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Abstract: We prove an analogue of Posner-Rowen’s theorem for strongly prime Jordan
pairs and triple systems: the central closure of a strongly prime Jordan system satisfying

a homotope polynomial identity is simple with finite capacity. We also prove that if a

Jordan system satisfies a homotope polynomial identity it also satisfies a strict homotope
polynomial identity.
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Introduction

Polynomial identities play a fundamental role Zelmanov’s structure theory of
Jordan systems and even more explicitely in D’Amour and McCrimmon’s cuadratic
extension. Those results lead, in its applications to problems concerning strongly
prime systems to the case-splitting of PI-systems and non-PI (hence hermitian) sys-
tems. For algebras, the efectiveness of this approach lies in the possibility of reducing
the the study in PI-case to the study of algebras with finite capacity thanks to the
analogue of Posner-Rowen’s theorem for Jordan algebras [4]. For Jordan pairs and
triple systems, in view of D’Amour and McCrimmon’s results [2], the distinction is
based on the notion of homotope polynomial identity (see [1]). Here there is also a
weak analogue of Posner-Rowen’s theorem proved in [17] that allows the use of socle-
related techniques and that makes use of the extended centroid, and its attached
central extension, the extended central closure, rather than of the usual central clo-
sure. That the stronger version with the cnetral closure holds was cojectured in [17]
and its proof is the aim of the present paper.

Before addressing that problem, we turn to the original weak version of the
theorem that makes use of the extended central closure [17]. Although the result
immediately follws from the results of [17] if the system strictly satisfies a homotope
polynomial identity, the proof of the more general case, where the identity is not sup-
posed to hold strictly, requires some extra work. We complete that proof in section
1. In section 2 we prove that a nondegenerate Jordan pair satisfying a homotope
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polynomial identity, strictly satisfies some homotope polynomial identity, but, un-
less what one obtains with the usual linearization process, which does not preserve
homotope polynomials, the homotope polynomial identity strictly satisfied by the
system has bigger degree that the original identity. This does not make superfluous
the general case considered before, since its proof is based on that result.

Finally, in section 3, we prove that in a strongly prime homotope-PI Jordan
system J , for every nonzero ideal I of J there is an element γ belonging to the
centroid (and to the multiplication algebra of J) such that γJ ⊆ I, which yields the
analogue of Posner-Rowen’s theorem for Jordan systems.

0. Preliminaries

Throughout Φ will be a fixed unital commutative ring.

0.1 We will work with Jordan pairs, triple systems, and algebras over Φ. We
refer to [7, 8, 15] for notation, terminology, and basic results. We record in this
section some of those notations and results.

A Jordan algebra J has products x2 and Uxy, quadratic in x and linear in y,
whose linearizations are x ◦ y = Vxy = (x + y)2 − x2 − y2, and Ux,yz = Vx,zy =
{x, z, y} = Ux+yz − Uxz − Uyz, respectively

A Jordan Pair V = (V +, V −) has products Qxy for x ∈ V σ and y ∈ V −σ, σ = ±,
with linearizations Qx,zy = Dx,yz = {x, y, z} = Qx+zy −Qxy −Qzy.

A Jordan triple system T has products Pxy whose linearizations are Px,yz =
Lx,zy = {x, z, y} = Px+yz − Pxz − Pyz.

A Jordan algebra gives rise to a Jordan triple systems with P = U . If a Jordan
triple systems has an element 1 with P1 = Id, the identity, then it is a unital Jordan
algebra with square x2 = Px1.

We will make use of the identities of Jordan pairs (and their corresponding triple
versions) proved in [8], and of the identities of Jordan algebras proved in [7]. We refer
to those identities by the labellings JPx of [8] and QJx of [7].

0.2 Doubling a Jordan triple system T produces a Jordan pair V (T ) = (T, T )
with Qxy = Pxy. Reciprocally, each Jordan pair V = (V +, V −) gives rise to a
polarized triple system T (V ) = V + ⊕ V − with product Px+⊕x−y

+ ⊕ y− = Qx+y− ⊕
Qx−y

+. Niceness conditions such as nondegeneracy, primeness, strong primeness
and others are inherited by the polarized triple system of a Jordan pair. However
this does no longer hold in the reverse direction, from Jordan triple systems to their
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double Jordan pairs. To remedy that situation, D’Amour and McCrimmon [1, p.
229], and Anquela and Cortés [3, p. 667] defined tight doubles:

Given a Jordan triple system T , a tight double of T is a quotien pair V (T )/I =
(T/I+, T/I−) where I is an ideal (I+, I−) of V (T ) which is maximal with respect to
I+ ∩ I− = 0 (so that the Iσ are semi-ideals of T , but they may not be ideals). These
always exist and share niceness properties with T (see 5.2 and 5.3 of [3]). Moreover,
for a strongly prime J , the ideal I is unique up to the exchange involution: if V (J)/L
is another tight double, then either L = I or Lop = (L−, L+) = I [18, 0.2].

0.3 Let V = (V +, V −) be a Jordan pair over Φ. Recall that the centroid Γ(V )
of V is the set of all pairs γ = (γ+, γ−) ∈ EndΦ(V +)× EndΦ(V −) which satisfy:

γσQxσ = Qxσγ−σ, γσLxσ,y−σ = Lxσ,y−σγσ and Qγσ(xσ) = (γσ)2Qxσ ,

for all xσ ∈ V σ, y−σ ∈ V −σ, and σ = ±.

For a Jordan triple J , the centroid and the outer centroid consist of the sets
of Φ-endomorphisms γ : J → J which satisfy the versions of the above equalities
without superscripts.

If J is a Jordan system (pair or triple) Γ(J) is a reduced commutative ring if J
is nondegenerate, a domain actig faithfully on J if J is strongly prime, and a field if
J is simple [14]. In case J is strongly prime we can always form the central closure
Γ(J)−1J , which is a system of the same type as J over the field Γ(J)−1Γ(J).

The centroid of a Jordan algebra J is defined similarly as for Jordan triple
systems, but taking into account the squaring of J : a Φ-linear γ : J → J will belong
to the centroid if, in addition to the above equalities, it satisfies

(γ(x))2 = γ2x2 and γ(x) ◦ y = γ(x ◦ y),

for all x, y ∈ J .

For linear Jordan algebras (1
2 ∈ Φ), there is also a classical notion of center, which

has been recently extended to quadratic Jordan algebras in two different directions:
the scalar center, and the weak center (see [6]). Here we will only make use of the
latter, since it is linked to polynomial identities (although in the situations that we
will consider, both notions coincide [6, Theorem 6]). An element z ∈ J belongs to
the weak center Cw(J) of J if the operators Uz and Vz belong to the centroid of J .

0.4 Let J be a Jordan triple system. The multiplication algebra of J , denoted
M(J), is the subalgebra of EndΦ(J) generated by all Px and Lx,y for all x, y ∈ J . We
denote the unital version, generated by M(J) and the identity mapping, by M1(J).
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For a Jordan pair V , the multiplication algebra M(V ) is defined as the subal-
gebra of

End(V + ⊕ V −, V + ⊕ V −) =
(

End(V +) Hom(V −, V +)
Hom(V +, V −) End(V −)

)
generated by all(

0 Qx+

0 0

)
,

(
0 0

Qx− 0

)
,

(
Dx+,x− 0

0 0

)
,

(
0 0
0 Dx−,x+

)
,

with x+ ∈ V + and x− ∈ V −. So, in fact, we have that the multiplication algebra of
the Jordan pair V is just the multiplication algebra of its attached polarized Jordan
triple system T (V ): M(V ) = M(T (V )).

The subalgebra of End(V −⊕V −) generated by M(V ) and the identity mapping
will be denoted by M1(V ), and called the unital multiplication algebra.

If V is a Jordan pair, we can make the identifications:

Γ(V ) ⊆ Γout(V ) ⊆
(

End(V +) 0
0 End(V −)

)
⊆ End(V − ⊕ V −),

and view Γ(V ) and Γout(V ) as subsets of Γ(T (V )) and Γout(T (V )) respectively. More
precisely, one has:

0.5 Lemma. Let V be a Jordan pair. If V is nondegenerate, Γ(V ) can be
identified to Γ(T (V )) via

γ = (γ+, γ−) 7→ γ+ ⊕ γ−.

Proof: If 0 6= (γ+, γ−) ∈ Γ(V ), it is clear that 0 6= γ+ ⊕ γ− ∈ Γ(T (V ),
and the above mapping defines a monomorphism. To see that it is surjective, take
γ ∈ Γ(T (V )). For x+ ∈ V + write γ(x+) = y+ ⊕ y− with yσ ∈ V σ, σ = ±. Then, for
all a+ ∈ V + we have 0 = γ(Pa+x+) = Pa+γ(x+) = Qa+y−. therefore QV +y− = 0,
and y− = 0 follows from the nondegeneracy of V . Thus γ(V +) ⊆ V +, and similarly
γ(V −) ⊆ V −. Thus γ = γ+ ⊕ γ− for the restrictions γ+, γ− of γ.

0.6 Let (V +, V −) be a Jordan pair and a ∈ V σ, where σ = ±. The a-
homotope of V , denoted by (V −σ)(a), is the Jordan algebra over the Φ-module
V −σ with operations U (a)

x−σy
−σ = Qx−σQay

−σ (linearized to {x−σ, y−σ, z−σ}(a) =
{x−σ, Qay

−σ, z−σ}), and (x−σ)2 = Qx−σa (linearized to x−σ◦(a)y
−σ = {x−σ, a, y−σ}.

The set Ker a of all x−σ ∈ V −σ such that Qax
−σ = QaQx−σa = 0 (or simply

Qax
−σ = 0 if V is nondegenerate) is an ideal of (V −σ)(a), so that the quotient
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V −σ
a = (V −σ)(a)/Ker a is again a Jordan algebra. This is called the local algebra of
V at a.

For triple systems and Jordan algebras, homotopes and local algebras are defined
in the same way: just delete the superscripts σ from the previous definitions. We
refer to [1] for a thorough study of local algebras.

Local algebras of Jordan pairs can be viewed through the theory of subquotients
as developed by Loos and Neher [12]: If V = (V +, V −) is a Jordan pair and M ⊆ V σ

is an inner ideal of V , the subquotient of V determined by M is the pair S given by
Sσ = M and S−σ = V −σ/KerV M , where KerV M (or simply KerM if there is not
ambiguity) is the set of x ∈ V −σ for wich QMx = QMQxM = 0. (Again, the second
condition is superfluous if V is nondegenerate.)

When M = Φa + QaV
−σ is the principal ideal determined by a ∈ V σ, the

subquotient S determined by M in V has S−σ = V −σ
a , and S is isomorphic to the

double (V −σ
a , V −σ

a ) (see [16, 0.4]). Moreover, if a ∈ V σ is regular, we can complete
it to an idempotent e = (e+, e−) with eσ = a, and the subquotient determined by M
is (isomorphic to) the Peirce space V2(e) [12, 1.12].

0.7 We denote by κ(J) the capacity [11] of a Jordan system J (defined as the
capacity of the Jordan pair V (J) for algebras and triple systems). Recall [16, 0.7]
that if V = (V +, V −) is a Jordan pair, σ = ±, and a ∈ V σ, κ(V −σ

a ) equals the rank
rk(a) of a [10], and therefore, the socle Soc(V σ) of V can be characterized as the set
of all a ∈ V σ whose local algebra has finite capacity: κ(V −σ

a ) <∞.

recall that an idempotent e = (e+, e−) of a Jordan pair V is principal if its Peirce
0-component is zero V0(e) = 0. If V has capacity, this is equivalent to the fact that
rk(e) = κ(V ).

0.8 We finally mention some facts from Jordan PI-theory. Recall that a polyno-
mial f(x1, . . . , xn) ∈ FJ[X], the free Jordan algebra on the set X, is called essential if
its image in the free special Jordan algebra SJ[X] under the natural homomorphism
has a monic leading term (as an associative polynomial). A Jordan PI-algebra is a
Jordan algebra which satisfies some essential f(x1, . . . , xn). From [4, 1.1 and 5.2]
together with Corollary to Theorem 3 of [11], analoges of Kaplansky’s Theorem and
Posner’s Theorem follow:

0.9 Theorem. Let J be a Jordan PI-algebra. If J is primitive then it is simple
with finite capacity. If J is strongly prime, then the central closure Γ−1J is simple
with finite capacity.

Moreover, this has been extended to nondegenerate Jordan algebras in the fol-
lowing analogue of Posner-Formanek-Rowen’s theorem [5, 3.6]:
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0.10 Theorem. Let J be a nondegenarate Jordan PI-algebra. Then any nonzero
ideal I of J hits Cw(J): Cw(J) ∩ I 6= 0.

0.11 The operant notion of Jordan PI-triple system or pair, is that of homotope-
PI triple system or pair. We will use the notations of [1] and [3]. In particular, if
f(x1, . . . , xn) is a polynomial in the free Jordan algebra FJ[X] on a countable set
of generators X, and z is an element of the free Jordan triple system FJT[X], the
polynomial

f(z;x1, . . . , xn) = f (z)(x1, . . . , xn)

is the image of f under the only homomorphism FJ[X] → FJT[X](z) extending the
identity on X. If T (X) ⊆ FJ(X), and Y ⊆ FJ[X], we denote by T (Y ;X) the subset
of FJT[X] formed by the polynomials f(y;x1, . . . , xn) for f(x1, . . . , xn) ∈ T (X) and
y ∈ Y .

A Jordan triple system T satisfies a homotope polynomial identity (homotope-
PI, for short) if there is a polynomial f(x1, . . . , xn) in FJ[X] whose image in the free
special Jordan algebra SJ[X] has a monic term of highest degree (as an associative
polynomial) and such that the polynomial f(y;x1, . . . , xn) with y ∈ X different from
the xi, vanishes under all substitutions of elements y, xi ∈ T .

That definition extends to Jordan pairs V by considering their associated triple
system T (V ). Notice that, since for all a+ ⊕ a− ∈ T (V ) the homotope T (V )(a

+⊕a−)

is isomorphic to the product V +(a−) × V −(a+), a polynomial f(x1, . . . , xn) ∈ FJ[X]
is an identity of all homotopes of T (V ) if and only if it is an identity of all homo-
topes of V . We can rephrase it in the following way. Choose disjoint sets X+ and
X−, and bijections X → Xσ, x 7→ xσ, σ = ±, and consider the free Jordan Pair
FJP[X+, X−] (see [19]). For any y−σ ∈ X−σ, there is a homomorphism ψy−σ :
FJ[X] → FJP[X+, X+]σ(y−σ) induced by the bijection X → Xσ. We denote the
image of a polynomial h = h(x1, · · · , xn) ∈ FJ[X] by ψy−σ (h) = h(y−σ;xσ

1 , . . . , x
σ
n).

Now if V and f are as before, setting fσ = f(y−σ;xσ
1 , . . . , x

σ
n) ∈ FJP[X+, X−]σ for

σ = ±, where yσ ∈ Xσ and yσ 6= xσ
i , f(y;x1, . . . , xn) is an identity of T (V ) if and

only if (f+, f−) is an identity of V .

0.12 The fact that a Jordan system J satisfies a homotope-PI means that all
homotopes, hence all local algebras, satisfy a given identity. Often, we are interested
in a weaker assertion, the existence of some a ∈ J for wich the local algebra Ja is
PI. We call such an element a PI-element, and write PI(J) for the set of PI-elements
of J (PI(V ) = (PI(V +),PI(V −)) if J = V = (V +, V −) is a Jordan pair). Thus, the
fact that J has a nonzero PI-element can be abbreviated to PI(J) 6= 0. We recall
here the main results of [16].
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0.13 Theorem. Let J be a nondegenerate Jordan system. Then PI(J) is an
ideal of J .

A Jordan system J is said to be rationally primitive if it is primitive and has
a nonzero PI-element. This is the Jordan analogue of strongly primitive associative
algebras. Rational primitivity is characterized in the following analogue of Amitsur’s
theorem on generalized identities [16, Theorems 4.5 and 4.6]

0.14 Theorem. Let J be a Jordan system. The following are equivalent

(a) J is rationally primitive,

(b) J is strongly prime and Soc(T ) = PI(T ) 6= 0

(c) J is strongly prime and the local algebra at some nonzero element is a simple
unital PI-algebra.

As a consequence one has an analogue for Jordan systems of Kaplansky’s the-
orem, with homotope polynomial identities on Jordan systems playing the role of
polynomial identities on algebras.

0.15 Theorem. Let J be a primitive Jordan pair or triple system.

(i) If the local algebra at each element of J is PI, then J is simple equal to its socle.

(ii) If J satisfies a homotope-PI, then J is simple with finite capacity.

1. Local PI-theory and prime Jordan systems

1.1 Strongly prime Jordan systems having nonzero PI-elements have been stu-
dided in [17]. Their description makes use of the notions of extended centroid C(J)
and of extended central closure C(J)J of a (quadratic) Jordan system J , for which we
refer to [17]. With these notions, the main result on strongly prime Jordan systems
with nonzero PI-elements is [17, theorem 5.1 ]

1.2 Theorem. Let J be a strongly prime Jordan system. If PI(J) 6= 0, then
the extended central closure C(J)J of J is rationally primitive; hence it has nonzero
socle equal to PI(C(J)J), and PI(J) = J ∩ Soc(C(J)J).

1.3 Let J be a nondegenerate Jordan system. The centroid Γ(J) of J can be seen
in a natural way as a subring of the extended centroid C(J). If, in addition, J is prime,
then C(J) is a field [17, 1.15], and the field of fractions Γ(J)−1Γ(J) is contained in
C(J). Therefore, one can define a monomorphism Γ(J)−1J = Γ(J)−1Γ(J)⊗Γ(J) J →
C(J)J in the obvious way, and view the central closure Γ(J)−1J as a subsystem of
the extended central closure C(J)J . Moreover, both systems coincide if and only if
Γ(J)−1Γ(J) = C(J).
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1.4 Extended central closures are very close to the original systems since, for
instance, nonzero inner ideals of the extended central closure always hit the original
algebra. A more precise picture of that proximity can be obtained by using the notion
of denominator inner ideal of an element ã ∈ J̃ of an extension J̃ ⊆ J into an ideal
I of J , DJ(ã, I) [17], consisting of the set of x ∈ J such that the elements Pxã, Pãx

and the sets PxPãJ , PãPxJ , Lx,ãJ and Lã,xJ (together with x ◦ ã, Uxã
2 and Uãx

2 if
J is an algebra) are all contained in I. When I = J this is simply denoted DJ(ã).

One can then introduce the following notion, defined originally for algebras in
[5]:

Let J ⊆ J̃ be Jordan systems. Then J̃ will be called an innerly tight extension
of J if it satisfies:

(T1) PãJ ∩ J 6= 0 for all ã ∈ J̃

(T2) DJ(ã) is an essential inner ideal of J for all ã ∈ J̃ .

1.5 Lemma. If J is a nondegenerate Jordan system, its extended central closure
is in an innerly tight extension of J .

Proof: By [17, 4.3(2)], for all a ∈ C(J)J , DJ(ã) contains an essential ideal
of J . From this, T2 follows. To have T1 it suffices to show that for any essential
ideal I of J , PãI = 0 implies ã = 0. Now, PãI = 0 implies PãC(J)J = 0, hence
ã ∈ annC(J)J(C(J)I). Thus annC(J)J(C(J)I) is a nonzero ideal of C(J)J , and by
tightness [17, 3.8] 0 6= J ∩ annC(J)J(C(J)I) ⊆ annJ(I) which contradicts essentiality
of I, since an essential ideal in a nondegenerate system has zero annihilator.

1.6 Remark: A stronger version of T2 is, in fact, satisfied by the extended
central clodure: If I is an essential ideal of a Jordan triple system J , then, for any
ã ∈ C(J)J , DJ(ã, I) contains an essential ideal of J . For a Jordan pair V , any essential
ideal I of V , and any ã ∈ C(V )V σ, considering the attached polarized system T (V ),
and taking into account the obvious identification T (C(V )V ) = C(T (V ))T (V ) (see
3.9 of [5]), and that if, say, σ = +, DT (V )(ã⊕ 0, I+ ⊕ I−) = V + ⊕DV (ã, I), we also
have that DV (ã, I) contains the (−)-part of an essential ideal of V .

1.7 Lemma. Let J ⊆ J̃ be an innerly tight extension of Jordan systems, and
assume that ã ∈ Soc(A). Then there is an element a ∈ PãJ ∩ J with rk(a) = rk(ã).

Proof: First note that if J ⊆ J̃ is an innerly tight extension of Jordan triple
systems, then V (J) ⊆ V (J̃) is an innerly tight extension of Jordan pairs, therefore it
suffices to prove the result for Jordan pairs.

Thus set J = (V +, V −) ⊆ J̃ = (Ṽ +, Ṽ −), and suppose that ã ∈ Ṽ +. Since ã ∈
Soc(J̃) we can complete ã to an idempotent e = (e+, e−) with e+ = ã. Take a strong
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frame F = {e1, . . . , en} of Ṽ2(e). Since the extension is innerly tight, for i = 1 . . . , n
we can find elements 0 6= ci = Qe−

i
xi ∈ Qe−

i
V +∩V +. Now, QciV

+ is a nonzero inner
ideal, so again by inner tightness, there is a nonzero bi = Qci

yi ∈ Qci
V + ∩ DJ(ã).

Set ai = Qe+bi = Qãbi ∈ V + ∩Qe+V −, and a = a1 + · · ·+ an = Qã(b1 + · · ·+ bn) ∈
V + ∩QãV

−.

Since bi ∈ Qe−
i
V + = V −2 (ei) ⊆ V −2 (e), we have Qe−ai = Qe−Qe+bi = bi 6= 0,

hence ai 6= 0, and 1 ≤ rk(Qe−ai) = rk(Qe−Qe+bi) = rk(bi) = rk(Qci
yi) ≤ rk(ci) (by

[10, Proposition 3(5)]) = rk(Qe−
i
xi) (by [10, Proposition 3(5)]) ≤ rk(ei) = 1. Thus

1 ≤ rk(ai) = rk(Qe+Qe−ai) ≤ rk(Qe−ai) (by [10, Corollary 1(a)]) = 1. Therefore
rk(ai) = 1 for all i, and rk(a) = rk(a1) + · · ·+ rk(an) = n (by [10, Proposition 3(7)],
since ai ∈ V +

2 (ei), and ei ⊥ ej for i 6= j implies ai ⊥ aj).

Now we can complete the proof of [17, 6.1]:

1.8 Theorem. Let J be a strongly prime Jordan system (triple, pair or alge-
bra).

(i) If the local algebra at each element of J is PI, then the extended central closure
of J is simple, equal to its socle.

(ii) If J satisfies a homotope PI f (y) = 0 for an essential f of degree less than or
equal to n, then the extended central closure of J is simple with finite capacity
at most n.

Proof: (i) By [17, 5.1], C(J)J is rationally primitive with Soc(C(J)J) =
PI(C(J)J). Also J = PI(J) ⊆ PI(C(J)J), and since PI(C(J)J is an ideal over C(J)
(in fact, over the centroid of C(J)J), we have C(J)J = C(J)PI(J) ⊆ C(J)PI(C(J)J) =
PI(C(J)J), hence C(J)J = PI(C(J)J) = Soc(C(J)J), is simple, equal to its socle.

(ii) By (i), J̃ = C(J)J is simple, equal to its socle. We can always assume that
the essential f is multilinear. We claim that the rank of each element of J̃ is at most
n.

Indeed, take an arbitrary ã ∈ J̃ . By 1.7, there exists some b ∈ PãJ ∩ J with
rk(b) = rk(ã). Now, Jb ⊆ J̃b is a scalar extension, hence J̃b satisfies f = 0. By [17,
2.1] we have κ(J̃b) ≤ n, and since κ(J̃b) = rk(b), we get rk(ã) = rk(b) ≤ n.

Having a common bound for the rank of all its elements implies by [16, 4.9] that
J has finite capacity. Now, if e ∈ V (J̃) is a complete idempotent (or e ∈ J̃ , if J̃
is a pair), then the principal length π(V (J̃)2(e)) (see [11]) coincides with rk(e), and
π(V (J̃)2(e)) = κ(V (J̃)2(e)) (by [11, Theorem 3]) = κ(V (J̃)) (by [11, Lemma 5], since
e is principal, hence V (J̃)0(e) = 0) = κ(J̃). Therefore κ(J̃) = rk(e).
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2. Strict homotope polynomial identities

As mentioned before, the linealization process of identities does not produce a
homotope polynomial when applied to a homotope polynomial. As a consequence,
it is not straighforward that a scalar extension of a Homotope-PI Jordan system is
again homotope PI. A homotope-PI f (y) = 0 which is again satisfied by any scalar
extension is said to be a strict homotope polynomial identity and we say that the
system strictly satisfies f (y) = 0 . We show in this section that if a nondegenerate
system satisfied some homotope-PI f (y) = 0, for an essential algebra polynomial f ,
then it strictly satisfies some homotope-PI. It must be pointed out, however, that, in
contrast with what happens with the usual linearization process, the strict homotope-
PI that we find has bigger degree than the original identity.

2.1 We consider the following family of polynomials parametrized by the positive
integer m:

Fm(x, y, z) =
∑

σ∈Sm+1

(−1)σVxσ(1),y · · ·Vxσ(m+1),yz.

of degree (m+2)(m+3)
2 . This is an essential polynomial in the free Jordan algebra

FJ [x, y, z] (see [16, 2.2]). We will also consider Gm(x, y, z) = Fm(x, y, z)3.

2.2 Lemma. Let V be a simple Jordan pair of finite capacity n over a large alge-
braically closed field Ω: |Ω| > dimΩV + 2. Then V satisfies the homotope polynomial
identity G(t)

m (x, y, z) = 0 for all m ≥ n.

Proof: This means that every homotope of V satisfies Gm = 0 for all m ≥ n,
and since for any element a of V the local algebra at a is the quotient of the a-
homotope by an ideal with cube zero, it suffices to show that every local algebra
satisfies Fm = 0 for m ≥ n.

Now take a in V , a ∈ V + say. Then, the local algebra V −a has finite capacity
κ(V −a ) = rk(a) ≤ n (0.7), and V −a is a Jordan algebra over Ω which is large for V −a :
|Ω| > dimΩV + 2 ≥ dimΩV

−
a + 2. Thus by [16, 2.4], V −a satisfies Fm = 0 for all

m ≥ n.

2.3 Lemma. let V be a simple Jordan pair with finite capacity, and let e ∈ V be
a complete idempotent such that V +

e− satisfies a polynomial identity of degree n. Then
V strictly satisfies the homotope polynomial identity G(t)

m (x, y, z) = 0 for m ≥ n.

Proof: Take an algebraically closed field extension Ω of Γ(V ) (which is a field
since V is simple) with cardinaltity |Ω| > dimΓ(V )V + 2, and form a tight scalar
extension Ṽ = ΩV . We have dimΩṼ ≤ dimΓ(V )V , hence |Ω| > dimΩṼ + 2, and Ω is
large for Ṽ .
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Now the local algebra Ṽ +
e− is a scalar extension of V +

e− , and therefore it satisfies
a PI of degree n. Then PI(Ṽ ) 6= 0, hence PI(Ṽ ) = Ṽ (since Ṽ is simple), and Ṽ is
primitive: it has a nonzero idempotent e, and V +

0 (e) is easily seen to be a primitizer
with modulus (e+, e−) (the argument is the same as in [3, 3.5]). Thus, Ṽ is rationally
primitive, hence Ṽ = PI(Ṽ ) = Soc(Ṽ ) by 0.14. On the other hand e is also a complete
idempotent of Ṽ (since the projection onto the 0-Pierce component, the Bergmann
operator Be+,e− = IdV +−Le+,e−+Qe+Qe− , vanishes on V , hence on Ṽ by linearity).
Thus κ(Ṽ ) = κ(Ṽ2(e)) (by [11, Theorem 3]) = κ(Ṽ +

e−) (by 0.6) ≤ n (by [16, 2.1], since
Ṽ +

e− satisfies an identity of degree n). By 2.2, Ṽ satisfiesG(t)
m (x, y, z) = 0 for allm ≥ n,

and since Ω is infinite, Ṽ strictly satisfies that identity.

2.4 Lemma. Let V be a strongly prime Jordan pair. If V satisfies a homotope
PI f (y) = 0 for some essential f of degree n, then V strictly satisfies G(t)

m (x, y, z) = 0
for m ≥ n.

Proof: By 1.8(ii), the extended central closure C(V )V of J is simple with
capacity at most n. Now, if e ∈ C(V )V is a complete idempotent, we can choose
a ∈ Qe−V

+∩V − with rk(a) = rk(e−) by 1.7, and complete it to an idempotent (b, a)
which is necesarily complete since rk(a) = rk(e−). Therefore we can assume that
e− ∈ V . Now V +

e− ⊆ (C(V )V )+e− is a scalar extension, hence (C(V )V )+e− also satisfies
a polynomial identity of degree n. From 2.3 it follows that C(V )V , hence V , strictly
satisfies G(t)

m (x, y, z) = 0 for m ≥ n.

2.5 Theorem. If a nondegenerate Jordan system J satisfies a homotope PI
f (y) = 0 for an essential f of degree n, then J strictly satisfies G(t)

m (x, y, z) = 0 for
m ≥ n.

Proof: If J is a triple system or an algebra, the pair V (J) satisfies the same
strict homotope identities as J , and is again nondegenerate, therefore it suffices to
prove the assertion for Jordan pairs.

Since J is nondegenerate, it is a subdirect product of a family of strongly prime
Jordan pairs Ji, i ∈ I, and each Ji satisfies the homotope PI f (y) = 0. By 2.4,
each Ji strictly satisfies G(t)

m (x, y, z) = 0 for m ≥ n, hence J itself strictly satisfies
G

(t)
m (x, y, z) = 0 for m ≥ n.

3. Posner-Rowen Theorem for Jordan systems

If R is a prime associative algebra , and R̃ is its central closure, it is easy to see
that for any ã ∈ R̃, and any z ∈ R̃ with z̄ ∈ Z(R̃ã), there is γ ∈ C(R), the extended
centroid of R, such that z̄r̄ = γr̄ for all r̄ ∈ R̃ã. It was proved in [17; 5.12] that,
for Jordan systems, the centroid of a local algebra at a PI-element of the extended
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central closure can also be related to the extended centroid of the system. We quote
that result in the following Lemma.

3.1 Lemma. Let V be a strongly prime Jordan pair, and let Ṽ = C(V )V be its
extended central closure. Then, for any ã ∈ PI(Ṽ ), the local centroid Γã = Γ(Ṽã) has
Γ4

ã ⊆ C(V ).

3.2 Theorem. Let V be strongly prime Jordan pair satisfying a homotope
polynomial identity. If I is a nonzero ideal of V , there is a nonzero γ ∈ Γ(V )∩M(V )
such that γV ⊆ I.

Proof: By 1.8(ii), the extended central closure Ṽ = C(V )V is simple of finite
capacity. We can take an element ã ∈ Ṽ + of rank rk(ã) = κ(Ṽ ). Since V ⊆ Ṽ is an
innerly tight extension by 1.5, we can find an a ∈ V such that rk(a) = rk(ã) by 1.7.
Now, since Ṽ has finite capacity, we can comlete a to an idempotent e = (e+, e−) ∈ Ṽ
with e+ = a. Since rk(a) = κ(Ṽ ), e is a complete idempotent and therefore it induces
a Peirce decomposition Ṽ = Ṽ2(e)+Ṽ1(e). For x̃ ∈ Ṽ we denote by x̃i ∈ Ṽi(e), i = 1, 2
its Peirce components.

Now, by 1.6 there is a nonzero ideal L of V such that L+ ⊆ DV (e−, I). Set
N = I ∩ L, which is a nonzero ideal of V . Since V satisfies a homotope PI, the
local algebra V −a is PI. We denote with bars the images of elements of V − in V −a .
Now, with the usual notational convention, N−

a is a nonzero ideal of V −a , hence by
0.10 there is z ∈ N− such that 0 6= z̄ = z + Kera ∈ Cw(V −a ). Note now that
z2 = Qe−Qaz ∈ Qe−QaL

− ⊆ Qe−L
+ ⊆ Qe−D(e−, I) ⊆ I− and z̄ = z̄2 so that we

can assume that 0 6= z = z2 ∈ Ṽ2(e)− ∩ I−.

By 3.1 , we have Γ(Ṽ −a )4 ⊆ C(V ), that is, for any µ ∈ Γ(Ṽ −a ) there exists δ ∈ C(V )
such that for any x− ∈ Ṽ −, µ4(x̄−) = δx̄−. In particular, since Uz̄ ∈ Γ(V −a ) and
V −a ⊆ Ṽ −a is a scalar extension, Uz̄ ∈ Γ(V −a ) implies Uz̄ ∈ Γ(Ṽ −a ), and there is
δ ∈ C(V ) such that U4

z̄ ē
− = δe−. Now 0 6= U4

z̄ ē
− = z̄8, hence, setting c = z(8,a), we

get 0 6= c̄ = δē−. Moreover, since z ∈ Ṽ2(e)− ∩ I−, we also have c ∈ Ṽ2(e)− ∩ I−.
Therefore c̄ = δē− implies Qac = Qaδe

− = δa, hence 0 6= c = c2 = Qe−Qac =
δQe−a = δe−.

We define a pair of mappings γσ : V σ → V σ, σ = ±, by

γ+(x+) = {Qac, c, x
+} −QaQcx

+

fro x+ ∈ V +, and
γ−(x−) = {c,Qac, x

−} −QcQax
−

for x− ∈ V −.
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Then, computing in Ṽ , we get γ+(x+) = {Qe+δe−, δe−, x+} − Qe+Qδe−x
+ =

δ2({e+, e−, x+}−Qe+Qe−x
+) = δ2(2x+

2 +x+
1 −x

+
2 ) = δ2x+, and similarly, γ−(x−) =

δ2x−. It follows then that 0 6= γ = (γ+, γ−) ∈ Γ(V ), and since c ∈ I we have γV ⊆ I,
and clearly γ ∈M(V ).

We include the previous results in:

3.3 Theorem. Let J be a strongly prime Jordan pair or triple system satisfying
a homotope PI, then for any nonzero ideal I of J there is a nonzero γ ∈ Γ(J)∩M(J)
such that γ(J) ⊆ I. In particular, the extended centroid C(J) of J coincides with the
field of fractions Γ(J)−1Γ(J), and the central closure Γ(J)−1J is simple with finite
capacity. Moreover, if the homotope polynomial identity is f (y) = 0 for some essential
algebra polynomial f of degree d, then the capacity of Γ(J)−1J is at most d.

Proof: The first assertion for Jordan pairs in 3.2. Let us then assume that J is
a Jordan triple system. Take the double V (J) of J , and a tight double W = V (J)/L
for some ideal L = (L+, L−) of V (J). We distinguish two cases, according to whether
L = 0 or 6= 0.

Case L = 0. Here W = V (J) is already tight, hence V (J) is strongly prime,
and it satisfies the same homotope PI as J . Now, if I is a nonzero ideal of J ,
then V (I) = (I, I) is a nonzero ideal of V (J), and by the pair case, there is a
nonzero γ ∈ Γ(V (J))∩M(V (J)) such that γV (J) ⊆ V (I), i.e. if γ = (γ+, γ−), then
γσ ∈ M(J) and γσJ ⊆ I, for σ = ±. Set δ = γ+γ−. If we write γ∗ = (γ−, γ+),
then γ∗ ∈ Γ(V (J)), which is a commutative ring, hence γγ∗ = γ∗γ, and we have
γ+γ− = γ−γ+, and γ∗γ = (δ, δ). From this it readily follows that δ ∈ Γ(J), and we
also have δ ∈M(J), and δJ ⊆ I.

Case L 6= 0. Take L̃ = L+ ⊕ L−, which is an ideal of J , then V (L̃)/L = ((L+ ⊕
L−)/L+, (L+ ⊕ L−)/L−) is an ideal of W which is isomorphic to (L−, L+) = Lop as
a Jordan pair since L+ ∩ L− = 0. We denote by η = (η+, η−) : V (L̃)/L→ Lop that
isomorphism. Now, by the pair case considered above, since W is strongly prime
with a homotope PI, there is γ0 = (γ+

0 , γ
−
0 ) ∈ Γ(W ) ∩M(W ) with γ0W ⊆ V (L̃)/L.

Define γ1 : J → J by γ1(x) = η+(γ+
0 (x+L+))+η−(γ−0 (x+L−)) ∈ L−⊕L+ = L̃ ⊆ J .

It is easy to see that γ1 is then a nonzero element of Γ(J) and it satisfies γ1J ⊆ L̃.

Now let I be a nonzero ideal of J . By primeness, I ∩ L̃ is a nonzero ideal of J ,
and K = L̃∗(I∩L̃) = PL̃(I∩L̃)+PJPL̃(I∩L̃) is a nonzero ideal of J [13, p. 221], and
a polarized ideal of L̃: K = K+⊕K− with Kσ = PLσ (I ∩ L̃)+PJPL−σ (I ∩ L̃) ⊆ Lσ,
σ = ±. Now, Lop = (L−, L+) is a strongly prime Jordan pair with a homotope
PI since it is isomorphic to the ideal V (L̃)/L of W . Then, by the pair case, there
is a nonzero δ = (δ+, δ−) ∈ Γ(Lop) ∩ M(Lop) such that δLop ⊆ (K+,K−). Set
µ = δ+ ⊕ δ− : L̃ → L̃. then µ ∈ Γ(L̃), and µL̃ ⊆ K+ ⊕ K− = K ⊆ I. Now,
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consider γ = µγ2 with γ2 = γ2
1 , and γ1 as before. Then γ ∈ Γ(J): Indeed, if

x, y ∈ J , γ2Pγ(x)y = γ2Pµγ2(x)y = Pµγ2(x)γ2(y) = µ2Pγ2(x)γ2(y) (since µ ∈ Γ(L̃) and
γ2(J) ⊆ L̃) = µ2γ2

2(γ2Pxy) = (γ2µ)2γ2Pxy (since Γ(L̃) is commutative, and γ2J ⊆ L̃)
= γ2(µγ2)2Pxy. Therefore γ2(Pγ(x)y − γ2Pxy) = 0, hence Pγ(x)y = γ2Pxy since J
does not have Γ(J)-torsion. Similarly it is easy to see that γ2

2Pxγ(y) = γ2
2γPxy,

hence Pxγ(y) = γPxy for all x, y ∈ J , and that γ2
2{x, y, γ(z)} = γ2

2γ{x, y, z}, hence
{x, y, γ(z)} = γ{x, y, z} for all x, y ∈ J .

Also, the element γ ∈ Γ(J) has γJ = µγ2J ⊆ µL̃ ⊆ I. Thus, it only remains to
show that γ ∈M(J). To see that, consider the subalgebraML̃(J) ofM(J) generated
by all operators Px and Lx,y defined on J , for x, y ∈ L̃. Restriction to L̃ defines a
homomorphism φ : ML̃(J) → M(L̃) which is obviously surjective. Moreover, if
F ∈ ML̃(J) has φ(F ) = 0, then γ1F = Fγ1 = φ(F )γ1 = 0, hence F = 0, and
therefore φ is an isomorphism. Now µ ∈ M(L̃) has φ−1(µ) =

∑
M1 · · ·Mn, a

sum of compositions of elements Mi = Pxi or Lxi,yi with xi, yi ∈ L̃. Therefore
γ = µγ2 = φ−1(µ)γ2 =

∑
M1 . . . (Mnγ2) ∈ M(J), since Mnγ2 ∈ M(J): indeed,

Pxγ2 = Pxγ
2
1 = Pγ1(x) ∈M(J), and Lx,yγ2 = Lx,yγ

2
1 = Lγ1(x),γ1(y) ∈M(J).

Finally, to see that C(J) is the field of fractions of J for a Jordan pair or triple
system, take λ ∈ C(J) and a representative (f, I) ∈ λ. By what we have proved, there
is a nonzero γ ∈ Γ(J) with γJ ⊆ I. Then it is straighforward that δ = λγ ∈ C(J) has
a representative whose domain is J , hence δ ∈ Γ(J), and λ = δγ−1 ∈ Γ(J)−1Γ(J).

As mentioned in 1.3 this implies that the natural inclusion of Γ(J)−1J into C(J)J
is an isomorphism, and therefore that Γ(J)−1J is simple with finite capacity (at most
the degree d of f) by 1.8.
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