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Introduction

This note grew out of H. P. Petersson’s recent preprint [4], in particular, his The-
orem 7.3. Let X be the scheme of elementary idempotent 2-by-2 matrices over
a commutative ring k. There is a natural projection 7 from X to the projective
line P;. The standard open covering 4 of P; by two affine lines pulls up to an
open covering U of X. We show that the groups Picy(P1) and Picg(X) of all line
bundles which are trivial over 4 and U are isomorphic to the group Z(k) of locally
constant maps Spec(k) — Z. The universal line bundle L on X introduced in [4,
Sect. 7] is the pull-back of the tautological bundle of P; and represents one of the
two generators of Z C Z(k).

1. Open coverings of P; and X

1.1. Notations. We follow the notations used in [4]. For a k-module M, let M,
denote the k-functor R — M ® R (R € k-alg) and M,, the subfunctor My(R) =
{z € Ma(R) : x is unimodular}. If M is finitely generated and projective then M,
is affine with affine algebra the symmetric algebra over the dual M* of M, and M,
is a quasi-affine finitely presented k-scheme, open in M,. In particular, k7 is affine
n-space over k and ky(R) = R* is the set of units of R.

1.2. The projective line. Recall from [2, I, §1, 3.4] that the projective line Py
over k is the functor

P,(R) = {L C R*: L is a direct summand of rank 1} (R € k-alg).

If x = (;) € R? is a unimodular vector, we write as usual R -z = (z1:22) €
2

Pi(R). In general, not every L € P1(R) is free, so {(x1:22) :  unimodular} will
be a proper subset of P1(R). However, equality holds if R is a field. Define open
subschemes U; C Py by

UZ(R) = {(33‘1:1‘2) T € RX}
Since (rxy:rxs) = (x1:xe) for all r € R, this means
Ui(R) ={(1:t): t € R}, Uy(R)={(t:1):t € R},

and in fact, the maps ¢t — (1:t) and ¢ — (¢:1) are isomorphisms ¢;: ka = U,
The subschemes Uy, Us form an open affine covering of P; in the sense of [2, I,
§1, 3.10], i.e., for every field F' € k-alg, we have P1(F) = U(F) U Uy(F). The
intersection Ujy = Uy N Uy is isomorphic to ky; more precisely, the restrictions ¢
of ¢; to ky are isomorphisms k, = Ui, and

(5 o) () =27, (1)

for all A € R*, R € k-alg.



1.3. The morphism m: X — P; and the subschemes V; of X. There is an
obvious morphism 7: X — P; given by

m(c) =Im(c), (c€ X(R), R € k-alg),

and since by definition, any L € P;(R) admits a complementary submodule L’
and the decomposition R* = L @ L’ determines a unique ¢ € X(R), it is clear
that 7(R): X(R) — P1(R) is surjective, for all R € k-alg. The fibre of 7 over
L = w(c¢) € Py(R) consists of all idempotents ¢ € X(R) with Im(c’) = Im(c),
equivalently, of all line bundles L’ such that R? = L @ L/, or of all splittings o of
the exact sequence

0 L RE=—= R/ ——>0,

i.e., canoo = Id. After fixing (non-canonically!) one complement of L, this set may
be identified with Hom(R?/L, L). Now R?/L = L* by [4, Lemma 5.2], so we see
that the fibre of m over L is an affine space with associated module of translations
Hom(L*,L) = L®2. Let us put

For ¢ = (?; ?) € X(R) let z;(c) be the i-th row of ¢. Then

ce€V;(R) <= z(c)is unimodular. (1)

5
exist 7, s € R such that ra + sf8 = 1, so z1(c) is unimodular. Conversely, let this
be the case and put A := ry + s§. Then v = (ra + s8)y = a(rvy + sd) (because

Oy = ad) = al, so (i) =« (i\), and similarly the second column of ¢ is a

Indeed, Im(c) = 7(c) = R (:) +R (ﬁ) Hence 7(c) € Up(R) implies there

multiple of (i\), showing Im(c) = R- (i\) € U;(R). The proof for the case i = 2

is analogous.

1.4. Lemma. (a) The V; are open subschemes covering X.

(b) The maps

Y ky— Vi, (A B) = (A(ll_—A)\ﬂﬁ) Aé) v
a2 o Ve (o) (;;7 u&l_—;ﬁv)) , (2)

are tsomorphisms making the diagrams

k2 1111 Vl
l l 3)
k i §

a Pi
commautative.

(¢) The intersection Via := V1 N Vy is the open subscheme of all ¢ € X(R)
for which both rows are unimodular. We have w;l(Vlg) = ky X ka. The ; restrict
to isomorphisms l: ky X ka =, V12, and the change of coordinates ¢ = 4~ o
Y1t ku X ka — ky X ka is given by



for all (\,8) € R* X R, R € k-alg, and satisfies
¢o¢=1Id. (5)

Proof. (a) Since V; is the inverse image of the open subschemes Uy, it is open in
X. (Alternatively, V; is the inverse image of (k?), under the morphism z;: X — k2,
by 1.3.1). If R is a field, at least one row of ¢ € X(R) is non-zero, which proves the
covering statement.

(b) It is obvious from (1) that t); takes values in V. Conversely, assume that
c= (: ?) € V1(R). The transpose of ¢ is in X(R) along with ¢, so the span

of the rows of ¢ is a direct summand of rank 1 of the dual (R?)*. Since («, ) is
unimodular by 1.3.1, there exists a unique A € R such that (v,d) = A(«, 3). Now
one shows easily, using the fact that tr(c) = 1, that ¢ — (A, 8) is the inverse map of

1. From (1) it is clear that the columns vy, vy of ¥ (), 8) are multiples of <}\>,

and that <1 = v1 + Avg. This proves (mo 91)(\,8) = (1: \) = ¢1(A), so (3)

A
commutes. The proof for i is analogous.

(c) Since Vip = 771(Uyz), (3) and 1.2.1 imply ¢; " (V12) = pry ' (] (Usa)) =
kg X ka. Now (4) follows from (1) and (2). These formulas show also that
¢~ (uy) = (Wi odh)(u,y) = (0!, (1 = py)). Thus ¢! = ¢, proving (5).

1.5. Remarks. (i) By 1.4.4, the second component of ¢ is an affine, but not a
linear function of 3, in accordance with the fact that X is an affine, but not a
vector bundle over P;. The occurrence of the factor A2 at 3 corresponds to the fact
that the fibre of 7 over L is isomorphic to the affine space determined by L®2, as
remarked in 1.3.

(ii) Formula 1.4.5 is the analogue of the fact that, by 1.2.1, the change of
coordinates @, ' o 1 in k[Uja] 2 E[t,t!] is inversion A — A~! which obviously
has period two. This will be important later in the proof of Theorem 4.2.

(iii) There is a second projection 7': X — P; given by 7/(¢) = Ker(c). Since an
element ¢ € X(R) can be identified with the decomposition R? = Im(c) & Ker(c), it
is clear that (m, ") is an isomorphism of X onto the open subscheme W C Py x Py
given by W(R) = {(L,M) € P1(R)? : R* = L& M}. If R = K is a field, then
(L,M) € W(K) if and only if L # M, so W(K) is the complement of the diagonal
in P1 (K)2 .

(iv) There is no section of m: X — P;. Indeed, assume to the contrary that
o: Py — X satisfies m o0 = Id. Then o; = 0|Ui: U, — V,; are sections of 7|V;.
Identify the affine algebras k[U;] with the polynomial ring k[t] by means of ;.
Then o;(p;(t)) = ¥ (t, fi(t)) where the f;(t) are polynomials in t, and 1.4.4 and
1.2.1 imply
R =t (1-tfi(t))

in the Laurent polynomial ring k[t,t~!] = k[U;5] which is impossible.

Let 4 (resp. ) be the open covering of Py (resp. X) given by Uy and Uy (resp.
V1 and V3). Our aim is to determine the subgroups Picg(P;) and Picy(X) of the
respective Picard groups consisting of all (isomorphism classes of) line bundles
whose restriction to the U; (resp. V) is trivial. We begin by constructing the
standard examples of such bundles.



2. The line bundles E and L

2.1. The tautological bundle E over P; is the line bundle whose fibre over a
point L € P1(R) is the R-module L itself, whence the name “tautological”. More
formally, it is the k-functor

E(R)={(L,z): LePy(R), z€ L} (R € k-alg),

with projection pr;: E — P;. The sheaf & of sections of E is the sheaf usually
denoted Op,(—1). Now let L = 7*(E) be the inverse image of E on X under ,
that is, the fibre product L = X xp, E. Thus, for every R € k-alg, L(R) is the
set of all pairs (c, (L,x)) where ¢ € X(R), (L,z) € E(R) and 7(c) = L. Since L is
already determined by ¢, we can and will identify L with the functor

L(R) ={(¢,x) : c € X(R), z € Im(c)} (R € k-alg).
Then the following diagram is commutative and Cartesian:

L—

E
prll iprl
P,

X' s

where (¢, ) = (7(c),x). Denote by .Z the sheaf of sections of L.
Now let A = k[X] be the affine algebra of X, thus A = k[e, 3,7, 4], subject to
the relations ad = By and o+ d = 1. Let

o= <: ?) € X(A)

be the “generic” element of X, corresponding to the identity map under the identi-
fication of X(R) with Homy.aig(4, R), for all R € k-alg. Any ¢ € X(R) determines
an invertible R-module L = Im(c) C R2. In particular, Im(e) C A? is an invertible
A-module; this is the module denoted L. in [4, Sect. 7], and it is related to .Z as
follows.

2.2. Lemma. Im(e) is canonically isomorphic to the A-module £ (X) of global
sections of L.

Proof. An element s € Z(X), i.e., a section s: X — L of pr;: L — X, is of
the form s(c) = (c,v(c)) where v(c) € Im(c), for all ¢ € X(R), R € k-alg. In
particular, v(e) € Im(e), so we obtain a map .Z(X) — Im(e) sending s to v(e).
Conversely, let w € Im(e) and define a section s: X — L as follows. For R € k-alg
and ¢ € X(R), let o.: A — R be the k-algebra homomorphism corresponding to c.
Then s(c) := (¢, 0.(w)) € L(R) defines a section s: X — L. One sees immediately
that the constructions are inverse to each other.

2.3. There are sections s; € &(U;) given by

s1(e10) = (@0 (1 ))0 saloat) = (1) (1) e R R bealg)

These sections “vanish nowhere”, i.e., they form bases for the &£[U;]-modules &' (U;)
of sections of E over Uj, so & represents an element of Picy(P1). The sections s;
are related on U5 by

s2(p2(A71)) = s1(01(V) - A" (A€ R, R € k-alg), (1)

since ¢1(\) = @a(p) if and only if Ay = 1 by 1.2.1, and (q) = (,u1_1> =
o (/1\) . On the other hand, it is well-known (and follows easily from (1)) that zero

is the only section of E over all of P;.



The sections s; may be lifted to nowhere vanishing sections §; € .Z(V;) by
- 1
51(c) = (c, (A) ) for c =91 (N, B) € Vi(R),
- _ u B '
52(0) = (o ( 1) ) for e = a(1,7) € Va(R),

Hence L represents an element of Picy(X). The sections §; are related on Vg in
the same way as before:

Sa(c) = 51(c) - A7 (2)
for ¢ = 1 (N, B) = a(p,v) € Vi2(R) since p = A~! by 1.4.4.

3. Auxiliary results on Laurent polynomials over rings

3.1. Recall the constant k-group scheme Z defined by the integers: Z(R) is the
set of all locally constant maps 0: Spec(R) — Z with the obvious (addltlve) group
structure. The elements of Z(R) are in bijection with families € = (gp)nez of
orthogonal idempotents of R with e, # 0 for only finitely many n, and > ¢, =1,
by means of the relations

ap)=n <= enlp) = L), (1)

for all p € Spec(R), R € k-alg. Here we use the notation r(p) for the canonical
image of an element r € R in the quotient field k(p) of R/p. Then the group law
in Z(R) is described (multiplicatively) by

Z ElE;nv (2>

l+m=n

! = (e_,)nez, and the unit element of Z(R), i.e., the constant

1 ifn
0 1fn7é0} Let R[t,t!] be
the Laurent polynomial ring in one variable t over R. Then (2) implies that there

is a group monomorphism

so the inverse of e is e~

map 0: S — Z, corresponds to the family ¢, = {

Z(R) — Rt t7']*, 2= t2:=) et
nez

3.2. Lemma. Let R be a commutative ring and t an indeterminate. Denote by
Nil(R) the nil radical of R.

(a) A polynomial f(t) = >_,5rit" is a unit in R[t] if and only if ro € R* and
r; € Nil(R) for all 1 > 0.

(b) A Laurent polynomial g € R[t,t71] is a unit in R[t,t™] if and only if there
exists an element 0 € Z(R), a unit u € R* and a nilpotent h € R[t,t™] such that

g=ut®+h. (1)
The element 0 is uniquely determined by g, called the degree of g, and the map
deg: R[t,t7']* — Z(R), deg(ut®+h):=

is a group homomorphism.
Note, however, that v and h are not uniquely determined by g.

Proof. (a) is evident if R is a field. In general, consider r € R and p € § :=
Spec(R). Thenr € R* <= r(p) #0forallp € S, and r € Nil(R) < r(p) =0,
for all p € S. This proves (a).



(b) Clearly an element as in (1) is a unit in R[t,t!]. Conversely, let g €
R[t,t71]*, and consider again first the case where R is a field. We leave it to the
reader to show that ¢ = a,t" is a non-zero monomial.

Now let R be arbitrary, write g = >, 7,t" where 7, € R, and let p € S. By
applying the above to g®(p), we see that there exists a unique index n =: 9(p) € Z
such that 7, (p) # 0. The map 0: S — Z thus defined is locally constant. Indeed,
if 9(pg) = n then r,(po) # 0 and hence r,(p) # 0 for all p in the basic open
neighbourhood U of pg in S defined by r,. Since r;(p) = 0 for all other j # n, the
function 0 is constant equal to n on U. This proves 9 € Z(R).

Let (gn)nez be the family of idempotents corresponding to 9. Then (r,(1 —
£,))(p) = 0 for all p € S. Indeed, if 9(p) = n then (1 —e,)(p) = 0 by 3.1.1, while
if 9(p) # n, then r,(p) = 0 by definition of 2. Hence ¢, = r,(1 —¢,) € Nil(R).

Moreover, u := Y, Tnen € R* because, for all p € S, by definition of 9,

U’(p) = ZTn(p)an(p) = Ta(p)(p) # 0.

nezZ

Now ue,, = rpe, by orthogonality of the €,, and hence

9= Zrnent" + cht” =ut’ +h

nez nez

where h = ) ¢,t" is nilpotent, being a finite sum of the nilpotent monomials ¢, t™.
This proves (1). Uniqueness of 0 = deg(g) is clear since g ® 1.,y = u(p) - t2@).
Finally, suppose that ¢’ = u/t® + h’ is a second element of R[t,t~!]*. Then

99’ = (ut® + h) (W't + ') = wu't°7°" (mod Nil(R[t, t ']
since 0 +— t? is a group homomorphism, showing deg is a homomorphism.
3.3. Lemma. There is an exact sequence

A deg

1— > R*—2 5 R[t]* x R[t]*—2>R]t, t1]*

Z(R) 0

where A(r) = (r,r) is the diagonal map, O(f1(t), f2(t)) = fi(t)- f2(671) 7! and deg
is as in Lemma 3.2(b).

Proof. Clearly 9(f1, f2) = 1 if and only if fi(t) = f2(t71) if and only if f; =
fo =7 € R*. Next, Im(9) C Ker(deg) because deg(fi(t)) = 0 = deg(f2(t1)) for
fi € R[t]* and deg is a homomorphism. Also, deg is surjective since the map 0 +— t°
is even a section of deg. Thus it remains to prove the inclusion Ker(deg) C Im(9).

By Lemma 3.2(b), an invertible Laurent polynomial of degree zero has the
form g(t) = u -1+ h(t) where u € R and h(t) = >_,5 , ¢ t¢ for some n € N,
with ¢; € Nil(R). Hence G(t) := t"g(t) € R[t]. Denote the canonical maps
R — R = R/Nil(R) and R[t] — R[t] by a bar. Then G(t) = t"u = P(t) - Q(t)
where P(t) = t" is monic and Q(t) = @ € R*. Clearly P and Q are strongly
relatively prime in R[t], so by Hensel’s Lemma [1, III, §4.3, Theorem 1], applied to
the discretely topologized ring A = R and the ideal m = Nil(R), the polynomials
P, Q lift uniquely to polynomials P, Q € R[t], P monic, such that G = P-Q. Write
P(t) =t™ +a;t™ ' + - +a,, and Q(t) = by + byt + ---. Then P(t) = t" and
Q = u shows m = n, by € R* and a;,b; € Nil(R) for i > 0. By Lemma 3.2(a), the
polynomial F(t) := 1+ a1t + - + a,t™ = t"P(t~!) belongs to R[t]*. Now put
fi(t) == Q(t) and fo(t) := F(t)~!. Then

A®LETHTI =QOF(E™) = Q)tT"P(t) = tT"G(t) = g(t),

as desired.



4. Determination of Picy(P;) and Picy(X).

4.1. Theorem. There is a natural isomorphism &@: Picy(Pq) =, Z(k) mapping
the tautological bundle to —1 € Z C Z(k) as follows.

Identify k[U;] with the polynomial ring k[t] by means of the isomorphisms ;
of 1.2 and identify k[U12] with the Laurent polynomial ring k[t,t~] by means of
the open embedding U1a C Uy. Let A be a representative of an element [ €
Picy(P1), and let s; € 4 (U;) be sections trivializing A over U;, so that sg = s1 -
g12 on Ujy where g1o € k[t,t 7). Then the element deg(g12) € Z(k) depends only
on the isomorphism class of M, and [#] — deg(g12) is the desired isomorphism.

Proof. By standard facts, computing Picy(P;) amounts to computing the Cech
cohomology group H' = H'(U,.#) of the sheaf .# = Op, with respect to the
covering {l. Recall that H' = Z'/B' where Z' = Z'(4,.%) is the group of Cech
1-cocycles (gi;) € Z#(U; NU;) and B! = 9°(CY) is the group of coboundaries.

Since 4 has only two elements, we have a group isomorphism Z! =~ % (U,)
sending (g;;) to gi2. Note that this isomorphism is not unique; (g;;) — g21 =
gﬁl would have been just as good. We identify the group C? of 0-cochains with
Z(Up) x Z(Uy). Then the coboundary operator 8°: CY — C is given by

(g1,92) = 01(91) - 02(92) ", (1)

where g; € .7 (U;) and ¢;: #(U;) — #(Uja) are the restriction homomorphisms.

Now consider the isomorphisms ¢;: ko — U; and ¢}: ky, — Uy of 1.2. After
identifying the affine algebras of k, and k,, with k[t] and k[t,t~!], we have induced
isomorphisms ¢}: Z(U;) — k[t]* and ¢f*: F(Uiz) — k[t,t71]*. Under these
isomorphisms, the coboundary operator d° corresponds to the map d': k[t]* x
k[t]* — k[t,t~1]* given by

O(fr,f2) =f1-0*(f2) 7" (2)

where ¢ = ¢, 1o/ is the change of coordinates map. Details are left to the reader.
By 1.2.1, ¢ is inversion on ky, so ¢* is the automorphism t +— t~1 of k[t,t~1]. It
follows that 0" = 0, the map considered in Lemma 3.3. Hence the diagram

a° can
o Zt H! 0
F(Uy) x F(Uz) — L= F(Usy) H! 0

¢TX¢§J/% sﬂ’fi% =
\

R[6] x k[t] ———= k[t t '] ———=Z(k) ——>0

is commutative and has exact rows, so there is a unique isomorphism H' — Z(k)
making the diagram commutative. Explicitly, it is given by the procedure described
in the statement of the theorem. Finally, 2.3.1 implies that the tautological bundle
is mapped to —1 € Z(k).

4.2. Theorem. There is a natural isomorphism ¥: Picg(X) =, Z(k) making the
diagram

Picy(P1) — > Picy(X)
SNt

commutative. Hence ©* is an isomorphism, and the bundle L = n*(E) of 2.1 is
mapped to —1 under w*.



Proof. We proceed as in the proof of 4.1. Let ¢ be the sheaf 0 and identify
C() =2 4 (V1) x 9(Vy) and Z' (V) = ¥(V12). Then the coboundary operator
9% C°(W) — Z'(V) is given by 4.1.1. Again as before, we consider the isomor-
phisms ;: kg — V; and 9): ky X ka — V12 of 1.4. After identifying the affine
algebra of k2 with the polynomial ring k[t,y] in two variables and the affine alge-
bra of ky X ka with k[t,t =1, y], we have induced isomorphisms ¢}: 4(V,) — k[t,y]*
and ¥}*: 4(Vi2) — k[t,t 71, y]*. Let ¢ be the change of coordinates 1.4.4. Then
again 0° corresponds to the map 8’ of 4.1.2.

Put R = k[y], so that k[t,y] = R[t] and k[t,t~!,y] = R[t,t7!]. We wish to
apply Lemma 3.3. However, the automorphism ¢* of the k-algebra R[t,t~!] is no
longer just given by t +— t~! but also involves the variable y, so &’ is not equal to
the map 0 of Lemma 3.3. Hence the following detour is required.

From 1.4.4, we see that ¢ can be factored in the form ¢ = ¢ 0 where (), 8) =
(A71, B) and 9(A, B) = (A, A(1 — AB)). Putting I = /* and © = 9*, this shows

$ =60l (2)
where © and I are the automorphisms of k[t,t~!,y] given by the formulas

t, Oy) =t(1 - ty), (3)
It)=t~", I(y)=y. (4)

By 1.4.5, ¢* squares to the identity and obviously I? = Id. Hence (2) implies

Next observe (cf. [3, 0.12.2]) that an idempotent & of the polynomial ring R = k[y]
belongs to k. Hence the natural homomorphism & — R induces an isomorphism

Z(k) = Z(R). (6)

Using the description of the units of R = k[y]| in Lemma 3.2(a), part (b) of that
lemma shows that g € R[t,t7!]* if and only if ¢ = ut® + h where u € kX,
0 = deg(g) € Z(k) and h € R[t,t™!] is nilpotent. From this and the formulas for
© and I we see

deg(O(g)) = deg(g), deg(I(g)) = —deg(g) (g € R[t,t7']). (7)

With the notations introduced above, the map 0 of Lemma 3.3 is expressed by

(f1. f2) = fr - I(f2)™1, (8)

while by 4.1.2 and (2),
9'(fi, f2) = fr-0U(f2)7", 9)

for f; € R[t]*. We claim that
Im(9") = Im(9) = Ker(deg). (10)

Indeed, the second equality follows from Lemma 3.3. As deg vanishes on R[t]*, it
follows from (7) and (9) that Im(9") C Ker(deg) = Im(9). To prove Im(9) C Im(d’),
it suffices by (8) to have I(f) € Im(9’), for all f € R[t]*. The automorphism © of
R[t,t7!] induces an endomorphism (but not an automorphism) of the subring R[t].
This is evident from (3). Hence O(f) € R[t]*, and by (5), I(f) = ©(I(O(f))) =
9'(1,0(f)™1) € Im(9"). Now (10) and Lemma 3.3 together with (6) yields the
desired isomorphism

: Picg(X) = H'(V,9) = Rlt, t 1% /Tm(0') <5 Z(k).
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It remains to show that (1) is commutative. The map 7*: Picy(P1) — Picg(X) is
induced by the maps 7}: .#(U;) — 4(V;) and 7fy: #(Ui2) — 9(Vi2), where m;
and 715 are the restrictions of the projection m: X — Py. After the identifications
of these rings with polynomial resp. Laurent polynomial rings as above, these are
just the natural injections k[t]* — R[t]* and k[t,t~!]* — R[t,t~!]* induced from
k — R. From (3), (4) and (9) one sees easily that the diagram

K6 X k[E]Y —2 s K[, 1% — 5 (k) 0
R[t]* x R[t]* % R[t,t71]% o Z(k) 0

is commutative with exact rows. This implies commutativity of (1) and completes
the proof.

4.3. Corollary. & has infinite order in Pic(P1) and £ has infinite order in
Pic(X).

4.4. Corollary. If k is a factorial ring then Pic(Py) & Z = Pic(X), generated by
& and £, respectively.

Proof. The Picard group of an integral domain is canonically embedded into
the ideal class group, and the latter is trivial for a factorial domain [1, VII, §1.2,
Remarks after Prop. 4, and §3, Def. 1]. Also, k[t] is factorial along with k. Hence
every line bundle on Py is trivialized by 4, i.e., Pic(Py) = Picy(P;). Moreover,
Z(k) = Z since k has no non-trivial idempotents. Now the first isomorphism follows
from Theorem 4.1, and the proof of the second one is analogous.

4.5. Remarks. (i) The isomorphisms @ and ¥ of 4.1 and 4.2 are easily seen to
be compatible with base change. Hence, the sub-functors Picy(P;) and Picg(X)
of the Picard functors Pic(P;) and Pic(X) defined by

PICM(P1)<R) = PiCu(Pl & R), PiCQ}(X)(R) = PICQ}(X & R)

are actually isomorphic to Z.

(ii) The canonical projection p: P; — S = Spec(k) induces a homomorphism
p*: Pic(k) = Pic(S) — Pic(Py). This is an isomorphism onto a direct summand
because p has sections (the elements of Py (k) are in bijection with the sections of p).
We claim that p*(Pic(k)) NPicy(P;1) = 0. Indeed, let i1: U; — Py be the inclusion
and p; = p|U1. Then p; = poi; and hence p; = i} o p*. Since Uj (k) # 0 as well,
pi: Pic(k) — Pic(Uy) is injective, so if: p*(Pic(k)) — Pic(Uy) is injective. Hence
for an element p*([L]) = [.#] € p*(Pic(k)) N Picy(P1) we have i ([.#]) = 0 (since
the restriction of # to Uj is trivial) = pj([L]) and therefore [L] = 0 in Pic(k).
Question: Is

p*(Pic(k)) @ Picy(Py) = Pic(Py)?

Analogous statements hold and questions can be asked for Pic(X).

Acknowledgement I am grateful to H. P. Petersson who carefully read an earlier
draft of this note and suggested numerous improvements.
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