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Abstract: We show that special Jordan systems J which are free of torsion over a
scalar ring imbed in primitive (hence strongly prime) Jordan systems J̃=J⊕Heart(J̃)

with simple primitive heart. We show examples of exceptional Jordan systems which
cannot be imbedded in a nondegenerate system.
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Introduction

In [14], every nondegenerate Jordan algebra was shown to imbed in a semiprim-
itive Jordan algebra with the same polynomial identities.

In [3], it is shown how to “paste” a simple heart to an arbitrary associative system
R over a field, so that the original system imbeds in a primitive system R̃. Unlike
[14], the polynomial identities of R are not preserved in this procedure and, in fact,
looking at the precise way of building R̃, one can check that R̃ and its heart are not
PI. Recently, in [4], the results obtained in [3] were improved in two ways: allowing
more general rings of scalars, and considering systems with involution. Analogues
for Lie algebras have been obtained in [5]. Both the results of [5] and those obtained
here play a fundamental role in the forthcoming paper [8], devoted to the study of
the inheritance of nondegeneracy by semiprime quotients in Lie and Jordan systems.

We will investigate whether the process for pasting a simple heart also applies
to Jordan systems. Unlike the Lie algebra case [5], we will not need to start with the

1 Partly supported by the Ministerio de Economı́a y Competitividad and Fondos FEDER,

MTM2014-52470-P

1



2 anquela, cortés and mccrimmon

study of systems over fields, and will proceed directly working over general rings of
scalars. This is due to the simpler form of Herstein’s Theorems for Jordan systems
built out of associative systems [6, 15], and also to the deeper knowledge in the
context of Jordan systems of our regularity conditions. Our results will revealed
linked to the question of the existence of absolute zero divisors in free objects.

The paper is divided into two sections, plus a preliminary one devoted to list
some basic notions and properties. In the first section we obtain versions of the main
results of [4] for special Jordan systems. We will use Herstein-type theorems on the
transfer of regularity conditions from an associative system to the Jordan system
built out of it, and also some results on the inheritance of regularity conditions by
ideals. The second section is devoted to showing that speciality cannot be removed
as a condition in our main theorem of the previous section. We will give examples of
exceptional Jordan algebras over a field that cannot be imbedded in a nondegenerate
Jordan algebra. In a philosophical sense, this shows that, unlike what happens in
associative systems or Lie algebras, even nondegenerate systems are not wide enough
to contain full information about the entire class of Jordan systems.

0. Preliminaries

0.1 We will deal with associative and quadratic Jordan Φ-systems (algebras,
triple systems and pairs over an arbitrary ring of scalars Φ). The reader is referred to
[1, 9, 13, 17, 18] for basic facts and notions not explicitly mentioned in this section.

— Associative products will be denoted by juxtaposition.

— Given a Jordan algebra J , its products will be denoted by x2, Uxy, for
x, y ∈ J . They are quadratic in x and linear in y and have linearizations denoted
x ◦ y, Ux,zy = {x, y, z} = Vx,yz, respectively.

— For a Jordan pair V = (V +, V −), we have products Qxy ∈ V ε, for any x ∈ V ε,
y ∈ V −ε, ε = ±, with linearizations Qx,zy = {x, y, z} = Dx,yz.

— A Jordan triple system J is given by its products Pxy, for any x, y ∈ J , with
linearizations denoted by Px,zy = {x, y, z} = Lx,yz.

In the case of pairs R = (R+, R−) or J = (J+, J−), a module always means a
pair of modules M = (M+,M−), and module endomorphisms T are always pairs of
endomorphisms T = (T+, T−) for Tσ ∈ EndΦ(Mσ).

0.2 Given an associative or Jordan system M , the heart Heart(M) of M is the
intersection of all nonzero ideals of M .
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If J is a nondegenerate Jordan system, Heart(J) is the unique simple ideal of J

when it is nonzero (cf. [7, 2.6, 3.6, 3.8]).

Conversely, if a strongly prime Jordan system J has an ideal I which is a simple
system, then Heart(J) = I [7, 0.9].

0.3 (i) A Jordan algebra gives rise to a Jordan triple system by simply forgetting
the squaring and letting P = U . By doubling any Jordan triple system T one obtains
the double Jordan pair V (T ) = (T, T ) with products Qxy = Pxy, for any x, y ∈ T .
From a Jordan pair V = (V +, V −) one can get a (polarized) Jordan triple system
T (V ) = V + ⊕ V − by defining Px+⊕x−(y+ ⊕ y−) = Qx+y− ⊕Qx−y+ [13, 1.13, 1.14].

(ii) An associative system R gives rise to a Jordan system R(+) by symmetriza-
tion: over the same Φ-module, we define x2 = xx, Uxy = xyx, for any x, y ∈ R in the
case of algebras, Pxy = xyx in the case of triple systems, and Qxσy−σ = xσy−σxσ,
σ = ± in the pair case.

0.4 A Jordan system J is said to be special if there exists an associative system
R such that J is a subsystem of R(+). If, in addition, R is generated as an associative
system by J , then R is called an associative envelope of J .

An associative envelope R of J is said to be tight if every nonzero ideal of R hits
J (I ∩ J 6= 0, for any nonzero ideal I of R).

A Jordan system which is not special is called exceptional.

0.5 If J is a special Jordan system, there exists an associative envelope of J

which is tight. Indeed, if J is a subsystem of R(+), for some associative system R,
the associative subsystem S of R generated by J is an envelope of J . Moreover, S

can be tighten by factoring out a maximal ideal of S not hitting J , whose existence
follows from a straightforward application of Zorn’s lemma.

0.6 Let M be a nonzero Φ-module (by our conventions a pair of modules in the
case of pairs).

(i) The annihilator of M in Φ, AnnΦ(M) := {λ ∈ Φ | λM = 0} is the kernel
of the natural ring homomorphism of Φ into EndZ(M). Let Φ denote the quotient
Φ/ AnnΦ(M). Notice that Φ is isomorphic to the image of Φ in EndZ(M) and M

becomes a Φ-module. The Φ-submodules, subalgebras, ideals, etc. are exactly the
same as the Φ-modules, subalgebras, etc. But now M becomes a faithful Φ-module
(cf. [10, Lemmas 1.1.1, 1.1.2]). Moreover, if M is an associative or Jordan system
over Φ, then it is also an associative or Jordan system over Φ.

(ii) Conversely, if we take any proper ideal I of Φ, any Φ/I-module, or associative
or Jordan system over Φ/I can be viewed as a Φ-module, or associative or Jordan
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system over Φ, respectively, in the obvious manner.

(iii) A stronger condition is that M is free of Φ-torsion or that Φ acts without
torsion on M : αx = 0 =⇒ α = 0 or x = 0. Note that if M 6= 0 this implies that Φ is
an integral domain: α 6= 0, αβ = 0, x 6= 0 =⇒ α(βx) = 0 =⇒ βx = 0 =⇒ β = 0.

This paper is aimed at studying Jordan analogues of the following results for
associative systems.

0.7 If a nonzero associative Φ-system R imbeds in a prime associative Φ-system
R̃ then Φ = Φ/ AnnΦ(R) acts without torsion on R (cf. [4, 2.1]).

0.8 Let R be a nonzero associative Φ-system such that Φ = Φ/ AnnΦ(R) acts
without torsion on R. Then there exists a hearty primitive envelope of R, an asso-
ciative Φ-system R̃ such that:

(i) R is a subsystem of R̃,

(ii) R̃ is a left primitive system, hence it is prime,

(iii) Heart(R̃) is simple and left primitive,

(iv) R̃ = R⊕Heart(R̃), hence R̃/ Heart(R̃) ∼= R (cf. [4, 2.2]).

1. Growing Hearts in Special Jordan Systems

An analogue of (0.7) holds for Jordan systems.

1.1 Proposition. If J is a nonzero Jordan Φ-system which imbeds in a prime
Jordan Φ-system J̃ , then Φ = Φ/ AnnΦ(J) acts without torsion on J .

Proof: Without loss of generality, we may assume that J ⊆ J̃ . If 0 6= α +
AnnΦ(J) ∈ Φ and there exists 0 6= r ∈ J satisfying αr = 0, then Id

J̃
(r) and αJ̃

would be nonzero orthogonal ideals of J̃ , contradicting primeness.

1.2 We will need some known facts about regularity conditions in Jordan sys-
tems:

(i) A primitive Jordan system (algebra, triple system, or pair) is strongly prime
[11, 5.5; 9, 0.8; 1, 3.7, 3.9].

(ii) If J is a primitive Jordan system and I is a nonzero ideal of J , then I is
primitive [9, 3.1; 1, 5.4, 4.2; 2, 2.4, 2.2].

(iii) If J is a prime Jordan system and I is a nonzero ideal of J such that I is
primitive, then J is primitive [9, 3.2; 1, 5.6, 4.4; 2, 2.4, 2.2].
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1.3 Lemma. Let I be a nonzero ideal of a strongly prime Jordan system J , and
J0 be a subsystem of J such that I ⊆ J0. Then J0 is also strongly prime.

Proof: Let us assume that we are dealing with triple systems. The annihilator
of I in J is AnnJ(I) = {x ∈ J | PxI = 0} (by [16, 1.7(i)]), which is 0 since J is strongly
prime and I 6= 0 [16, 1.6(iii)]. Thus J0 is nondegenerate: clearly any absolute zero
divisor of J0 belongs to AnnJ (I), hence is zero. Moreover, J0 is prime: any nonzero
ideal K of J0 hits I (since K ∩ I = 0 =⇒ PKI ⊆ K ∩ I = 0 =⇒ K ⊆ AnnJ I = 0); if
K1 and K2 were nonzero orthogonal ideals of J0, then K1 ∩ I and K2 ∩ I would be
nonzero orthogonal ideals of I, which is impossible since I is strongly prime by [16,
2.5]. Thus J0 is strongly prime.

For pairs and algebras, one just need to apply the result for Jordan triple systems
using the functors T and V , and [6, 0.5].

1.4 Theorem. If J is a nonzero special Jordan Φ-system free of Φ-torsion,
then there exists a special Jordan Φ-system J̃ such that

(i) J is a subsystem of J̃ ,

(ii) J̃ is primitive (hence strongly prime),

(iii) Heart(J̃) is simple and primitive as Jordan system,

(iv) J̃ = J ⊕Heart(J̃) (hence J̃/ Heart(J̃) ∼= J),

that will be called hearty primitive Φ-envelope of J .

Proof: Let R be an associative tight envelope of J (see (0.4) and (0.5)). Then
R is free of Φ-torsion: if αr = 0 for 0 6= α ∈ Φ and 0 6= r ∈ R then K := {x ∈
R | αx = 0} is a nonzero ideal of the associative system R, hence K ∩ J 6= 0 by
tightness, and there exists a nonzero element x ∈ J such that αx = 0, contradicting
that J is free of Φ-torsion.

Now, Φ = Φ, and we can apply (0.8) to find a hearty primitive Φ-envelope
R̃ = R⊕H ⊇ R such that

(1) H := Heart(R̃) is simple and left primitive;

(2) R̃ is left primitive, hence prime.

We are not claiming that J̃ := J ⊕ H is all of R̃. But J ⊆ R ⊆ R̃ so J is a
subsystem of R̃(+), and the associative ideal H is also a Jordan ideal of R̃(+), so J̃ is
at least a Jordan subsystem of R̃(+).

Moreover,

(3) R̃(+) is primitive

by [9, 4.2; 1, 5.8, 4.5] since R̃ is left primitive, hence
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(4) R̃(+) is strongly prime

by (1.2)(i). Then

(5) H(+) is primitive, hence strongly prime

by (1.2)(ii). Moreover, using [15, Th. 4; 6, 1.7(ii)], we have

(6) H(+) is simple.

We have that J̃ is a subsystem of R̃(+), which is strongly prime (4), and J̃

contains the nonzero ideal H(+) of R̃(+), hence J̃ is strongly prime by (1.3). Since
the ideal H(+) of J̃ is simple (6), H(+) = Heart(J̃) by (0.2), and we have (iii) by (5)
and (6). Moreover, H(+) being primitive (5) implies that J̃ is primitive by (1.2)(iii),
and we have (ii).

Finally we obtain the desired version of (0.8), which is the converse of (1.1) for
special Jordan systems.

1.5 Corollary. If J is a nonzero special Jordan Φ-system such that Φ =
Φ/ AnnΦ(J) acts without torsion on J , then there exists a hearty primitive Φ-envelope
J̃ of J .

Proof: We just need to apply (1.4) to J as a Φ-system, and read the result in
terms of Φ-systems (0.6)(ii).

2. Exceptional Examples

In this section we will give examples of Jordan systems (necessarily exceptional
in view of (1.4)) which cannot be imbedded in strongly prime (or even merely non-
degenerate) systems.

2.1 Recall the Jacobson Counterexample [12, ex. 3, p. 12]: If Φ is a ring of
scalars such that 2Φ = 0, and A = Φ[x] is the usual unital commutative associative
algebra of polynomials in a variable x, then J := A(+)/I = Φ1̄ ⊕ Φx̄ ⊕ Φx̄3 is an
i-special Jordan algebra for I = Φx2 ⊕ x4A (the span of x2, x4, x5, . . .), which is
an ideal of the Jordan algebra A(+). The element a = x̄ has a2 = 0, a3 6= 0 and
is an absolute zero divisor since Ua3 = UaUa2 = Ua0 = 0. As a consequence, J is
a degenerate exceptional Jordan algebra. Moreover, it cannot be imbedded in any
nondegenerate Jordan Φ-algebra J̃ since a3 will still be nonzero (by the imbedding)
and still Ũa3 = ŨaŨa2 = 0.

Call a nonzero element z of a Jordan Φ algebra J a Jacobson obstacle if z2 =
0, z3 6= 0. Such an element instantly renders all envelopes J̃ ⊇ J exceptional, and
degenerate since z3 is an absolute zero divisor of J̃ .
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2.2 Notice that (2.1) shows that (1.4) cannot be extended to arbitrary Jordan
systems, not even to i-special Jordan systems (remember that our 3-dimensional
example J of (2.1) is the quotient of a special algebra, hence is i-special).

2.3 The existence of Jacobson obstacles in the example above depends strongly
on the fact that Φ is a ring such that 2Φ = 0. To find examples in the linear setting
where 1

2 ∈ Φ, we can make use of absolute zero divisors in free systems which behave
as a3 in (2.1) in the sense that they are absolute zero divisors in an intrinsic way, no
matter the system where they are imbedded.

A generic Medvedev-Zelmanov Φ-obstacle is a nonzero element p(x1, . . . , xn) in
a free Jordan system (algebra, triple, pair) FJΦ[X] which is an absolute zero divisor,

Up(x1,...xn) = 0,

and it does not involve all the variables in X. Therefore any nonzero value z =
p(a1, . . . , an) for ai in a Φ-system J will be an absolute zero divisor in all envelopes
J̃ ⊇ J of J : Ũzã = 0 for all ã ∈ J̃ since there exists a homomorphism ϕ : FJΦ[X] → J̃

with xi → ai for 1 ≤ i ≤ n and x → ã for any x ∈ X \ {x1, . . . , xn}, so that
0 = ϕ

(
Up(x1,...,xn)x

)
= Ũp(a1,...,an)ã = Ũzã.

Such an element z ∈ J will be called a Medvedev-Zelmanov Φ-obstacle: it renders
all envelopes of J degenerate. It renders all envelopes exceptional too if J is free of
Φ-torsion since any J having Medvedev-Zelmanov Φ-obstacles is itself exceptional by
(1.4).

Notice that, as soon as a generic Medvedev-Zelmanov Φ-obstacle p exists, we
can always find a Jordan Φ-system J which is finitely spanned as a Φ-module and
contains Medvedev-Zelmanov Φ-obstacles. Indeed, we just need to take the span I

of all Jordan monomials m for which there exists a variable x ∈ X such that the
degree of m in x is bigger than the degree of p in x. Such I is an ideal of FJΦ[X]
and the quotient J := FJΦ[X]/I is finitely spanned as a Φ-module. Moreover, the
natural epimorphism ϕ : FJΦ[X] −→ J satisfies ϕ(p) 6= 0, so that ϕ(p) is the desired
Medvedev-Zelmanov Φ-obstacle.

2.4 Zelmanov shows in [20, 21] that the existence of nonzero absolute zero
divisors in a free Jordan algebra FJalg[X] on an infinite countable set of variables
X is equivalent to the existence of nilpotent elements if the ring of scalars Φ is a
field of characteristic not two. Medvedev [19, Th. 2] shows that there exist nilpotent
elements in FJalg[X] if |X| ≥ 32, the ring of scalars Φ contains 1

2 , and (14!)2 6= 0 in
Φ. Putting together the results of Zelmanov and Medvedev, the existence of generic
Medvedev-Zelmanov obstacles is proved if Φ is a field of characteristic not dividing
14! (so characteristic 0 or bigger than 13).
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Concerning Jordan pairs, Zelmanov proves the existence of absolute zero divisors
in the free Jordan pair FJpair[X] for an infinite countable set of variables X if Φ is
a domain without 28!-torsion [22, Th. 9], so that again generic Medvedev-Zelmanov
obstacles exist if Φ is a field of characteristic not dividing 28! (so characteristic 0 or
bigger than 23).

The existence of absolute zero divisors or nilpotent elements in free Jordan sys-
tems in a general quadratic setting, or over less restrictive rings of scalars (for exam-
ple, over fields of small characteristic) is not known.
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