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Abstract. A Lie algebra L is called primitive if it is prime, nondegenerate,

and contains a nonzero Jordan element a such that the attached Jordan algebra
La is primitive. In this paper we prove that every primitive Lie PI-algebra over

a field of zero characteristic is simple and finite-dimensional over its centroid.

Introduction

Whilst primitive associative PI-algebras and primitive Jordan PI-algebras are
well described by Kaplansky’s theorem [10, Theorem 8.3.6] and Zelmanov’s theorem
[16, Theorems 7 and 8] respectively, so far there is no a structure theorem for
simple Lie PI-algebras, and it is not seem to be possible to get such a classification
because, unlike the associative and Jordan cases, simple Lie PI-algebras (even over
an algebraically closed field of zero characteristic) may lack minimal (abelian, in
the Lie case) inner ideals (extremal elements when the base field is algebraically
closed). An example that confirms this phenomenon is the Lie algebra of derivations
of the algebra of polynomials F[x] in one variable over a field F (see [4, Example
2.1.3(v)] and [11, Example 2.10]). Therefore some additional condition is required
for a simple Lie PI-algebra to be finite-dimensional. An example of the type of
conditions is local finiteness [2, Theorem 2], which turns out to be central in all
our study. Another example is speciality (recall that a Lie algebra L is said to be
special if there exists an associative PI-algebra A such that L is embedded in the
Lie algebra A−). As proved in Theorem 1.9 of [7], a prime Lie algebra L over a

field of zero characteristic is special if and only if its central closure L̃ is simple
and of finite dimension over its centroid (equals the extended centroid of L). Note
that this result is the special Lie version of Posner’s theorem for prime associative
PI-algebras.

In this paper we study conditions under which a simple Lie PI-algebra over a
field of zero characteristic is finite-dimensional over its centroid, and prove that any
primitive Lie PI-algebra (according to the notion of primitivity introduced in [11])
over a field of zero characteristic is simple and finite-dimensional over its centroid.
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1. Preliminaries

Algebras considered here are over a field F of zero characteristic, although some
of the results do not require this scalar restriction. Most of the definitions and
notations are taken from the book [11].

• Let L be a Lie algebra and let a ∈ L. We denote by ada the linear map
ada : L → L given by adax = [a, x] for all x ∈ L, and by Ad(L) the subalgebra of
the associative algebra EndF(L) generated by the set {ada : a ∈ L}.

• Any associative algebra A becomes a Lie algebra A− under the Lie product
[x, y] = xy − yx, x, y ∈ A.

• A Lie algebra L over a field F is called finitary (over F) if it is a subalgebra of Lie
algebra F(X)− of finite rank linear operators on an F-vector space X. It is clear
that every simple finite-dimensional Lie algebra is finitary.

• A Lie algebra L over F is called a special Lie algebra or a Lie SPI-algebra if there
exists an associative PI-algebra A over F such that L can be embedded in the Lie
algebra A−. It is proved in [14, Theorem 2.1.1] that if L is a Lie SPI-algebra, then
Ad(L) is an associative PI-algebra.

• A Lie algebra L is said to be nondegenerate if ad2xL = 0 ⇒ x = 0, for x ∈ L. It
is well known [11, Corollary 3.24] that any simple Lie algebra over a field of zero
characteristic is nondegenerate.

• A Lie algebra L is said to be prime if [I, J ] = 0 implies I = 0 or J = 0, for I, J
ideals of L. And L is called strongly prime if it is prime and nondegenerate.

• Let A be an associative algebra with center Z(A). If A is semiprime (resp.
prime) then the Lie algebra A−/Z(A) is nondegenerate (resp. strongly prime) [11,
Proposition 3.35].

• Let A be a prime nonassociative algebra over an arbitrary field F. Then A is said
to be centrally closed if its centroid Γ(A) coincides with its extended centroid C(A)
(see [11, Sections 1.2 and 1.3] for definitions). A nonassociative algebra A is said
to be multiplicatively prime (in short m.p.) whenever both A and its multiplication
algebra M(A) are prime. It follows from Pikhtilkov’s theorem quoted above that
prime special Lie algebras are multiplicatively prime.

The following lemma will be used in the proof of our main result for the particular
case of a Lie algebra.

Lemma 1.1. Let A be a multiplicatively prime nonassociative algebra and let M
be an ideal of A which is simple as an algebra. Then C(A) = C(M) = Γ(M).

Proof. By [8, Proposition 1], the condition F (M) = 0, for F ∈ M(A), implies
F = 0. Then, by [6, Theorem 2.2], we have that C(A) = C(M). Moreover, since M
is a simple algebra, it is clear that C(M) = Γ(M). �

Remark 1.2. If A is not m.p., then the equality of its extended centroid with the
centroid of any ideal M of A which is simple as an algebra cannot be guaranteed,
as shown by the following example inspired in the celebrated Albert example of
a unital prime 3-dimensional algebra which is not m.p. (see [9, Proofs of Lemma
4.4.83(iii) and Proposition 4.4.84(ii)]).



PRIMITIVE LIE PI-ALGEBRAS 3

Let A be the three-dimensional real algebra with basis {u, v, w} and multiplica-
tion table given by

u v w

u u v 0
v v -u v
w 0 0 u

It is not difficult to verify that A has only a nonzero proper ideal M = Ru + Rv,
with M2 ̸= 0, so A is prime. It is also easy to see that M is isomorphic, as real
algebra, to the complex field, with u = 1 and v2 = −1, so Γ(M) = C, i.e. any
γ ∈ Γ(M) is determined by a fixed pair (λ, µ) of real numbers: γ(λ,µ)(αu+ βv) :=
(λu + µv)(αu + βv), α, β ∈ R. Finally, the reader can check that γ(λ,µ) ∈ C(A) if
and only if µ = 0, so C(A) = R, and that M(A) is not even semiprime: Lw ̸= 0
and LwM(A)Lw = 0.

• An element a in a Lie algebra L is said to be Jordan if ad3aL = 0. It is easy to
see that any zero square element of an associative algebra A is a Jordan element of
its associated Lie algebra A−.

• An abelian inner ideal of a Lie algebra L is a subspace B of L such that
[B, [B,L]] ⊂ B and [B,B] = 0. Any element in an abelian inner ideal of a Lie
algebra L is a Jordan element of L, and conversely, for any Jordan element a ∈ L,
ad2aL is an abelian inner ideal of L [11, Lemma 4.5 and Proposition 4.6].

• An element e ∈ L is called von Neumann regular if it is Jordan and e ∈ ad2eL.
Again it is easy to check that for a zero square element a in an associative algebra
A, a is a von Neumann element in A if and only if it is a von Neumann regular
element in A−.

• Let L be a Lie algebra over a field F. A nonzero element e ∈ L is called extremal
if ad2eL = Fe. It is clear that any extremal element is von Neumann regular and
generates a one-dimensional inner ideal.

• To any Jordan element a ∈ L we attach a Jordan algebra La called the Jordan
algebra of L at a [11, Theorem 8.43]. Although most of the properties of a Lie
algebra can be transferred to its Jordan algebras, it is an open question whether
the Jordan algebras of a simple Lie algebra are simple. However, the question is
answered in the affirmative in some particular cases.

Proposition 1.3. Let L be a simple Lie algebra over a field F of zero characteristic.

(1) If L has a nontrivial finite Z-grading L = L−n⊕· · ·⊕Ln, then any nonzero
element a ∈ Ln is Jordan and the Jordan algebra La is simple.

(2) For any nonzero von Neumann regular element e in L, Le is a simple unital
Jordan algebra.

Proof. (1) As a consequence of the grading properties, a is a Jordan element
in L. Now we have (see [11, Theorem 11.32]) that the associated Jordan pair
V = (Ln, L−n) is simple, and by [11, Proposition 11.42], for any nonzero element
a ∈ Ln, the Jordan algebra La is isomorphic to the Jordan algebra Va, which is
simple by [1, Theorem 2.5].

(2) Using [11, Lemma 5.8 and Theorem 5.11], extend e to an sl2-triple (e, f, h)
with associated 5-grading L−2⊕L−1⊕L0⊕L1⊕L2 and Jordan pair V = (ad2eL, ad

2
fL).

Since e ∈ L2, it follows from (1) that Le is a simple Jordan algebra; that Le is unital
follows from [11, Proposition 8.61(i)]. �
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2. Simple Lie PI-algebras

In this section we study conditions under which a simple Lie PI-algebra over a
field of zero characteristic is finite-dimensional over its centroid. We begin with a
technical lemma which will be frequently used in what follows. (As will be seen
next, it proves something stronger than what it states.)

Lemma 2.1. Let L be a simple Lie PI-algebra over a field of zero characteristic.
If L contains a Jordan element a such that the Jordan algebra La is simple, then
L is locally finite over its centroid.

Proof. Let a ∈ L be a Jordan element such that its attached Jordan algebra La is
simple. Since L is PI, we have by [11, Proposition 8.57] that La is a Jordan PI-
algebra. By Zelmanov’s PI-theorem [16, Theorem 7], a simple Jordan PI-algebra is
either finite-dimensional over its (associative) center Z, or isomorphic to the Jordan
algebra of a nondegenerate symmetric bilinear form. In both cases, La contains
minimal inner ideals and hence, by [11, Lemma 8.50], L itself contains a minimal
abelian inner ideal. Since for any division element b in L, the division Jordan
algebra Lb is PI ([11, Proposition 8.57] again), it follows from [11, Theorem 14.7]
that L is finitary over its centroid and therefore locally finite by [11, Proposition
8.74]. �

The following theorem, due to Yu. A. Bahturin, is the key tool to prove all the
others results of this paper. Condition (i) does not appear in Bahturin’s theorem,
but we think it is relevant for better understanding the important role played by
Jordan elements.

Theorem 2.2. [2, Theorem 2] Let L be a simple Lie algebra over a field of zero
characteristic. Then the following conditions are equivalent:

(i) L is PI and contains an ad-algebraic element which is not ad-nilpotent,
(ii) L is PI and locally finite over its centroid,
(iii) L is finite-dimensional over its centroid.

Proof. (i) ⇒ (ii). Let K be the centroid of L and K its algebraic closure. Then
L := K⊗K L is a central simple Lie PI-algebra over K. Moreover, any ad-algebraic
element in L remains ad-algebraic in L, so L contains an algebraic element which is
not ad-nilpotent. Then, by [11, Example 1.4], L has a nontrivial finite K-grading,
which without loss of generality we may assume it to be a Z-grading L = L−n ⊕
· · · ⊕ Ln. Hence, by Proposition 1.3(1), L contains an element a such that the
Jordan algebra La is simple, which implies by Lemma 2.1 that L is locally finite
over K, equivalently, L is locally finite over K.

(ii) ⇒ (iii). Let K, K, and L be as above. Then L is a simple locally finite Lie
PI-algebra over K. By [11, Lemma 10.1], L is finite-dimensional over K and hence
dimK L = dimK L is also finite.

(iii) ⇒ (i). Since L has finite dimension, it is PI and any of its elements is
ad-algebraic. But not all them can be ad-nilpotent, for in that case L would be
nilpotent by the Engel–Jacobson Theorem [11, Theorem 2.54], which leads to a
contradiction. �

Remarks 2.3. (1) It is proved in [3, Proposition 1.8] that any simple SPI-algebra
is finite-dimensional over its centroid.
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(2) Let L be an n-dimensional central simple Lie algebra over a field K. Then L
satisfies the nontrivial polynomial identity∑

σ∈Sn+1

(−1)σ[xσ(1), · · · , xσ(n), xσ(n+1), x] = 0,

where for any positive integer m, Sm denotes the group of permutations of m
elements, and the left commutator [x1, · · · , xm] is defined recursively:

[x1] = x1, [x1, x2, · · · , xm+1] = [x1, [x2, · · · , xm+1]].

Thus L is a PI-algebra over any subfield of K.

(3) Take the field of fractions F(x), where F is a field of zero characteristic. For
n > 1, the Lie algebra sl(n,F(x)) is finite-dimensional and central simple over F(x),
but it is not locally finite over F: the subalgebra generated by the entry matrices
x[12] and x[21] is infinite-dimensional over F.

Corollary 2.4. Let L be a simple Lie PI-algebra over a field of zero characteristic.
If L contains a Jordan element a such that the Jordan algebra La is simple, then
L is finite-dimensional over its centroid.

Proof. By Lemma 2.1, L is locally finite over its centroid. Now Theorem 2.2 applies.
�

Corollary 2.5. Let L be a simple Lie PI-algebra over a field of zero characteristic.
If L contains a nonzero von Neumann regular element, then L is finite-dimensional
over its centroid.

Proof. Let e be a nonzero von Neumann regular element in L. By Proposition
1.3(2), the Jordan algebra Le is simple. Now Corollary 2.4 applies. �

Corollary 2.6. Let L be a simple Lie PI-algebra over a field of zero characteristic.
If L contains a minimal abelian inner ideal, then L is finite-dimensional over its
centroid.

Proof. Let B be a minimal abelian inner ideal of L. Since L is nondegenerate, we
have by [11, Lemma 4.19] that any element in B is von Neumann regular. Now
Corollary 2.5 applies. �

Remark 2.7. Corollary 2.6 can be directly derived from Corollary 2.4 (avoiding thus
the use of Jordan pair theory). Indeed, it follows from [11, Proposition 8.63] that
for any nonzero element b in a minimal abelian inner ideal of L, Lb is a division,
and therefore simple, Jordan algebra.

Corollary 2.8. Let L be a simple Lie PI-algebra over a field F of zero character-
istic. If L contains an extremal element, then L is finite-dimensional over F.

Proof. Let e ∈ L be an extremal element. Then ad2eL is a minimal abelian inner
ideal, so, by Corollary 2.6, L is finite-dimensional over its centroid, which coincides
with F1L by [11, Lemma 6.5]. �

Remark 2.9. Corollary 2.8 can be directly derived from Theorem 2.2 and the fact
that L is central over F. Indeed, by [11, Proposition 5.21], L is generated by any
extremal element and hence it is locally finite by [11, Corollary 6.16].
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3. Primitive Lie PI-algebras

A Lie algebra L is said to be primitive if it is strongly prime and contains
a nonzero Jordan element a such that its attached Jordan algebra La is primitive
(see [11, 8.34] for the definition of primitive Jordan algebra). Primitive Lie algebras
were introduced in [11], proving among other results that this definition is consistent
with the usual one for associative algebras [11, Propositions 8.70 and 8.72].

Remark 3.1. There is another notion of primitivity for Lie algebras, in analogy
with the case of associative algebras: a Lie algebra L is primitive if it has a faithful
irreducible representation. As shown in [13], the class of these primitive Lie algebras
is quite ample. For instance, any finite-dimensional semisimple Lie algebra over an
algebraically closed field of zero characteristic is primitive. Therefore, according to
this definition, a primitive Lie algebra is not necessarily prime.

Theorem 3.2. Every primitive Lie PI-algebra L over a field F of zero characteristic
is simple and finite-dimensional over its centroid.

Proof. By [11, Proposition 8.69], L has nonzero socle, say Soc(L) = S. And by
[11, Theorem 5.22], S is a simple Lie PI-algebra containing minimal abelian inner
ideals, what in virtue of Corollary 2.6 implies that S is finite-dimensional over its
centroid, say Γ(S) = K. The proof will be complete by proving that L and S have
equal centroids, since in this case, via adjoint representation, L is embedded into
Der(S), with every derivation of S being inner.

Suppose for the moment that L is centrally closed over F, i.e. the centroid
extended C(L) of L coincides with F. It is clear that K is a field extension of F =
C(L). We claim that K = F. Let n = dimK(S). We have L ≤ Der(S) ≤ Mn(K)−

as F-algebras. Thus L is a special Lie algebra over F. But any prime special Lie
PI-algebra over a field of zero characteristic is multiplicatively prime. Hence K
coincides with F by Lemma 1.1.

Coming back to the general case, let L̃ denote the central closure of L. It is
known (see [5]) that L̃ is a prime Lie algebra which is generated as a C(L)-vector
space by L, and L̃ is centrally closed, i.e. Γ(L̃) = C(L̃) = C(L). Hence L̃ is PI,

and since K is a field extension of C(L), S remains as an ideal of L̃. Now it follows

from [11, Propositions 4.12 and 8.67] that L̃ is primitive. Then, by the previous

case, S ≤ L ≤ L̃ = S forces L = S, so L is simple and finite-dimensional over its
centroid. �
Remark 3.3. The converse of Theorem 3.2 does not hold in general (the orthogonal
real algebra o(n) does not contain nonzero Jordan elements). Nevertheless, if F is
algebraically closed, then L is primitive.

Corollary 3.4. Let L be a strongly prime Lie PI-algebra over a field F of zero
characteristic. If L contains a minimal abelian inner ideal, then L is simple and
finite-dimensional over its centroid.

Proof. By [11, Proposition 8.68], L is primitive. Now Theorem 3.2 applies. �
Remark 3.5. If in Corollary 3.4 “minimal abelian inner ideal” is replaced by “ex-
tremal element”, then both S and L (in the proof of Theorem 3.2) are automatically
centrally closed over F [11, Lemma 6.5 and Corollary 6.6]. Thus it is not necessary
to involve neither special nor multiplicatively prime algebras in the proof of this
particular case.
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A Lie algebra L over a field F is called algebraic if for any a ∈ L, the adjoint
map ada is algebraic over F.

Corollary 3.6. [11, Corollary 10.3] Let L be a strongly prime Lie PI-algebra over
an algebraically closed field F of zero characteristic. If L is algebraic over F, then
L is simple and finite-dimensional.

Proof. By [11, Corollary 4.32], L contains a nonzero Jordan element, say a. Then
the Jordan algebra La is strongly prime and PI. But such a Jordan algebra (see
[11, Remark 8.42]), is simple and contains minimal inner ideals. As we have just
seen, this implies that L itself contains minimal abelian inner ideals and hence
extremal elements since F is algebraically closed. Now the argument of Remark 3.5
applies. �

Remark 3.7. Actually, a strongly prime algebraic Lie PI-algebra over a field F of zero
characteristic (not necessarily algebraically closed) is simple and finite-dimensional
over its centroid, which is an algebraic field extension of F. This result was proved in
[12, Theorem 1.1] combining Corollary 3.6 with Zelmanov’s theorem for algebraic
Lie PI-algebras [15, Theorem 1], and in [11, Theorem 10.11] assuming that L is
algebraic of bounded degree (a condition stronger than being PI [11, Lemma 10.4]).
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