FACTORING SKEW POLYNOMIALS OVER HAMILTON'S QUATERNION ALGEBRA AND THE COMPLEX NUMBERS

S. PUMPLÜN

Abstract

Using nonassociative algebras constructed out of skew-polynomial rings as introduced by Petit, we show that all non-constant polynomials in the skew-polynomial ring $\mathbb{H}[t ; \sigma, \delta]$ decompose into a product of linear factors, and that all non-constant polynomials in the skew-polynomial ring $\mathbb{C}[t ; \sigma, \delta]$ decompose into a product of linear and quadratic irreducible factors.

Introduction

By the Fundamental Theorem of Algebra, every non-constant complex polynomial splits into a product of linear factors and thus has a root in \mathbb{C}. For the ring of left polynomials over Hamilton's quaternion algebra $\mathbb{H}[t]=\mathbb{H}_{L}[t]$ with elements $f=a_{m} t^{m}+\cdots+a_{1} t+a_{0}$, $a_{i} \in \mathbb{H}$, where the variable t commutes with every $z \in \mathbb{H}$, it is again well-known that every non-constant polynomial f splits into a product of linear polynomials, cf. for instance [6], [11, Theorem 5.2], and that every non-constant $f \in \mathbb{H}[t]$ has a root in \mathbb{H} (see [15] for the earliest proof).

In the following, we look at skew-polynomial rings $D[t ; \sigma, \delta]$ with σ a ring endomorphism of D and δ a σ-derivation, where D is either the quaternion division algebra over a real closed field F or its quadratic field extension $F(\sqrt{-1})$. We show that each non-constant polynomial $f \in D[t ; \sigma, \delta]$ splits into linear, quadratic or, if $D=F(\sqrt{-1})$, quartic irreducible factors (Theorems 3 and 6). As a consequence, we obtain that each non-constant polynomial $f \in \mathbb{H}[t ; \sigma, \delta]$ splits into linear factors and that each non-constant polynomial $f \in \mathbb{C}[t ; \sigma, \delta]$ splits into linear or quadratic irreducible factors (Corollaries 4 and 7).

For the proofs, we employ nonassociative algebras S_{f} constructed out of skew-polynomial rings defined by Petit [16], together with the fact that over real-closed fields, division algebras only exist in dimensions $1,2,4$ or 8 . As a corollary, we obtain a new proof for the Fundamental Theorem of Algebra for polynomials in $\mathbb{H}[t]$. We believe that our approach deserves attention, as the proofs are straightforward and only use results from the theory of nonassociative algebras.

As a consequence, we also obtain that a real algebra S_{f} is a division algebra implies that $f \in \mathbb{C}[t ; \sigma, \delta]$ must be irreducible of degree 2 . Every real division algebra A of dimension 4

[^0]which is a two-dimensional vector space over $\mathbb{C} \subset \operatorname{Nuc}_{l}(A) \cap \operatorname{Nuc}_{m}(A)$ is isomorphic to S_{f} for some irreducible $f(t)=t^{2}-d_{1} t-d_{0} \in \mathbb{C}[t ; \sigma, \delta]$, where σ and δ are suitably defined.

1. Preliminaries

1.1. Nonassociative algebras. Let F be a field and let A be a finite-dimensional F-vector space. We call A an algebra over F if there exists an F-bilinear map $A \times A \rightarrow A,(x, y) \mapsto x \cdot y$, denoted simply by juxtaposition $x y$, the multiplication of A. An algebra A is called unital if there is an element in A, denoted by 1 , such that $1 x=x 1=x$ for all $x \in A$. We will only consider unital algebras.

An algebra $A \neq 0$ is called a division algebra if for any $a \in A, a \neq 0$, the left multiplication with $a, L_{a}(x)=a x$, and the right multiplication with $a, R_{a}(x)=x a$, are bijective. A is a division algebra if and only if A has no zero divisors ([17], pp. 15, 16).

For an F-algebra A, associativity in A is measured by the associator $[x, y, z]=(x y) z-$ $x(y z)$. The left nucleus of A is defined as $\operatorname{Nuc}_{l}(A)=\{x \in A \mid[x, A, A]=0\}$, the middle nucleus of A is defined as $\operatorname{Nuc}_{m}(A)=\{x \in A \mid[A, x, A]=0\}$ and the right nucleus of A is defined as $\operatorname{Nuc}_{r}(A)=\{x \in A \mid[A, A, x]=0\}$. Their intersection $\operatorname{Nuc}(A)=\{x \in$ $A \mid[x, A, A]=[A, x, A]=[A, A, x]=0\}$ is the nucleus of $A . \operatorname{Nuc}(A)$ is an associative subalgebra of A containing $F 1$ and $x(y z)=(x y) z$ whenever one of the elements x, y, z is in $\operatorname{Nuc}(A)$. The center of A is $\mathrm{C}(A)=\{x \in A \mid x \in \operatorname{Nuc}(A)$ and $x y=y x$ for all $y \in A\}$.
1.2. How to obtain nonassociative division algebras from skew-polynomial rings. In the following, we use the terminology used by Jacobson [10] and Petit [16] and summarize their most important results needed in this paper. Let D be a unital division ring, σ a ring endomorphism of D and δ a left σ-derivation of D, i.e. an additive map such that

$$
\delta(a b)=\sigma(a) \delta(b)+\delta(a) b
$$

for all $a, b \in D$, implying $\delta(1)=0$. The skew-polynomial ring $D[t ; \sigma, \delta]$ is the set of polynomials

$$
a_{0}+a_{1} t+\cdots+a_{n} t^{n}
$$

with $a_{i} \in D$, where addition is defined term-wise and multiplication by

$$
t a=\sigma(a) t+\delta(a) \quad(a \in D)
$$

That means,

$$
a t^{n} b t^{m}=\sum_{j=0}^{n} a\left(S_{n, j} b\right) t^{m+j}
$$

$(a, b \in D)$, where the map $S_{n, j}$ is defined recursively via

$$
S_{n, j}=\delta\left(S_{n-1, j}\right)+\sigma\left(S_{n-1, j-1}\right)
$$

with $S_{0,0}=i d_{D}, S_{1,0}=\delta, S_{1,1}=\sigma$ and so $S_{n, j}$ is the sum of all polynomials in σ and δ of degree j in σ and degree $n-j$ in $\delta[10, \mathrm{p} .2]$. If $\delta=0$, then $S_{n, j}=\sigma^{n}$. $D[t ; \sigma]=D[t ; \sigma, 0]$ is called a twisted polynomial ring and $D[t ; \delta]=D[t ; i d, \delta]$ a differential polynomial ring. For the special case that $\sigma=i d$ and $\delta=0$, we obtain the usual ring of left polynomials
$D[t]=D[t ; i d, 0]$, often also denoted $D_{L}[t]$ in the literature [8], with its multiplication given by

$$
\left(\sum_{i=1}^{s} a_{i} t^{i}\right)\left(\sum_{i=1}^{t} b_{i} t^{i}\right)=\sum_{i, j} a_{i} b_{j} t^{i+j}
$$

If D has finite dimension over its center and σ is a ring automorphism of D, then $R=$ $D[t ; \sigma, \delta]$ is either a twisted polynomial or a differential polynomial ring by a linear change of variables [10, Thm. 1.2.21]. Note also that if σ and δ are F-linear maps then $D[t ; \sigma, \delta] \cong D[t]$ by a linear change of variables.

For $f=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ with $a_{n} \neq 0$ define $\operatorname{deg}(f)=n$ and $\operatorname{deg}(0)=-\infty$. Then $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. An element $f \in R$ is irreducible in R if it is no unit and it has no proper factors, i.e if there do not exist $g, h \in R$ with $\operatorname{deg}(g), \operatorname{deg}(h)<\operatorname{deg}(f)$ such that $f=g h$.
$R=D[t ; \sigma, \delta]$ is a left principal ideal domain and there is a left-division algorithm in R [10, p. 3]: for all $g, f \in R$ there exist unique $r, q \in R, g \neq 0$ and $\operatorname{deg}(r)<\operatorname{deg}(f)$, such that

$$
g=q f+r
$$

If σ is a ring automorphism then $R=D[t ; \sigma, \delta]$ is a left and right principal ideal domain (a PID) $[10$, p. 6] and there is also a right-division algorithm in R [10, p. 3 and Prop. 1.1.14]. (We point out that the terminology used by Petit in [16] is different from ours; there what we and Jacobson call left is called a right-division algorithm and vice versa.)

If σ is a ring automorphism, two non-zero elements $f, g \in R$ are called similar $(f \sim g)$ if and only if there exist $h, q, u \in R$ such that

$$
1=h f+q g \text { and } u^{\prime} f=g u
$$

for some $u^{\prime} \in R$ if and only if $R / R f=R / R g$ [10, p. 11]. If σ is a ring automorphism, $R=D[t ; \sigma, \delta]$ is a PID, hence any element $f \in R, f \neq 0$ which is not a unit in R, can be written as $f=p_{1} \cdots p_{s}$ with irreducible $p_{i} \in R$. If $f=p_{1} \cdots p_{s}=p_{1}^{\prime} \cdots p_{t}^{\prime}$, where the p_{i} and the p_{i}^{\prime} are irreducible, then $s=t$ and there exists a permutation $\pi \in S_{s}$ such that $p_{i} \sim p_{\pi(i)}^{\prime}$ for all i. This is the Fundamental Theorem of Arithmetic in a PID [10, Theorem 1.2.9]. Obviously, $f \sim g$ implies that $\operatorname{deg}(f)=\operatorname{deg}(g)$.

Definition 1. (cf. $[16,(7)])$ Let D be a unital associative division algebra and $f \in D[t ; \sigma, \delta]$ of degree m, σ a ring endomorphism of D. Let $\bmod _{l} f$ denote the remainder of left division by f. Then the vector space

$$
R_{m}=\{g \in D[t ; \sigma, \delta] \mid \operatorname{deg}(g)<m\}
$$

together with the multiplication

$$
g \circ h=g h \bmod _{l} f
$$

becomes a nonassociative algebra $S_{f}=\left(R_{m}, \circ\right)$ over $F_{0}=\left\{a \in D \mid a h=h a\right.$ for all $\left.h \in S_{f}\right\}$.
Note that the multiplication is well-defined and that F_{0} is a subfield of $D[16,(7)]$.
Remark 1. In [10], only the associative algebras

$$
E(f)=\{g \in R \mid f \text { left divides } f g\}
$$

for $f \in D[t ; \sigma, \delta], \sigma$ an automorphism, were investigated. $E(f)$ is division if f is irreducible.
Theorem 2. (cf. [16, (2), p. 13-03, (5), (7), (9), (14)]) Let $f \in R=D[t ; \sigma, \delta]$.
(i) If S_{f} is not associative then

$$
\operatorname{Nuc}_{l}\left(S_{f}\right)=\operatorname{Nuc}_{m}\left(S_{f}\right)=D
$$

and

$$
\operatorname{Nuc}_{r}\left(S_{f}\right)=\{g \in R \mid f g \in R f\}
$$

(ii) The powers of t are associative if and only if $t^{m} t=t t^{m}$ if and only if $t \in \operatorname{Nuc}_{r}\left(S_{f}\right)$ if and only if $f t \in R f$.
(iii) If f is irreducible then $\operatorname{Nuc}_{r}\left(S_{f}\right)$ is an associative division algebra.
(iv) Let $f \in R$ be irreducible and S_{f} a finite-dimensional F_{0}-vector space or a finitedimensional right $\operatorname{Nuc}_{r}\left(S_{f}\right)$-module. Then S_{f} is a division algebra.
S_{f} is associative if and only if f is a two-sided element.
(v) Let $f=t^{m}-\sum_{i=0}^{m-1} d_{i} t^{i} \in R=D[t ; \sigma]$. Then $f(t)$ is a two-sided element of S_{f} if and only if $\sigma^{m}(z) d_{i}=d_{i} \sigma^{i}(z)$ for all $z \in D, 0 \leq i<m$ and $\sigma\left(d_{i}\right)=d_{i}$ for all $i, 0 \leq i<m$.

2. Factorization Theorems for skewed polynomials if F is a real closed field

Let F be a real closed field, that is a formally real field such that every polynomial of odd degree with coefficients in F has at least one root in F , and for every element $a \in F$ there is $b \in F$ such that $a=b^{2}$ or $a=-b^{2}$. Equivalently, F is a real closed field if it is not algebraically closed but if the field extension $F(\sqrt{-1})$ is algebraically closed. Then every division algebra over F has dimension 1, 2, 4 or 8 . Moreover, up to isomorphism, there are exactly three associative division algebras over F, one each of dimension 1,2 , and 4 . The first is a classical and well-known result for algebras over \mathbb{R} (cf. [3] and [12]) and was generalized to any closed fields using model theory in [4], the second is also well-known for $\mathbb{R}[5]$, for real closed fields see [13] or [4].

Let D be a finite-dimensional unital associative division algebra over F (hence either the quadratic field extension $F(\sqrt{-1})$, or the quaternion division algebra) and σ an injective ring homomorphism of D. By [10, Thm. 1.1.21], after a linear change of variables, $D[t ; \sigma, \delta]$ is either a twisted polynomial ring or a differential polynomial ring.

Using the results quoted above, we are immediately able to prove:
Theorem 3. (Factorization Theorem I)
(i) Let D be the quaternion division algebra over a real closed field. Then every polynomial $f \in D[t ; \sigma, \delta]$ of degree $m>2$ decomposes into the product of linear or quadratic irreducible polynomials. No quadratic irreducible polynomial is a two-sided element in R.
(ii) If σ is a ring automorphism and $f=p_{1} \cdots p_{s}=p_{1}^{\prime} \cdots p_{t}^{\prime}$ are two such decompositions, then $s=t$ and there is a permutation $\pi \in S_{s}$ such that

$$
p_{\pi(i)}^{\prime} \sim p_{i}
$$

for all $i, 1 \leq i \leq s$.
(iii) Every irreducible monic quadratic polynomial $f=t^{2}-d_{1} t-d_{0} \in D[t ; \sigma]$ satisfies $\sigma^{2}(z) d_{i} \neq d_{i} \sigma^{i}(z)$ for some $z \in D, i \in\{0,1\}$, or $\sigma\left(d_{i}\right) \neq d_{i}$ for some $i \in\{0,1\}$.

Proof. (i) Suppose that $f(t) \in R=D[t ; \sigma, \delta]$ has degree $m>2$ and is irreducible. Then S_{f} is a unital nonassociative division algebra of dimension $4 m>8$ over F_{0} and F_{0}, being a subfield of D, is either F or $F(\sqrt{-1})$. The case that $F_{0}=F(\sqrt{-1})$ is not possible, as there are no division algebras over $F(\sqrt{-1})$ of dimension >1. Thus $F_{0}=F$. However, there are no division algebras over F of dimension >8, again a contradiction. Thus $f(t)$ must be reducible and so $f=g h$ for suitable $f, g \in R$ with $\operatorname{deg}(f), \operatorname{deg}(h)<m$. By applying the same argument to g and h and iterating it, we conclude that f is a product of linear and quadratic irreducible polynomials. If f is an irreducible quadratic polynomial, then S_{f} has dimension 8 and is a nonassociative division algebra. Theorem 2 (iv) implies that f cannot be a two-sided element.
(ii) By the Fundamental Theorem of Arithmetic [10, Theorem 1.2.9], this decomposition is unique up to a permutation of the factors and similarity.
(iii) The assertion follows from Theorem 2 (v).

For the next result, recall that if σ is a ring automorphism then $t-a$ and $t-b$ are called (σ, δ)-conjugate if and only if there is some $u \in D^{\times}$such that $a=\sigma(u) b u^{-1}+\delta(u) u^{-1}$.

Let \mathbb{H} be Hamilton's quaternion division algebra over \mathbb{R}.

Corollary 4. (Fundamental Theorem)
(i) Every polynomial $f(t) \in \mathbb{H}[t ; \sigma, \delta]$ of degree m decomposes into the product of m linear polynomials. In particular, $f(t)$ has a root.
(ii) If σ is a ring automorphism of \mathbb{H} and $f=p_{1} \cdots p_{m}=p_{1}^{\prime} \cdots p_{m}^{\prime}$, then there is a permutation $\pi \in S_{s}$ such that $p_{\pi(i)}^{\prime}$ and p_{i} are (σ, δ)-conjugate for all $i, 1 \leq i \leq s$.
(iii) If σ is a ring automorphism of \mathbb{H} then each root of a monic polynomial $f(t) \in \mathbb{H}[t ; \sigma, \delta]$ in \mathbb{H} is the (σ, δ)-conjugate to some a_{i}, where the $t-a_{i}$ are the linear factors of f.

Proof. (i) It remains to show that here all quadratic polynomials are reducible: Suppose f is an irreducible quadratic polynomial. Then the unital F-algebra S_{f} has dimension 8 and since it is nonassociative we have $\operatorname{Nuc}_{l}\left(S_{f}\right)=\mathbb{H}$ by Theorem 2 (i). Since for any unital real division algebra $A, \operatorname{Nuc}_{l}(A)=\mathbb{R}$ by [2], this yields a contradiction. Thus $f(t)$ is reducible and the product of two linear polynomials. In particular, $f(t)$ has a root in \mathbb{H} : for $f(t)=g(t)(a t-b), f\left(a^{-1} b\right)=g\left(a^{-1} b\right)\left(a a^{-1} b-b\right)=0$.
(ii) is clear and (iii) is $[13,(16.4)]$: Each root of $f(t)=\left(t-a_{1}\right) \cdots\left(t-a_{m}\right)$ in \mathbb{H} is a (σ, δ)-conjugate to some a_{i}.

Factorization Theorems for polynomials in $\mathbb{H}[t]$ and related results were proved for instance in [6], [7], [9] and [11, Theorem 5.2]. The Fundamental Theorem of Algebra for polynomials in $\mathbb{H}[t]$ was proved by [15]. We obtain it as a special case:

Corollary 5. (i) Every non-constant polynomial $f(t) \in \mathbb{H}[t]$ of degree m decomposes into the product of m linear polynomials. Moreover, if $f=p_{1} \cdots p_{m}=p_{1}^{\prime} \cdots p_{m}^{\prime}$, then there is a permutation $\pi \in S_{s}$ and $z_{i} \in \mathbb{H}$ such that

$$
p_{\pi(i)}^{\prime}=z_{i} p_{i} z_{i}^{-1}
$$

for all $i, 1 \leq i \leq m$.
(ii) If the monic polynomial $f(t) \in \mathbb{H}[t]$ has the m linear factors $t-a_{i}$ then there is a zero of f in \mathbb{H} in each of the congruence classes $\left[a_{i}\right], 1 \leq i \leq m$.

Proof. (i) This follows from Corollary 4 and the fact that conjugation in $\mathbb{H}[t]$ is the usual conjugacy [10, p. 15].
(ii) This is proved in [18].

Theorem 6. (Factorization Theorem II)
(i) Every polynomial $f(t) \in F(\sqrt{-1})[t ; \sigma, \delta]$ of degree $m>3$ decomposes into the product of linear, quadratic or quartic irreducible polynomials. No quartic irreducible polynomial is a two-sided element in $F(\sqrt{-1})[t ; \sigma, \delta]$.
(ii) If σ is a ring automorphism of $F(\sqrt{-1})$ and $f=p_{1} \cdots p_{s}=p_{1}^{\prime} \cdots p_{t}^{\prime}$ are two such decompositions, then $s=t$ and there is a permutation $\pi \in S_{s}$ such that

$$
p_{\pi(i)}^{\prime} \sim p_{i}
$$

for all $i, 1 \leq i \leq s$.
(iii) If σ is a ring automorphism of $F(\sqrt{-1})$ then every irreducible monic quartic polynomial $f=t^{4}-d_{3} t^{3}-d_{2} t^{2}-d_{1} t-d_{0} \in F(\sqrt{-1})[t ; \sigma]$ satisfies $\sigma^{4}(z) d_{i} \neq d_{i} \sigma^{i}(z)$ for some $z \in D$, $i \in\{0,1,2,3\}$, or $\sigma\left(d_{i}\right) \neq d_{i}$ for some $i \in\{0,1,2,3\}$.

Proof. (i) Suppose that $f(t) \in R=F(\sqrt{-1})[t ; \sigma, \delta]$ has degree $m>4$ or degree 3 and is irreducible. Then S_{f} is a unital nonassociative division algebra over F_{0} and F_{0}, being a subfield of $F(\sqrt{-1})$, is either F or $F(\sqrt{-1})$. The case that $F_{0}=F(\sqrt{-1})$ is not possible, as there are no division algebras over $F(\sqrt{-1})$ of dimension >1. Thus $F_{0}=F$. However, there are no division algebras over F of dimension $2 m>8$ or 6 , again a contradiction. Thus $f(t)$ must be reducible and so $f=g h$ for suitable $f, g \in R$ with $\operatorname{deg}(f), \operatorname{deg}(h)<m$. By applying the same argument to g and h and iterating it, we conclude that f is a product of linear, quadratic and quartic irreducible polynomials. If f is an irreducible quartic polynomial, then S_{f} has dimension 8 over F and is a nonassociative division algebra. Theorem 2 (iv) implies that f cannot be a two-sided element.
(ii) By the Fundamental Theorem of Arithmetic for a PID, this decomposition is unique up to a permutation of the factors and similarity.
(iii) The assertion follows from Theorem 2 (v).

Corollary 7. Every polynomial $f(t) \in R=\mathbb{C}[t ; \sigma, \delta]$ of degree ≥ 1 decomposes into the product of linear and quadratic irreducible polynomials. Moreover, if σ is a ring automorphism and $f=p_{1} \cdots p_{s}=p_{1}^{\prime} \cdots p_{t}^{\prime}$, then $s=t$ and there is a permutation $\pi \in S_{s}$ such that

$$
p_{\pi(i)}^{\prime} \sim p_{i}
$$

for all $i, 1 \leq i \leq s$.
Proof. It remains to show that all quartic polynomials are reducible: Suppose f is an irreducible quartic polynomial. Then the unital F-algebra S_{f} has dimension 8 and since it is nonassociative we have $\operatorname{Nuc}_{l}\left(S_{f}\right)=\mathbb{C}$ by Theorem 2 (i). Since for any unital real division algebra $A, \operatorname{Nuc}_{l}(A)=\mathbb{R}$ by [2], this yields a contradiction. Thus $f(t)$ is reducible.

Remark 8. (i) If it is possible to prove (most likely by using model theory) that also for a real closed field F, any unital division algebra has left nucleus F, then there are no irreducible quadratic polynomials in $D[t ; \sigma, \delta]$ and no irreducible quartic polynomials in $F(\sqrt{-1})[t ; \sigma, \delta]$, either.
(ii) It is easy to see that for any $a \in \mathbb{R} \backslash \mathbb{Q}$, there is an $i d$-derivation δ on \mathbb{R} such that $\delta(a) \neq 0$, that means δ is not \mathbb{R}-linear. This yields an $i d$-derivation δ on $\mathbb{H}, \delta\left(x_{0}+x_{1} i+x_{2} j+x_{3} k\right)=$ $\delta\left(x_{0}\right)+\delta\left(x_{1}\right) i+\delta\left(x_{2}\right) j+\delta\left(x_{3}\right) k$, and an $i d$-derivation δ on \mathbb{C} via $\delta\left(x_{0}+x_{1} i\right)=\delta\left(x_{0}\right)+\delta\left(x_{1}\right) i$, which are both not \mathbb{R}-linear. Along the same line of thought, we can extend any ring isomorphism $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ to a ring isomorphism on \mathbb{C} and on \mathbb{H}.

3. A REMARK ON FOUR-DIMENSIONAL REAL DIVISION ALGEBRAS

If σ is a ring isomorphism, we also have a right division algorithm and can use it to define a second algebra construction (cf. [16]): Let $f \in D[t ; \sigma]$ be of degree m and let $\bmod _{r} f$ denote the remainder of right division by f. Then the vector space $V=\{g \in D[t ; \sigma] \mid \operatorname{deg}(g)<m\}$ together with the multiplication

$$
g \circ h=g h \bmod _{r} f
$$

becomes a nonassociative algebra ${ }_{f} S=(V, \circ)$, which, however, turns out to be antiisomorphic to a suitable algebra S_{g}^{\prime}.

Lemma 9. Let K / F be a separable quadratic field extension with non-trivial automorphism σ and $d \in K \backslash F$. Then the nonassociative quaternion division algebra Cay (K, d) is isomorphic to the algebra S_{f} with $f(t)=t^{2}-d \in K[t ; \sigma]$.

The proof is straightforward.
For $F=\mathbb{R}$, we obtain the following characterization of four-dimensional real division algebras which are two-dimensional vector spaces over \mathbb{C} and have $\mathbb{C} \subset \operatorname{Nuc}_{l}(A) \cap \operatorname{Nuc}_{m}(A)$ due to $[16,(1)$, p. 13-08] and our above results:

Corollary 10. (i) If S_{f} is a real division algebra then $R=\mathbb{C}[t ; \sigma, \delta], f \in R$ is irreducible of degree 2, and if S_{f} is not associative then $\operatorname{Nuc}_{l}(A)=\operatorname{Nuc}_{m}(A)=\mathbb{C}$ and $\operatorname{Nuc}_{m}(A) \in\{\mathbb{R}, \mathbb{C}\}$. (ii) Every real division algebra A with multiplication \star of dimension 4 which is a twodimensional vector space over $\mathbb{C} \subset \operatorname{Nuc}_{l}(A) \cap \operatorname{Nuc}_{m}(A)$ is isomorphic to S_{f} for a suitable irreducible $f \in \mathbb{C}[t ; \sigma, \delta], f=t^{2}-d_{1} t-d_{0}$, where σ and δ are defined via

$$
t \star a=\sigma(a) \star t+\delta(a)
$$

for all $a \in D$.
(iii) Every real division algebra A of dimension 4 which is a two-dimensional vector space over $\mathbb{C} \subset \operatorname{Nuc}_{m}(A) \cap \operatorname{Nuc}_{r}(A)$ is isomorphic to $\left(S_{f}\right)^{\text {op }}$ for a suitable irreducible $f \in \mathbb{C}[t ; \sigma, \delta]$, $f=t^{2}-d_{1} t-d_{0}$, where σ and δ are defined via

$$
t \star a=\sigma(a) \star t+\delta(a)
$$

for all $a \in D$ and where \star is the multiplication in S_{f}. In particular, if σ is a ring isomorphism then $A \cong{ }_{H(f)} S^{\prime}$ with $H(f)=\in R^{\prime}=\mathbb{C}\left[t ; \sigma^{-1},-\delta \circ \sigma^{-1}\right]$ and $H(f)=t^{2}-\sigma\left(d_{1}\right) t-d_{0}$.

By $[16,(17)], f(t)=t^{2}-d_{1} t-d_{0} \in \mathbb{C}[t ; \sigma]$ is irreducible if and only if $\sigma(z) z \neq d_{1} z+d_{0}$ for all $z \in D$.

Example 11. For $R=\mathbb{C}\left[t ;{ }^{-}\right]$, - the complex conjugation, we obtain Hamilton's quaternions by choosing $f(t)=t^{2}+1$, and a nonassociative quaternion division algebra Cay $\left(\mathbb{C}, d_{0}\right)$ by choosing $f(t)=t^{2}-d_{0}$, for any $d_{0} \in \mathbb{C} \backslash \mathbb{R}$. The nonassociative quaternion algebras are up to isomorphism the only unital algebras with complex nucleus [W]. Moreover, Cay $\left(\mathbb{C}, d_{0}\right)^{o p} \cong$ $\operatorname{Cay}\left(\mathbb{C}, d_{0}\right)$.

By $[16,(23)], f(t)=t^{2}-d_{1} t-d_{0} \in \mathbb{C}[t ;$; $]$ with $d_{0}, d_{1} \in \mathbb{R}^{\times}$is irreducible if and only if it has no real roots.

See also [1] for related results on four-dimensional real division algebras with $\mathbb{C} \subset$ $\operatorname{Nuc}_{l}(A) \cap \operatorname{Nuc}_{m}(A)$.

References

[1] Althoen, C., Hansen, K. D., Kugler, L. D., Four-dimensional real algebras satisfying left or right \mathbb{C} associativity, Comm. Alg. 26 (2) (1998), 565-587.
[2] T. Buchanan, H. Hähl, On the kernel and the nuclei of 8-dimensional locally compact quasifields, Arch. Math. 29 (1977) (5), 472480.
[3] R. Bott, J. Milnor, On the parallelizibility of the sphere, Bull. AMS 64 (1958), 87-89.
[4] E. Darpö, E. Dieterich, M. Herschend, In which dmensions does a division algebra over a given ground field exist?, Enseign. Math. 51 (3-4), 255-263.
[5] F. G. Frobenius, Über lineare Substitutionen und bilineare Formen, J. Reine Ang. Math. 84 (1878), 1-63.
[6] G. Gentili and D. C. Struppa, On the multiplicity of zeros of polynomials with quaternionic coefficients, Milan J. Math., 76 (2007), 1-10.
[7] G. Gentili, D. C. Struppa, F. Vlacci, The fundamental theorem of algebra for Hamilton and Cayley numbers, Math. Z., 259 (2008), 895-902.
[8] B. Gordon and T. S. Motzkin, On the zeros of polynomials over division rings, Trans. AMS, 116 (1965), pp. 218-226.
[9] D. Janovská, G. Opfer, A note on the computation of all zeros of simple quaternionic polynomials, SIAM J. Numer. Anal. 48 (1) (2010), 244-256.
[10] N. Jacobson, "Finite-dimensional division algebras over fields," Springer Verlag, Berlin-Heidelberg-New York, 1996.
[11] B. Kalantari, Algorithms for quaternion polynomial root-finding, J. Complexity 29 (2013), 302-322.
[12] M. Kervaire, Non-parallelizibility of the n-sphere for $n>7$, Proc. Natl. Acad. Sci. USA 44 (1958), 280-283.
[13] T. Y. Lam, " A first course in noncommutative algebra", second edition. Graduate Texts in Mathematics, 131. Springer-Verlag, New York, 2001.
[14] M. Lavrauw, J. Sheekey, Semifields from skew-polynomial rings, Adv. Geom. 13 (4) (2013), 583-604.
[15] I. Niven, Equations in quaternions, The Amer. Math. Monthly 48 (10) (1941), 654-661.
[16] J.-C. Petit, Sur certains quasi-corps généralisant un type d'anneau-quotient, Séminaire Dubriel. Algèbre et théorie des nombres $20(1966-67), 1-18$.
[17] R.D. Schafer, "An Introduction to Nonassociative Algebras," Dover Publ., Inc., New York, 1995.
[18] R. Seodio, L. Siu, Zeros of quaternion polynomials, Appl. Math. Lett. 14 (2001), 237-239.
[W] Waterhouse, W.C., Nonassociative quaternion algebras. Algebras, Groups and Geometries 4 (1987), 365-378.
E-mail address: susanne.pumpluen@nottingham.ac.uk
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

[^0]: Date: 6.7.2014.
 1991 Mathematics Subject Classification. Primary: 16S36; Secondary: 17A35.
 Key words and phrases. Skew-polynomials, factorization, fundamental theorem of algebra, roots of polynomials, complex numbers, Hamilton's quaternion algebra.

