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Abstract. Given a complex Hilbert spacH, we study the differential geometry of the
manifold M of all projections inV = L(H). Using the algebraic structure &f, a
torsionfree affine connectiow (that is invariant under the group of automorphisms of
V) is defined on every connected compongtof M, which in this way becomes a
symmetric holomorphic manifold that consists of projections of the samerafik<

r < o0). We prove tha®lt admits a Riemann structure if and only9if consists of
projections that have the same finite rantr the same finite corank, and in that cage

is the Levi-Civita and the Ehler connection ofit. Moreover 2t turns out to be a totally
geodesic Riemann manifold whose geodesics and Riemann distance are computed.
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1. Preliminaries on JB-algebras

1.1. Introduction.

In [4] Hirzebruch proved that the manifold of minimal projections in a finite-dimensional
simple formally real Jordan algebra is a compact Riemann symmetric space of rank 1,
and that any such space arises in this way. Later on, in [14] Nomura established similar
results for the manifold of minimal projections in a topologically simple JH-algebra (a real
Jordan-Hilbert algebra). The results in [1], [5] and [6] lead to the idea that the structure
of a JBW-algebrd” might encode information about the differential geometry of some
manifolds naturally associated to it [11]. In particular, that the knowledge of the JBW-
structure ofl” is sufficient to study the manifold of projectionsin Every JBW-algebra

can be decomposed into a sum of closed idéals- V; & Vi & Vi, of types |, I,

and Il respectively, and for our purpose it is not a hard restriction to assumé ttsat
irreducible. JBW-algebras of type Ill are not well understood. A typical example of
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a type Il JBBW-algebra id.°°[0, 1] whose lattice of projections is modular. Namely, it
consists of characteristic functions of Lebesgue measurable subsets]aind form a
discrete topological space since we hdwe — x»|| = 1 whenevery; # x»2. Thus we

have to consider JBW-algebras of type | and we shall assume them to be factors, hence
factors of typel,, for some cardinal numbdr < n < oco. Those of typel,, called spin
factors, are Hilbert spaces ([2] th. 6.1.8) hence they are included in the work of Nomura.
Factors of typel,, with 3 < n < oo are certain spaces of matrices ([2] th. 5.3.8) and
so they are included in the work of Hirzebruch. Thus essentially we have to consider
the JBW-algebrd”: = L(H), of the selfadjoint operators on a Hilbert spaéeover
some of fieldsR, C, H ([2] th. 7.5.11). Here we make such a study in a systematic
manner without the use of any global scalar productinin the complex case. With
minor changes it applies to the other two fields.

The setM of all projections inl” can be identified with the set of all closed subspaces
of H, which is a Grassmann manifolél /) in a classical way [9]. Itis known th&t(H)
has several connected componénitseach of which consists of projectiopsn V' that
have a fixed rank, 0 < r < co. An affine connectioV, that is invariant under the group
Aut (V') of automorphisms oV, is then defined on each connected compofBnith
only the help of the IBW-structure. With {it becomes a symmetric totally geodesic real
analytic manifold. Moreover, it is possible (and in fact easy) to integrate the differential
equation of the geodesics corresponding to initial conditions defined by purely algebraic
equations. For = 1, M is the complex projective spad& H ).

Motivated by the above, we ask whether it is possible to define a Riemann structure on
M, and a necessary and sufficient condition for this to happen is established. The tangent
space tdJt at a pointp is the range of thé-Peirce projector of/ atp, and9t admits a
Riemann structure (if and) only #, /»(p)V" is (homeomorphic to) a Hilbert space. In [6]
it has been proved that the latter occurs if and only if the rankasfthe corank op (the
rank ofl —p, wherel is the unit of the algebr&) is finite. M is an ortho-complemented
lattice, and the mapping+— p~: = 1 —pis aninvolutory homeomorphism. In fact, this
involution is a real analytic diffeomorphism @#, hence it suffices to study the connected
manifolds9t with » < oo which leads us again to the work of Nomura. Namely, consider
the algebras of finite rank operators, of Hilbert-Schmidt operators, of compact operators,
and of bounded operators @h, respectively, and the inclusions

F(H)C Ly(H)C L(H)y C L(H)

The first three of these algebras have the same set of projections, which is exactly the set
of finite rankprojections inL(H ). However, the topologies induced Gi{H) by L2(H)
andL(H) do not coincide (unles$im H < c0), and a priori there is no reason to expect
that they should coincide on the set of projections (we shall see that this happens).

We then study the Riemann manifol@8 for » < oo without the help of any global
scalar product in these algebras. A scalar product in the tangent buridiesmeeded,
of course, but it is locally provided in a canonical way by the JBW-algebra structure of
V. We begin with a discussion of the subalgebras, b| generated iV by certain pairs
of elementga, b). These subalgebras, that play a fundamental role in our study, turn out
to be Jordan isomorphic ®ym (R, 2), the algebra o2 x 2 symmetric matrices with real
entries and the usual Jordan matrix product, and therefore they are finite dimensional. By
choosing an appropriate basislitia, b] it is easy to integrate the differential equations of
the geodesics .



1.2. Preliminaries on JBW-algebras.

A Jordan algebrd’ is an algebra oveR or C in which the following two identities hold
forall z, yin V:

(1) vy =yr,  z*(ay) = z(2’y)
LetV be a Jordan algebra. Théiiz) andP(x), (z € V'), are defined by
(2) L(z)y: =zy,  Pla)y: =2L(x)’y - L(=%)y,  (yeV).

An elementa € V is anidempotentf a*> = a. If V has a unitl, then every idem-
potenta € V gives rise to a vector space direct sum decompositiol ,ofhe Peirce
decomposition

V =Vi(a) ® Vi2(a) ® Vo(a), Vi(a): ={x €V:ax = kx},

wherek € {1, 1, 0} and the corresponding projectdts(a): V — Vi(a), calledPeirce

projectorsare given by
(3) FEi(a) =P(a), Eyps(a)=2L(a)—2P(a), Ey(a)=1-2L(a)+ P(a).

If the idempotent: is fixed and no confusion is likely to occur, we writg: = Vi(a)
andP;: = Ej(a) for k € {1, 1,0}. The Peircenultiplication ruleshold
4 Voo C Vo, Wwhi={0}, WwiWhcw,

(Vo @ Vi)Viye C Viya, VipVipp C Vo + V1.

In particular,V, andV; are Jordan subalgebrasf and[L(z) L(y)] = 0 for z € V; and
y € V7 with the usual commutator product].

A JB-algebra is aeal Jordan algebra with a complete norm such that the following
conditions hold

leyll < Hlellliyll, 2l =Nl 2l < 2® + 9]

A JB*-algebra is a&omplexJordan algebr& with an algebra involution: x — z* and
a complete norm such that the following conditions hold

leyll <zl llyll, N2l =zl Hzzz}] = [,
where thetriple product{abc} is defined by{abc}: = (ab*)c — (ca)b* + (b*c)a and
satisfies theJordan identity

(5) {z{abcty} = {{baz}cy} — {bafzcy}} + {{bay}cr}.
The operatorsy € L(U) are defined by — z0y(z): = {zyz} forz € U.

An element: € U is selfadjointf o* = a. The the set of them, denoted by, is a JB-
algebra. Conversely, if" is a JB-algebra then there is a unique Jordan algebra structure
inU: =V @&V, the complexification o}/, such that/; = V' and there is a unique
norm in U that converts it into a JBalgebra [18]. We refer t&/ as thehermitification
of V. The setAut (U), of all Jordan algebraautomorphisms of/, consists of surjective
linear isometries ot/ and is a topological group in the topology of uniform convergence
over the unit ball ofU. By Aut°(U) we denote the connected component of the identity
in Aut (U). Every element imAut°(U) preserves the real subspaceand is uniquely
determined by this restriction.

Let U be a JB-algebra. We writd®ro (U) for the set of self-adjoint idempotentsin
andTri (U): = {a € U: {a,a,a} = a} for the set oftripotentsn U. ClearlyPro (U) C



Tri (U), and every non zera € Tri(U) satisfies||a|| = 1. Two elementsi, b € U
are orthogonalif ab = 0. A projectiona € U is said to beminimalif a # 0 and
Pi(a)U = Ca, and we leMin (U) denote the set of them. For a’dBlgebra it may occur
thatMin (U) = 0.

A JBW-algebra is a JB-algebra whose underlying Banach spatea dual space,
which occurs if and only if the hermitificatiof = V & V' is a dual Banach space.
In that casel is called a JBW-algebra, the predudl, of U is uniquely determined
ando (U, U,), the weak* topology or/, is well defined. Let/ be the JBW-algebra
U: = L(H) of bounded linear operators H — H on a Hilbert spacé{. ThenU is
a unital algebra with plenty of projections each of which admits a representation of the
form

a = Yicra;, convergence in the weak* topology,

for some indexed family of pairwise orthogonal minimal projections. The minimal cardi-
nal of the setl is therankof a« andrank (a) = 1 if and only if a is minimal. The rank of
the algebrd’ is the rank of its unit element.

A JB-algebraV/ is algebraically (resp. topologicallgympleif {0} andV are its only
ideals (resp. closed ideals).

Although not surveyed here, we shall occasionally use some relationships between JB
algebras and their associated"dBples. Our main reference for JBW-algebras, JBW
algebras and JBtriples are [2] and [17].

1.3. Manifolds of projections in a JBW-algebra.

Let V be a JBW-algebra and denote by = V @V its hermitification. Thern is
a JBW-algebra andPro (U) = Pro (V). In the Peirce decomposition 6f induced by
a € Pro(U), the Peirce spaces are selfadjoint, that/j$a)* = Uy (a), and we have
Vi(a) = Uk(a)s whereP(a), is the Peirce projector of in the algebréd’. For every
u € Vy/2(a), the operator

(6) G(a,u): =2(ula —alu) € L(U)

is an inner derivation of the JBWAalgebrall' and the operator-valued mapping—

exp tG(a,u), (t € R), is a one-parameter group of automorphismé/afach of which
preserved/. The setPro (V'), endowed with its topology as a subsetlofis not con-
nected, namelg andl are isolated points. We lg¥!(p) denote the connected component
of pin Pro (V). Itis known thatM (p) is a real analytic manifold whose tangent space at
the pointa is Vi 2(a), a local chart being given by

z +— [exp G(a, 2)] a, z €N,

for z in a suitable neighbourhoald of 0in V; »(a). As a consequence, all pointsi (p)
are projections that have the same rank.a8s proved in ([11] th. 4.4)M (p) can also
be viewed as a holomorphic manifold whose tangent space at thexpsitit /»(a) a local
chart being given in a neighbourhodd of 0 € U, ,(a) by

u +— [exp 2ulla] a, u € M.

For a projectiorp, the operatorS(p): = Id — 2P, 5(p) € L(V), called the Peirce
reflection is asymmetrythat is, a selfadjoint involution df . Namely we haveS (p)x =
x for x € Vi(p) + Vo(p) andS(p)z = —x for x € Vi 5(p). BesidesS(p) € Aut (V') and



S(p)p = p, henceS(p) preserves the connected compongiitp) which in this way is a
symmetric manifold.

We let® be the Lie algebra of all smooth vector fields om(p). A vector field X is
now locally identifiable with a real analytic functioki: N C Vj,y(a) — Vija(a). We
always consider; ,(a) as submerged ifr. For a functionX: M(p) — V, we letX,
denote the value ok at the pointu € M(p). By X we represent the Echet derivative
of X ata, thusX/ is a continuous linear operatdf ,(a) — V. For two vector fields
X, Y € © we define

(7) (VxY)a: = Pipa(a)(Y)(Xa)), a € M(p).

It is known that(X,Y") — Vx Y is a torsionfreéAut °(U)-invariant affine connection on
the manifoldM(p). For everya € M(p) and everyu € V;y(a) the curvey,,(t): =
lexp tG(a,u)] a is aV-geodesic that is contained in the closed real Jordan subalgebra of
V' generated bya, u). Proofs can be found in [1].
The following key result is known.

Theorem 1.1.LetU be a JBW-algebra. Then fop € Pro (U) the following conditions
are equivalent{(i) U, »(p) is a reflexive spaceii) U, »(p) is linearly homeomorphic to a
Hilbert space.(iii) rankU, »(p) < oo. ForU: = L(H) these conditions are equivalent
to (iv) rank (p) < oo or rank(1 — p) < oc.

PROOF.

The equivalencéi) <= (ii) <= (iii) is known [9]. The statement concerning
U = L(H) has been established in [6] as follows: From the expression of the Peirce
projectors, we have for all € U

Pijs(p)r = 2(p0p — P(p))x =
(px +xp) — 2pzp = px(l —p)+ (1 —p)p.

Hencep U, »(p) C Uy 2(p) andz — px is a continuous projectdr »(p) — p Uy /2(p).

Similarly « — zp is a continuous projectdr, ,»(p) — U ,2(p) p and sinceplU; 2(p) N

Ui ,2p = 0 we have a topological direct sum decomposifign, (p) = X;®X,. Therefore

Ui )2(p) is reflexive if and only if so are the summands. But: = p U, »(p) = {pz(1 —

p): x € U} is reflexive if and only ifrank (p) < oo orrank (1 — p) < co as we wanted

to see. O
Suppose € Pro (U) is such thatank (p) < co. Since this condition i®\ut°(U)-

invariant, all projections: € M(p) satisfy it too, and the tangent spabg,(a), =

Vis2(a) to M(p) at any pointa € M(p) is a Hilbert space. In ([1], prop. 9.12) one

can find an explicit expression for akut°(U)-invariant scalar product whose norm is

equivalent to|| - || in Uy /2(a). Since M(p) is connected, that scalar product, denoted

by (-, )., is determined up to a positive constant coefficient that can be normalized by

requiring that minimal tripotents should have norm one. We shall not go into details as no

explicit expression of it will be used here.

Definition 1.2. We refer to this Hilbert space norm as thevi normin U, /;(a) and denote
it by ‘ : |a
Definition 1.3. We define a Riemannian metigon M (p) by

9g(X,Y): = (X0, Ya)a, X, Y €DM(p), ac M(p).



Proposition 1.4. The affine connection ifY) is the Levi-Civita (respectively, theaKler)
connection on the real analytic (the holomorphic) maniféit|p).

PROOF
Indeed,V is compatible withy, that is

Xg(Y,2)=9g(VxY, Z)+9(Y,VxZ), XY, Ze€DM(p).

MoreoverV is torsionfree, hence by ([12] th.1.8.1¥)is the unique Riemann connection

on M(p). Remark that wherM (p) is looked as a holomorphic manifol is hermitian,

that is, it satisfieg (i Y, i Z) = g(Y, Z), thereforeV is the only Levi-Civita connection
onM(p). Onthe otherhan¥y :Y =i Vx Y, henceV is the only hermitian connection

on M(p). Thus the Levi-Civita and the hermitian connection are the same in this case
and soV is the Kahler connection oM (p).

Theorem 1.5. The Jordan-Banach algebré,: = L,(H) of compact operators and
Uy: = Lo(H), the Jordan-Hilbert algebra of Hilbert-Schmidt operators Bn have the
same set of projections and induce on it the same topology.

PROOF

The first assertion is clear, aido (Uy) = Pro (Us) is precisely the set of finite rank
projections inC(H). Itis also clear the above algebras have the same set of projections
of a given rankr, (1 < r < o0), say’3. Denote by3, and*p, the Banach manifold
structures defined of¢ according to our method and to Nomuras’ method, respectively.
The corresponding tangent spaces ate

ToBo = {z € Uy: 2ax = z}, TuBs = {y € Uy: 2ay = y}.

Thus we havéd B, C T,B,. Onthe other hand, itself is a Hilbert-Schmidt operator and
asU, is an operator ideal, from € U, andx = 2ax we getr € U,, hencel B> = T,B,
as vector spaces. But bo#y3, and 7,3, are JB-triples (subtriples of/; and U,
respectively) with the same triple product. It is known that if a Banach spaadmits a
JB*-triple structure, then the triple product determines the topology of a unique way.
This in our case implies that the topologies inducedby= L(H) andU, = L,(H) on
the tangent spacg, 3 coincide. But then also coincide the topologies induceéidoy
these two algebras as they are locally homeomorphic to the same Banach spacél

2. Equations of the geodesics.

For any Jordan algebiid, we letV[u, v] denote the subalgebra bfgenerated byu, v).
By S := Sym (R, 2) we denote the Jordan algebra of the symmetric2 matrices with
real entries and the usual Jordan matrix product. Recall tihthe setPro (S) consists
of the isolated points, 1, and the one-parameter family of minimal projections

2 1
8) B(O) = (cos 0 281n2¢9)’ 0cR.

% sin20 sin’#

The elements! := B(0) andC := B(%) satisfydo C' = 0andA + C =1, wherel is
the unit of the algebr&. The element

©) xi= (1 §) €8l nsinlc)

is a non zero tripotent andd, X, C'} is a basis irbym (R, 2).



Theorem 2.1.LetV be a unital Jordan algebra and let# 0 andu denote, respectively,
a projection inV and a tripotent inV; »(a) such thatau® = a. Then forV[a, u] the
following conditions hold:(i) V'[a,u] = Span {a, u, v*}. (i) ¢ := u?® — a is an idem-
potent such thatic = 0. (iii) u?> = a + c is the unit inV[a, u]. (iv) There is a unique
Jordan isomorphismy, ,,: V{a,u] — Sym(R, 2) that takesu, v andc to A, X andC
respectively.
PROOF

Fromu € V);(a) we getau = su and by assumptionu? = a. Definec := u* — a.
Then the above results and the fact thad a tripotent give

=W —a)=u-2a’+a*=v’—a=c

Thereforec is an idempotent andc = a(u? — a) = au® — a = 0. Moreover
cu* = —a)u=u*—vla=u—a=c

All this is collected in the following table

ola u u c
alaju a 0
ul- v u su
wl- - u?r oc
Cc c

which proves that the linear span of the §et u, u?, c} is closed under the operation of
taking Jordan products, and thét= a + c is the unit ofV'[a, u] Now it is clear that there
is a unique Jordan isomorphism,,: V[a,u] — Sym (R, 2) with the desired conditions.
O
Remark 2.2. For a tripotentu € V;,2(a), the minimality ofa is a sufficient (but not
necessary) condition fdlauu} = au® = a to be true.

Indeed, by the Peirce ruled € V,(a) & Vi(a) andVy(a) Vi(a) = {0}, henceau?® €
Vi(a) = Ra by the minimality ofa, thereforeau® = pa. Multiplication by, the funda-
mental identities (1) and® = v yield

1 1
u(au?) = pua = P u(au?) = (ua)u? = v = ~u,
2 2 2
henceju(p — 1) = 0 and sop = 1 sinceu # 0. Thus{auu} = au® = a. O

For pairs(a,u) consisting of a projectiom # 0 and a tripotent, € V/5(a) with
au® = a it is quite easy to obtain the equation of the geodesidt) as shown now. Let
us define a new product W via z . y := {zay}. Then(V, .) is a unital Jordan algebra
with unita. Forn € N andz € V we letz(™ denote ther-th power ofz in (V, .). Note
thata™ # =™,

Theorem 2.3.LetV := L(H), and leta # 0 andu respectively be a projection il
and a tripotent inV; ;2(a) such thatau® = a. If 4, is the geodesic with(0) = a and
4(0) = u, then, ,(R) C V]a,u]. More precisely we have

1
(10) Yau(t) = (cos®t) a + (5 sin 2t) u 4 (sin? ¢) u®, teR.

PROOF.
Let G(a,u) := 2(uba — aOu) € L(V). We havey,,(t) = [exp tG(a,u)]a for
all ¢ € R, hence,,(R) is contained in the closed real linear span of the sequence



(G(a,u)™ a),en. We shall prove that the assumptiaris= « andau? = ayield G(a,u)" a €
Vla,u] foralln € N.
We have
G(a,u)a=u € Vl]a,u].
By assumptioq auu} = au? = a, hence
Gla,u)u = 2{uau} —2{auu} = 2(u® —a) € V]a, u]
Gla,u)u® = 2{uwau?} —2{auu?}.

By the Peirce multiplication rules® = {uau'®} € {Vi,2(a) Vi(a) Vo(a)} = 0. The
Jordan identity (5) and (2.2) give

{auu?} = {au{uau}} = {u{auu}a} — {{uaa}uu} + {uaf{uua}} =

{uaa} — %{uuu} + {uaa} = %u € Vla,u]

andG (a,u) u® € Via,u).

Note thata, v, u® belong to different Peirce-spaces, in particular they are linearly
independent unlessor »(? vanish. We have assumead# 0 and if1 is the isomorphism
in (2.1), then)~'u® = yp=Huau} = {XAX} = C # 0. Therefore they form a basis of
Via,u] andG(a,u) Via,u| C V]a,u|. As a consequence, ,(t) has a unique expression
of the form

’ya,u(w = fl(t>a’ + f1/2<t)u + fO(t)u(2)a te R,
for suitable real analytic scalar valued functiofi$t), (¢ = 0, 1/2, 1). By taking the
derivative with respect tband replacing the expressions previously obtainedfar, «) =
with 2 € {a, u, u®}, we get

fil)a + fiphu+ o) u® =30.(1) = Gla,u) (vau(t) =
AOG(a,u)a+ fi2(H)G(a, u)u+ fo(t)G(a, u)u® =
—2f1/2(t)a+ (f1(t) = folt))u+ 2f1/2(t)u'?,

whence we have the first order ordinary differential equatioft) = A(u)F(t) with the

initial condition F'(0) = (1, 0, 0), whereA(u) is a3 x 3 constant (that is, not depending
ont) matrix andF'(t) is the transpose dff; (t), fi2(t), fo(t)). In fact

0 -2 0
A=(1 0 -1].
0 2 0

One can easily check that the solution is the curve in (10). a
Motivated by this result, we shall now try to weaken the restrictions.on

Proposition 2.4. Let V, a and u respectively be a unital JB-algebra, a projectionlin
and a tripotent inV; > (a). Then the following conditions hold) p := au? is a projection
that satisfiep < a, u € Vi 5(p) andpu® = p. (ii) For u # 0 we havep # 0. (iii) If v and
v are orthogonal as tripotents if; »(a), thenp := au® andq := av?® are orthogonal as
projections inV andpv = uq = 0.
PROOF.

To see thap is an idempotent it suffices to consider the subalgebia génerated by
a,u and the unit, which is a special algebra. By the Peirce rulésg V; &1}, and so we



may writeu? = x +y forz € V; andy € V,,. Thusp = az + ay = x € V;, andpa = p.
On the other hand, sinaeeis a tripotent:? = u* and so using the Peirce rules again
p = au® = ax® + 2a(xy) + ay® = 2* = p*.

Thatis,p is a projection. Notice thatz—p)* = a—p and scu—p > 0. Fromu € V;5(a)
and the fundamental formulas (1) we get = u(au®) = (au)u® = Juu® = u hence

2
u € Vij2(p) andp # 0 if u # 0. To complete (i), we notice that

pu? =p(z+y)=pr=p*=p
sincep =z € Vi(a) andy € Vy(a).
Assume now that[Jv = 0 and sep := au?, ¢ := av®. (We recall that two tripotents
u andv are orthogonal if and only ifu, v,v} = 0 or equivalently{u, u,v} = 0.) Then
0 = {uve} = wv and alsou?v = {u,u,v} = 0. Although«? is a tripotent andu? = 0,
we remark that two tripotentsand f which are orthogonal in the algebra sensg £ 0)
may not be orthogonal tripotents. However in our case

{u? u? v} = u'v — (vu?)u? + (vu?)u? = uv =0
and sou? andv are orthogonal tripotents. In particulafv? = {u? v?, 1} = 0.
Let
u?* =2 +y € Vi(a) + Vola), v* =2"+y € Vi(a) + Vo(a)
as before. Thefl = u?v? = 2’ + yy' entailszaz’ = yy' = 0 and so
pq = (au’)(av®) = [a(z +y)][(z" + y')a] = (az)(za) = 22’ = 0.

To complete the proof, consider the prodpct= vp = v(u?a) = L(v)L(u?*)a. Sincev
operator commutes with andv € Vi »(a), we havepv = L(v)L(u®)a = L(u?)L(v)a =
u?(va) = tu*v = 0 as seen before. Similartyy = 0. 0

2
The following can be considered as a generalization of (2.1).

Theorem 2.5.LetV := L(H), and leta andu respectively be a finite rank projection in
V and a vector inV; »(a). Then we have a finite direct sum decomposition

(11) Via,u]l = Vo & (@V[ak,uk])

wherea, andag, (1 < k < s), are projections withu = ay + Xay, uy are tripotents in
Vi2(ax), the subalgebra¥[ay, u;] are pairwise orthogonal andyu = 0.
PROOF.

The hermitification/ := V @iV of V' is JBW'-triple and, by the Peirce ruleg} ;,(a)
is a JBW-subtriple which has finite rank by (1.1). Hence by [9] every elemebl jn(a)
has a unique spectral resolution, that is, a representation of thefermyu; +- - -+ pu,
where0 < p; < --- < ps, theu, are pairwise orthogonal (possibly not minimal) non
zero tripotents in »(a) ands < r = rank Uy »(a) < oo. If z is selfadjoint (that is,
z € Vis(a)), then theu, in the spectral resolution of are also selfadjoint. Indeed,
u;0uy, = 0 for j # k, hence the successive odd powets’ of z are

22 = 2y g pa? 0<I<s—1).

and the Vandermonde determinalet(p?"') does not vanish since the are pairwise

distinct. Therefore the, are linear combinations with real coefficients of the powers
27t € Vi o(a) and souy € Vyjo(a).



Now we discuss the algebida, u]. Letu = §uy + -+ -+ Eus With 0 < &§ < -+ - < &
be a spectral resolution f and leta;, := auj for 1 < k < s. By (2.4) the projections;,
are pairwise orthogonal and satisfy

Yap <a, ur € Vigpo(ar), apu; = ap (1 <k <s).
Set
(12) ap := a — 2ay, Vo :i=Ray.

Hencedim V, = 1 at most. We shall see th&ta, u| ~ Vo &P V]ax, ux] as an orthogonal
direct sum. For that purpose consider the successive pawefs: which are given by
ul = gl +- - 4-¢ll, (1 < 1 < 5), since they, are pairwise orthogonal. A Vandermonde
argument shows that, € V[a,u] for 1 < k < s. Thena, = aui € V][a,u] and
ap € Va,u]. Therefore/, V{ax, ux] C Via,u] Onthe other hand, from = ao+Xay
andu = X&uy, it follows Via, u] C Vo @ @ V]ax, ux) whence we get (11) as soon as we
show that the summands satisfy the required orthogonality properties .

We have already shown thaja;, = 0 = uzu, for all & # j. By (2.4) we have
apu; = 0 = a;juy, and so the subalgebr&Say;, ux] andV[a;, u;] are orthogonal fok # j.
It remains to prove thatyu = 0. By assumption. € Vi »(a) and fromuy, € Vi 5(ay) we
getu € Vy,2(Xay), hence

%u = au = (ag + Lag) u = agu + (Xa)u = apu + %u

which completes the proof. O

Corollary 2.6. LetV = L(H), and leta andu be respectively a finite rank projection in
V and a vector in; ;2 (a). If a = ap + Xa, andu = Xu,, are the decompositions given in
(2.5) then

[exp tG(a,u)] a = ag + Sgexp tG(ax, ug)| ax
PROOF
The linearity ofG and orthogonality properties of the elements involved give
Gla,u) = Glao,u) + TG (ay, ur) = TG (ak, uk),
G(ay, ug) Vias, u;] =0, (k # 7).
ThereforeG(a, u)” = Xy G(ag, ug)" for all n € N, and the claim follows from the defini-
tion of exponential mapping. O

3. Geodesics connecting two given points.

Proposition 3.1.LetV be a JB-algebra and let, b be two projections iV’ with {aba} =
Aa and {bab} = pb for some real numbers, . Then0 < A\ = p < 1. Furthermore
A= 0ifandonly ifab = 0, and\ = 1 if and only ifa = b.
PROOF.

Projections are positive elementsli hence{aba} > 0 by ([2] prop. 3.3.6). Then
{aba} = Aa entails\ > 0. But A < 1 since

A= [[Aall = [[{aba} (| < flal* [|bl] < 1.

By ([2] lemma 3.5.2) we havé{ab*a}| = ||{ba?b}|| for arbitrary elements,b in V,
hence in our case

A = [{abai]| = [[{bab}]| = p.



Clearly A = 0 is equivalent toaba = 0 which by ([2] lemma 4.2.2) is equivalent to
ab = 0. For arbitrary projectiong, ¢, the conditionpgp = p is equivalent top < ¢,
therefore\ = 1 yieldsaba = a andbab = b thatisa < b andb < a and soa = b and
conversely. O

Proposition 3.2. Let V' be a unital Jordan algebra and let b € V' be two projections
such thatP(a)b = Aa and P(b)a = Ab hold for some real number < A < 1. Then
for V]a, b] the following conditions hold(i) V'[a,b] = Span {a, b, ab}. (ii) There is a
unigue Jordan isomorphism, ,: Via,b] — Sym(R, 2) that takesa, b and ab respec-
tively to A, B(#) and A o B(0).
PROOF

Setp: = ab. It follows from Macdonalds’ theorem that

1 1 1
p? = —a{bab} + ~{ab*a} + —{ba’b}
2 4 4
hence in our casg’ = %(a + b+ 2p). The above results are shown in the following table

o‘ab P
aja p

O
O
[0 1+
)
_|_
>
=
S~—

This shows that the real linear span of the &etb, p} is closed under the operation of
taking Jordan products, and $da, b] = Ra & Rb & Rp. It is not difficult to check that
{a, b, p} is a basis fol/[a, b] hencedim V' [a, b] = 3. The other assertion is now clear.

Remark 3.3. The angled appearing in (3.2) can be expressed in terms,df. Indeed,
sinceg, , preserves triple products afdl, B(6), A} = (cos® ) A we have\ = cos? § or
cos? 0 = || P(a)b]|.
Remark 3.4. The conditionsP(a)b = Aa and P(b)a = Ab with 0 < A < 1 are automat-
ically satisfied by any pair of minimal projectionsb with a # b andab # 0. However,
minimality is not necessary in order to have them.

We use the isomorphisms, ,,: Via, u| — Sym (R, 2) and¢,;: V]a,b] — Sym (R, 2)
to show that two distinct minimal projections b in V' = L(H) can be joined by a
geodesic i.

Theorem 3.5.LetV = L(H) and letMi(1) be the set of minimal projections . If
a,bin M(1) are such thats # b, ab # 0, andW := V]a, b] then there exists a tripotent
u € Wiss(a) (unique up to sign) such that the geodesie- ~,.,(t) connectsz with b
in <M(1). Moreover,u is uniquely determined by the additional propelty- ~, () for
somet > 0.

PROOF
The pair of projections:, b determines uniquely the algebtgq, b] and the Jordan
isomorphismyp, ;,: Via, b — Sym (R, 2) with the conditions in (3.2). In particular

[ cos’f  1sin26
o(b) = <% sin26  sin?6

for somed with 0 < 0 < 7. Letu = ¢, +(X) whereX, given in (9), is the unique (up to

a

sign) tripotent irS, /,(A). Note thatau? = a. By (2.3),7..(R) C Via,u] C V]a,b] is a



geodesic whose image by the isomorphism : Va, b] — Sym (R, 2) is

cos?t Llsin2t
_ 2
U (Yau(t)) (1 sin2t sin’t

2

SinceG(a, u) is real linear onu, the definition of the exponential function gives,,(t) =
Yau(tp) for all p andt € R. In particulary, —,(t) = v..(—t). A glance to the above
matrices shows that eithér= ~, ., (0) orb = ~, _,(0) whered > 0. O
Corollary 3.6. With the notation and conditions in the statemer(Bo%), there is a unique
vectorv in Wy 5(a) such that = v, (1) wherev = 0« for some tripotent. in W, 5 (a)
with au® = a and somé with0 < 6 < Z.
PROOF

As proved before, we have= v, (0) for a uniquely determined tripotentc W, ;(a)
with au® = a and the unique real numb@given bycos® § = ||Py(a)b||,0 < 6 < . Since

Yaou(l) = 7a.(0) = b, the vectow: = 6 u clearly satisfies the requirements. a
Corollary 3.7. With the above notation, the $Bt(1) is connected.
PROOF.

Fix anya € M(1). ThenN,: = {b € M(1): ab # 0} is an open set which is pathwise
connected by (3.5), heng¥, is also connected. But clearly, = 97i(1). O

The set of projections id ( H ) that have rank is known to be connected for every fixed
r, 1 <r < oo, [13]. In order to extend the preceding results, wel&t-) denote such a
set. Suppose thaf is a unital Jordan algebra with urditand letp,, - - - , p,, be pairwise
orthogonal idempotents with suin DefineV;;: = {p;Vp;}. ThenV;, = V;, and the
vector space direct sum decomposition, called the joint Peirce decomposition relative to

the family (p), holds:
V= @D Vu

1<i<j<n
Besides we have the following multiplication rules
13 ViiVia =0 if {i,5}n{k, 1} =0, Vi;jVix C Vix (pairwise distinct, j, k),
(13) ViiVij CVii+Vi; (@i, ).

Furthermore we have
(14) {Vi;ViaVii} C Vii @i, 5, k), {Vi;VixVi;} =0 (pairwise distinct, j, k).

Our goal now is to study’[a, b], wherea, b are projections il that have the same
finite rank. To simplify the notation we s&t': = Va,b]. By ([15], lemma 2.5), ift’
is a topologically simple Jordan JBW-algebra and are two projections i with the
same finite rank, thedim V[a, b] < co.

Let e be the unit ofi¥’. Sincef = (a + b — ¢)? is a positive selfadjoint element, it has
a spectral resolution ii/. Let it be

(15) a+b—e)? =X \e,
1756

where the number of summands is finite,> 0 and thee; are non zero pairwise orthog-
onal projections itV. We can also assume thatare pairwisalistinctand that = ~{e;
though the:=; may then fail to be minimal if’. Let

(16) W = @ I/Vz'ja a = Ei,jai,ja b= Zi,jbi,j
i,j



respectively be the Peirce decomposition$igfa andb relative to the complete orthog-
onal systerre;). Then ([15], lemma 2.2) we haw&’; ; = {0} for all i # j.

We setW?: = W;,, a;: =a;;andb;: =b;;, (1 <j < o) toshorten the notation.
The decompositions in (16) now read

(17) W=@Ww, a=YXa, b=
J

SinceW = V|[a, b] is special, there exists a Jordaisomorphismu: W — 20 C 27 for
some associative algebga Fix any such isomorphism. Then the elemeats= w(a),
B :=w(b) andF := w(f) satisfy

(18) AoF =AF =ABA=FA=FoA.
These results have been established in [15] in the context of JH-algebras, but a careful
reading reveals that no essential use of the scalar prodiichas been made.
Proposition 3.8. In the decomposition ifL7) we have forj = 1,2,-- -, o: (i) Thea, are
pairwise orthogonal projections and so are the (i) W7 = Vla;, b,], thatis,I¥’ is the
subalgebra generated i by a;,b;. (i) P(a;)b; = \ja; and P(bj)a; = A;b;, where
the \; are as in(15).
PROOF
By (13) W’'WJ c Wi andWIW* = {0} for j # k, hence fromu? = a we get
@’ = (3a;)* = Xaj, a = Yag
Since thelV* are direct summands iV we geta; = a; and similarlyb? = by.
As a, b ande are elements ofp V;, we haveV [a,b] C @ Vi. ClearlyV, ¢ W* since
ap, by € W¥ and so
W =Vla,b] C Vi C PW* = W.
ThereforeV}, = W* since the sum is direct.
To establish the relations in the last assertion, we set
fi = (a; + b —e))*, (1<j<o).
and note thaf; € W/. The orthogonality of thé/’” and (15) yield
f=(atb—e) = (Za;+b—¢;)* =%(a; +b; —e;)" =1
f=(a+b—e)? = )¢,
hencef; = Aje;, (1 < j < o). SincelV is a special we can transfer the above relations
via the Jordan isomorphism: W — 20 C ”. The relations in (17) via yield
AF = Ao F = w(af) = w(E)\kakek) = w(E/\kak) = E/\kAk,
ABA = W(Clb&> = W(ZCLkbkCLk) = ZAkBkAk
which viaw™! givesP(a;, )b, = \cax, because th&/* are direct summands. Similarly we
can proveP (by)a, = prag With 1y, = Ay. a

Due to P(ax)by = Arax the spectral values, satisfy0 < A\, < 1 and we have the
three following possibilities:

Case I:\, = 0. This can not occur for more than one index, gay= 0. Then
P(ag)by = 0andP(by)ay = 0, hencer, andb, are orthogonal. We shall see below that in



this caseank aq = rank by, (sayn,). ThusW? is isomorphic to the space of the diagonal

matrices W~ R <ﬂw) SR <%)

with the usual Jordan matrix operations. H&res theny x ng unit matrix.

Case Il:\;, = 1. This can not occur for more than one index (gay= 1). Then
P(a1)by = a; and P(by)a; = by, which means that; = b;, henceranka; = rankb,
(sayn;) andW! is isomorphic to the space of the diagonal matrices

1
W'~R
1

Case lll:0 < A\; < 1. This may occur for several indicégthe corresponding being
distinct). Then proposition (3.2) applies, heri¢& is Jordan isomorphic t8ym (R, 2)
via the isomorphism in (3.2). It is now clear that and b, are minimalin W*. Since
differenti* are orthogonaly,, andb,, are also minimal iV, that isrank a;, = rank b, =

1. Since by assumptiom andb had the same rank, we can now conclude thak oy, =
rank by, as announced earlier. We can now summarize the discussion in the following

Theorem 3.9.Let V' be a topologically simple Jordan JBW-algebra anddeb be two
projections inV that have the same finite rank. WF°, 1! and W* are the algebras
described above, théfi[a, b] is Jordan isomorphic to the finite orthogonal direct sum

(19) Vie, ) =W'aW'e  W*
0#£k#1
Givena, bin M(r) we show that it is possible to connectith b by a geodesic.

Lemma 3.10. Let the algebral/, the projections:, b and the decompositions= Xay
andb = b, be asin (17). Thet?, (a)b = aba = Saybrar, = S PF(ay)by.

PROOF.
It follows from the facts thatV’ is special and th&’* are pairwise orthogonal.

Lemma 3.11. Let the algebrd’, the projections:, b and the decompositions
a=ay+a;+ Zo¢k¢1ak, b= bo + bl + ZO;ﬁk;ﬁlbk

be given by (19). I, (a)b is invertible in the algebrdl;(a), thenay = by = 0, a; = by
andab, # 0for0 # k # 1.

PROOF.
It follows directly from the properties of the algebfa@, 1! andW* that were estab-
lished in discussion in (3.9) and the invertibility 8f(a)b. O

Theorem 3.12.LetV = L(H) and leta, b be two projections i with the same finite
rank . Assume thaf’ (a)b is invertible in the unital algebrd/;(a). Then there is a
geodesic that joina with b in 21(r).

PROOF.
We may assume # b. Consider the algebfd: = V[a, b] and the decompositions in
(19). By (3.11) the invertibility ofP; (a)b in Wi (a) yields

ag = bo = O, a; = bl, rank (ak) = rank (bk) =1 for0 # k 7é 1



Thus W = {0} in our case. Let us defing,: R — W' to be the constant curve
m(t): = a3 = by, and letr;: = ranka; = rankb,. Clearly~, is a geodesic in the
manifold9i(r,) of the projections iri¥’! that have fixed rank; .

For0 # k # 1 the projectionsy, andb, are non orthogonal and minimal iiv*.
Hence by (3.5) there is a geodesic, saythat joinsa;, with b, in 2t*(1), the manifold of
minimal projections id/’*. This curve is of the form

Ve (t) = Yapur, () = [exp tG (ar, ug)] a, teR,

whereG (ag, ug) := 2(apDuy, — uxOay,) for a tangent vectou,, € Wf/Q(ak) that is deter-
mined by the uniqueness properties established in (3.6). In partigutary,, ., (1). We
claim that

Y(t) == n(t) + Spa(t), teR

is a geodesic that joinswith b in 2%(r).

By construction we havey,(R) C W*. But these subalgebras are pairwise orthogonal,
hencey(t) is a projection of rank = r; + X7y, for all t € R, that is,y is a curve in
M (r) and obviouslyy(0) = a, v(1) = b. It remains to show that is a geodesic, which
amounts to saying thatis of the form

(20) v(t) = [exp tG(a,u)] a, t eR,

for some tangent vectar € W, ,(a), and it is almost clear that := w; 4 X1 u;, will do.
Indeed, the orthogonality of tHé’* and the expression of the Peirce projec@fé(ak)

and P, ;(a) for special Jordan algebras easily yield the inclusﬂz}ﬁ%(ak) C Wis(a)
and so

U= Uy + Vg Up € W11/2<a1) D EB Wf/z(ak) C Wija(a)
k£l

Still we have to check that the equality in (20) holds. To do this, noticeXhidt’, W*)(W) =
{0} for j # k, which is an immediate consequence of (6), the orthogonality properties
of thelW’ andW = @W7. As a consequend@(a, u) a = XG(a;, uj) a; = Xw; where

wj: = G(aj,u;)a; € W7, Then

G(a,u)’a = G(a,u)G(a,u)a= G(a,u)Sw; =
%Glajuy) Bewp = 3G (a5, u;) wy = 5;Glaj,u5)

and by inductiorG(a, u)" a = ¥,;G(a;, u;)" a; for alln € N, hence
[exp tG(a,u)] a = E;[exp tG(a;u;)] a;

which completes the proof. O

Remark 3.13. The geodesic constructed in (3.12) satisfies certain normalizing conditions.
Indeed, the paifa, b) determines uniquely (up to order) paiks., by) via the spectral
resolution of(a + b — ¢)? in the unital algebrd¥ [a, b]. In turn, thes€ay, b;,) determine

in a unique way tangent vectorig € W 2(ax) such thab, = v,, (1) for1 <k < r.
Finally v = 3, ux. These properties single out the cutyvin the class of geodesics that
connectu with b.



4. Geodesics are minimizing curves.

Throughout this sectio®/ stands for the algebrd(H) and V' denotes its selfadjoint
part. Our next task will be to show that the geodesi¢ joining a with b in 9i(r) is a
minimizing curve. That will require some calculus. lebe fixed in9i(r), and let| - |
denote the Levi norm i, »(a) (see 1.2).
Notation 4.1. We set\V,: = {P(a)v € 9M(r): visinvertible inV;(a) }. Clearly N, is
an open neighbourhood afin 9t(r) and{/N,: a € M(r)} is an open cover dbi(r).

By B,: = {z € Vijz(a): [[z]| < 5} we denote the open ball iV ;(a) of radius
centered at the origin. Using theeld functional calculu$or the JB-triple Vi /5(a) (see
[10]) one can define a mapping B, — Vi 2(a) by

(21) ur p(u): = tanu, u € B,.

Thenp is a real analytic diffeomorphism @#, ontoV; ;»(a) whose inverse, also defined
by the odd functional calculus, is

ur o(u): = arctanu, u € Vip(a).
Definition 4.2. We defined,: N, — Vi2(a) and¥,: Vi 2(a) — V by
(22) Q,(v): = 2 (Pl(a)'u)_lpl/g(a)v,
(23) Vo(u): = lexp G(a,0(u))]a,

Lemma 4.3. With the above notationh, and ¥, are real analyticV/-valued functions.
Furthermore®,(N,) C Vij3(a) and¥,(V; 2(a)) C N,.
PROOF.

Forv € NV, Pi(a)v is invertible inV;(a). Hence the mapping — (P (a)v) ! is well
defined and real analytic iN,,. Clearlyv — P, »(a)v is real analytic, hence the product
of these two functions, that i®, is also real analytic and by the Peirce multiplication
rules®,(N,) C Vija(a).

As said beforeu +— tan(u) is a real analyticV-valued function, and so i8 —
G(a,tan(u))a sinceG is a continuous real bilinear mapping. The exponential-
exp G(a,tan(u)) is an operator-valued real analytic function, hence by evaluating at
we get¥,, a real analytic function. Let € V;»(a). We have the decompositions

a = Qg + Zkak, u = Zkfkuk,

given by (11) with the properties in the statement of theorem (2.5). The odd functional
calculus and orthogonality gives

arctan u = X0pur, Where 0, := arctan ;.

HenceG(a,o(u)) = £10,G(ak, u). Again using the orthogonality properti€$ay,, u,)Via;, u;] =
0 for k& # j we see (recalling the proof of 2.3) that

U, (u) = [exp G(a,o(u))] a = Sx[exp 0.G(ag, u)] ar =

24 1
( ) Zk(cosz Qk) ap + Zk(é sin 29k)uk —+ Zk(sinz Qk) Ul(f)

An inspection of this formula shows th&f(a) ¥, (u) = X (cos? 0 )ax. Sincearctanu €

B,, we have thatnax 0, = ||arctanu| < 5. In particular,P;(a)¥,(u) is invertible in

Vi(a), thatisV,(u) € N,. Thereforel,(V;5(a)) C N, which completes the proof. O



Proposition 4.4. With the above notationb,: N, — V;,(a) is a real analytic diffeo-
morphism of\, ontoV; ;»(a) whose inverse ig,.

PROOF
First we show thaf, is invertible in a suitable neighbourhodd c N, of a. Let us
use the following self-explanatory notation

®,(v) = 2 (Pi(a)o) " Pija(a)(v): = 2/(v) g(0).
Note thatf(a) = a andg(a) = Py/2(a)(a) = 0. Thus forh € V; 5(a) we have
O (a)h =2 (f'(a)h) g(a) + 2f(a) g'(a)h = 2aPyjs(a)h = h,

that is®/ (a) = Id which by the inverse mapping theorem proves the first claim. Let
v € Vio(a) andu € B, be related by = tan(u). A glance at (24) shows

1
Pi(a)¥,(u) = Sg(cos®O) ar  and  Pija(a)¥,(u) = Zk(§ sin 26y,) uy,.
Therefore sincey, € Vi 2(ay),

O, (u) = 2 (P (a)Vu(u)) " Praa)Wy(u) = 254 (tan ;) aguy, = Spépug = u.

Hence®,V, = Id. In particularV, is the right-inverse ofp,, and the inverse ob,
at least inlV. By (4.3), the mapping®,¥: Vi s(a) — Vijp(a) and¥,o,: N, — N,
are well defined and analytic in their respective domains. By (3.12) any paivit tan
be joined witha by a geodesic that is contained.\),, henceN,, is an open connected
set. Sincel,®, = Id in W, we haveV,®, = Id in N, by the identity principle. This
completes the proof. O
Proposition 4.5. The family of chart{(N,, ®,): a € M(r)} is an atlas which defines
the manifoldi(r).
PROOF.

It is easy to check that the above family is a real analytic atlas whose manifold structure
is denoted byDi(r)’. To see tha®i(r)" is the same a¥i(r), recall that

f:U C Vijpla) — M(r) Dy M(r) — Vija(a)

ur f(u): =[expGla,u)]a v Py(v): =2 (Pl(a)v)fl Py js(a)v
are local charts ofji(r) and9i(r)’ at the pointa. The composite map’ := ¢, o f can
be written in the form

F(u) = ®[f(u)] = 2 (Pi(a) f(u)) " Piya(a) f(u) = G(u) H(u)

with self-explanatory notation. The@(0) = 2a, H(0) = Py2(a)a = 0, H'(0) =
P, 5(a). Therefore, forh € V;5(a) we have

F'(0)h = (G'(0) h) H(0) + G(0)H'(0)h = G(0)H'(0)h = 2a Py j3(a)h = h.

ThusF’(0) = Id. The remaining part of the proof is similar. O
We are in the position to prove that geodesic®t(r) are minimizing curves. For that
we considei(r) as defined by the atldg N, @,): a € M(r)}.

Theorem 4.6. Let M1(r) be the manifold of projections i = L£(H) that have fixed
finite rankr. Fix a € M(r) and letN, be defined as if4.1) Then for every in AV, the
geodesic joining: with b is a minimizing curve for the Riemann distancé\ip.



PROOF
We may assume # b. The diffeomorphisms3, —- Vije(a) IR N, give a unique
pair (u,v) € B, x Vi/2(a) such that

v = tan(u) U, (v) =b.

There is a unique normalized geodesig, that joinsa with b in the manifold?t(r) and
has initial velocityu = 5,.,(0) € B,. In particular we have

b= a(p(w)) = Yau(L) = [exp Gla,u)]a

and the exponential mappingp: B, — 9(r) is a homeomorphism oB, onto the
open set\, in M(r). This will allow us to apply the Gauss lemma ([12] 1.9). For that
purpose, we show that, ,,(¢) belongs taV, for all ¢ € [0, 1]. Indeed, the segmefit, 1] u

is contained inB,, hence its image by, o p lies in the setV,. We shall now see that

Valp(tu)] = yau(t),  t€[0,1].
Lett € [0,1] and sety;: = tan(tu). The odd functional calculus gives
U, (vr) = [exp G(a,tu)]a = [exp t G(a,u)] a = Y4.,(t)

as we wanted to see. For the Riemann connecWian 2i(r), the radial geodesics are
minimizing curves (by the Gauss lemma). Hence it suffices to seeythais a radial
geodesic, which is a consequence of the fa¢f0, 1] C N,,. O

It is now reasonable to ask what can be said about the neighbouNjpddVe refer to
O,: = {be M(r): Pi(a)b is notinvertible inV;(a)} as theantipodaket ofa. Clearly
O, is a closed subset 6fi(r).

Proposition 4.7. Let Mt(r) be the manifold of all projections il = L£(H) that have a
given finite rank-. Then for any: € 9t(r) the antipodal set oi has empty interior.

PROOF

Leta € M(r) and setK: = a(H) C H. Note that dimk' = ranka = r < oc.
The operators iV;(a) = aVa can be viewed as operatorsiii K'), therefore theleter-
minantfunction is defined if/;(a) and an element € V;(a) is invertible if and only if
det(z) # 0. The functionb — det(P;(a)b) is real analytic omi(r). If O, has non empty
interior, thendet(P;(a)b) vanishes in a non void open subset9f(r), which is con-
nected, therefore by the identity principle the determinant function would be identically
null which is a contradiction. O

We letS(r) denote the subgroup @iut (U) generated by the set of Peirce reflections
o, Wherep € M(r). Eacho, preservedi(r) and induces a real analytic symmetry of
this manifold.

Proposition 4.8. LetV = L(H). ThenMi(r) is homogeneous under the action of any of
the groupsAut® (V') andS(r).
PROOF

Leta, b be any pair of points if(r) with a # b. If b € N, then by (3.12) there is a ge-
odesicy, . (t) = [exp tG(a,u)] a that joinsa with bin Mi(r). Butg(t): = [exp tG(a,u)]
is an element oAut °(V) for all ¢ € R. Now consider the cade¢ N,. By (4.7) the an-
tipodal set ofu has empty interior, hendd N N, # () for every neighbourhootd” of b
inM(r). If c € W NN, then we can conneatwith ¢ andc with b by geodesics ifi(r)
hence we connectwith b by a curve irJi(r). This completes the proof fakut °(1/).



Consider a pair of points, b in 9t(r) such thath € N,. Then it is easy to find a
symmetryo, that exchanges with b. Namely, there is a geodesic that connectsith
bin M(r), sayvy: t — ~(t),t € R. Thusa = v(0) andb = ~(1). Define thegeodesic
middle pointof the pair(a, b) asc: = +(3), and lets,. be the Peirce reflection with center
atc. Clearlyo,. preserves the curveand exchanges with b.

Now let a, b be arbitrary in9t(r). SinceMi(r) is a connected locally path-wise
connected topological space, it is globally path-wise connected. Thus there is a curve
I':t — I'(¢), t €[0,1], that joinsa with b in 9t(r), and a standard compactness argu-
ment shows that there is a finite sequence of pdints- - - , x,.} in ' such thatr; = a,

x, = b and each consecutive pair of thgcan be joined by a geodesici(r). For each
pair (zx, zx41) consider the geodesic middle poifitand the corresponding symmetry
exchanginge, with z;. Then the composite; o - - - o oy, lies in &(r) and exchanges
with b. O

Corollary 4.9. Leta, b € M(r). Thenb € O, if and only ifa € O,.

PROOF
Let 0 be a symmetry that exchangeswith b. The relationb € O, is equivalent
to P;(a)b is not invertible inV;(a), which applyingo is converted intoP; (b)a is not
invertible inV; (b) thatisa € O,. O
We are now in the position to compute the Riemann distand&(n).

Theorem 4.10.Let M1(r) be the manifold of all projections i = L£(H) that have a
given finite rankr. If a, b are points inMi(r) and ~,,(t) is the normalized geodesic
connecting: with b in 9t(r) then the Riemann distance between them is

d(a, b) = (2}62)?

whered;, = cos™" (|| Pi(ax)by]|2) and|| - || stands for the usual operator norm.

PROOF
Discard the trivial case = b. Consider first the cadec N,. By (3.12, 3.13) we have
b = 7,.(1) for some tangent vectar = Yu;, whereu, = O, v;, 0 < 6 < 3, (1 <
k < r), and they, are pairwise orthogonal (in the 3&iple sense) minimal tripotents
in Wy,2(ay). Hence they,, are pairwise orthogonal in the Levi sense (see [1] prop. 9.12
and 9.13) and so, if- |, denotes the Levi norm in the tangent spa¢g (a), we have
lu|?> = X762 (recall that minimal tripotents satisf| = |v|, = 1). Therefore since the

Levi form is Aut °(V')-invariant andAut ° (V) is transitive indJi(r),
‘;Va,U(t”%,u(t) = wa,U(O)‘a = ‘u‘a = (2§9§)§
forallt € R, hence

1 1
dwmzlwmwmmw:wfwm@%

Here, = cos™! (HPl(ak)ka)% and|| - || is the JB-triple (that is, the usual operator)
norm. In the casé € O,, consider a sequen¢g; ) jc;, With b; — bin Mi(r) andab; # 0
for all j. Applying the above to eachand taking the limit we get the result. a
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