjt

(α)k

= qjkϕjϕk(r)
[ k−1∏
i=1

ϕjϕ
(α)i(q(αi)

ik )
][ j−1∏

l=1

ϕ(α)l(q(αl)
lj )

]
t(α+εj)k .

We rewrite D :=
∏k−1
i=1 ϕjϕ

(α)i(q(αi)
ik ). To find an expression for D, we use the following

lemma:
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Lemma 3.6. Let A be a unital associative algebra, a0 = 1, a1, . . . , ak ∈ A units and
b1, . . . , bk ∈ A. Then we have

k∏
i=1

(
I
( i−1∏
l=1

al
)
(bi)
)

=
( k∏
i=1

biai
)
bk
( k−1∏
l=1

al
)−1

.(1)

k∏
i=j+1

(
I
( j−1∏
l=1

al
)
(bi)
)

= I
( j−1∏
l=1

al
)( k∏

i=j+1

bi
)
.(2)

Proof. (1) is straightforward and (2) is obvious. �

By Lemma 3.2(3), we have, for i ≤ j,

ϕjϕ
(α)i(q(αi)

ik ) = I
( i−1∏
l=1

ϕ(α)l(q(αl)
lj )

)(
ϕ(α)iϕj(q

(αi)
ik )

)
.

So, by Lemma 3.6(1), we get using qjj = 1 that

j∏
i=1

ϕjϕ
(α)i(q(αi)

ik ) =
[ j∏
i=1

ϕ(α)i
(
ϕj(q

(αi)
ik )(q(αi)

ij )
)][ j−1∏

l=1

ϕ(α)l(q(αl)
lj )

]−1

.

By Lemma 3.2(3), we have, for j < i,

ϕjϕ
(α)i(q(αi)

ik ) = I
( j−1∏
l=1

ϕ(α)l(q(αl)
lj )

)(
ϕ(α+εj)i(q(αi)

ik )
)
.

So, by Lemma 3.6(2), we get

k−1∏
i=j+1

ϕjϕ
(α)i(q(αi)

ik ) = I
( j−1∏
l=1

ϕ(α)l(q(αl)
lj )

)( k−1∏
i=j+1

ϕ(α+εj)i(q(αi)
ik )

)
.

Hence we get

D =
k−1∏
i=1

ϕjϕ
(α)i(q(αi)

ik )

=
[ j∏
i=1

ϕ(α)i
(
ϕj(q

(αi)
ik )q(αi)

ij

)][ k−1∏
i=j+1

ϕ(α+εj)i(q(αi)
ik )

][ j−1∏
l=1

ϕ(α)l(q(αl)
lj )

]−1

.
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Consequently, we obtain

ψk(tj)ψk(rt(α)k)

= qjkϕjϕk(r)
[ j∏
i=1

ϕ(α)i
(
ϕj(q

(αi)
ik )q(αi)

ij

)][ k−1∏
i=j+1

ϕ(α+εj)i(q(αi)
ik )

]
t(α+εj)k ,

which is exactly (∗). Hence we have shown (B) and constructed a crossed product algebra
R ∗ Zk = R(k) for k = 1, . . . , n from (R,ϕ, q).

Let us put Rϕ,q := R(n) = ⊕α∈Zn Rtα where α = (α1, . . . , αn) ∈ Zn and tα = tα1
1 · · · tαnn .

Since ψk |R= ϕk for k = 1, . . . , n, we have tir = ϕi(r)ti. Also, we have tjti = ψj(ti)tj =
qijtitj for 1 ≤ i < j ≤ n, and so tjti = qijtitj for all 1 ≤ i, j ≤ n. Hence, our Rϕ,q satisfies
(3.4). The uniqueness of the multiplication on Rϕ,q is clear since R ∪ {t±1

1 , . . . , t±1
n } is a

generating set of Rϕ,q.
Now, one can easily check that ψαjj (t(β)j ) = q

(αj)
εj ,β

t(β)j . So for rtα, r′tβ ∈ Rϕ,q, we get

rtαr
′tβ = rϕα(r′)tαtβ

= rϕα(r′)t(α)ntαnn t(β)n tβnn

= rϕα(r′)t(α)nψαnn (t(β)n)tαn+βn
n

= rϕα(r′)t(α)nq
(αn)
εn,β

t(β)n tαn+βn
n

= rϕα(r′)ϕ(α)n(q(αn)
εn,β

)t(α)nt(β)n tαn+βn
n

· · · · · ·

= rϕα(r′)ϕ(α)n(q(αn)
εn,β

) · · ·ϕ(α)2(q(α2)
ε2,β

)tα1+β1
1 · · · tαn+βn

n

= rϕα(r′)qα,βtα+β.

Conversely, for any crossed product algebra R ∗Zn = (R,Zn, τ, σ) = ⊕α∈Zn Rα, we take
a new R-basis {tα | α ∈ Zn} of R ∗ Zn where tα = ε1

α1 · · ·εnαn . We set qij := τ(εj, εi) for
1 ≤ i ≤ j ≤ n, qji := q−1

ij and ϕi := σεi . Note that τ(εi, εj) = 1 for i ≤ j. Then one can
check that the triple (R,ϕ, q) is a Zn-grading triple:

(G1) is clear. Let ti := εi for i = 1, . . . , n. Then, for i ≤ j and r ∈ R, we have tjtir =
ϕjϕi(r)tjti = ϕjϕi(r)qijtitj and tjtir = qijtitjr = qijϕiϕj(r)titj . Hence, ϕjϕi(r)qij =
qijϕiϕj(r), i.e., (G2) holds. For i ≤ j ≤ k, we have tktjti = tkqijtitj = ϕk(qij)qiktitktj =
ϕk(qij)qikϕi(qjk)titjtk and tktjti = qjktjtkti = qjkϕj(qik)tjtitk = qjkϕj(qik)qijtitjtk. Hence,
ϕk(qij)qikϕi(qjk) = qjkϕj(qik)qij , i.e., (G3) holds.

Finally, it is clear that R∗Zn = ⊕α∈Zn Rtα satisfies (3.4). Therefore, we obtain R∗Zn =
Rϕ,q. �

Thus the following is clear:
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Corollary 3.7. Let (D,ϕ, q) be a division Zn-grading triple. Then, Dϕ,q is a division
Zn-graded algebra. Conversely, for any division Zn-graded algebra A, there exists a division
Zn-grading triple (D,ϕ, q) such that A = Dϕ,q.

Remark. What we have shown in Theorem 3.3 can be written in the following way:
Let B := {ε1, . . . , εn} and C := {(εj, εi) | 1 ≤ i < j ≤ n}. Suppose that maps

σ : B −→ AutF (R) and τ : C −→ U(R)

satisfy

σεjσεi = I
(
τ(εj , εi)

)
σεiσεj and(a)

σεk
(
τ(εj, εi)

)
τ(εk, εi)σεi

(
τ(εk, εj)

)
= τ(εk, εj)σεj

(
τ(εk, εi)

)
τ(εj, εi)(b)

for all 1 ≤ i < j < k ≤ n. Then there exist unique action σ̃ : Zn −→ AutF (R) and twisting
τ̃ : Zn × Zn −→ U(R) such that σ̃ |B= σ, τ̃ |C= τ and

(c) τ̃(α1ε1 + · · ·+ αiεi, αjεj + · · ·+ αnεn) = 1 for all 1 ≤ i ≤ j ≤ n.

Conversely, for any crossed product algebra R ∗Zn, we can use the diagonal basis change so
that the action and twisting satisfy (a), (b) and (c).

In a certain situation, the condition (G3) for a Zn-grading triple is not needed.

Lemma 3.8. Let R be a unital associative algebra over F , ϕ =
(
I(d1), . . . , I(dn)

)
an n-

tuple of inner automorphisms ϕi of R for some d1, . . . , dn ∈ U(R) and q = (qij) an n × n
matrix over F . Suppose that a triple (R,ϕ, q) satisfies (G1) and (G2). Then, (R,ϕ, q) is a
Zn-grading triple.

Proof. We only need to check (G3). By (G1) and (G2), we have, for all 1 ≤ i, j ≤ n,
I(dj)I(di) = I(qij)I(di)I(dj). So for all r ∈ R, djdird−1

i d−1
j = qijdidjrd

−1
j d−1

i qji and hence
rd−1
i d−1

j qijdidj = d−1
i d−1

j qijdidjr, i.e., d−1
i d−1

j qijdidj =: cij is in the centre of R. Note that
c−1
ji = cij . Thus we have

qij = cij [dj , di]

for all i, j, where [dj , di] = d−1
j d−1

i djdi. Using this identity, we get (G3): for all 1 ≤ i < j <

k ≤ n,

qjkϕj(qik)qijϕi(qkj)qki

=cjk[dk, dj]djcik[dk, di]d−1
j cij [dj, di]dickj [dj , dk]d−1

i cki[di, dk]

=dkcij [dj, di]d−1
k = ϕk(qij). �
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By this lemma, if R is a finite dimensional central simple associative algebra, the defining
identities of a Zn-grading triple are just (G1) and (G2).

Remark 3.9. (1) For a Zn-grading triple (R,ϕ, q), if ϕ = 1 := (id, . . . , id), then the crossed
product algebra R1,q has the trivial action by Theorem 3.3. So, R1,q = Rt[Zn] is a twisted
group algebra.

(2) For a Zn-grading triple (R,ϕ, q), if q = 1n = 1 :=

 1 · · · 1
...

. . .
...

1 · · · 1

, then a crossed

product algebra Rϕ,1 has the trivial twisting by Theorem 3.3. So, Rϕ,1 = RZn is a skew
group algebra.

(3) By (G2), (R,ϕ, 1) is a Zn-grading triple if and only if

(∗) ϕjϕi = ϕiϕj for all i, j.

Finally, we give some examples.

Example. (1) Let Fq be an arbitrary quantum torus and R an arbitrary associative algebra.
Then it is easy to see that R⊗F Fq is a predivision Zn-graded associative algebra (division
Zn-graded if R is a division algebra) and is isomorphic to R1,q. Note also if R is a field,
then this example becomes a quantum torus over R. Conversely, for a division Zn-grading
triple (D,ϕ, q), if ϕ = 1, then I(qij) = id for all qij , by (G2). Hence qij is in the centre
of D, say K, and we can show that D1,q

∼= D ⊗K Kq. Therefore, Dϕ,q is a tensor product
with D and some quantum torus if and only if ϕ = 1.

(2) Let Q = 〈i, j〉 be a quaternion algebra over a field, where i and j are the standard
generators, ϕ = ϕ3 =

(
I(i), I(j), I(ij)

)
and 1 = 13. Then one can easily check (∗) in

Remark 3.9(3), and hence Qϕ,1 is a predivision Z3-graded associative algebra.
(3) Let K = Q(ζ5) be a cyclotomic extension of Q (the field of rational numbers) where

ζ := ζ5 is a primitive 5th root of unity, and ϕ the automorphism of K defined by ϕ(ζ) = ζ2.
Let ϕ = (ϕ, ϕ2, ϕ3) and

q =

 1 ζ ζ2

ζ−1 1 ζ−1

ζ3 ζ 1

 .

Then one can easily check that (K,ϕ, q) is a division Z3-grading triple, and hence Kϕ,q is
a division Z3-graded associative algebra over Q.

(4) Let H = 〈i, j〉 be Hamilton’s quaternion over R (the field of real numbers), i.e., the
unique quaternion division algebra over R. Put k := ij. Let ϕ =

(
I(d1), I(d2), I(d3)

)
where
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d1 = 1 + i, d2 = 1 + j and d3 = 1 + k. We put qij = 2[dj, di] for 1 ≤ i < j ≤ 3, qji = q−1
ij

and qii = 1. Then, (H,ϕ, q) satisfies (G1) and (G2), and

q =

 1 1− i+ j − k 1− i+ j + k
(1− i+ j − k)−1 1 1− i− j + k
(1− i+ j + k)−1 (1− i− j + k)−1 1

 .

By Lemma 3.8, this is a division Z3-grading triple and hence Hϕ,q is a division Z3-graded
associative algebra over R.

§4 Conclusion

By 1.8, Example 2.8(c), Example 2.10, Proposition 2.13, Theorem 3.3 and Corollary 3.7,
one can summarize our results as follows:

Corollary. (i) Any predivision (resp. division) (Al,Zn)-graded Lie algebra over F for l ≥ 3
is an (Al,Zn)-cover of psll+1(Rϕ,q) for some (resp. division) Zn-grading triple (R,ϕ, q) over
F . Conversely, any psll+1(Rϕ,q) for l ≥ 1 is a predivision (resp. division) (Al,Zn)-graded
Lie algebra over F .

(ii) Any predivision (resp. division) (∆,Zn)-graded Lie algebra over F for ∆ = D or E is
a (∆,Zn)-cover of g⊗FK[z±1 , . . . , z

±
n ] where g is a finite dimensional split simple Lie algebra

over F of type D or E and K is a unital commutative associative algebra over F (resp. K
is a field extension of F ). Conversely, for any finite dimensional split simple Lie algebra g

over F of any type ∆, g ⊗F K[z±1 , . . . , z
±
n ] is a predivision (resp. division) (∆,Zn)-graded

Lie algebra over F . �
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