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Abstract. Using nonassociative algebras constructed out of skew-polynomial rings as

introduced by Petit, we show that all non-constant polynomials in the skew-polynomial

ring H[t;σ, δ] decompose into a product of linear factors, and that all non-constant poly-

nomials in the skew-polynomial ring C[t;σ, δ] decompose into a product of linear and

quadratic irreducible factors.

Introduction

By the Fundamental Theorem of Algebra, every non-constant complex polynomial splits
into a product of linear factors and thus has a root in C. For the ring of left polynomials
over Hamilton’s quaternion algebra H[t] = HL[t] with elements f = amt

m + · · ·+ a1t + a0,
ai ∈ H, where the variable t commutes with every z ∈ H, it is again well-known that every
non-constant polynomial f splits into a product of linear polynomials, cf. for instance [6],
[11, Theorem 5.2], and that every non-constant f ∈ H[t] has a root in H (see [15] for the
earliest proof).

In the following, we look at skew-polynomial rings D[t;σ, δ] with σ a ring endomorphism
of D and δ a σ-derivation, where D is either the quaternion division algebra over a real
closed field F or its quadratic field extension F (

√
−1). We show that each non-constant

polynomial f ∈ D[t;σ, δ] splits into linear, quadratic or, if D = F (
√
−1), quartic irreducible

factors (Theorems 3 and 6). As a consequence, we obtain that each non-constant polynomial
f ∈ H[t;σ, δ] splits into linear factors and that each non-constant polynomial f ∈ C[t;σ, δ]
splits into linear or quadratic irreducible factors (Corollaries 4 and 7).

For the proofs, we employ nonassociative algebras Sf constructed out of skew-polynomial
rings defined by Petit [16], together with the fact that over real-closed fields, division alge-
bras only exist in dimensions 1, 2, 4 or 8. As a corollary, we obtain a new proof for the
Fundamental Theorem of Algebra for polynomials in H[t]. We believe that our approach
deserves attention, as the proofs are straightforward and only use results from the theory of
nonassociative algebras.

As a consequence, we also obtain that a real algebra Sf is a division algebra implies that
f ∈ C[t;σ, δ] must be irreducible of degree 2. Every real division algebra A of dimension 4
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which is a two-dimensional vector space over C ⊂ Nucl(A) ∩ Nucm(A) is isomorphic to Sf
for some irreducible f(t) = t2 − d1t− d0 ∈ C[t;σ, δ], where σ and δ are suitably defined.

1. Preliminaries

1.1. Nonassociative algebras. Let F be a field and let A be a finite-dimensional F -vector
space. We call A an algebra over F if there exists an F -bilinear map A×A→ A, (x, y) 7→ x·y,
denoted simply by juxtaposition xy, the multiplication of A. An algebra A is called unital
if there is an element in A, denoted by 1, such that 1x = x1 = x for all x ∈ A. We will only
consider unital algebras.

An algebra A 6= 0 is called a division algebra if for any a ∈ A, a 6= 0, the left multiplication
with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are bijective. A is a
division algebra if and only if A has no zero divisors ([17], pp. 15, 16).

For an F -algebra A, associativity in A is measured by the associator [x, y, z] = (xy)z −
x(yz). The left nucleus of A is defined as Nucl(A) = {x ∈ A | [x,A,A] = 0}, the middle
nucleus of A is defined as Nucm(A) = {x ∈ A | [A, x,A] = 0} and the right nucleus of
A is defined as Nucr(A) = {x ∈ A | [A,A, x] = 0}. Their intersection Nuc(A) = {x ∈
A | [x,A,A] = [A, x,A] = [A,A, x] = 0} is the nucleus of A. Nuc(A) is an associative
subalgebra of A containing F1 and x(yz) = (xy)z whenever one of the elements x, y, z is in
Nuc(A). The center of A is C(A) = {x ∈ A |x ∈ Nuc(A) and xy = yx for all y ∈ A}.

1.2. How to obtain nonassociative division algebras from skew-polynomial rings.
In the following, we use the terminology used by Jacobson [10] and Petit [16] and summarize
their most important results needed in this paper. Let D be a unital division ring, σ a ring
endomorphism of D and δ a left σ-derivation of D, i.e. an additive map such that

δ(ab) = σ(a)δ(b) + δ(a)b

for all a, b ∈ D, implying δ(1) = 0. The skew-polynomial ring D[t;σ, δ] is the set of polyno-
mials

a0 + a1t+ · · ·+ ant
n

with ai ∈ D, where addition is defined term-wise and multiplication by

ta = σ(a)t+ δ(a) (a ∈ D).

That means,

atnbtm =
n∑
j=0

a(Sn,jb)tm+j

(a, b ∈ D), where the map Sn,j is defined recursively via

Sn,j = δ(Sn−1,j) + σ(Sn−1,j−1),

with S0,0 = idD, S1,0 = δ, S1,1 = σ and so Sn,j is the sum of all polynomials in σ and δ of
degree j in σ and degree n − j in δ [10, p. 2]. If δ = 0, then Sn,j = σn. D[t;σ] = D[t;σ, 0]
is called a twisted polynomial ring and D[t; δ] = D[t; id, δ] a differential polynomial ring.
For the special case that σ = id and δ = 0, we obtain the usual ring of left polynomials
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D[t] = D[t; id, 0], often also denoted DL[t] in the literature [8], with its multiplication given
by

(
s∑
i=1

ait
i)(

t∑
i=1

bit
i) =

∑
i,j

aibjt
i+j .

If D has finite dimension over its center and σ is a ring automorphism of D, then R =
D[t;σ, δ] is either a twisted polynomial or a differential polynomial ring by a linear change of
variables [10, Thm. 1.2.21]. Note also that if σ and δ are F -linear maps then D[t;σ, δ] ∼= D[t]
by a linear change of variables.

For f = a0 + a1t + · · · + ant
n with an 6= 0 define deg(f) = n and deg(0) = −∞. Then

deg(fg) = deg(f) + deg(g). An element f ∈ R is irreducible in R if it is no unit and it has
no proper factors, i.e if there do not exist g, h ∈ R with deg(g),deg(h) < deg(f) such that
f = gh.
R = D[t;σ, δ] is a left principal ideal domain and there is a left-division algorithm in R

[10, p. 3]: for all g, f ∈ R there exist unique r, q ∈ R, g 6= 0 and deg(r) < deg(f), such that

g = qf + r.

If σ is a ring automorphism then R = D[t;σ, δ] is a left and right principal ideal domain (a
PID) [10, p. 6] and there is also a right-division algorithm in R [10, p. 3 and Prop. 1.1.14].
(We point out that the terminology used by Petit in [16] is different from ours; there what
we and Jacobson call left is called a right-division algorithm and vice versa.)

If σ is a ring automorphism, two non-zero elements f, g ∈ R are called similar (f ∼ g) if
and only if there exist h, q, u ∈ R such that

1 = hf + qg and u′f = gu

for some u′ ∈ R if and only if R/Rf = R/Rg [10, p. 11]. If σ is a ring automorphism,
R = D[t;σ, δ] is a PID, hence any element f ∈ R, f 6= 0 which is not a unit in R, can be
written as f = p1 · · · ps with irreducible pi ∈ R. If f = p1 · · · ps = p′1 · · · p′t, where the pi and
the p′i are irreducible, then s = t and there exists a permutation π ∈ Ss such that pi ∼ p′π(i)

for all i. This is the Fundamental Theorem of Arithmetic in a PID [10, Theorem 1.2.9].
Obviously, f ∼ g implies that deg(f) = deg(g).

Definition 1. (cf. [16, (7)]) Let D be a unital associative division algebra and f ∈ D[t;σ, δ]
of degree m, σ a ring endomorphism of D. Let modlf denote the remainder of left division
by f . Then the vector space

Rm = {g ∈ D[t;σ, δ] |deg(g) < m}

together with the multiplication
g ◦ h = gh modlf

becomes a nonassociative algebra Sf = (Rm, ◦) over F0 = {a ∈ D | ah = ha for all h ∈ Sf}.

Note that the multiplication is well-defined and that F0 is a subfield of D [16, (7)].

Remark 1. In [10], only the associative algebras

E(f) = {g ∈ R | f left divides fg}
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for f ∈ D[t;σ, δ], σ an automorphism, were investigated. E(f) is division if f is irreducible.

Theorem 2. (cf. [16, (2), p. 13-03, (5), (7), (9), (14)]) Let f ∈ R = D[t;σ, δ].
(i) If Sf is not associative then

Nucl(Sf ) = Nucm(Sf ) = D

and
Nucr(Sf ) = {g ∈ R | fg ∈ Rf}.

(ii) The powers of t are associative if and only if tmt = ttm if and only if t ∈ Nucr(Sf ) if
and only if ft ∈ Rf.
(iii) If f is irreducible then Nucr(Sf ) is an associative division algebra.
(iv) Let f ∈ R be irreducible and Sf a finite-dimensional F0-vector space or a finite-
dimensional right Nucr(Sf )-module. Then Sf is a division algebra.
Sf is associative if and only if f is a two-sided element.
(v) Let f = tm −

∑m−1
i=0 dit

i ∈ R = D[t;σ]. Then f(t) is a two-sided element of Sf if and
only if σm(z)di = diσ

i(z) for all z ∈ D, 0 ≤ i < m and σ(di) = di for all i, 0 ≤ i < m.

2. Factorization Theorems for skewed polynomials if F is a real closed field

Let F be a real closed field, that is a formally real field such that every polynomial of
odd degree with coefficients in F has at least one root in F, and for every element a ∈ F
there is b ∈ F such that a = b2 or a = −b2. Equivalently, F is a real closed field if it is not
algebraically closed but if the field extension F (

√
−1) is algebraically closed. Then every

division algebra over F has dimension 1, 2, 4 or 8. Moreover, up to isomorphism, there
are exactly three associative division algebras over F , one each of dimension 1, 2, and 4.
The first is a classical and well-known result for algebras over R (cf. [3] and [12]) and was
generalized to any closed fields using model theory in [4], the second is also well-known for
R [5], for real closed fields see [13] or [4].

Let D be a finite-dimensional unital associative division algebra over F (hence either the
quadratic field extension F (

√
−1), or the quaternion division algebra) and σ an injective

ring homomorphism of D. By [10, Thm. 1.1.21], after a linear change of variables, D[t;σ, δ]
is either a twisted polynomial ring or a differential polynomial ring.

Using the results quoted above, we are immediately able to prove:

Theorem 3. (Factorization Theorem I)
(i) Let D be the quaternion division algebra over a real closed field. Then every polynomial
f ∈ D[t;σ, δ] of degree m > 2 decomposes into the product of linear or quadratic irreducible
polynomials. No quadratic irreducible polynomial is a two-sided element in R.
(ii) If σ is a ring automorphism and f = p1 · · · ps = p′1 · · · p′t are two such decompositions,
then s = t and there is a permutation π ∈ Ss such that

p′π(i) ∼ pi

for all i, 1 ≤ i ≤ s.
(iii) Every irreducible monic quadratic polynomial f = t2 − d1t − d0 ∈ D[t;σ] satisfies
σ2(z)di 6= diσ

i(z) for some z ∈ D, i ∈ {0, 1}, or σ(di) 6= di for some i ∈ {0, 1}.
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Proof. (i) Suppose that f(t) ∈ R = D[t;σ, δ] has degree m > 2 and is irreducible. Then
Sf is a unital nonassociative division algebra of dimension 4m > 8 over F0 and F0, being a
subfield of D, is either F or F (

√
−1). The case that F0 = F (

√
−1) is not possible, as there

are no division algebras over F (
√
−1) of dimension > 1. Thus F0 = F . However, there are

no division algebras over F of dimension > 8, again a contradiction. Thus f(t) must be
reducible and so f = gh for suitable f, g ∈ R with deg(f),deg(h) < m. By applying the
same argument to g and h and iterating it, we conclude that f is a product of linear and
quadratic irreducible polynomials. If f is an irreducible quadratic polynomial, then Sf has
dimension 8 and is a nonassociative division algebra. Theorem 2 (iv) implies that f cannot
be a two-sided element.
(ii) By the Fundamental Theorem of Arithmetic [10, Theorem 1.2.9], this decomposition is
unique up to a permutation of the factors and similarity.
(iii) The assertion follows from Theorem 2 (v). �

For the next result, recall that if σ is a ring automorphism then t− a and t− b are called
(σ, δ)-conjugate if and only if there is some u ∈ D× such that a = σ(u)bu−1 + δ(u)u−1.

Let H be Hamilton’s quaternion division algebra over R.

Corollary 4. (Fundamental Theorem)
(i) Every polynomial f(t) ∈ H[t;σ, δ] of degree m decomposes into the product of m linear
polynomials. In particular, f(t) has a root.
(ii) If σ is a ring automorphism of H and f = p1 · · · pm = p′1 · · · p′m, then there is a permu-
tation π ∈ Ss such that p′π(i) and pi are (σ, δ)-conjugate for all i, 1 ≤ i ≤ s.
(iii) If σ is a ring automorphism of H then each root of a monic polynomial f(t) ∈ H[t;σ, δ]
in H is the (σ, δ)-conjugate to some ai, where the t− ai are the linear factors of f .

Proof. (i) It remains to show that here all quadratic polynomials are reducible: Suppose
f is an irreducible quadratic polynomial. Then the unital F -algebra Sf has dimension 8
and since it is nonassociative we have Nucl(Sf ) = H by Theorem 2 (i). Since for any
unital real division algebra A, Nucl(A) = R by [2], this yields a contradiction. Thus f(t) is
reducible and the product of two linear polynomials. In particular, f(t) has a root in H: for
f(t) = g(t)(at− b), f(a−1b) = g(a−1b)(aa−1b− b) = 0.
(ii) is clear and (iii) is [13, (16.4)]: Each root of f(t) = (t − a1) · · · (t − am) in H is a
(σ, δ)-conjugate to some ai. �

Factorization Theorems for polynomials in H[t] and related results were proved for in-
stance in [6], [7], [9] and [11, Theorem 5.2]. The Fundamental Theorem of Algebra for
polynomials in H[t] was proved by [15]. We obtain it as a special case:

Corollary 5. (i) Every non-constant polynomial f(t) ∈ H[t] of degree m decomposes into
the product of m linear polynomials. Moreover, if f = p1 · · · pm = p′1 · · · p′m, then there is a
permutation π ∈ Ss and zi ∈ H such that

p′π(i) = zipiz
−1
i



6 S. PUMPLÜN

for all i, 1 ≤ i ≤ m.
(ii) If the monic polynomial f(t) ∈ H[t] has the m linear factors t− ai then there is a zero
of f in H in each of the congruence classes [ai], 1 ≤ i ≤ m.

Proof. (i) This follows from Corollary 4 and the fact that conjugation in H[t] is the usual
conjugacy [10, p. 15].
(ii) This is proved in [18]. �

Theorem 6. (Factorization Theorem II)
(i) Every polynomial f(t) ∈ F (

√
−1)[t;σ, δ] of degree m > 3 decomposes into the product of

linear, quadratic or quartic irreducible polynomials. No quartic irreducible polynomial is a
two-sided element in F (

√
−1)[t;σ, δ].

(ii) If σ is a ring automorphism of F (
√
−1) and f = p1 · · · ps = p′1 · · · p′t are two such

decompositions, then s = t and there is a permutation π ∈ Ss such that

p′π(i) ∼ pi

for all i, 1 ≤ i ≤ s.
(iii) If σ is a ring automorphism of F (

√
−1) then every irreducible monic quartic polynomial

f = t4 − d3t
3 − d2t

2 − d1t− d0 ∈ F (
√
−1)[t;σ] satisfies σ4(z)di 6= diσ

i(z) for some z ∈ D,
i ∈ {0, 1, 2, 3}, or σ(di) 6= di for some i ∈ {0, 1, 2, 3}.

Proof. (i) Suppose that f(t) ∈ R = F (
√
−1)[t;σ, δ] has degree m > 4 or degree 3 and is

irreducible. Then Sf is a unital nonassociative division algebra over F0 and F0, being a
subfield of F (

√
−1), is either F or F (

√
−1). The case that F0 = F (

√
−1) is not possible, as

there are no division algebras over F (
√
−1) of dimension > 1. Thus F0 = F . However, there

are no division algebras over F of dimension 2m > 8 or 6, again a contradiction. Thus f(t)
must be reducible and so f = gh for suitable f, g ∈ R with deg(f),deg(h) < m. By applying
the same argument to g and h and iterating it, we conclude that f is a product of linear,
quadratic and quartic irreducible polynomials. If f is an irreducible quartic polynomial,
then Sf has dimension 8 over F and is a nonassociative division algebra. Theorem 2 (iv)
implies that f cannot be a two-sided element.
(ii) By the Fundamental Theorem of Arithmetic for a PID, this decomposition is unique up
to a permutation of the factors and similarity.
(iii) The assertion follows from Theorem 2 (v). �

Corollary 7. Every polynomial f(t) ∈ R = C[t;σ, δ] of degree ≥ 1 decomposes into the
product of linear and quadratic irreducible polynomials. Moreover, if σ is a ring automor-
phism and f = p1 · · · ps = p′1 · · · p′t, then s = t and there is a permutation π ∈ Ss such
that

p′π(i) ∼ pi

for all i, 1 ≤ i ≤ s.

Proof. It remains to show that all quartic polynomials are reducible: Suppose f is an irre-
ducible quartic polynomial. Then the unital F -algebra Sf has dimension 8 and since it is
nonassociative we have Nucl(Sf ) = C by Theorem 2 (i). Since for any unital real division
algebra A, Nucl(A) = R by [2], this yields a contradiction. Thus f(t) is reducible. �
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Remark 8. (i) If it is possible to prove (most likely by using model theory) that also for a
real closed field F , any unital division algebra has left nucleus F , then there are no irreducible
quadratic polynomials in D[t;σ, δ] and no irreducible quartic polynomials in F (

√
−1)[t;σ, δ],

either.
(ii) It is easy to see that for any a ∈ R\Q, there is an id-derivation δ on R such that δ(a) 6= 0,
that means δ is not R-linear. This yields an id-derivation δ on H, δ(x0 +x1i+x2j+x3k) =
δ(x0)+δ(x1)i+δ(x2)j+δ(x3)k, and an id-derivation δ on C via δ(x0 +x1i) = δ(x0)+δ(x1)i,
which are both not R-linear. Along the same line of thought, we can extend any ring
isomorphism σ : R→ R to a ring isomorphism on C and on H.

3. A remark on four-dimensional real division algebras

If σ is a ring isomorphism, we also have a right division algorithm and can use it to define
a second algebra construction (cf. [16]): Let f ∈ D[t;σ] be of degree m and let modrf denote
the remainder of right division by f . Then the vector space V = {g ∈ D[t;σ] |deg(g) < m}
together with the multiplication

g ◦ h = gh modrf

becomes a nonassociative algebra fS = (V, ◦), which, however, turns out to be anti-
isomorphic to a suitable algebra S′g.

Lemma 9. Let K/F be a separable quadratic field extension with non-trivial automorphism
σ and d ∈ K \F . Then the nonassociative quaternion division algebra Cay(K, d) is isomor-
phic to the algebra Sf with f(t) = t2 − d ∈ K[t;σ].

The proof is straightforward.
For F = R, we obtain the following characterization of four-dimensional real division

algebras which are two-dimensional vector spaces over C and have C ⊂ Nucl(A)∩Nucm(A)
due to [16, (1), p. 13-08] and our above results:

Corollary 10. (i) If Sf is a real division algebra then R = C[t;σ, δ], f ∈ R is irreducible of
degree 2, and if Sf is not associative then Nucl(A) = Nucm(A) = C and Nucm(A) ∈ {R,C}.
(ii) Every real division algebra A with multiplication ? of dimension 4 which is a two-
dimensional vector space over C ⊂ Nucl(A) ∩ Nucm(A) is isomorphic to Sf for a suitable
irreducible f ∈ C[t;σ, δ], f = t2 − d1t− d0, where σ and δ are defined via

t ? a = σ(a) ? t+ δ(a)

for all a ∈ D.
(iii) Every real division algebra A of dimension 4 which is a two-dimensional vector space
over C ⊂ Nucm(A)∩Nucr(A) is isomorphic to (Sf )op for a suitable irreducible f ∈ C[t;σ, δ],
f = t2 − d1t− d0, where σ and δ are defined via

t ? a = σ(a) ? t+ δ(a)

for all a ∈ D and where ? is the multiplication in Sf . In particular, if σ is a ring isomorphism
then A ∼= H(f)S

′ with H(f) =∈ R′ = C[t;σ−1,−δ ◦ σ−1] and H(f) = t2 − σ(d1)t− d0.
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By [16, (17)], f(t) = t2 − d1t− d0 ∈ C[t;σ] is irreducible if and only if σ(z)z 6= d1z + d0

for all z ∈ D.

Example 11. For R = C[t; ], the complex conjugation, we obtain Hamilton’s quaternions
by choosing f(t) = t2 + 1, and a nonassociative quaternion division algebra Cay(C, d0) by
choosing f(t) = t2−d0, for any d0 ∈ C\R. The nonassociative quaternion algebras are up to
isomorphism the only unital algebras with complex nucleus [W]. Moreover, Cay(C, d0)op ∼=
Cay(C, d0).

By [16, (23)], f(t) = t2 − d1t − d0 ∈ C[t; ] with d0, d1 ∈ R× is irreducible if and only if
it has no real roots.

See also [1] for related results on four-dimensional real division algebras with C ⊂
Nucl(A) ∩Nucm(A).
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