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Abstract. It is proved that the prime degenerate (-1,1) algebra
constructed in [13] (the (-1,1)-monster) generates the same variety
of algebras as the Grassman (-1,1)-algebra. Moreover, the same va-
riety is generated by the Grassmann envelope of any simple nonas-
sociative (-1,1)-superalgebra. The variety occurs to be the smallest
variety of (-1,1)-algebras that contains prime nonassociative alge-
bras.

Similar results are obtained for Jordan algebras. Thus, the Jor-
dan monster (the prime degenerate algebra constructed in [13])
and the Grassmann envelope of the prime Jordan superalgebra of
vector type have the same ideals of identities. It is also shown
that the Jordan monster generates a minimal variety that contains
prime degenerate Jordan algebras.

All the algebras and superalgebras are considered over a field of
characteristic 0.
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Introduction

An algebra is called degenerate if it contains nonzero absolute zero
divisors. In [11, 13], the first examples of prime degenerate algebras
in the varieties of alternative, Jordan and algebras of type (-1,1) were
constructed, later received the name of Pchelintsev Monsters [8].

In [10], there were given another constructions of prime degener-
ate Jordan algebras, based on the Jordan superalgebra J(Φ[x], d

dx
)

of vector fields on the line, and the superalgebra of Poisson brack-
ets J(Φ[X, Y ]; [·, ·]). Observe that the superalgebras J(Φ[x], d

dx
) and

J(Φ[X,Y ]; [·, ·]) have different identities.
In [21], the concept of a (-1,1)-superalgebra of vector type was in-

troduced and it was proved that a Jordan superalgebra of vector type
may be obtained as the (super)symmetrized algebra A(+) of a (-1,1)-
superalgebra of vector type A. Furthermore, the (-1,1)-superalgebras
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AV F := A(V,Φ, τ, λ) and the Jordan superalgebras JV F := J(V,Φ, τ, λ)
of vector fields on a line associated with an additive homomorphism
τ : V → Φ of abelian groups and partial map λ : V → V were intro-
duced in [21]. It was proved that if V ̸= 0 and the map τ is injective,
then the superalgebras AV F and JV F are prime. These superalgebras
were then used to construct prime degenerate (-1,1) and Jordan alge-
bras.

In all the papers mentioned above, the degenerate prime algebras
were constructed as free algebras in varieties generated by some auxil-
iary algebras. Thus, in [13] the auxiliary algebra was determined by a
set of generators and relations, in [10] and [21] the auxiliary algebras
appeared as the Grassmann envelopes of the superalgebras J(Φ[x], d

dx
),

J(Φ[X,Y ]; [·, ·]), and AV F , JV F , respectively.

We give now the main results of the article, noting that the defini-
tions of all algebras in the statements are given in Sections 2 and 7.
Below G(X) denotes the Grassmann envelope of a superalgebra X.

Theorem A. Let A0 be the auxiliary algebra associated with the
prime (-1,1)-monster [13]; G(−1,1) be the (-1,1)-Grassmann algebra;
AV F be the (-1,1)-superalgebra of vector fields on a line; B be a sim-
ple nonassociative (-1,1)-superalgebra. Then the algebras A0, G(−1,1),
G(AV F ), G(B) over a field of characteristic 0 have the same ideals of
identities.

In particular, we show that the prime (-1,1)-algebras over a field of
characteristic 0 constructed in [13] and [21] are isomorphic.

We prove Theorem A in the superalgebra setting, describing the free
(-1,1)-superalgebra F(−1,1)[∅; x] on one odd generator and its central
extensions. The case of simple superalgebras is based on the classi-
fication of simple nonassociative (-1,1)-superalgebras [23] and on the
embedding theorem of a simple nonassociative (-1,1)-superalgebra into
a suitable twisted superalgebra of vector type [32].

Additional properties of the variety V ar(A0) are listed in the follow-
ing theorem.

Theorem B. Let V0 = V ar A0 and let F(A0) be the free algebra
of countable rank in the variety V0 over a field Φ of characteristic 0.
Then

a) V0 is the smallest variety of (-1,1)-algebras that contains prime
nonassociative algebras ;

b) The meta-ideals of finite index of the (-1,1)-monster F(A0) have
the same identities;
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c) A meta-ideal of the algebra F(A0) which is contained in its
commutant is not a free algebra of any variety of algebras.

Note that in the proof of Theorem A the ”minimal” quotient algebra
A0, which has the same identities as the algebra A0, is constructed.

It is an open question what identities define the variety V0? The
conjecture first formulated in [12] that V0 coincides with the variety St
of strongly (-1,1) algebras, that is, defined by the identity [[x, y], z] = 0,
is still open.

The technique developed in the proof of Theorem A, allows us to
obtain certain analogues of these results for Jordan algebras.

Theorem C. Let J = J(Γ, δ) be a prime Jordan superalgebra of vec-
tor type where Γ = Γ0, J [Z;x] be a central extension of the free Jordan
superalgebra generated by one odd element (see Section 7). Then the
algebras

J0 = A
(+)
0 , G(J), (G(−1,1))

(+), G(J [Z; x]), G(JV T )

over a field of characteristic 0 have the same ideals of identities.
In addition, the variety JV0 generated by any of these algebras is a

minimal variety containing prime degenerate algebras.

As a corollary, it turns out that over a field of characteristic 0 the
prime degenerate special Jordan algebras constructed in [10, 21] are
isomorphic to the Jordan monster F(J0). In addition, F(J0) coincides
with the subalgebra of the Jordan algebra generated by a countable set
of free generators X of the algebra F(A0).

The simple alternative superalgebras were classified in [31, 22]. Over
a field of characteristic 3, these are the superalgebras B(1, 2), B(4, 2),
and the twisted superalgebra of vector type B (Γ, D, γ). The free alge-
bras in the varieties generated by the Grassmann envelopes of finite-
dimensional superalgebras B(1, 2) and B(4, 2) can not be prime (see
[10, page 9]), while for the infinite-dimensional superalgebra B (Γ, D, γ)
this question is open.

Concerning the Grassmann algebras, we recall that they may be
defined as the algebras of skew-symmetric functions or as certain sub-
algebras of Grassmann envelopes of free superalgebras generated by
one odd element.

For the first time such an algebra was considered by G.V.Dorofeev
in the variety of solvable of index two alternative algebras; it is the
classical Dorofeev example [1]. He used also the nilpotent of index 7
alternative Grassmann algebra to prove that any alternative algebra
with three generators satisfies certain identities that do not hold in all
alternative algebras [2].
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In [24, 26], additive bases for free superalgebras with one odd gen-
erator in the varieties of Malcev and alternative superalgebras were
constructed, and new elements in the radicals of free algebras were
found. In particular, bases for Malcev and alternative Grassmann al-
gebras were obtained there.

Identities of Grassmann algebras in some varieties of alternative alge-
bras over a field of characteristic 3 and of right alternative metabelian
algebras over a field of characteristic different from 2 and 3, have been
studied in [14, 15, 16].

In this paper we also construct a base of the (-1,1) Grassmann
algebra and prove that the free unital (-1,1)-superalgebra with one
odd generator is isomorphic to the (-1,1)-superalgebra of vector type
B(Φ[t0, t1, . . .], D, t0) where D(ti) = ti+1, i = 0, 1, . . ..

The basic concepts related with identities and varieties, can be found
in [33].

1. The Basic Notions

1.1. (−1, 1)−algebras and Jordan algebras. Recall that an algebra
A is called right alternative if it satisfies the identity

(x, y, y) = 0,

where (x, y, z) = (xy)z− x(yz) is the associator of the elements x, y, z.
A right alternative algebra A is called a (-1,1)-algebra if it satisfies the
identity

(x, y, z) + (y, z, x) + (z, x, y) = 0,(1)

and it is called a strongly (-1,1)-algebra if it satisfies

[[x, y], z] = 0,(2)

where [x, y] = xy − yx is the commutator of the elements x, y.
In any right alternative algebra hold the identities:

(ab, x, y) + (a, b, [x, y]) = a(b, x, y) + (a, x, y)b,(3)

(a, x, y)x = (a, x, xy)(4)

Moreover, any algebra satisfies the identities

(xy, z, t)− (x, yz, t) + (x, y, zt) = x(y, z, t) + (x, y, z)t,(5)

[xy, z]− x[y, z]− [x, z]y = (x, y, z)− (x, z, y) + (z, x, y).(6)

A commutative algebra is called Jordan algebra if it satisfies the
identity

(x2, y, x) = 0.
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For an algebra A denote by A(+) the associated symmetrized algebra,
with the same vector space and the multiplication x⊙ y = 1

2
(xy+ yx).

If A is a right alternative algebra, then the algebra A(+) is a special
Jordan algebra (see [33]).

By A♯ we will denote the unital hull of an algebra A, that is, the
algebra obtained from A by adjoining the external unit element.

For an element a ∈ A we denote by Ra and La the operators of right
and left multiplication on a: Ra : x 7→ xa, La : x 7→ ax. We use the
common notation Ta for any of Ra, La. We set also Ra,b = RaRb−Rab.

1.2. Superalgebras. Recall that a superalgebra A = A0 ⊕A1 is a Z2-
graded algebra. A typical example of a superalgebra is the associative
Grassmann algebra G = G0 ⊕ G1, with the generators 1, e1, e2, . . .;
eiej = −ejei, and the standard Z2-grading. For a superalgebra A =
A0⊕A1, the Grassmann envelope G(A) is defined via G(A) = A0⊗G0⊕
A1⊗G1. Let V be a variety of algebras. A superalgebra B = B0⊕B1 is
called a V-superalgebra if its Grassmann envelope G(B) is a V-algebra
[31]. In particular, if A ∈ V , then A ⊗ G = A0 ⊗ G0 ⊕ A1 ⊗ G1 is a
V-superalgebra. We will denote by FV [X;Y ] the free V-superalgebra
on the sets X and Y of even and odd generators, respectively.

It follows easily from the definition that a superalgebra A = A0⊕A1

is a strongly (-1,1)-superalgebra if and only if for any homogeneous
elements x, y, z, the following identities hold:

(x, y, z) + (−1)yz (x, z, y) = 0,

[[x, y]s, z]s = 0,

where (−1)xy = (−1)|x||y|, |x| means the parity of a homogeneous ele-
ment x, i.e., |x| = i if x ∈ Ai; [x, y]s = xy − (−1)xy yx is a supercom-
mutator of homogeneous elements x, y.

1.3. Centers. Following A.Thedy [29], consider in a right alternative
algebra A the following centers:

K (A) = {k ∈ A | (∀x) [k, x] = 0}, the commutative center;
V (A) = {v ∈ A | (∀x) (x, x, v) = 0}, the left alternative center;
N (A) = {n ∈ A | (∀x, y) (x, y, n) = (x, n, y) = (n, x, y) = 0}, the as-

sociative center;
Z (A) = K (A) ∩N (A), the full center.
It is known and is easy to see that all the mentioned centers, except

V (A), are subalgebras of A and K (A) ⊆ V (A).
An important role in the theory of (-1,1)-algebras is played by the

commutative center K(A), whose elements we will call central. Remind
the basic properties of K(A) (see [3]):
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a) A is an associative bimodule over K(A);
b) K(A) is invariant under the operators Ra,b;
c) if k ∈ K(A), a, x, y, z ∈ A, then

(k, x, y) = 2(x, k, y),(7)

[kx, y] = k[x, y] + 3
2
(k, x, y),(8)

(x, y, zk) = (x, y, z)k + (x, y, k)z,(9)

(k, a2, x) = 2(k, a, x)a,(10)

(k2, x, y) = 2(k, x, y)k.(11)

Note that identities (7) - (11) verified also in a (-1,1)-superalgebra A
for every k ∈ K(A)∩A0, a ∈ A0, and arbitrary homogeneous elements
x, y, z.

1.4. The Grassmann algebra of a variety V. Consider the free
superalgebra FV [∅;x] = F0 ⊕F1 in a variety V on one odd generator x.
Following [25, 26], we define the V-Grassmann algebra GV [X] as the
subalgebra of the Grassmann envelope G (FV [∅; x]) generated by the
set X = {x⊗ ei, i = 1, 2, . . .}.

Lemma 1.1. [25] Let B be a base of FV [∅; x]. Then the V-Grassmann
algebra GV [X] has a base formed by the elements u(x)⊗ei1 . . . ein, where
u(x) ∈ B, n = deg u, i1 < i2 < · · · in.

Note that the Grassmann algebra can be defined by generators and
relations as an algebra of skew (alternative) functions. Let FV [X] be
the free algebra in the variety V on a set X = {xi | i = 1, 2, . . .} of free
generators. Consider the ideal I, generated by polynomials of the form:
v, w + w(ij), where v and w are monomials such that v has degree ≥ 2
with respect to at least one variable, and w is a multilinear monomial
in the variables x1, . . . , xn ∈ X, 1 ≤ i < j ≤ n; (ij) is a transposition of
i and j. Denote the quotient algebra FV [X]/I as SkewV [X] and call it
the algebra of skew functions of the variety V ; here the generators xn are
identified with their images xn+I under the canonical homomorphism.

Proposition 1.2. [25] The algebras SkewV [X] and GV [X] are isomor-
phic.

Lemma 1.3. [24, 25] Let f be a multilinear polynomial of degree n. If
f(x, . . . , x) = 0 in the free V-superalgebra FV [∅;x], then the identity∑

σ∈Sn

(−1)σ f (x1σ, . . . , xnσ) = 0

holds in V.
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Corollary 1.4. Let f be a multilinear polynomial of degree n. If
f(x1, . . . , xn) = 0 in GV [X], then the identity∑

σ∈Sn

(−1)σ f (x1σ, . . . , xnσ) = 0

holds in V.

2. The auxiliary superalgebras

2.1. The superalgebras of vector type. Let Γ = Γ0⊕Γ1 be an asso-
ciative (super)commutative superalgebra, D be a nonzero even deriva-
tion of Γ, γ ∈ Γ0. Denote by Γ̄ an isomorphic copy of the vector space Γ
with respect to the isomorphism a 7→ ā and set B(Γ, D, γ) = Γ ⊕ Γ̄
with the multiplication

a× b = ab,

a× b̄ = (−1)b (ā× b) = ab,

ā× b̄ = (−1)b (γab+ 2D(a)b+ aD(b)),

where a, b ∈ Γ0 ∪ Γ1, ab is the product of the elements a and b in Γ;
and with the grading

B(Γ, D, γ)0̄ = Γ0 + Γ̄1, B(Γ, D, γ)1̄ = Γ1 + Γ̄0.

The superalgebra B(Γ, D, γ) is called the twisted superalgebra of vector
type [21]. It is a strongly (-1,1)-superalgebra which is simple if and
only if the algebra Γ does not contain proper D-invariant ideals (i.e. is
D-simple).

The adjoint symmetrized superalgebra B(Γ, D, γ)(+) with the super-
symmetric multiplication

x • y =
1

2
(x× y + (−1)xyy × x)

is isomorphic to the Jordan algebra of vector type J(Γ, δ), i.e., has the
following multiplication:

a • b = ab, a • b = (−1)b a • b = ab, a • b = (−1)b(aδb− abδ),

where aδ = 1
2
D (a). The superalgebras J(Γ, δ) were introduced by

K.McCrimmon [7].

When Γ = Γ0 is an algebra, we will call the superalgebras B(Γ, D, γ)
and J(Γ, δ) of even vector type.
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2.2. The superalgebras AV F and JV F of vector fields on a line.
In [21], the second author introduced (-1,1)-superalgebras of vector
fields on a line AV F := A (V,Φ, τ, λ). Recall that V is an additive
commutative semigroup; τ : V → Φ is an additive homomorphism;
λ : V → V is a partial map defined everywhere except possibly the
neutral element 0 that satisfies the condition λ (u+ v) = λ (u) + v in
its domain.

Consider the graded vector space A = A0 ⊕ A1 with the bases
{av | v ∈ V } and {xv | v ∈ V } for A0 and A1, respectively. The multi-
plication on the superalgebra AV F = A is defined by the rules:

au ·av = au+v, au ·xv = xu ·av = xu+v, xu ·xv = (4τ (u) + 2τ (v)) aλ(u+v).

The Jordan superalgebra JV F is obtained from AV F by supersym-

metrization: JV F = A
(+)
V F . Each of the superalgebras AV F and JV F is

a superalgebra of even vector type. Also, if V ̸= 0 and τ is injective,
then the superalgebras AV F and JV F are prime [21, Theorem 1].

2.3. The algebra A0. Following [13], we denote by A0 the strongly
(-1,1)-algebra defined by the generators z, e1, . . . , en, . . . and the rela-
tions:

eiej + ejei = 0, (ei, ej, ep) = 0, ([ei, ej], ep, eq) = 0,

((z, ei, ej), ep, eq) = 0, [z, f(z, ei, . . . , ej)] = 0

for any polynomial f(z, ei, . . . , ej). It is known [13] that the algebra A0

has an additive basis consisting of the elements:

zn(z, g1, g2) · · · (z, g2m−1, g2m)(h1 · · ·hp),(12)

where n,m, p are nonnegative integers with n + m + p > 0, gi, hi are
elements of the set E = {e1, . . . , en, . . .}, which is ordered by its indices
and g1 < · · · < g2m < h1 < · · · < hp. Observe that the elements of the
form (z, e, g) and eg, where e, g ∈ E, are contained in the full center
Z (A0) of the algebra A0. Note also that the subalgebra generated by
the set E is an associative Grassmann algebra (without the identity)
with the standard generators e1, . . . , en, . . ..

The algebra A0 can be constructed through superalgebras. Consider
the twisted superalgebra of even vector type B = B

(
Φ [z, s] , s d

dz
, 1
)
.

Observe that

1̄× 1̄ = 1, (z, 1̄, 1̄) = 2s, (s, 1̄, 1̄) = 0.

Now the subalgebra of the Grassmann envelope G(B) generated by the
elements z ⊗ 1, 1̄⊗ ei, i = 1, 2, . . . , is isomorphic to the algebra A0.
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2.4. The auxiliary algebras A0 and J0. Denote by A0 the alge-
bra defined in the variety of strongly (-1,1)-algebras by the generators
z, e1, . . . , en, . . . and the relations:

eiej = 0, ((z, ei, ej), ep, eq) = 0, [z, f(z, ei, . . . , ej)] = 0

for any polynomial f(z, ei, . . . , ej). It is known [13] that the algebra A0

has an additive basis consisting of the elements:

zn(z, g1, g2) . . . (z, g2m−1, g2m)g2m+1,(13)

where n and m are nonnegative integers, n + m > 0, gi ∈ E =
{e1, . . . , en, . . .} and g1 < · · · < g2m < g2m+1. Note that the ele-
ments of the form (z, e, g), where e, g ∈ E are contained in the full
center of the algebra Z

(
A0

)
.

Similarly to A0, the algebra A0 can be constructed via superalgebras,
using the twisted superalgebra of vector type B

(
Φ [z, s] , s d

dz
, 0
)
.

By analogy with the A0, denote by J0 the algebra defined in the
variety of Jordan algebras by the generators z, e1, . . . , en, . . . and the
relations:

eiej = 0, ((z, ei, ej), ep, eq) = 0, (z, f, f) = 0

for any f = f(z, ei, . . . , ej). It is clear that the algebra J0 has an
additive basis consisting of the elements of the form (13). In addition,
it is easy to see that

a) (z, e, g) ∈ Z
(
J0

)
for any e, g ∈ E;

b) J0 = A
(+)

0 .

3. The free (-1,1)-superalgebra F(−1,1)[∅;x] and its central
extension F [Z;x]

3.1. The free (-1,1)-superalgebra F(−1,1)[∅;x]. Let Φ[T ] be the al-
gebra of polynomials on a countable set of variables T = {t0, . . . , tn, . . .},
and let D be the derivation of Φ[T ] defined by the condition D(ti) =
ti+1, i = 0, 1, . . . . Consider the twisted superalgebra of vector type
B(Φ[T ], D, t0). By [22, Theorem 4], the superalgebra B(Φ[T ], D, t0)
is prime. Let Φ0[T ] denotes the subalgebra of polynomials without

constant terms, then the subspace Φ0[T ] ⊕ Φ[T ] is a subsuperalge-
bra of B(Φ[T ], D, t0) which we will denote as B0(Φ[T ], D, t0). It is
clear that B(Φ[T ], D, t0) = (B0(Φ[T ], D, t0))

♯, the unital hull. Clearly,
B0(Φ[T ], D, t0) is also prime. One can easily check that it is generated
by the odd element 1̄.
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Theorem 3.1. Let Φ be a field of characteristic ̸= 2, 3. The free
(−1, 1)-superalgebra F(−1,1)[∅;x] over Φ on one odd generator x is iso-
morphic to the superalgebra B0(Φ[T ], D, t0) with the free generator 1̄.

Denote F := F(−1,1)[∅; x]. We prove first two lemmas.

Lemma 3.2. x2 ∈ K(F ).

Proof. By superized associator Jacoby identity (1), we have

3(x, x, x) = 0, (x2, x, x)− (x, x2, x) + (x, x, x2) = 0,

which implies

(x, x, x) = [x2, x] = 0,(14)

(x2, x, x) = 2(x, x2, x).(15)

By associator identity (5), we have

(x2 · x, x, x)− (x2, x2, x) + (x2, x, x2) = x2(x, x, x) + (x2, x, x)x,

(x2, x, x2)− (x, x2, x2) + (x, x, x · x2) = x(x, x, x2) + (x, x, x)x2,

(x2, x2, x)− (x, x · x2, x) + (x, x, x2 · x) = x(x, x2, x) + (x, x, x2)x,

which implies

(x3, x, x) = 2(x2, x2, x) + (x2, x, x)x,

(x, x, x3) = (x2, x2, x) + x(x, x, x2),

(x2, x2, x) = [x, (x, x2, x)].

Now, the superized associator Jacoby identity (1) implies

(x3, x, x) + 2(x, x, x3) = 0,

hence by (15) we have 4(x2, x2, x) + 2[(x, x2, x), x] = 0 and eventually

(x2, x2, x) = 0.(16)

In particular, [x3, x2] = (x2, x, x2) = 0.
Let now u(x) be a monomial on x of degree n > 3, consider [u(x), x2].

We may assume that [v(x), x2] = 0 for every monomial v(x) of de-
gree less then n. Recall that a (-1,1)-algebra A satisfies the identity
[[a, b], D(A)] = 0 where D(A) is the associator ideal of A (see [20]).
Therefore, in F we have [2x2, D(F )] = [[x, x]s, D(F )] = 0, and hence
we may write

[u(x), x2] = [x2(x2v(x)), x2],
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where deg v(x) ≥ 0. Denote a = x2, v = v(x). By (6) and the
induction assumption we have

[u(x), x2] = [a(av), a] = a[av, a] + [a, a](av)

+(a, av, a)− (a, a, av) + (a, a, av)

= −(a, a, av).

Since a = x2 is even, by (4) we have (a, a, av) = (a, a, v)a. The above
arguments show that (a, a, v) = −[av, a] = 0, proving the lemma. �

Lemma 3.3. [[F, F ]s, F ]s = 0, that is, F is a strongly (-1,1)-superal-
gebra.

Proof. Evidently, it suffices to prove that u(x) ∈ K(F ) for every
monomial u of even degree. We will use induction on deg u. A base of
the induction is given by Lemma 3.2.

Since the variety of (-1,1)-algebras is a 2-variety (the square of an
ideal is an ideal), we may assume that u has form vx or xv, where v is
a monomial of odd degree (see, for instance, [34]). Similarly, we may
assume that v = wx or v = xw for some even w ∈ F . The inclusion
x2 ∈ K(F ) implies, due to [33, theorem 13.10], that

yz + zy ∈ K(F ) for any odd y, z ∈ F.(17)

In particular, vx+xv ∈ K(F ), and it suffices to prove that (wx)x, x(xw) ∈
K(F ). By induction, w ∈ K(F ), hence wx2, x2w ∈ K(F ), and we have
by (8)

(wx)x = wx2 + (w, x, x) ≡ (w, x, x) = 2
3
([wx, x]s − w[x, x]s)

= 2
3
((wx)x+ x(wx)− 2wx2)

(17)
≡ 0 (mod K(F ))

Similarly, by (7),

x(xw) = x2w − (x, x, w) ≡ −(x, x, w) ≡ 1
2
(w, x, x) ≡ 0 (mod K(F )).

�
Proof of the theorem. Denote A = F0, then F1 = A♯x, F = A ⊕

A♯x, where by 1.4.a) A is an associative and commutative Φ-algebra
and A♯x is a commutative and associative A-module generated by x.
Furthermore, by (11), the application D : a 7→ 1

2
(a, x, x) is a derivation

of A. We claim that A coincides with the Φ-subalgebra A0 generated
by the set {x2, Di(x2), i = 1, 2, . . .}. It is equivalent to say that F =

A0+A♯
0x, and since x ∈ A0+A♯

0x, it suffices to prove that A0+A♯
0x is a

subsuperalgebra of F . Since A0 ⊆ K(F ), we have a ·bx = bx ·a = (ab)x
for any a, b ∈ A.
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Now, let us calculate the product of elements from A♯x:

ax · bx = (a, x, bx) + a(x · bx) = (a, bx, x) + a(x · xb)
= (ab · x)x− a(bx · x) + a · x2b− a(x, x, b)

= (ab, x, x) + (ab)x2 − a(b, x, x)− a(bx2) + (ab)x2 − a(x, x, b)

= (by (7)) = 2D(ab)− 2aD(b) + aD(b) + (ab)x2

= 2D(a)b+ aD(b) + (ab)x2.

Therefore, A0+A♯
0x is a subsuperalgebra of F and F = A0+A♯

0x, A0 =
A = F0. Moreover, the obtained relation shows that the superalgebra
F is a homomorphic image of the superalgebra B0(A

♯, D, x2) under the
homomorphism π : a + b̄ 7→ a + xb. Consider the homomorphism φ :
Φ0[T ] → A, ti 7→ Di(x2). Clearly, it is a homomorphism of differential
algebras which can be extended to a homomorphism of superalgebras

φ̃ : B0(Φ[T ], D, t0) → B0(A
♯, D, x2).

Now the composition π ◦ φ̃ maps surjectively B0(Φ[T ], D, t0) onto F .
Since F is a free superalgebra generated by x, this map is an isomor-
phism. �

Corollary 3.4. (F(−1,1)[∅; x])♯ ∼= B(Φ[T ], D, t0).

Corollary 3.5. The variety V ar
(
F(−1,1) [∅;x]

)
can not be generated by

a finite dimensional superalgebra.

Proof. Suppose by contradiction that V ar
(
F s
(−1,1) [∅;x]

)
= V ar (B)

where dimB = m < ∞. Consider the Grassmann envelope G(B).
Let x1, . . . , xk, . . . , xm be a base of B with x1, . . . , xk be a base of B0,
then any element u ∈ [G(B), G(B)] can be written in the form u =∑k

i,j=1 aij ⊗ [xi, xj] +
∑m

i,j=1 gigj ⊗ xixj, where aij ∈ G0, gi ∈ G1 or

gj ∈ G1. Clearly, (gigj)
2 = 0 for every pair i, j. Besides, by the identity

of Kleinfeld [x, y]3 = 0 valid in every strongly (-1,1)-algebra [6], we have
[xi, xj]

3 = 0 for i, j ≤ k. Since [G(B), G(B)] ⊆ Z(G(B)), we see that
the element u is nilpotent of degreem3+1. In other words, the subspace
[G(B), G(B)] ⊆ Z(G(B)) satisfies the identity xm3+1 = 0. Linearizing
this identity, in view of associativity and commutativity of Z(G(B)) we
get that [G(B), G(B)] satisfies the identity (m3+1)! x1x2 . . . xm3+1 = 0.
Since charΦ = 0, this implies that G(B) satisfies the identity

[x1, y1][x2, y2] · · · [xm3+1, ym3+1] = 0.

Therefore, the superalgebra B satisfies the identity

[x1, y1]s[x2, y2]s · · · [xm3+1, ym3+1]s = 0.
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Since F(−1,1) [∅; x] ∈ V ar B, it should satisfies this identity as well,
which is impossible since [x, x]ks = (2x2)k ̸= 0 for any k. �

3.2. The central extension F [Z; x]. Let FSt[Z; x] be the free strongly
(-1,1)-superalgebra on a set Z of even generators and on an odd gener-
ator x. Denote by F [Z;x] the quotient superalgebra FSt[Z; x]/I where
I is the ideal generated by the set {[z, f ], z ∈ Z, f ∈ FSt[Z;x]}. In
other words, F [Z;x] is a strongly (-1,1)-superalgebra freely generated
by a set of even central variables Z and an odd variable x. Clearly,
F [Z;x] satisfies the following universal property:
for any strongly (-1,1)-superalgebra B, any odd b ∈ B1, and for any
mapping φ : Z → K(B) there exists a unique homomorphism φ̃ :
F [Z;x] → B such that φ̃|Z = φ, φ̃(x) = b.

Consider the polynomial ring Φ[TZ ], where TZ = T0 ∪ (∪z∈ZTz),
T0 = {t0, t1, . . .}, Tz = {z = z0, z1, z2, . . .}, z ∈ Z, and let D be the
derivation of Φ[TZ ] defined by D(ti) = ti+1, D(zi) = zi+1.

Proposition 3.6. Let Φ be a field of characteristic ̸= 2, 3. The super-
algebra F [Z;x] is isomorphic to the superalgebra B0(Φ[TZ ], D, t0).

Proof. Denote F = F [Z;x], K = K(F ), and let A be a Φ-subalgebra
of F0 generated by the set {Di(x2), Dj(z) | z ∈ Z; i, j = 0, 1, . . .}, where
D(a) = 1

2
(a, x, x). Let us prove that F = A + A♯x. Observe first

that since F is strongly (-1,1), we have 0 = [F, [x, x]s] = 2[F, x2],
hence x2 ∈ K. Furthermore, by (11) D is a derivation of K, hence
A ⊆ K. Since Z ∪ {x} ⊆ A+ A♯x, it suffices to prove that A+ A♯x is
a subsuperalgebra of F .

As above, we have for any a, b ∈ A♯

a · bx = ab · x, ax · bx = 2D(a)b+ aD(b) + (ab)x2.

This proves that F = A+A♯x. Moreover, this also shows that the su-
peralgebra F is a homomorphic image of the superalgebra B0(A

♯, D, x2)
under the homomorphism π : a+ b̄ 7→ a+ xb. Consider the homomor-
phism φ : Φ0[TZ ] → A, ti 7→ Di(x2), zi 7→ Di(z), z ∈ Z. Clearly, it
is a homomorphism of differential algebras which can be extended to a
homomorphism of superalgebras

φ̃ : B0(Φ[TZ ], D, t0) → B0(A
♯, D, x2).

Now the composition π ◦ φ̃ maps surjectively B0(Φ[TZ ], D, t0) onto F .
By the universal property of F , this map is invertible and hence it is
an isomorphism. �
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Corollary 3.7. The superalgebra F [Z;x] has a base of the form B∪Bx,
where B is the set of commutative and associative monomials on the
variables

x2Ri
x,x, zRj

x,x, z ∈ Z; i, j = 0, 1, . . . .

The proof follows easily from the isomorphism given in the theorem.
�

Consider the superalgebra F [z; x] ∼= B0(Φ[T0 ∪ Tz], D, t0). We will
be interested in the following homomorphic images of F [z;x]:

• Ft = F [z;x]/((x2, x, x), ((z, x, x), x, x) ∼= B0(Φ[t, z, s], s
d
dz
, t),

• F1 = F [z; x]/(x2 − 1, ((z, x, x), x, x)) ∼= B(Φ[z, s], s d
dz
, 1),

• F0 = F [z; x]/(x2, ((z, x, x), x, x)) ∼= B0(Φ[z, s], s
d
dz
, 0).

Let A = A1 ⊕ A1 be a (-1,1)-superalgebra, a ∈ A0, x ∈ A1. Let,
furthermore, Z+ be the set of non-negative integers and Z∞

+ = ∪n(Z+)
n

be the set of all ordered finite sequences of elements of Z+. Denote, for
I = (i0, i1, . . . , ik) ∈ Z∞

+ ,

aI = ai0(aRx,x)
i1(aR2

x,x)
i2 · · · (aRk

x,x)
ik .

Set also |I| = i0+ · · ·+ ik and d(I) ≤ k+1 to be the number of nonzero
elements in I.

Corollary 3.8. The superalgebras F [z; x], Ft, F1, F0 have following
bases in terms of generators z, x:

F [z;x] : (x2)IzJxε, I, J ∈ Z∞
+ , ε ∈ {0, 1}, ε+ |I|+ |J | > 0;

Ft : (x2)mzn(zRx,x)
kxε, m, n, k ≥ 0, ε ∈ {0, 1}, ε+m+ n+ k > 0;

F1 : zn(zRx,x)
kxε, n, k ≥ 0, ε ∈ {0, 1};

F0 : zn(zRx,x)
kxε, n, k ≥ 0, ε ∈ {0, 1}, ε+ n+ k > 0.

Corollary 3.9. The Grassmann (-1,1)-algebra G(−1,1) has a following
base

(x2)Ixε ⊗ ej1ej2 · · · ejn , j1 < j2 < · · · < jn, I ∈ Z∞
+ , n = deg((x2)Ixε).

The proof follows from the previous Corollary and Lemma 1.1. �

4. Small varieties of superalgebras

We call a variety V of strongly (-1,1)-superalgebras to be small if it
does not contain the superalgebra F0.

The following result gives a criterion for a unitary closed variety V
to be small.
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Proposition 4.1. A variety V of strongly (-1,1)-superalgebras over a
field Φ of characteristic 0 is small if and only if it satisfies the identity

(z, x, x)k = 0(18)

for any central z and odd x and some k > 0.

Proof. Note that for any n the element (z, x, x)n belongs to the
base of F0 given in Corollary 3.8, hence it is non-zero. Therefore, the
condition above is sufficient for a variety V to be small.

Assume now that F0 ̸∈ V . Consider the free V-superalgebra FV [a;x]
on an even generator a and odd generator x. Then the quotient super-
algebra S = FV [a; x]/(x

2, ((a, x, x), x, x), [a, FV [a; x]]) is a proper homo-
morphic image of F0. Therefore, the images of basic elements of F0 are
linearly dependent in S. In other words, we have in FV [a; x] a relation
of the form∑

n,k

αn,ka
n(a, x, x)kxε = x2U + ((a, x, x), x, x)V +

∑
i

[a, fi]Wi

for some fi = fi(a, x) ∈ FV [a; x] and U = U(a, x), V = V (a.x),Wi =
Wi(a, x) from the multiplication algebra of FV [a;x]. Since Φ is infinite,
we may assume that the relation above is homogeneous in a, x, that is,
has a form

an(a, x, x)kxε = x2U + ((a, x, x), x, x)V +
∑
i

[a, fi]Wi.

The application D = Rx,x in view of (3) is a derivation of the superal-
gebra S such that D(x) = D((a, x, x)) = 0, hence we have in S

Dn(an(a, x, x)kxε) = (a, x, x)k+nxε.

Returning to FV [a; x], we will get a relation of the form

(a, x, x)kxε = x2U + ((a, x, x), x, x)V +
∑
i

[a, fi]Wi.

If ε = 1, multiplying the relation above by a and x we get in the
superalgebra S

(((a, x, x)kx)a)x = ((a, x, x)ka)x · x = ((a, x, x)ka, x, x)

= ((a, x, x)k, x, x)a+ (a, x, x)k(a, x, x)

= k(a, x, x)k−1((a, x, x), x, x)a+ (a, x, x)k+1

= (a, x, x)k+1.
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Therefore, without loss of generality, we may assume that we have a
homogeneous relation in FV [a;x] of the form

(a, x, x)k = x2U + ((a, x, x), x, x)V +
∑
i

[a, fi]Wi.

Denote FV [z;x] = FV [a;x]/([a, FV [a;x]]), then we have in FV [z;x]:

(z, x, x)k = x2U(z, x) + ((z, x, x), x, x)V (z, x).

Consider in the free central extension F [s, z; x] the element u =
sU(z, x). By Corollary 3.7, u may be written as a linear combination
of monomials on the variables x2Ri

x,x, sR
j
x,x, zR

l
x,x. By homogeneity,

since degz(u) = k, every monomial contains k variables of type zRl
x,x.

Since degx u = 2(k−1), at least one of these variables should be just z,
henceforth u = zu1. Since x

2 is a central element in FV [z;x], we have a
homomorphism φ : F [s, z; x] → FV [z;x], x 7→ x, z 7→ z, s 7→ x2. Then
x2U(z, x) = φ(u) = zφ(u1).

Similarly, the element v = sV (z, x) ∈ F [s, z;x] may be written
as v = zv1 and therefore ((z, x, x), x, x)V (z, x) = zφ(v1) where φ :
F [s, z;x] → FV [z; x], x 7→ x, z 7→ z, s 7→ ((z, x, x)x, x).

Resuming, we have in FV [z; x] a relation

(z, x, x)k = zw(z, x).

Linearizing this relation on z, we get

(z1, x, x) · · · (zk, x, x) =
k∑

i=1

ziwi.

Substitute z21 instead of z1:

(z21 , x, x)
∏
i≥2

(zi, x, x) = z21w1 +
∑
i≥2

ziw
′
i.

But (z21 , x, x) = 2z1(z1, x, x), hence

(z21 , x, x)
∏
i≥2

(zi, x, x) = 2z1(z1, x, x)
∏
i≥2

(zi, x, x) = 2z21w1 +
∑
i≥2

ziw
′′
i .

Comparing the two expressions, we get z21w1 =
∑

i≥2 zi(w
′
i−w′′

i ), which
implies

(z21 , x, x)
∏
i≥2

(zi, x, x) =
∑
i≥2

ziw
(1)
i .

Repeating the same arguments, we get after k − 1 steps(
k−1∏
i=1

(z2i , x, x)

)
(zk, x, x) = zkw

(k−1)
k ,
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and eventually
k∏

i=1

(z2i , x, x) = 0.

Due to the inclusion D(A)3 ⊆ D(A2)A♯ which holds for any algebra A
with a derivation D, we have for D = Rx,x

(z, x, x)3 =
∑
i

(z2i , x, x)z
′
i for some zi, z

′
i ∈ K(FV [z;x]),

and finally (z, x, x)3k = 0. �

5. The superalgebras F0, F1, F(−1,1)[∅;x] have the same
identities

We will start with the following auxiliary result.

Lemma 5.1. Let A be a superalgebra, Z = Z(A) be the (full) cener of
A. Assume that for any a ∈ A there exists z ∈ Z such that az ̸= 0.
Then the variety V ar A is unitary closed.

Proof. Recall that a variety V is unitary closed if for any element
f from the T -ideal T (V ) of identities of V all the partial derivatives
f∆i belong to T (V ) as well (see [33]). Since charΦ = 0, we may
assume that f is multilinear. Assume that V ar A is not unitary closed,
then there exists a multilinear f = f(x1, . . . , xn) ∈ T (A) such that
f∆i /∈ T (A) for some i. Let, for example, f∆n /∈ T (A), then there
exist a1, . . . , an−1 ∈ A such that (f∆n)(a1, . . . , an−1) = b ̸= 0. Choose
z ∈ Z with bz ̸= 0, then we have

f(a1, . . . , an−1, z) = (f∆n)(a1, . . . , an−1)z = bz ̸= 0.

The contradiction proves the Lemma. �
Lemma 5.2. Let F0[Z;x] = F [Z;x]/(x2). Then the superalgebras
F0[Z; x] and F0 generate the same variety.

Proof. Since F0 is a homomorphic image of F0[Z; x], it suffices to
prove that F0[Z;x] belongs to the variety V generated by F0. Consider
first the case when Z is a singleton: Z = {z}. Assume that F0[z;x] ̸∈ V ,
then some nontrivial linear combination f = f(z, x) of basic elements
of F0[z; x] vanishes in F0 for any substitution z = a ∈ K(F0), x =
y ∈ (F0)1. More exactly, we may assume that f =

∑
I αIz

Ix, where
I = (i0, . . . , ik) ∈ Z∞

+ , αI ∈ Φ. Since charΦ = 0, we may assume
that f is homogeneous, that is, the numbers |I| and i1 + · · · + kik = i
are fixed. Let m be a maximal value of the index i0 for I in f . The
algebra F0 contains in its center the polynomial ring Φ[s] which acts
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without torsion on F0. By Lemma 5.1, the variety V ar F0 is unitary
closed. Therefore, F0 satisfies the partial linearization f∆m

z which has
the form

∑
J aJz

Jx, where all J are of the form J = (0, j1, . . . , jt).
Without loss of generality we may assume that all I in f have i0 = 0.

Choose a lexicographically minimal m-tuple I0 = (0, i1, . . . , im) in f ,
and consider a partial linearization f∆ of f for ∆ = ∆i1

z (z) · · ·∆im
z (zm),

then f∆ vanishes in F0 as well (see [33]). Observe that in F0 we have

(zn)Rm
x,x =

{
0, m > n,

n!
(n−m)!

zn−m(z, x, x)m, m ≤ n.

Therefore, calculating f∆ in F0, we will have (zIx)∆ = 0 for I ̸= I0
and (zI0x)∆ = (1!)i1 · · · (m!)im(z, x, x)ix. Thus

0 = f∆ = αI0(1!)
i1 · · · (m!)im(z, x, x)ix,

implying αI0 = 0 and f = 0.

Let now f = f(z1, . . . , zk, x) ∈ F0[Z;x] be a nontrivial linear com-
bination of basic elements of F0[Z; x] which vanishes in F0 for any
substitution zi = ai ∈ K(F0), x = y ∈ (F0)1. We prove that f = 0 by
induction on k. Write f in the form

f =
∑
I∈Z∞

+

fIz
I
1 ,

where fI = fI(z2, . . . , zk, x) ̸= 0. Arguing as above, we may choose I0
and the operator ∆ of partial linearization in z1 such that (zI1)∆ = 0
for I ̸= I0 and (zI01 )∆ = n(z1, x, x)

i for some natural numbers i, n.
Then

f∆ = fI0n(z1, x, x)
i

is an identity in F0, which implies easily that fI0 is an identity in F0.
Then by induction fI0 = 0, a contradiction. �

Lemma 5.3. V ar (F0) = V ar (F(−1,1)[∅;x]).

Proof. Observe first that the superalgebra F(−1,1)[∅;x] does not
satisfy identity (18). In fact, it has a base formed by the elements
(x2)Ixε, I ∈ Z∞

+ , ε ∈ {0, 1}. In particular, (x2, x, x)k ̸= 0 in F(−1,1)[∅; x]
for any k. Therefore, by Proposition 4.1, the variety V ar (F(−1,1)[∅;x])
is not small, that is, contains the superalgebra F0.

To prove the converse inclusion, it suffices to show that no nontrivial
linear combination of basic elements of the superalgebra F(−1,1)[∅;x] is
an identity in F0. Assume it is not the case, that is, F0 satisfies the
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identity ∑
I∈Z∞

+

αI(x
2)Ixε = 0, αI ∈ Φ.(19)

By Lemma 5.2, the superalgebra F0[z;x] satisfies identity (19) as well
for any odd x. Let q = min{d(I)} for I in (19), then we have in F0[z;x]
the identity G∆q

x(zx) = 0, where G stands for the right part of (19)
and ∆i

x(y) is the operator of partial linearization in x of degree i (see
[33, 1.4]). It is clear that ((x2)Ixε)∆q

x(zx) = 0 if d(I) > q (since x2 = 0
in F0[z; x]), hence we have in F0[z; x] the equality∑

d(I)=q

αI((x
2)Ixε)∆q

x(zx) = 0.(20)

Furthermore, for every I with non-zero components ik1 , . . . , ikq we have

((x2)Ixε)∆q
x(zx) = ((x2)∆1

x(zx))
Ixε = (x · zx+ zx · x)Ixε

= (3
2
(z, x, x))Ixε = (3

2
)q(zRk1+1

x,x )ik1 . . . , (zRkq+1
x,x )ikqxε.

Evidently, the obtained elements are linearly independent in F0[z;x]
for different I, hence αI = 0 for all I with d(I) = q, and identity (19)
is trivial. �

Lemma 5.4. F [Z;x] ∈ V ar (F0).

Proof. Again, it suffices to prove that no nontrivial linear combina-
tion f of basic elements of F [Z;x] is an identity in F0. Write f in the
form

f =
∑
I∈Z∞

+

(x2)IfI

where

fI =
∑

I1,...,Ik

aI1,...,Ikz
I1
1 · · · zIkk xε ̸= 0,

zi ∈ Z, Is ∈ Z∞
+ , aI1,...,Ik ∈ Φ.

Let z ∈ Z \ {z1, . . . , zk} and q = min{d(I)} in the expression for f .
Arguing as in the proof of Lemma 5.3, we have in F0 the identity

0 = f∆q
x(zx) = (3

2
)q

∑
I,I1,...,Ik, d(I)=q

aI1,...,Ik(z, x, x)
IzI11 · · · zIkk xε.

By Lemma 5.2, this implies that all aI1,...,Ik = 0 and fI = 0, a contra-
diction. �

Lemma 5.5. V ar F0 = V ar F1.
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Proof. Since the superalgebra F1 is a homomorphic image of Ft =
F [z;x], by Lemma 5.4 we have F1 ∈ V ar F0. On the other hand, F1

evidently does not satisfy identity (18), hence by Proposition 4.1 it is
not small and F0 ∈ V ar F1. �
Corollary 5.6. V ar A0 = V ar A0 = V ar G(F0).

Proof. For a variety V of algebras denote by Ṽ the variety of V-
superalgebras. Clearly, it suffices to prove that Ṽ ar A0 = Ṽ ar A0 =
V ar F0.

Recall that A0 is a homomorphic image of A0, and A0 ⊆ G(F1).
Therefore,

Ṽ ar A0 ⊆ Ṽ ar A0 ⊆ V ar F1 = V ar F0,

and it suffices to prove that the variety Ṽ ar A0 is not small. Consider
the superalgebra G⊗A0 = G0⊗A0+G1⊗A0 which evidently belongs

to Ṽ ar A0. Take in G ⊗ A0 the elements z = 1 ⊗ z, xk = g1 ⊗ e1 +
· · · + g2k ⊗ e2k, where by gi we denote the canonical generators of the
Grassmann algebra G, in order not confuse them with the generators
ei of A0. We have (z, xk, xk) =

∑
i̸=j gigj ⊗ (z, ei, ej) and furthermore,

(z, xk, xk)
k = (2k)!g1g2 · · · g2k−1g2k ⊗ (z, e1, e2) · · · (z, e2k−1, e2k) ̸= 0.

Therefore, the superalgebra G ⊗ A0 does not satisfy identity (18) for

any k and hence the variety Ṽ ar A0 is not small. �

6. Proof of Theorems A and B

6.1. Proof of Theorem A. We will present the proof in three steps.

Lemma 6.1. G(B) ∈ V ar (A0), where B = B(Γ, D, γ), Γ = Γ0.

Proof. The inclusion in lemma is equivalent to the inclusion B ∈
Ṽ ar A0 = V ar (F0) = V ar (F [Z; x]). Let Z be such a set that Γ is
isomorphic to a homomorphic image of the polynomial ring without
constant terms Φ0[Z] under a homomorphism φ. Consider the poly-
nomial ring Φ0[TZ ], where TZ = T0 ∪ (∪z∈ZTz), T0 = {t0, t1, . . .}, Tz =
{z = z0, z1, z2, . . .}, z ∈ Z, and let D be the derivation of Φ[TZ ] de-
fined by D(ti) = ti+1, D(zi) = zi+1. By Proposition 3.6, F [Z;x] ∼=
B(Φ0[TZ ], D, t0). Extend the homomorphism φ to a homomorphism
φ̃ : Φ0[TZ ] → Γ by setting φ̃(ti) = Di(γ), φ̃(zi) = Di(φ(z)), z ∈
Z; then evidently φ̃ is a homomorphism of differential algebras φ̃ :
(Φ[TZ ], D) → (Γ, D). Clearly, φ̃ induces a surjective homomorphism of
superalgebras ˜̃φ : B(Φ0[TZ ], D, t0) → B(Γ, D, γ). Therefore, B(Γ, D, γ) ∈
V ar (F [Z; x]). �
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Lemma 6.2. V ar (G(B)) = V ar (A0), where B is a simple non-
associative (-1,1)-superalgebra.

Proof. In view of [23], a simple (-1,1)-superalgebra B = A+M, (A =
B0, M = B1) over a field of characteristic 0 has the following properties:

a) A is a unital differentially simple associative and commutative
algebra without zero divisors and M is an associative commutative
A-bimodule;

b) If 0 ̸= x ∈ M , then Rx,x is a nonzero derivation of A.

It follows from a) and b) that B does not satisfy identity (18) for
any k, hence F0 ∈ V ar B and A0 ⊆ G(F0) ∈ V ar (G(B)).

On the other hand, the arguments from [32] given for simple Jordan
superalgebras with associative even part are applied to simple (-1.1)-
superalgebras as well and show that the superalgebra B = A+M can be
embedded into a twisted superalgebra B(Γ, D, γ) of vector type, where
Γ is the field of fractions of A. Therefore, by Lemma 6.1, V ar (G(B)) ⊆
V ar (G(B(Γ, D, γ))) ⊆ V ar A0. �

Lemma 6.3. Let AV F = A(V,Φ, τ, λ) be a (-1,1)-superalgebra of vector
fields over a field Φ of characteristic 0. Suppose that there exists u ∈ V
with τ(u) ̸= 0. Then V ar (G(AV F )) = V ar (A0).

Proof. By [21, Theorem 1], the superalgebra AV F is of even vector
type, hence G(AV F ) ∈ V ar (A0) by Lemma 6.1. On the other hand, we
have in AV F the equality (au, xv, xv) = 4τ(u)aλ(u+2v) which implies that
(au, xv, xv)

k = 4k(τ(u))kakλ(u+2v) ̸= 0 for any k. Therefore, by Propo-

sition 4.1 F0 ∈ V ar (AV F ) and A0 ∈ V ar (G(F0)) ⊆ V ar (G(AV F )).
�

Theorem A now follows from Lemmas 6.1 - 6.3, Lemma 5.3, and
Corollary 5.6.

It follows from Lemma 6.3 that the prime (-1,1)-monsters of charac-
teristic 0, constructed in [13] and [21] are isomorphic.

Corollary 6.4. The free algebra of countable rank in the variety gen-
erated by the Grassmann envelope of the (-1,1)-superalgebra of vector
type B(Φ[t], d

dt
, 0) over a field Φ of characteristic 0 is prime.

6.2. Proof of Theorem B. The proof of Theorem B we also give in
three steps.

Lemma 6.5. The variety V0 := V ar (A0) over a field Φ of character-
istic 0 is the smallest variety of (-1,1)-algebras that contains a prime
non-associative algebra.
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Proof. Let V be a variety containing a prime nonassociative algebra
A. Since A is a strongly (-1,1)-algebra [3], we may assume, without
loss of generality, that V is strongly (-1,1). Assume that V does not
contain A0, then the corresponding variety Ṽ of V-superalgebras does
not contain F0. By Proposition 4.1, the identity (z, x, x)k = 0 holds in
Ṽ for any central z and odd x.

Consider the V-superalgebra G ⊗ A = G0 ⊗ A + G1 ⊗ A. Let
z1, . . . , zk ∈ K(A) and a1, . . . , a2k ∈ A; consider in G⊗A the elements
z = e1e2 ⊗ z1 + · · ·+ e2k−1e2k ⊗ zk and x = e2k+1 ⊗ a1 + · · ·+ e4k ⊗ a2k,
where e1, . . . , e4k are the elements of the canonical base of G. Then
z ∈ K(G⊗ A), x ∈ (G⊗ A)1, hence we have

0 = (z, x, x)k =
∏
i,s,t

e2i−1e2ieset ⊗ (zi, as, at)

= ±e1 · · · e4k ⊗
∏
i,s,t

(zi, as, at),

where i ∈ {1, · · · , k}, s, t ∈ {1, . . . , 2k}. In view of identities (9),
(10), the product (z, a, b)(z′, c, d) for z, z′ ∈ K(A) is skewsymmetric in
a, b, c, d. Moreover, the associators (zi, as, at) lie in the associative and
commutative algebra K(A). Therefore, we have

0 = (4k)! e1e2 · · · e4k ⊗ (z1, a1, a2) · · · (zk, a2k−1, a2k).

Returning to the algebra A, we have in it the equality (K1)
k = 0,

where K1 = (K(A), A,A). Since the center K(A) is closed under the
operators Rx,y, the set K1A

♯ is an ideal of A, and by induction it is easy
to see that (K1A

♯)N ⊆ KN
1 A♯. Then the ideal K1A

♯ is nilpotent, hence
K1 = 0 and K(A) ⊆ Z(A). In particular, the center Z(A) contains
nilpotent elements, such as commutators [6], a contradiction. �

Lemma 6.6. Let F be the free algebra of countable rank in the variety
V0 = V ar (A0). Then every metaideal I of finite index of the algebra
F generates the same variety V0.

Proof. Let I be a metaideal of the algebra F . Since an ideal of a
prime (-1,1)-algebra is a prime algebra [18], I is a prime algebra. In
addition, an ideal of a non-associative prime (-1,1)-algebra can not be
an associative algebra [17]. Hence by Lemma 6.5 and Corollary 5.6
V0 ⊆ V ar (I). The converse inclusion is evident. �

Recall that the ideal of an algebra A generated by all commutators
[a, b], a, b ∈ A, is called the commutant of the algebra A. We will
denote the commutant of an algebra A by A′.
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Lemma 6.7. A metaideal of the algebra F containing in its commutant
F ′ can not be a free algebra of any variety.

Proof. Let I be a metaideal of F containing in F ′. Assume that
it is a free algebra with a set of free generators f1, f2, . . .. Since the
commutant F ′ is a nil-algebra [3], there exists a number n such that
fn
1 = 0. Hence I is a nil-algebra of bounded index, and by [19] it is
solvable. This is a contradiction, since a prime (-1,1)-algebra can not
be solvable. �

Theorem B now follows from Lemmas 6.5 - 6.7.

7. Jordan algebras of type A(+) for (-1,1)-algebra A

7.1. The operator f+. In a Jordan algebra J , we denote by Da,b the
inner derivation operator Da,b = [Ra, Rb] : x 7→ (a, x, b). If J = A(+),
then for a ∈ A we denote by R+

a the operator of right multiplication in
the algebra A(+).

More generally, let f = f(x1, ..., xn) be a nonassociative polynomial,
i.e., an element of the free nonassociative algebra Φ {X}. Consider the
subalgebra Φ+ {X} of the algebra Φ {X}(+) generated by the set X,
and the homomorphism φ : Φ {X} → Φ+ {X} extending the identity
mapping X onto itself. We set f+ = φ(f). In other words, f+ denotes
the polynomial obtained from f by replacement the multiplication · by
its symmetrization ”⊙”. Similar notation is used for operators. Thus,
if ρ is an element of the multiplication algebra of the algebra Φ {X},
the operator ρ+ is defined by xρ+ = (xρ)+, where x ∈ X. Observe that
this agrees with the previous notation R+

a .
Since a right alternative algebra A satisfies identity [33, p. 69]

4 (x, y, z)+ = 2 (y, x, z) + [y, [x, z]] ,

every strongly (-1,1)-algebra satisfies the identity

2(x, y, z)+ = (y, x, z),(21)

or Ra,b = 2D+
a,b, where D+

a,b = [R+
a , R

+
b ] .

7.2. The alternative center of a Jordan superalgebra. Follow-
ing E. Zelmanov [30], define the alternative center Zalt(J) of a Jordan
superalgebra J via

Zalt (J) = {z ∈ J | (z, x, y) + (−1)xy(z, y, x) = 0}
for any homogeneous x, y ∈ J . For the sake of brevity, we will call the
elements of Zalt(J) central. It is easy to see that the center Zalt (J) has
properties similar to those of K (A).
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Lemma 7.1. The center Zalt = Zalt (J) satisfies the following proper-
ties:

a) (Zalt, Zalt, J) = (Zalt, J, Zalt) = 0;
b) for any z ∈ Zalt, a, b ∈ J holds (a, z, b) = 2(−1)az(z, a, b);
c) (Zalt, J, J) + (J, Zalt, J) ⊆ Zalt;
d) Zalt(J) is a subsuperalgebra of J ;
e) if A is a (-1,1)-superalgebra then K(A) ⊆ Zalt(A

(+)).
f) if J = J(Γ, D) is a superalgebra of vector type then Zalt(J) = Γ.

Proof. Making a standart passage to Grassmann envelopes, we re-
duce the proof to the case of algebras. One can directly check that any
commutative algebra satisfies the associator Jacoby identity (1) and
also the flexibility identity

(x, y, x) = 0.(22)

Let z ∈ Zalt, a, b ∈ J , then by (1) we have

(z, a, b) + (a, b, z) + (b, z, a) = 0.

By the definition of Zalt, (z, a, b) = −(z, b, a) = (a, b, z), hence 2(z, a, b)+
(b, z, a) = 0 and by linearized (22) 2(z, a, b) = −(b, z, a) = (a, z, b),
which proves b).

Now, for z1, z2 ∈ Zalt we have by b)

(z1, z2, a) = 2(z2, z1, a) = 4(z1, z2, a),

hence (z1, z2, a) = 0, which implies a).
Furthermore, one can easily check that Zalt is invariant under deriva-

tions of J . In particular, (a, Zalt, b) = ZaltDa,b ⊆ Zalt, which in view of
b) implies c). Moreover, the fact that the applications Ra,b are deriva-
tions of Zalt implies easily d).

Finally, e) follows from relations (21),(7), and f) is proved directly.
�

Let us call a subspace V ⊆ Zalt(J) to be D-invariant if (V, J, J) ⊆ V .

Corollary 7.2. The following properties are true.

a) If U, V are D-invariant then so is UV ;
b) If U is D-invariant then UJ ♯ is an ideal of J ;
c) If U, V are D-invariant then (UJ)(V J) ⊆ (UV )J ♯.

Proof. Let us prove c) which is the only non-evident. We have

(UJ)(V J) ⊆ (UJ · V )J + (UJ, V, J) = (UV · J)J + (V, UJ, J)

⊆ (UV )J + (UV, J, J) + U(V, J, J) + (V, U, J)J

⊆ (UV )J + UV + (UV · J)J + (V · UJ)J

⊆ (UV )J ♯ + (UV, J, J) + (UV · J)J ⊆ (UV )J ♯.
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�
Proposition 7.3. In a prime nonassociative (-1,1)-algebra A the equal-
ity K (A) = Zalt

(
A(+)

)
holds.

Proof. It is known [3] that a prime nonassociative (-1,1)-algebra
is strongly (-1,1). If z ∈ Zalt

(
A(+)

)
, then, (∀x ∈ A) (z, x, x)+ = 0

and hence z ∈ V (A) by (21). The same identity gives the opposite
inclusion, which yields V (A) = Zalt(A

(+)). Finally, in a prime algebra
A we have V (A) = K (A) [17, Lemma 21]. �

7.3. Functions k(x, y; z, t) and hx(y, z). Consider the following func-
tion in a Jordan algebra J :

k(x, y; z, t) := (xy, z, t)− (x, z, t)y − x(y, z, t).

We will also use the notation:

k(x; y, z) := k(x, x; y, z), k(x; y) := k(x, x; y, y).

This function was used in the theory of Jordan algebras by E. Zelmanov
[30] and V. Skosyrskii [27]. It is easy to see that if J = A(+) for an
associative algebra A then k(x; y) = 1

2
[x, y]2 in A.

Lemma 7.4. The function k(x, y; z, t) is symmetric in x, y and in z, t.
Moreover, k(x, y; z, t) = k(z, t; x, y).

Proof. It is clear that the function k is symmetric in x, y. Further-
more, the following identity holds in every Jordan algebra [33]:

(x, yz, t) = y(x, z, t) + (x, y, z)t.(23)

Therefore,

k(x, y; z, t) = (xy, z, t)− x(y, z, t)− (x, z, t)y
(5)
= −(x, y, zt) + (x, yz, t) + (x, y, z)t− y(x, z, t)

(22),(23)
= (zt, y, x) + y(x, z, t) + (x, y, t)z − t(z, y, x)− y(x, z, t)

= (zt, y, x)− z(t, y, x)− (z, y, x)t = k(z, t; y, x).

The obtained identitiy yields the other statements of the lemma. �
Lemma 7.5. If A is a strongly (-1,1)-algebra, then k(x, y; z, t)+ ∈
K(A).

Proof. Since the function k(x, y; z, t)+ is symmetric in x, y and in
z, t, it sufficies to verify that k(x; y)+ ∈ K(A). Identity (4) implies

(y, x2, z) = 2(y, x, z)x+ (y, x, [z, x]).(24)
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Therefore, in view of (21) and (24) we have:

2k(x; y)+ = (y, x2, y)− 2x⊙ (y, x, y)

= 2(y, x, y)x+ (y, x, [y, x])− 2x⊙ (y, x, y)

= (y, x, [y, x]) + [(y, x, y), x].

Clearly, [(y, x, y), x] ∈ [A,A] ⊆ K(A), and by (7)

(y, x, [y, x]) ∈ (A,A,K(A)) ⊆ (K(A), A,A) ⊆ K(A).

�
Define now the functions

Qa : x 7→ (a, a, x),

hx(a, b) := x[Qa, Qb] = (b, b, (a, a, x))− (a, a, (b, b, x)) .

Lemma 7.6. If A is a strongly (-1,1)-algebra, then h+
x (a, b) ∈ K(A).

Proof. It was proved by I.Hentzel and H.Smith [5, identity (19)] that
the function hx(a, b) is central in the variety of binary (-1,1)-algebras.
If A is a strongly (-1,1)-algebra, then by (21) we have

4h+
x (a, b) = hx(a, b) ∈ K(A).

�

7.4. Some identities of G(J(Γ, δ)).

Proposition 7.7. The Grassmann envelope G (J (Γ, δ)) of a Jordan
superalgebra J(Γ, δ) of vector type satisfies the identities:

k(x; y)Qc = hx(a, b)Qc = k(x, y)2 = hx(a, b)
2 = (a, a, b)2 = 0.

Proof. Consider the twisted superalgebra B := B(Γ, D, 0) of vector
type, where D = 2δ. Observe that B(+) = J(Γ, δ). The superalgebra B
is a strongly (-1,1), hence its Grassmann envelope A := G(B) satisfies
Lemmas 7.5 and 7.6, and we have the inclusions k(x, y)+, h+

x (a, b) ∈
K (A) ⊆ Zalt

(
A(+)

)
. This proves the first two equalities of the lemma.

In addition, it follows from [17, Lemma 23] and the Kleinfeld identity
[x, y]3 = 0 which is valid in any strongly (-1,1)-algebra that k(x; y)2 = 0
in the algebra A(+). Furthermore, 4((a, a, b)+)2 = (a, a, b)2 = 0 [3].
Finally, by [17, Lemma 6] we have hx(a, b)

2 = 0 in A(+). Therefore,
the algebra G(J) = G(B(+)) = (G(B))(+) satisfies the identities of the
lemma. �

Lemma 7.8. If a Jordan algebra J satisfies the identities k(x, y; z, t) =
0 and hx(y, z) = 0, then it satisfies the identity aQbQc = 0.
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Proof. Let (a, b, c)σ denotes any of the six associators obtained from
the associator (a, b, c) by an arbitrary permutation of variables. The
identity k(x, y; z, t) = 0 implies that the associator (a, b, c) is a deriva-
tion on all the variables. Therefore,

4(a, (a, b, c)σ, b) = 4 a(a, b, c)σ · b− 4 a · (a, b, c)σb
= 2 (a2, b, c)σb− 2 (a, b2, c)σa

= (a2, b2, c)σ − (a2, b2, c)σ = 0.

Furthermore,

(a, aQb, c) = −(a, (a, b, b), c) = −(a, (a, b, c), c)∆1
c(b) + (a, (a, b, c), b) = 0,

where ∆1
c(b) is the operator of partial linearization with respect to c

[33, 1.4].
The application a 7→ aQb is a derivation. Therefore, by the previous

identity,

(aQb, a, c) = −(a, aQb, c)− (a, a, cQb) + (a, a, c)Qb

= −cQbQa + cQaQb = hc(a, b) = 0.

From the Associator Jacobi identity (1) we have

(aQb, c, a) = −(c, a, aQb)− (a, aQb, c) = (aQb, a, c)− (a, aQb, c) = 0.

Finally,

aQbQc = ((a, b, b), c, c) = −(aQb, a, c)∆
1
a(c) + (cQb, a, c) = 0.

�

7.5. The Jordan central extension J [Z;x]. Denote by J [Z;x] the
quotient superalgebra of the free Jordan superalgebra Jord [Z; x] gen-
erated by a nonempty set Z of even elements and an odd element x,
by the ideal generated by the elements of the form

(z, a, b) + (−1)ab(z, b, a), where z ∈ Z; a, b ∈ Jord[Z;x].

Clearly, J [Z; x] satisfies the following universal property:
for any Jordan superalgebra J , any odd y ∈ J1, and for any mapping
φ : Z → Zalt(J) there exists a unique homomorphism φ̃ : J [Z; x] → J
such that φ̃|Z = φ, φ̃(x) = y.

The superalgebra J [Z;x] plays for Jordan algebras the same role
as the superalgebra F [Z;x] does in the variety St of strongly (-1,1)-
algebras.

Consider again the polynomial ring Φ[TZ ] on the set of variables
TZ = {z0 = z, z1, . . . , | z ∈ Z} with the derivation D : zi 7→ zi+1, i =
0, 1, . . ..
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Proposition 7.9. The superalgebra J [Z;x] is isomorphic to the subsu-

peralgebra Φ0[TZ ]⊕Φ[TZ ] of the superalgebra of vector type J(Φ[TZ ], D).

Proof. Denote J = J [Z;x]. Consider the subalgebra A of J0 gener-
ated by the elements zRi

x,x, z ∈ Z, i ≥ 0. Denote D = Rx,x, then by
Lemma 7.1 D is a derivation of Zalt(J) and A ⊆ Zalt(J). Moreover,
D(A) ⊆ A hence D is a derivation of A. Let us prove that J = A+A♯x.
Since Z ∪ {x} ⊆ A, it suffices to prove that A+A♯x is a subsuperalge-
bra of J . By Lemma 7.1 A♯x is an associative bimodule over A, hence
we need only to consider the product (A♯x)(A♯x). Let a, b ∈ A♯, then
by Lemma 7.1 we have

(ax)(bx) = (ax · b)x− (ax, b, x) = ((ab)x)x− 2(b, ax, x)

= (ab, x, x)− 2a(b, x, x) = (ab)Rx,x − 2a(bRx,x)

= D(a)b− aD(b) ∈ A.

Therefore, A+A♯x is a subsuperalgebra of J and J = A+A♯x. More-
over, the obtained equality shows that J ♯ is a homomorphic image
of the superalgebra of vector type J(A♯, D) under the homomorphism
a+ b̄ 7→ a+ ax.

Consider the homomorphism φ : Φ[TZ ] → A♯, zi 7→ Di(z), z ∈ Z.
Clearly, it is a homomorphism of differential algebras which can be
extended to a homomorphism of superalgebras

φ̃ : J(Φ[TZ ], D) → J(A♯, D).

Now the composition π ◦ φ̃ maps surjectively Φ0[TZ ] ⊕ Φ[TZ ] onto J .
By the universal property of J , in view of Lemma 7.1.f), this map is
invertible and hence it is an isomorphism. �

Corollary 7.10. The superalgebra J [Z; x] has a base of the form B ∪
Bx where B consists of associative and commutative monomials on the
elements zRi

x,x, z ∈ Z, i ≥ 0.

Recall that for I = (i0, i1, . . . , ik) ∈ Z∞
+ we denote

aI = ai0(aRx,x)
i1(aR2

x,x)
i2 · · · (aRk

x,x)
ik .

Corollary 7.11. The superalgebra J [Z ∪ {s}; x] is isomorphic to the
superalgebra F [Z; x](+) under the isomorphism

sI0zI11 . . . zIkk xε 7→ (x2)I0zI11 . . . zIkk xε.

In particular, the superalgebra J [z; x] is isomorphic to the superalgebra
F [∅;x](+).
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Proof. By Propositions 7.9 and 3.6, we have the isomorphisms

J [Z∪{s}; x]♯ ∼= J(Φ[TZ∪{s}], D) ∼= B(Φ[TZ∪{s}], D, s)(+) ∼= (F [Z; x]♯)(+).

The restriction of these isomorphisms on ”nonunital parts” gives the
isomorphism of the corollary. �

8. Proof of Theorem C

8.1. Superalgebra JF0 and variety JV0. Following the case of (−1, 1)-
algebras, consider the superalgebra

JF0 := J [z; x]/(((z, x, x), x, x)).

It is easy to see that JF0
∼= J0(Φ[z, s], s

d
dt
) ∼= F

(+)
0 and has a base

zn(z, x, x)kxε, n, k ≥ 0, ε+ n+ k > 0.

Similarly to Proposition 4.1, we have the following characterization
of varieties of Jordan superalgebras that do not contain JF0.

Proposition 8.1. A variety V of Jordan superalgebras does not contain
JF0 if and only if it satisfies the identity

(z, x, x)k = 0

for any central z and odd x and some k > 0.

The proof repeats that of Proposition 4.1 with evident modifications.
�

Denote by JV0 the variety of Jordan algebras generated by the Grass-
mann envelope G(JF0) of the superalgebra JF0.

Proposition 8.2. Variety JV0 is generated by any one of the following
algebras

J̄0, A
(+)
0 , G

(+)
(−1,1),

G(J [Z; x]) with Z ̸= ∅,
G(J(Γ, δ)), where Γ = Γ0 and Γδ is not nilpotent.

Proof. Observe first that if V ar A = V ar B then V ar A(+) = V ar B(+).
Furthermore, it is easy to check that G(A(+)) ∼= (G(A))(+). By the re-
sults of Sections 5 and 6, all the algebras

Ā0, A0, G(−1,1), G(F(−1,1)[∅; x]), G(F [Z; x]), G(B(Γ, D, γ))

generate the same variety V0 = V ar A0. Therefore, the algebras J̄0 =

(Ā0)
(+), A

(+)
0 , G

(+)
(−1,1), G(J [Z;x]) ∼= (G(F [Z \ {s}; x]))(+) for some ele-

ment s ∈ Z, G(J(Γ, δ)) ∼= (G(B(Γ, D, 0))(+) generate the same variety
JV0. �



30 SERGEY V. PCHELINTSEV AND IVAN P. SHESTAKOV

Corollary 8.3. The free algebra of countable rank in the variety JV0

over a field Φ of characteristic 0 is prime and degenerate.

This was proved in [13], [10], and in [21] for the varieties V ar (A0)
(+),

V ar J(Φ[t], d
dt
), and V ar JV T , respectively, which in fact are all equal

to JV0.

8.2. Minimality of variety JV0.

Proposition 8.4. Let V be a subvariety of JV0 which contains a prime
Jordan algebra J which is not associative. Then V = JV0.

Proof. Assume that V does not contain the algebra J0. Then the
arguments from the proof of Lemma 6.5 in view of Proposition 8.1
show that the prime algebra J satisfies the equality Zm

1 = 0 for some
m, where Z1 = (Zalt(J), J, J). Since the center Zalt (J) is invariant
under the operators Rx,y, by Corollary 7.2 the subspace Z1J

♯ is an
ideal of J . By induction, using Corollary 7.2 again, it is easy to see
that (Z1J

♯)k ⊆ Zk
1J

♯. Then the ideal Z1J
♯ is nilpotent. Let Zk

1 = 0,
Zk−1

1 ̸= 0, then (Z1)
k−1J ♯ is a non-zero trivial ideal in J which should

be zero. Therefore, Z1 = 0 and Zalt(J) is contained in the center Z(J).
Since J ∈ V ⊂ JV0, it satisfies the identities of G(J(Γ, D)). By

Proposition 7.7, the functions k(x; y) and hx(a, b) produce nilpotent
central elements in J and therefore are zero in J . Then by Lemma 7.8
(a, b, b) ∈ Zalt(J) = Z(J) for any a, b ∈ J . By Proposition 7.7 again,
(a, b, b)2 = 0, hence (a, b, b) = 0 in J and J = Zalt(J), a contradiction.

�
Theorem C follows from Propositions 8.2 and 8.4.

Observe that, contrary to the case of variety V0, we do not know
whether JV0 lies in every variety that contains a prime degenerate
algebra. Below we show that it is true for the prime degenerate algebra
related with the Jordan superalgebra of Poisson brackets [10] and for
the algebra constructed by V.G. Skosyrskii [28].

Proposition 8.5. Let VPB be the variety generated by the Grassmann
envelope of the Jordan algebra of free Poisson bracket and VSkos be the
variety generated by the algebra of Skosyrskii [28]. Then we have

JV0 ⊆ VSkos ⊂ VPB.

Proof. It was proved in [9] that every Jordan superalgebra of brack-
ets (or, in other terms, every Kantor double) can be embedded into a
Jordan superalgebra of Poisson brackets. In particular, this is true for
the superalgebra of even vector type J(Γ, δ). Therefore,

JV0 = V ar G(J(Γ, D)) ⊂ VPB.
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The inclusion is strict since the Grassmann envelope of the superalgebra
of Poisson brackets does not satisfies Proposition 7.7.

The algebra of Skosyrskii has the form J(G,D)0, where G is the
Grassmann algebra on infinite number of generators e1, . . . , en, . . . and
D is the derivation of G defined by the condition D(ei) = ei+1. It

follows from [22] that J(G,D)0 ∼= B(G,D, 0)
(+)
0 , where B(G,D, 0) is

a (−1, 1)-superalgebra of vector type. It is clear that B(G,D, 0)0 is
a nonassociative prime (-1,1)-algebra, hence V0 ⊆ V ar B(G,D, 0)0.
On the other hand, as it was mentioned above, V ar J(G,D) ⊆ VPB.
Therefore, JV0 ⊆ VSkos ⊂ VPB. �

It remains an open question whether JV0 = VSkos?

9. Enveloping V0-algebra for FJV0 [X]

In this section we relate the free algebra FJV0 [X] and the strongly
(−1, 1)-algebra FV0 [X].

Proposition 9.1. Let FV0 [X] be the free algebra of countable rank in
the variety V0, and let J [X] be the subalgebra generated by set X in
the algebra (FV0 [X])+. Then J [X] is isomorphic to the free algebra
FJV0 [X].

Proof. Notice first that J [X] is a relatively free algebra over the
set X, that is, any relation f(x1, . . . , xn) = 0 in the algebra J [X] is
its identity. In fact, since this relation is an identity of FV0 [X], then
f(a1, . . . , an) = 0 for any a1, . . . , an ∈ FV0 [X], which obviously implies
that f is an identity in J [X].

We now show that J [X] and FJV0 [X] have the same identities. As-
sume that f(x1, . . . , xn) ̸= 0 in J [X]. Since V0 = V ar A0, there exist
a1, . . . , an ∈ A0 such that f(a1, . . . , an) ̸= 0. But then f is not an

identity in A
(+)
0 and hence f(x1, . . . , xn) ̸= 0 in FJV0 [X].

Conversely, if f(x1, . . . , xn) ̸= 0 in the algebra FJV0 [X] then there ex-

ist a1, . . . , an ∈ A
(+)
0 such that f(a1, . . . , an) ̸= 0. But then f(a1, . . . , an) ̸=

0 in the algebra A0 as well, which means that f(x1, . . . , xn) ̸= 0 in
FV0 [X] and in J [X].

Thus, a relatively free algebra J [X] and FJV0 have the same identi-
ties, hence they are isomorphic. �

It remains an open question on relation between the varieties JV0

and V0: is it true that every JV0-algebra has an V0-enveloping algebra?
One can show that the algebra J [X] is not isomorphic to the algebra
A(+) for any strongly (−1, 1)-algebra A.

We recall also the following open question which was first formulated
in [12]: Is it true that V0 = St?



32 SERGEY V. PCHELINTSEV AND IVAN P. SHESTAKOV

10. Acknowledgements

The main part of the paper was done during S.V.Pchelintsev’s visit
to the University of São Paulo supported by the FAPESP (Brazil),
Grant 2012/04702–7. He is grateful to Prof. I.P.Shestakov for the
invitation and hospitality, to the FAPESP for the financial support,
and to the University of São Paulo for excellent working conditions.
He acknowledges also the support by Russian Foundation for Basic
Research (Grant 11-01-00938-a), and by the Program ”Development of
the Scientific Potential of Higher Education” (Grant 2.1.1.419).

I.P.Shestakov was partially supported by the FAPESP grant 10/50347-
9 and CNPq grant 3305344/2009-9. He is also grateful to Max-Plank
Institute für Mathematik for hospitality and excellent working condi-
tions.

References

[1] G.V.Dorofeev, “An instance of a solvable, though nonnilpotent, alternative
ring”, Uspehi Mat. Nauk 15 (1960) no. 3 (93), 147–150.

[2] G.V.Dorofeev “An example in the theory of alternative rings”. Sibirsk. Mat. .
4 (1963), 1049–1052.

[3] I.R.Hentzel, Nil semi-simple (-1,1)-rings”, J. Algebra, 22, 3 (1972), 442–450.
[4] I.R.Hentzel, “The characterization of (-1,1)-rings”, J. Algebra, 30 (1974), 236–

258.
[5] I.R.Hentzel, H.F. Smith, “Simple locally (-1,1) nil rings”, J. Algebra, 101

(1986), 262–272.
[6] E.Kleinfeld, On a class of right alternative rings, Math. Z., 87 (1965), 12–16.
[7] K.McCrimmon “Speciality and non-speciality of two Jordan superalgebras”,

J. Algebra 149 (1992), no. 2, 326–351.
[8] K.McCrimmon, A taste of Jordan algebras, Universitext. Springer-Verlag, New

York, 2004.
[9] C.Mart́ınez, I.Shestakov, E.Zelmanov, Jordan superalgebras defined by brack-

ets. J. London Math. Soc. (2) 64 (2001), no. 2, 357–368.
[10] Yu.A.Medvedev, E.I.Zelmanov “Some counter-examples in the theory of Jor-

dan algebras”, Nonassociative algebraic models (Zaragoza, 1989), 1-16, Nova
Sci. Publ., Commack, NY, 1992.

[11] S.V.Pchelintsev “Nilpotent elements and nil-radicals of alternative alge-
bras”(Russian), Algebra and Logic, 24, 6 (1985), 674–695.

[12] S.V.Pchelintsev “On the variety of algebras of type (-1,1)”(Russian), Algebra
and Logic, 25, 2 (1986), 154–171.

[13] S.V.Pchelintsev “Prime algebras and absolute zero divisors”, (Russian). Izv.
Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 1, 79–100.

[14] S.V.Pchelintsev “On an almost Specht variety of alternative algebras over a
field of characteristic 3”. (Russian) Mat. Sb. 191 (2000), no. 6, 127–44; trans-
lation in Sb. Math. 191 (2000), no. 5-6, 909–925.

[15] S.V.Pchelintsev, “The structure of weak identities on the Grassmannian en-
velopes of centrally metabelian alternative superalgebras of superrank 1 over



PRIME (-1,1) AND JORDAN MONSTERS 33

a field of characteristic 3”. (Russian) Fundam. Prikl. Mat. 7 (2001), no. 3,
849–871.

[16] S.V.Pchelintsev, “On identities of right-alternative metabelian Grassmann al-
gebras”. (Russian) Fundam. Prikl. Mat. 13 (2007), no. 2, 157–183; translation
in J. Math. Sci. (N. Y.) 154 (2008), no. 2, 230–248.

[17] S.V.Pchelintsev, “Isotopes of prime (1,1)- and Jordan algebras”. (Russian)
Algebra Logika 49 (2010), no. 3, 388–423, 428, 430; translation in Algebra
Logic 49 (2010), no. 3, 262–288.

[18] R.E.Roomel’di “The lower nil-radical of (-1,1)-rings”. (Russian), Algebra and
Logic, 12, 3 (1973), 323–332.

[19] R.E.Roomel’di “Solvability of (-1,1)-nil rings”. (Russian), Algebra and Logic,
12, 4 (1973), 478–489.

[20] R.E.Roomel’di “Centers of free (-1,1) ring”. (Russian), Sibirsk. Mat. . 18
(1977), no. 4, 861–876.

[21] I.P.Shestakov “Superalgebras and counterexamples”.(Russian) Sibirsk. Mat.
Zh. 32 (1991), no. 6, 187–196, 207; translation in Siberian Math. J. 32 (1991),
no. 6, 1052–1060 (1992).

[22] I.P.Shestakov “Prime alternative superalgebras of arbitrary characteristic”.
(Russian) Algebra i Logika 36 (1997), no. 6, 675–716, 722; translation in Al-
gebra and Logic 36 (1997), no. 6, 389–412.

[23] I.P.Shestakov “Simple (-1,1)-superalgebra”, (Russian). Algebra i Logika 37
(1998), no. 6, 721–739, 746–747; translation in Algebra and Logic 37 (1998),
no. 6, 411–422.

[24] I.P.Shestakov “Free Malcev superalgebra on one odd generator”, J. of Algedra
and Its Applications, 2, 4 (2003), 451–461.

[25] I. Shestakov, N. Zhukavets: “The universal multiplicative envelope of the free
Malcev superalgebra on one odd generator”, Communications in Algebra, 34
(2006), No. 4, 1319–1344.

[26] I.P Shestakov, N.Zhukavets “The free alternative superalgebra on one odd
generator” Int. J. of Algebra and Computation, 17 (5/6) (2007), 1215–1247.

[27] V.G.Skosirskiy “Strongly prime noncommutative Jordan algebras”. In.: Stud-
ies in the theory of rings and algebras, Proceedings of the Institute of Mathe-
matics of the USSR Academy of Sciences, 16, Novosibirsk, Nauka, 1989, 131–
164.

[28] V.G.Skosirskiy “Prime Jordan algebras and the construction of Kantor”, Al-
gebra and Logic, 33, 3 (1994), 301-316.

[29] A.Thedy “Right alternative rings”, J. Algebra, 37, 1 (1975), 1–43.
[30] E.I.Zel’manov “Prime Jordan algebras, II”. (Russian), Sibirsk. Mat. Zh. 24

(1983), no. 1, 89–104.
[31] E.I.Zel’manov, I.P.Shestakov “Prime alternative superalgebras and nilpotency

of the radical of a free alternative algebra”(Russian) Izv. Akad. Nauk SSSR
Ser. Mat. 54 (1990), no. 4, 676–693; translation in Math. USSR-Izv. 37 (1991),
no. 1, 19–36, Math. Akad. Math. 54, 4 (1990), 676–693.

[32] V.N.Zhelyabin, I.P.Shestakov “Simple special Jordan superalgebras with asso-
ciative even part”. (Russian) Sibirsk. Mat. Zh. 45 (2004), no. 5, 1046–1072;
translation in Siberian Math. J. 45 (2004), no. 5, 860–882.

[33] K.A.Zhevlakov, A.M.Slinko, I.P.Shestakov, A.I.Shirshov, Rings that are nearly
associative, Nauka, Moscow, 1978; English transl.: Academic Press, NY, 1982.



34 SERGEY V. PCHELINTSEV AND IVAN P. SHESTAKOV

[34] K.A.Zhevlakov, I.P.Shestakov, On the local finiteness in Shirshov’s sense, Al-
gebra i Logika, 12, N 1 (1973), 41–73; English transl.: Algebra and Logic, 12,
N 1 (1973), 23–42.

Finance University under the Government of the Russian Federa-
tion, and Moscow City Pedagogical University

E-mail address: pchelinzev@mail.ru
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