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Abstract. T*-categories are introduced as a ternary generalization of C*-categories. Their
linking C*-categories are constructed and the Gelfand-Naimark representation theorems of Zettl
for C*-ternary rings and for W*-ternary rings, are generalized to T*-categories. Biduals of C*-
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1. Introduction and Preliminaries

1.1. Introduction. To provide motivation for this paper, consider a C*-algebra A and an
idempotent linear map P : A → A. If A is unital and P is completely positive and unital,
then P (A) is a C*-algebra with the product a · b = P (ab) for a, b ∈ P (A), [3]. If instead P is
just positive and unital, then P (A) is a Jordan C*-algebra (=JB*-algebra) with the product
a◦b = P ((ab+ba)/2) for a, b ∈ P (A), [8]. Finally, if P is just a contractive projection, then P (A)
is a JB*-triple with the triple product {abc} = P ((ab∗c + cb∗a)/2) for a, b ∈ P (A), [10]. Thus,
by removing a hypothesis on P , one is forced to consider a larger category than the category of
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C*-algebras and completely positive maps. In fact, the category of JB*-algebras is stable under
the action of a positive projection and the category of JB*-triples is stable under the action of
a contractive projection, [6, Theorem 3.3.1],[13, Theorem 14.4.1],[4, Theorem 5.6.59].

Now consider the notion of a C*-category, [11]. It consists of objects X,Y, . . . and morphism
sets Hom(X,Y ) which satisfy a set of axioms relevant to C*-algebras. In particular, in a C*-
category, Hom(X,X) is a C*-algebra. A W*-category was defined to be a C*-category with the
additional requirement that Hom(X,Y ) is the dual space of a Banach space. Sakai’s theorem for
W*-algebras was extended to W*-categories showing that Hom(X,Y ), which is not necessarily
a von Neumann algebra, has a unique predual. In [11], the Gelfand-Naimark theorem for C*-
algebras was extended to C*-categories, and it showed that Hom(X,Y ) is isomorphic to a ternary
ring of operators (TRO). Although this fact was not explicitly mentioned, nevertheless, it was
implicitly suggested by the following quote from [11, pp.79–80]:

Naturally, the idea of using bounded linear mappings between different Hilbert
spaces is such an obvious one that this paper may have many published and
unpublished forerunners quite unknown to the authors. Indeed one of us (J. E.
R.) has been toying with the idea of writing such a paper for many years but
initially felt that the time was not yet ripe for such a development. In any case,
the roots of this development go right back to the beginnings of the theory of
operator algebras and perhaps the basic example of mappings between different
Hilbert spaces are the intertwining operators of representation theory. The set
of such intertwining operators forms a W*-category.

In addition, according to [11, p.79],

There are at present many interesting directions of current research where W*-
categories arise naturally: For example the representation theory of groupoids,
the harmonic analysis of the action of non-Abelian groups on von Neumann
algebras, the action of group duals on von Neumann algebras, and non-Abelian
cohomology in an operator algebraic context.

It is also noteworthy that category theory is being used in physics, see for example [12]. It
thus appears that, in order to take full advantage of the theory which has been developed
for TROs and W*-TROs, it would be beneficial to extend these two concepts to the operator
category setting. We begin that process in this paper, which will be followed by sequel in a
non-associative context [20].

We define a T*-category and a TW*-category, which are modeled on TROs and W*-TROs in
much the same way that C*-categories and W*-categories are modeled on C*-algebras and W*-
algebras. As an example, consider the Murray-von Neumann classification of W*-algebras into
finite and infinite and types I, II, III. As of this writing, no such classification of W*-categories
has been undertaken since the morphism sets (X,Y ) are not necessarily W*-algebras. However,
there is a Murray-von Neumann classification of W*-TROs [21], which can be used to decompose
W*-categories in the same way that W*-algebras can be decomposed into types I,II,III, and
finite, infinite (see Proposition 4.9). Thus, by extending the notion of W*-category to TW*-
category, such a decomposition is possible without leaving the category (see Proposition 4.24).

More precisely, in this paper we give, in section 3, a purely algebraic definition of a “ternary
category” (a concept which seems to have been overlooked in the literature) and construct its
corresponding “linking category.” Turning to “operator categories” we define, in section 4, a T*-
category and show that its linking category is a C*-category. We extend the Gelfand-Naimark
theorem for C*-ternary rings, which characterizes them in terms of TROs, [23, Theorem 3.1],
to T*-categories. We also define a TW*-category and show that its linking category is a W*-
category, and we extend the Gelfand-Naimark theorem for W*-ternary rings, which characterizes
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them in terms of W*-TROs, [23, Theorem 4.1], to TW*-categories. We also show, in section 5,
that the bidual of a C*-category is a W*-category, and the bidual of a T*-category is a TW*-
category.

1.2. Associative triple systems. The following construction is taken essentially verbatim
from [17] (see also [18, pp. 28–30]) and is central to the paper. The complications due to taking
direct sums, which were not necessary in [23], are unavoidable since the module actions defined
in Lemma 1.2(ii) make essential use of the second component and are critical to the proof of the
key Proposition 2.3(iv).

A vector space V with a trilinear map m : V × V × V → V with m(x, y, z), called the triple
product, and denoted by (x, y, z) is called an associative triple system if it satisfies

(x, y, (z, u, v)) = ((x, y, z), u, v) = (x, (u, z, y), v)

for all elements x, y, z, u, v ∈ V . Many examples will appear in this paper. If the base field is the
complex numbers, the triple product is assumed to be conjugate linear in the middle variable.

Let M be an associative triple system with triple product denoted by [hgf ]. Let

E(M) = End (M)⊕ [End (M)]op,

where the notation V for a complex vector space means that the scalar multiplication in V is
(λ, v) ∈ C× V 7→ λ ◦ v = λv.

We shall often denote the products in E(M)op and in [End (M)]op by X ◦Y = Y X. Explicitly,
for A = (A1, A2) and A′ = (A′1, A

′
2) belonging to E(M),

AA′ = (A1, A2)(A
′
1, A

′
2) = (A1A

′
1, A2 ◦A′2) = (A1A

′
1, A

′
2A2),

and for B = (B1, B2) and B′ = (B′1, B
′
2) belonging to E(M)op,

B ◦B′ = (B1, B2) ◦ (B′1, B
′
2) = (B′1, B

′
2)(B1, B2) = (B′1B1, B

′
2 ◦B2) = (B′1B1, B2B

′
2).

Involutions, that is, conjugate linear anti-isomorphisms of order 2, are defined on E(M) by

A = (A1, A2) 7→ A = (A1, A2) = (A2, A1),

so that AA′ = A′A, and

λA = (λA1, λ ◦A2) = (λA1, λA2) = (λA2, λA1) = (λA2, λ ◦A1) = λ A;

and on E(M)op by

B = (B1, B2) 7→ B = (B1, B2) = (B2, B1),

so that B ◦B′ = B′ ◦B and

λB = (λB1, λ ◦B2) = (λB1, λB2) = (λB2, λB1) = (λB2, λ ◦B1) = λ B.

For g, h ∈M , define L(g, h) = [gh·], R(g, h) = [·hg],

`(g, h) = (L(g, h), L(h, g)) = ([gh·], [hg·]) ∈ E(M)

and
r(g, h) = (R(h, g), R(g, h)) = ([·gh], [·hg]) ∈ E(M)op.

Next, define
L = L(M) = span {`(g, h) : g, h ∈M} ⊂ E(M)

and
R = R(M) = span {r(g, h) : g, h ∈M} ⊂ E(M)op.

The next three lemmas follow straightforwardly from the above construction so their proofs
are left to the reader. Their statements have their origins in [17] and are reproduced in [18, pp.
28–30].
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Lemma 1.1. With the above notation

(i): R(f, g)L(h, k) = L(h, k)(R(f, g)1

(ii): `(g, h)`(g′, h′) = `([ghg′], h′) = `(g, [h′g′h])
(iii): r(g, h)◦ r(g′, h′) = r(g, [hg′h′]) = r([g′hg], h′), where, as indicated, the product on the

left is taken in E(M)op.
(iv): L is a *-subalgebra of E(M) and R is a *-subalgebra of E(M)op.

Lemma 1.2. Let A = (A1, A2) ∈ E(M), B = (B1, B2) ∈ E(M)op, and f ∈M . Then

(i): M is a left E(M)-module via

(A, f) 7→ A · f = A1f,

a right E(M)op-module via

(f,B) 7→ f ·B = B1f,

and an (L,R)-bimodule.

(ii): Let M denote the vector space M with the element f denoted by f and with scalar

multiplication defined by (λ, f) 7→ λ ◦ f = λf . Then

M is a left E(M)op-module via

(B, f) 7→ B · f = B2f,

a right E(M)-module via

(f,A) 7→ f ·A = A2f,

and an (R,L)-bimodule.

Thus we have
(AA′) · f = A · (A′ · f) and f · (B ◦B′) = (f ·B) ·B′,
f · (AA′) = (f ·A) ·A′ and (B ◦B′) · f = B · (B′ · f),

(A · f) ·B = A · (f ·B) and (B · f) ·A = B · (f ·A),

where the product B ◦B′ is taken in E(M)op.

Given an associative triple system M , let

A = A(M) = L(M)⊕M ⊕M ⊕R(M)

and write the elements a of A as matrices

a =

[
A f
g B

]
, (A ∈ L(M), B ∈ R(M), f, g ∈M).

Define multiplication and involution in A by

(1.1) aa′ =

[
A f
g B

] [
A′ f ′

g′ B′

]
=

[
AA′ + `(f, g′) A · f ′ + f ·B′
g ·A′ +B · g′ r(g, f ′) +B ◦B′

]
(the product B ◦B′ taken in E(M)op) and

(1.2) a] =

[
A f
g B

]#
=

[
A g

f B

]
.

Lemma 1.3. A(M) is an associative *-algebra and for f, g, h ∈M ,[
0 f
0 0

] [
0 g
0 0

]# [
0 h
0 0

]
=

[
0 [fgh]
0 0

]
.

1This is needed in the proof of the bimodule statements in Lemma 1.2.
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Remark 1.4. The map f 7→
[
0 f
0 0

]
is a triple isomorphism of M into A(M), the latter considered

as an associative triple system with triple product ab#c, for a, b, c ∈ A(M), We refer to A(M)
as the standard embedding of M . If the associative triple system M is a normed space, and
‖[hgf ]‖ ≤ ‖f‖‖g‖‖h‖, then the normed standard embedding of M is defined in the same way but
with R and L replaced by their closures in B(M). In this case, the modules in Lemma 1.2 are
continuous modules, and Banach modules if M is a Banach space.

In certain cases, the correspondence M → A(M) will be a functor from the category of
associative triple systems and triple homomorphisms to the category of associative *-algebras and
*-homomorphisms. In the present context, we have the following lemma, whose straightforward
but tedious proof is omitted.

Lemma 1.5. Let ϕ : M1 → M2 be a surjective triple homomorphism between associative triple
systems M1 and M2. There is a *-homomorphism A(ϕ) : A(M1)→ A(M2) defined by

A(ϕ)

([
A f
g B

])
=

[
ϕ11(A) ϕ(f)

ϕ(g) ϕ22(B)

]
,

where if A =
∑

i([gihi·], [higi·]) ∈ L(M1),

ϕ11(A) =
∑
i

([ϕ(gi)ϕ(hi)·], [ϕ(hi)ϕ(gi)·]) ∈ L(M2),

and if B =
∑

i([·gihi], [·higi]) ∈ R(M1),

ϕ22(B) =
∑
i

([·ϕ(gi)ϕ(hi)], [·ϕ(hi)ϕ(gi)]) ∈ R(M2).

1.3. Ternary rings of operators. Let H and K be complex Hilbert spaces. Denote by
B(H,K) the set of all bounded linear operators from H to K, and write B(H) for B(H,H).
Consider B(H,K) as a Banach space with the usual operator norm and additional algebraic
structure given by ternary product (x, y, z) 7→ xy∗z, so that for every x, y, z ∈ B(H,K) we have:

‖xy∗z‖ ≤ ‖x‖ ‖y‖ ‖z‖ and ‖xx∗x‖ = ‖x‖3 .
A Banach subspace X of B(H,K) is called a TRO (ternary ring of operators) if xy∗z ∈ X

for every choice of x, y, z ∈ X. A TRO X ⊆ B(H,K) is called a W ∗-TRO if it is weak∗ closed
(equivalently, weak operator closed, or strong operator closed) in B(H,K). A TRO that is dual
as a Banach space is a W ∗-TRO [9, Theorem 2.6], and every W ∗-TRO has a unique Banach
space predual, up to isometry [9, Proposition 2.4]. TROs are studied extensively in [2, §4.4,
§8.3, 8.5.18], where we can find the following on page 351:

Around 1999, interest in TROs picked up with the important paper [9]. As
evidenced by the number of recent papers using them, it seems that TRO and
C*-module methods are playing an increasingly central role in operator space
theory at the present time.

Let X be a TRO contained in B(H,K). The left C∗-algebra of X, denoted by C is the C∗-
subalgebra of B(K) generated by elements of the form xy∗ with x, y ∈ X. Similarly, the right
C∗-algebra of X, denoted by D, is the C∗-subalgebra of B(H) generated by elements of the form
y∗z with y, z ∈ X (C and D need not be unital algebras). The connection between C and D is
made via the linking C∗-algebra of X, defined as AX =

[
C X
X∗ D

]
, where X∗ = {x∗ : x ∈ X} is

the space of adjoints of elements of X. It is often convenient to make the identification

B(K ⊕H) =
[ B(K) B(H,K)
B(K,H) B(H)

]
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and regard AX as a C∗-subalgebra of B(K ⊕ H). The linking C∗-algebra AX is uniquely
determined by X and is independent of the Hilbert spaces H and K on which X is represented.
Thus, for the most part, we may assume that TROs X ⊆ B(H,K) act non-degenerately on H
and K (XH is norm dense in K and X∗K is norm dense in H). In this case, the C∗-algebras C
and D act non-degenerately on K and H, respectively. It is clear that CX ⊆ X and XD ⊆ X,
so X is a C-D bimodule. In fact, CX = X = XD and X can be regarded as a non-degenerate
and faithful Hilbert C-D bimodule with inner products C〈x, y〉 = xy∗ and 〈x, y〉D = x∗y defined
on X.

Let X be a W ∗-TRO contained in B(H,K). The left von Neumann algebra of X, denoted
by M , is the von Neumann subalgebra of B(K) generated by elements of the form xy∗ with
x, y ∈ X. The right von Neumann algebra of X, denoted by N , is the von Neumann subalgebra
of B(H) generated by elements of the form y∗z with y, z ∈ X. The linking von Neumann algebra
of X is defined as RX =

[
M X
X∗ N

]
and it is viewed as a von Neumann subalgebra of B(K ⊕H).

The weak∗ closure X̄ of a TRO X is a W ∗-TRO.

Example 1.6. If M is a TRO, then A(M) (see Remark 1.4) is a C*-algebra which is *-isomorphic
to the linking algebra AM of M via the map

AM 3
[∑

i xiy
∗
i z

w∗
∑

j u
∗
jvj

]
7→
[∑

i([xiyi·], [[yixi·]) z
w

∑
j([·ujvj ], [·vjuj ])

]
∈ A(M)

(cf. Example 4.15).

1.4. Categories. In this subsection, we record the basic definitions in category theory that we
use. See, for example, [12, Chapter 0].

Definition 1.7. A category C = (Ob(C), Mor(C), ◦) consists of the following entities.

(1) A class Ob(C) of objects.
(2) For each X,Y in Ob(C), a class Hom(X,Y ) of morphisms (or maps) from X to Y , with

f in Hom(X,Y ) written X
f→ Y or f : X → Y . The class of all morphisms is denoted

Mor(C), so Hom(X,Y ) ⊆ Mor(C).
(3) For each object X, there is a morphism 1X ∈ Hom(X,X) such that 1Y ◦ f = f ◦ 1X = f

for each f ∈ Hom(X,Y ).
(4) For each X,Y, Z in Ob(C), a function

Hom(X,Y )×Hom(Y, Z) → Hom(X,Z)
(f, g) 7→ g ◦ f = gf

called morphism composition (or just composition), which is associative in the sense that
(hg)f = h(gf) for all composable morphisms in the category.

When convenient and not confusing, we shall often, as in [11], denote Hom(X,Y ) simply by
(X,Y ).

Definition 1.8. Let C and D be categories. A (covariant) functor F : C → D consists of the
following entities.

(1) A function Ob(C)→ Ob(D) that associates to each object X in C an object F (X) in D.
(2) For each X,Y in Ob(C), a function Hom(X,Y )→ Hom(F (X), F (Y )) that associates to

each morphism X
f→ Y in C a morphism F (X)

F (f)−→ F (Y ) in D such that

F (g ◦ f) = F (g) ◦ F (f) and F (1X) = 1F (X)

for all composable morphisms f, g in C.
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Definition 1.9. A subcategory of a category C is a category S whose objects are objects in C and
whose morphisms are morphisms in C with the same identities and composition of morphisms.
If X,Y are objects of S, then the morphism set of S from X to Y is denoted (X,Y )S , and we
have (X,Y )S ⊂ (X,Y ) := (X,Y )C .

Definition 1.10. Let K be a field. A category C = (Ob(C), Mor(C), ◦) is called a K-linear
category (or a K-algebroid) if each Hom(X,Y ) ⊆ Mor(C) has the structure of a vector space over
K and composition of morphisms

Hom(X,Y )×Hom(Y, Z) → Hom(X,Z)
(f, g) 7→ g ◦ f

is K-bilinear.

For any object X in a K-linear category, (X,X) is a unital associative algebra. For any
such associative algebra A, the category with A as its sole object, and A as its morphisms, is a
K-linear category with composition being the product in A.

Definition 1.11. Let A be a K-linear category and J a subcategory. Then J is an ideal of A
if for objects X,Y of J , (X,Y )J is a linear subspace of (X,Y ) and objects X,Y, Z

(right ideal) (Y, Z)J ◦ (X,Y ) ⊂ (X,Z)J
and

(left ideal) (Y, Z) ◦ (X,Y )J ⊂ (X,Z)J
(composition in A).

If J is a two-sided ideal in C, the quotient C/J is the category with the same objects as C and
with morphism sets the quotient spaces (X,Y )/(X,Y )J . There is a natural quotient functor

from C to C/J (see [19, section 4]).

Definition 1.12. Let C and D be K-linear categories. A functor F : C → D is a linear functor
if the map F : Hom(X,Y )→ Hom(F (X), F (Y )) is linear.

2. C*-ternary rings

Recall that a C*-ternary ring was introduced in [23] as a complex Banach space (Z, ‖ · ‖) with
a ternary operation (·, ·, ·) : Z ×Z ×Z → Z which is linear in the outer variables and conjugate
linear in the middle variable, associative in the sense that

(((v, w, x), y, z) = (v, (y, x, w), z) = (v, w, (x, y, z)),

and for which ‖(x, y, z)‖ ≤ ‖x‖‖y‖‖z‖ and ‖(x, x, x)‖ = ‖x‖3. In addition, if Z is a dual Banach
space, it is called a W*-ternary ring.

In order to prove our main results in this section (Theorems 4.11 and 4.14 below), we shall
invoke the following Gelfand-Naimark theorem for C*-ternary rings, which uses the following
terminology. A linear bijection ϕ : Z1 → Z2 between two C*-ternary rings (Z1, (·, ·, ·)1) and
(Z2, (·, ·, ·)2) is an isomorphism if ϕ((x, y, z)1) = (ϕ(x), ϕ(y), ϕ(z))2 and an anti-isomorphism if
ϕ((x, y, z)1) = −(ϕ(x), ϕ(y), ϕ(z))2.

Theorem 2.1 (Theorem 3.1 in [23]). Let Z be a C*-ternary ring.

(i): Z is the direct sum of two C*-ternary subrings Z+ and Z−which are respectively iso-
metrically isomorphic and isometrically anti-isomorphic to a ternary ring of operators
(TRO).

(ii): The decomposition is unique: if Z1 and Z2 are C*-ternary subrings of Z with Z =
Z1 ⊕ Z2, Z1 isomorphic to a TRO, and Z2 anti-isomorphic to a TRO, then Z+ = Z1

and Z− = Z2.
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(iii): There exists one, and only one, operator T : Z → Z satisfying
• T 2 = I;
• T ((x, y, z)) = (Tx, y, z) = (x, Ty, z) = (x, y, Tz) for x, y, z ∈ Z;
• (Z, T ◦ (x, y, z)) is a C*-ternary ring which is isomorphic to a TRO.

Remark 2.2. Zettl shows ([23, Proposition 3.2 and p. 130]) that if a C*-ternary ring (Z, (x, y, z))
is a right Banach A-module for some C*-algebra A, and there is a conjugate bilinear form
α : Z × Z → A with ‖α‖ ≤ 1 satisfying

(i): α(x · a, y) = α(x, y)a
(ii): α(x, y)∗ = α(y, x)
(iii): (x, y, z) = x · α(z, y)
(iv): spanα(Z,Z) is dense in A,

then Z+ = {z ∈ Z : α(z, z) ≥ 0} and Z− = {z ∈ Z : α(z, z) ≤ 0}, and that Z+ and Z− are
orthogonal, so that ‖(α, β)‖ = max(‖α‖, ‖β‖) for (α, β) ∈ Z+ ⊕ Z−.

Let (M, [·, ·, ·]) be a C*-ternary ring. Recall that, M being a normed associative triple system,
it is, by Remark 1.4, a left L(M)-Banach module via L(M)×M 3 (A, f) 7→ A · f = A1f ∈ M
and a right R(M)op-Banach module via M ×R(M) 3 (f,B) 7→ f ·B = B1f ∈M , and that

A = {a =

[
A f
g B

]
: A ∈ L(M), B ∈ R(M), f, g ∈M},

is an algebra with multiplication (1.1) and involution (1.2).
We note that the C*-algebra A in Remark 2.2 is the closed span of {[·gh] : g, h ∈ V } and it is *-

isomorphic to R(M) via the map A 3 B1 7→ σ(B1) = (B1, B
∗
1) ∈ R(M). Similarly τ : B→ L(V )

is the *-isomorphism A1 7→ (A1, A
∗
1), where B is the close span of {[gh·] : g, h ∈ V }. The C*-

ternary ring M is thus both a Banach (L,R)-bimodule and a Banach (B,A)-bimodule.
The following proposition is a key to the proof of Theorem 4.11. Because of the length of the

proof of (iv), we defer it to section 6. Also, although the proof of (i) follows from the fact, just
noted, that R(M) is *-isomorphic to A, we give a direct proof in the present context.

Proposition 2.3. Let M be a C*-ternary ring. With the above notation, we have

(i): R(M) is a C*-algebra with the norm from B(M).
(ii): M is a right Banach R(M)op-module.
(iii): With 〈f |g〉 = 〈f |g〉M : M ×M → R(M) defined by 〈f |g〉 = r(g, f) = ([·gf ], [·fg]), we

have

〈f ·B|g〉 = 〈f |g〉 ◦B.

(iv): If M is a right R(M)op-Hilbert module, then A can be normed to be a C*-algebra.

Proof. (i) Recall that R = R(M) is the closed span of

{r(f, g) = ([·fg], [·gf ]) : f, g ∈M} ⊂ B(M)⊕ [B(M)]op.

Let U =
∑

i r(fi, gi) = (
∑

i[·figi],
∑

i[·gifi]) = (U1, U2) ∈ R, and recall that U = (U2, U1) is
the involution2 on R. We shall show, by mimicking the proof of [23, Proposition 3.2 (1)], that
‖U‖2 = ‖UU‖, proving that R is a C*-algebra.

2U is obviously well defined. However, that fact, proved in [23], that
∑
i[·figi] = 0 implies that

∑
i[·gifi] = 0,

requires proof using associativity of the ternary product. We don’t need that argument here since it is obvious

that if (U1, U2) = (0, 0), then (U1, U2) = (U2, U1) = (0, 0).
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Let h = (h1, h2) ∈M ⊕M . We have

[Uh,Uh,Uh] = [U1h1, U1h1, U1h1]⊕ [U2h2, U2h2, U2h2]

= [
∑
i

[h1figi], U1h1, U1h1]⊕ [
∑
i

[h2gifi], U2h2, U2h2]

=
∑
i

[h1, [U1h1, gi, fi], U1h1]⊕
∑
i

[h2, [U2h2, fi, gi], U2h2]

= [h1 ⊕ h2, (
∑
i

[U1h1, gi, fi])⊕ (
∑
i

[U2h2, fi, gi]), U1h1 ⊕ U2h2]

= [h1 ⊕ h2, U2U1h1 ⊕ U1U2h2, U1h1 ⊕ U2h2]

= [h, UUh,Uh],

so that
‖Uh‖3 = ‖[Uh,Uh,Uh]‖ ≤ ‖h‖‖UUh‖‖Uh‖

and
‖Uh‖2 ≤ ‖h‖‖UUh‖ ≤ ‖h‖2‖UU‖ ≤ ‖U‖‖U‖‖h‖2 = ‖U‖2‖h‖2.

(ii) This is immediate from Lemma 1.2(i), as noted in Remark 1.4.
(iii) Let B = (B1, B2) = r(h, k) = ([·hk], [·kh]). Then

〈f ·B|g〉 = 〈B1f |g〉 = r(g,B1f) = r(g, [fhk]) = ([·g[fhk]], [·[fhk]g])

and

〈f |g〉 ◦B = r(g, f) ◦ (B1, B2)

= ([·gf ], [·fg]) ◦ ([·hk], [·kh])

= ([·hk], [·kh])([·gf ], [·fg])

= ([·hk][·gf ], [·fg][·kh])

= ([[·gf ]hk], [[·kh]fg]),

as required.
(iv) See section 6. �

Lemma 2.4. If M is a C*-ternary ring with decomposition M = M+⊕M−, then M+ is a right
R(M)op-Hilbert module.

Proof. In Remark 2.2, with α(f, g) = 〈f |g〉 = r(f, g), (i) holds by Proposition 2.3(iii), and (ii)
and (iv) follow from the definition of α. To prove (iii) in Remark 2.2, it suffices to show that
[hgf ] = h · 〈f |g〉. But h · 〈f |g〉 = h · ([·gf ], [·fg]) = [hgf ]. Thus M+ = {f ∈ M : α(f, f) ≥ 0}
and is therefore a right R(M)op-Hilbert module. �

Lemma 2.5. A surjective homomorphism between C*-ternary rings is contractive.

Proof. Let φ : M → N be a surjective homomorphism of C*-ternary rings M = M+ ⊕M− and
N = N+⊕N−. Then N = φ(M+)⊕φ(M−) is the sum of two orthogonal ideals. Also, φ(M+) '
M+/ kerφ|M+ which is isomorphic to a quotient of a TRO, which, by ([9, Proposition 2.2]) is a
TRO. Similarly φ(M−) ' M−/ kerφ|M− is anti-isomorphic to a TRO. So by uniqueness of the
Zettl decomposition, φ(M±) = N±. Note that a TRO homomorphism of TROs is contractive ([9,
Proposition 2.1]), and since φ restricts to a homomorphism of M± onto N±, φ|M± is contractive.
For example, if ψ is an isomorphism of M+ onto a TRO V , and ξ is an isomorphism of N+

onto a TRO W , then ξ ◦ φ ◦ ψ−1 is a homomorphism from V to W , hence contractive, and
‖φ(x+)‖ = ‖ξφ(x+)‖ = ‖(ξ ◦ φ ◦ ψ−1)(ψ(x+)‖ ≤ ‖ψ(x+)‖ = ‖x+‖. Thus, if x = x+ + x− ∈ M ,
‖φ(x)‖ = ‖φ(x+) + φ(x−)‖ = max(‖φ(x+)‖, ‖φ(x−)‖) ≤ max(‖x+‖, ‖x−‖) = ‖x‖. �
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Lemma 2.6. Let φ : M → N be a surjective homomorphism between C*-ternary rings M and
N . There is a *-homomorphism A(φ) : A(M)→ A(N) defined by

(2.1) A(ϕ)

([
A f
g B

])
=

[
ϕ11(A) ϕ(f)

ϕ(g) ϕ22(B)

]
,

where if A =
∑

i([gihi·], [higi·]) ∈ L(M),

(2.2) ϕ11(A) =
∑
i

([ϕ(gi)ϕ(hi)·], [ϕ(hi)ϕ(gi)·]) ∈ L(N),

and if B =
∑

i([·gihi], [·higi]) ∈ R(M),

ϕ22(B) =
∑
i

([·ϕ(gi)ϕ(hi)], [·ϕ(hi)ϕ(gi)]) ∈ R(N).

Proof. It is enough to show that the mapping (2.1) is well-defined, which will follow from
‖ϕ11(A)‖ ≤ ‖A‖ and ‖ϕ22(B)‖ ≤ ‖B‖. The rest of the proof involves straightforward but
tedious algebra. In fact the contractivity of φ11 and of φ22 follow by direct calculation from
Lemma 2.5 and surjectivity of φ. �

Proposition 2.7. If M is a C*-ternary ring, then A(M) is a C*-algebra.

Proof. With M = M+ ⊕M−, A(M+) is isomorphic to a C*-algebra by Lemma 2.4 and Propo-
sition 2.3(iv). If M− is anti-isomorphic to a TRO V , then by Lemma 2.6, A(M−) is *-
isomorphic to A(V ), which by Example 1.6 is *-isomorphic to the linking algebra of V . Thus
A(M) = A(M+)⊕A(M−) is a C*-algebra. �

3. Ternary categories

3.1. Ternary categories.

Definition 3.1. A ternary category C = (Ob(C), Mor(C), ◦) consists of the following entities.

• A class Ob(C) of objects.
• For each X,Y in Ob(C), a class Hom(X,Y ) of morphisms (or maps) from X to Y , with

f in Hom(X,Y ) written X
f→ Y or f : X → Y . The class of all morphisms is denoted

Mor(C), so Hom(X,Y ) ⊆ Mor(C).
• For each X,Y, Z,W in Ob(C), a function

Hom(X,Y )×Hom(Z, Y )×Hom(Z,W ) → Hom(X,W )
(f, g, h) 7→ h ◦ g∗ ◦ f = hg∗f,

called morphism composition (or just composition), which is associative for all compos-
able morphisms in the category, namely

(3.1) (lk∗h)g∗f = l(gh∗k)∗f = lk∗(hg∗f)

whenever

X
f→ Y

g← Z
h→W

k← U
`→ V.

To be precise, because of the twist in the middle term, (3.1) is defined only if U = Y ,
that is, for f ∈ (X,Y ), k ∈ (Y,W ), h ∈ (Z,W ), g ∈ (Z, Y ), ` ∈ (Y, V ).

A linear ternary category is a ternary category in which Hom(X,Y ) is a linear space over a field
K and composition is linear in the outer variables and conjugate linear in the middle variable.
In a linear ternary category, Hom(X,Y ) is an associative triple system (see subsection 1.2).
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Example 3.2. If M is an associative triple system, then the category with M as its sole object,
and M as its morphisms, is a K-linear ternary category with composition being the triple product
in M .

Example 3.3. The class of all sets (as objects) together with all binary relations between them
(as morphisms), with composition of relations, forms a category which we denote by R. Thus,
if X,Y are sets, Hom(X,Y ) = P (X × Y ) is the power set of X × Y . If F ⊆ X × Y is a
relation then F ∗ = {(y, x) : (x, y) ∈ F} ⊆ Y × X is its converse. We have (F ∗)∗ = F and
(G ◦ F )∗ = F ∗ ◦ G∗ for all composable relations. It follows that R is a dagger category (i.e.
category with involution). It can be viewed as a ternary category with the natural (ternary)
composition of relations, F ◦G∗ ◦H.

Definition 3.4. Let C be a K-linear ternary category and J a subcategory. Then J is an
(ternary) ideal of C if for objects X,Y, Z,W of J , (X,Y )J is a linear subspace of (X,Y ) and

(Z,W )J ◦ (Z, Y ) ◦ (X,Y ) ⊂ (X,W )J ,

(Z,W ) ◦ (Z, Y )J ◦ (X,Y ) ⊂ (X,W )J ,

(Z,W ) ◦ (Z, Y ) ◦ (X,Y )J ⊂ (X,W )J .

If J is an ideal in C, the quotient C/J is the category with the same objects as C and
with morphism sets the quotient spaces [X,Y ] := (X,Y )/(X,Y )J . There is a natural quotient

functor from C to C/J , given by (X,Y ) 3 f 7→ f = f + (X,Y )J ∈ [X,Y ]. The composition in

C/J is given by

(f, g, h) 7→ [hgf ],

and is easily seen to be well-defined and associative in the sense of Definition 3.1.

Remark 3.5.

• As in the case of non-unital categories (cf. [19, Definition 3.1]), there are no identity
morphisms per se in ternary categories. However, one can call a family of morphisms
{uX : X object of C} in a ternary category C which satisfy uY u

∗
Y f = f = fu∗XuX a “uni-

tary”, and more generally morphisms (uX) which satisfy uX = uXu
∗
XuX “tripotents,”

or “partial isometries”.3

• A unitary ternary category is a ternary category C containing a unitary element (uX). In
this case, one has a (unital) category A with the same objects and the same morphisms
as C, but with composition given by f ◦ g = fu∗Y g for g ∈ (X,Y ), f ∈ (Y,Z).

Example 3.6. The class of all complex Hilbert spaces (as objects) together with all bounded linear
operators between them (as morphisms), with morphism composition (f, g, h) 7→ hg∗f , forms a
unitary ternary category which we will denote by H+ (cf. Example 4.2 and Remark 4.13(iii)).

Definition 3.7. Let C and D be ternary categories. A (covariant) functor F : C → D (or ternary
functor for emphasis) consists of the following entities.

• A function Ob(C)→ Ob(D) that associates to each object X in C an object F (X) in D.

3In this case, a maximal tripotent in a T*-category (Definition 4.6) would satisfy

[uY u
∗
Y f ] + [fu∗XuX ] = f + [[uY u

∗
Y f ]u∗XuX ]

for f ∈ (X,Y ). Tripotents and Peirce decompositions in T*-categories are worthy of further study.
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• For each X,Y in Ob(C), a function Hom(X,Y )→ Hom(F (X), F (Y )) that associates to

each morphism X
f→ Y in C a morphism F (X)

F (f)−→ F (Y ) in D such that4

F (h ◦ g∗ ◦ f) = F (h) ◦ F (g)∗ ◦ F (f)

for all composable morphisms f, g, h in C.

3.2. The linking category of a linear ternary category. Let C be a C-linear ternary
category with objects X,Y, Z, . . . and morphisms (X,Y ), (Z,W ), . . .. Denote the composition of
morphisms f ∈ (X,Y ), g ∈ (Z, Y ), h ∈ (Z,W ) by [hgf ].

For a pair of objects X,Y , (X,Y ) is an associative triple system, so all of the machinery in
subsection 1.2 is available by replacing M there by (X,Y ). Thus,

E(X,Y ) := End ((X,Y ))⊕ [End ((X,Y ))]op,

and for g, h ∈ (X,Y ),

`(g, h) = (L(g, h), L(h, g)) = ([gh·], [hg·]) ∈ E(X,Y ),

r(g, h) = (R(h, g), R(g, h)) = ([·gh], [·hg]) ∈ E(X,Y )op,

L = L(X,Y ) = span {`(g, h) : g, h ∈ (X,Y )} ⊂ E(X,Y ), and

R = R(X,Y ) = span {r(g, h) : g, h ∈ (X,Y )} ⊂ E(X,Y )op.

Recall that there are two reverses of multiplication in the definition of E(X,Y )op, and invo-

lutions are defined on E(X,Y ) and E(X,Y )op by (A1, A2) = (A2, A1 and (B1, B2) = (B2, B1).
From Lemmas 1.1 and 1.2,

• L is a *-subalgebra of E(X,Y ) and R is a *-subalgebra of E(X,Y )op.

• (X,Y ) is a left E(X,Y )-module via (A, f) 7→ A · f = A1f,
a right E(X,Y )op-module via (f,B) 7→ f ·B = B1f, and an (L,R)-bimodule;

• (X,Y ) is a left E(X,Y )op-module via (B, f) 7→ B · f = B2f,
a right E(X,Y )-module via (f,A) 7→ f ·A = A2f, and an an (R,L)-bimodule.

Given objects X,Y in a linear ternary category C, let

A = A(X,Y ) = L(X,Y )⊕ (X,Y )⊕ (X,Y )⊕R(X,Y )

and write the elements a of A as matrices

a =

[
A f
g B

]
, (A ∈ L(X,Y ), B ∈ R(X,Y ), f, g ∈ (X,Y )).

Define multiplication and involution in A by

(3.2)

[
A f
g B

] [
A′ f ′

g′ B′

]
=

[
AA′ + `(f, g′) A · f ′ + f ·B′
g ·A′ +B · g′ r(g, f ′) +B ◦B′

]
and

(3.3)

[
A f
g B

]#
=

[
A g

f B

]
.

From Lemma 1.3, A(X,Y ) is an associative *-algebra and for f, g, h ∈ (X,Y ),[
0 f
0 0

] [
0 g
0 0

]# [
0 h
0 0

]
=

[
0 [fgh]
0 0

]
.

4The reader is reminded that g∗ and F (g)∗ are symbolic notations for the middle term of a ternary composition,
so have no meaning if isolated. An exception occurs, for example, in Remark 4.8.
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Definition 3.8. Given a linear ternary category C, the linking category AC of C is as follows.

The objects of the category AC are the same5 as the objects of C. The morphism set Hom(X,Y )
is defined to be {0} if X 6= Y , and Hom(X,X) = A(X,X), with composition as follows. If
a ∈ Hom(X,Y ) and b ∈ Hom(Y, Z), then b ◦ a must be {0} unless X = Y = Z, in which case
b ◦ a is defined to be the product ab in A(X,X).

In general, AC is a non unital category. By adjoining the identity operator to L and to R,
one can define a unital linking category, but this is not needed for our purposes.

Remark 3.9. The category AC can be considered as a ternary category under the composition

[abc] = ab#c and, by Lemma 1.3, we obtain a linear ternary functor F from C to AC by
associating the object X of C to the object X of AC and the morphism f ∈ (X,Y ) to 0 if X 6= Y

and otherwise to the morphism

[
0 f
0 0

]
∈ A(X,X).

It is possible to define the morphism sets of AC as (X,Y )AC = A(X,Y ) even if X 6= Y . In

that case, we could then define b ◦ a to be 0 unless X = Y = Z and otherwise to be the product
ab in A(X,X). In either case, the price paid is that the linear ternary functor of C into AC in
Remark 3.9 is not faithful (see Theorem 4.11 below).

Example 3.10. If M is an associative triple system, A(M) its standard embedding (see Re-
mark 1.4) and C is the category with M as its sole object and M as its morphisms with com-
position given by the triple product in M , then by [17, Satz 1] (reproduced in [18, Theorem 2,
p.30]), AC is the category with A(M) as its only object and the elements of A(M) as morphisms
with composition being multiplication in the associative algebra A(M).

Definition 3.11. If the linear ternary category C is normed, that is, if (X,Y ) is a normed space
and ‖f ◦ g∗ ◦ h‖ ≤ ‖f‖‖g‖‖h‖, then the normed linking category of C is defined in the same
way but with R and L replaced by their closures in B((X,Y )). In this case, the modules in
Lemma 1.2 are continuous modules, and Banach modules if (X,Y ) is a Banach space.

4. Operator categories

4.1. C*-categories. In this subsection we recall the notion of C*-category from [11] and [19].

Definition 4.1. A C*-category is a C-linear category C = (Ob(C), Mor(C), ◦) with the following
additional properties.

(i): (X,Y ) is a complex Banach space.

(ii): Composition is bilinear.6

(iii): There is an involution, that is, a collection of maps (X,Y ) 3 f 7→ f∗ ∈ (Y,X) which
are conjugate linear, involutive, and satisfy (g ◦ f)∗ = f∗ ◦ g∗ for f ∈ (X,Y ), g ∈ (Y,Z).

(iv): ‖g ◦ f‖ ≤ ‖f‖‖g‖ for f ∈ (X,Y ), g ∈ (Y,Z).

(v): ‖h‖2 = ‖h∗h‖ for h ∈ (X,Y ).

(vi): For all h ∈ Hom(X,Y ), h∗h = g∗g for some g ∈ Hom(X,X).

A C*-functor is a linear functor between C*-categories which satisfies F (f∗) = F (f)∗.

5Or could be considered as the same as the objects of C, for example, in one to one correspondence with the
objects of C.

6This is part of the definition of C-linear, but included here for easy reference.
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For any object X in a C*-category, (X,X) is a C*-algebra, and as a consequence of Theo-
rem 4.5 and Remark 4.8, (X,Y ) is a C*-ternary ring which is isomorphic to a TRO. For any
C*-algebra A, the category with A as its only object, and A as it morphisms, with composition
and involution being multiplication and involution in A, is a C*-category.

Example 4.2. The class of all complex Hilbert spaces (as objects) together with all bounded
linear operators between them (as morphisms), with morphism composition (f, g) 7→ f ◦ g,
forms a C*-category which we denote by H.

Example 4.3. Let A be a C∗-algebra and let (H, ρ), (K,σ) be a pair of ∗-representations of A
on Hilbert spaces H,K. An operator t ∈ B(H,K) with tρ(a) = σ(a)t, for all a ∈ A, is called
an intertwiner, the collection of all intertwiners between ρ and σ is denoted by Hom(ρ, σ). If
t ∈ Hom(ρ, σ) then t∗ ∈ Hom(σ, ρ), it follows that Hom(ρ, σ) is a weakly closed TRO contained
in B(H,K) and Hom(ρ, ρ) is a C∗-subalgebra of B(H). The class of all ∗-representations of A on
Hilbert spaces (as objects) together with intertwiners of these representations (as morphisms) is
a C∗-category, denoted Rep(A), which can be viewed as a T ∗-category with the natural (ternary)
composition of intertwiners.

Example 4.4. Let Γ be a countable discrete group and let (H, ρ), (K,σ) be a pair of unitary
representations of Γ on Hilbert spaces H,K. The collection Hom(ρ, σ) of intertwining operators
between ρ and σ, i.e. operators t ∈ B(H,K) with tρ(g) = σ(g)t for all g ∈ Γ, is a weakly closed
TRO contained in B(H,K), and Hom(ρ, ρ) is a von Neumann subalgebra of B(H). The class
of all unitary representations of Γ on Hilbert spaces (as objects) together with intertwiners of
these representations (as morphisms) is a C∗-category, denoted Rep(Γ), which can be viewed as
a T ∗-category (see Definition 4.6) with the natural (ternary) composition of intertwiners.

It is shown in [11] that every C∗-category C can be realized as a “concrete” C∗-sub-category of
H (see also [19], which among other things, gives the proof of Theorem 4.5 below in more detail).
Theorem 4.5 can be viewed as a generalization of the celebrated Gelfand-Naimark representation
theorem which says that every abstract C∗-algebra can be realized as a concrete C∗-subalgebra
of some B(H), and it serves as the motivation for the results in this section.

Theorem 4.5 (Proposition 1.14 in [11]). For every C*-category A, there is a faithful C*-functor
from A to H.

4.2. T*-categories.

Definition 4.6. A T*-category is a ternary category C = (Ob(C), Mor(C), ◦) with the following
additional properties7.

(i): (X,Y ) is a complex Banach space.

(ii): For each X,Y, Z,W in Ob(C), a function

Hom(X,Y )×Hom(Z, Y )×Hom(Z,W ) → Hom(X,W )
(f, g, h) 7→ [h ◦ g∗ ◦ f ]

called morphism composition (or just composition), which is associative in the sense that
[[(lk∗h)]g∗f ] = [l[gh∗k]∗f ] = [lk∗[hg∗f ]], whenever the compositions are defined (see
Definition 3.1).

(iii): Composition is linear in the outer variables and conjugate linear in the middle vari-
able.

(iv): ‖[gh∗f ]‖ ≤ ‖h‖‖f‖‖g‖ for f ∈ (X,Y ), h ∈ (Z, Y ), g ∈ (Z,W ).

7Items (ii) and (iii) are parts of the definition of ternary category, but included here for easy reference.
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(v): ‖hh∗h‖ = ‖h‖3, for h ∈ (X,Y ).

A T ∗-functor is a linear functor between T*-categories. A T*-category is a TW*-category if each
morphism set is a dual space.

For any objects X,Y in a T*-category (resp. TW*-category), (X,Y ) is a C*-ternary ring (resp.
W*-ternary ring). A C∗-ternary ring X, or its concrete analogue, a ternary ring of operators
(TRO), can be viewed as a T*-category with one object and the elements of X themselves as
morphisms, with morphism composition given by the ternary operation in X.

As mentioned in subsection 1.1, Zhong-Jin Ruan [21] presented a classification scheme and
proved various structure theorems for weakly closed ternary rings of operators (W∗-TROs) of
particular types. A W∗-TRO V of type I, II, or III was defined according to the Murray-von
Neumann type of its linking von Neumann algebra RV , defined in subsection 1.3.

A W∗-TRO V is of type I, II, or III according as RV is a von Neumann algebra of the
corresponding type. A W∗-TRO of type II is said to be of type IIε,δ, where ε, δ ∈ {1,∞}, if
M(V ) is of type IIε and N(V ) is of type IIδ. A sample result is that a W*-TRO of type I is
TRO-isomorphic to ⊕αL∞(Ωα, B(Kα, Hα)) ([21, theorem 4.1]).

Definition 4.7. A TW*-category is of type I (resp. II,III) if each morphism set (i.e. C*-ternary
ring) (X,Y ) is isomorphic as a C*-ternary ring (for example isomorphic or anti-isomorphic) to
a W*-TRO of type I (resp. II,III).

In connection with Theorem 4.5, it is also proved ([11, Proposition 2.13]) that for every W*-
category there is a faithful normal C*-functor into H, which is obviously a W*-category. What
is missing however, as mentioned in subsection 1.1, is a type classification of W*-categories into
W*-categories of types I, II, and III. We remedy this in Propositions 4.9 and 4.24.

Remark 4.8. A C*-category (resp. W*-category) becomes a T*-category (resp. TW*-category)
with ternary product [hgf ] = f ◦ g∗ ◦ h, and by Theorem 4.5 (resp. [11, Proposition 2.13]),
each morphism set (X,Y ) in a C*-category (resp. W*-category) is isomorphic to a TRO (resp.
W*-TRO).

Proposition 4.9. Each W*-category C, considered as a TW*-category, is the direct sum CI ⊕
CII ⊕ CIII , where Ci, i = I, II, III, is a TW*-category of type i.

Proof. By [11, Proposition 2.13], in a W*-category, each morphism space (X,Y ) is isomorphic
to a W*-TRO. By Ruan’s classification (X,Y ) = (X,Y )I ⊕ (X,Y )II ⊕ (X,Y )III and it suffices
to take Ci to be the T*-category with morphism sets (X,Y )i. �

Let C be a T*-category. Since A(X,Y ) plays no role in what follows if X 6= Y , we will focus on

the morphism sets (X,X) and for notation’s sake, denote (X,X) by X̃, L(X,X) by L, R(X,X)

by R, and A(X,X) by A. Recall that X̃ is a left L-module via L×X̃ 3 (A, f) 7→ A·f = A1f ∈ X̃
and a right Rop-module via X̃ ×R 3 (f,B) 7→ f ·B = B1f ∈ X̃, and that

A = {a =

[
A f
g B

]
: A ∈ L,B ∈ R, f, g ∈ X̃},

is an algebra with multiplication (3.2) and involution (3.3).

Remark 4.10. If C is a T*-category and J is a closed ideal (meaning (X,Y )J is a closed subspace

of the Banach space (X,Y )), then C/J is a T*-category.

Proof. Items (i)-(iii) in Definition 4.6 are clear. To prove (iv), let f ∈ [X,Y ], g ∈ [Z, Y ], h ∈
[Z,W ] and choose f ′ ∈ (X,Y )J , g′ ∈ (Z, Y )J , h′ ∈ (Z,W )J such that ‖f + f ′‖ ≤ ‖f‖ + ε,
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‖g + g′‖ ≤ ‖g‖+ ε, ‖h+ h′‖ ≤ ‖h‖+ ε. Then

‖[hgf ]‖ = ‖[h+ h′, g + g′, f + f ′]‖ = ‖[h+ h′, g + g′, f + f ′]‖
≤ ‖[h+ h′, g + g′, f + f ′]‖ ≤ ‖[h+ h′‖‖g + g′‖‖f + f ′‖
≤ ‖h‖‖g‖‖f‖+O(ε).

As for (v), if h ∈ [X,Y ], then

‖h‖3 = inf
k∈(X,Y )J

‖h+ k‖3 = inf
k∈(X,Y )J

‖[h+ k, h+ k, h+ k]‖

= inf
k∈(X,Y )J

‖[hhh] + an element of (X,Y )J ‖

≥ inf
k∈(X,Y )J

‖[hhh] + k‖ = ‖[hhh]‖ = ‖[h, h, h]‖.

�

The following theorem is the first main result of this paper.

Theorem 4.11. If C is a T*-category then AC is a C*-category and there is an ideal K 6= C of
C and a faithful T*-functor from C/K to AC , the latter considered as a T*-category.

Proof. It is clear that AC , as defined in Definition 3.8, is a linear non-unital category which,
when considered as a ternary category, satisfies (ii), (iii) and (vi) in Definition 4.1. Items (i),
(iv), and (v) in Definition 4.1 are tantamount to the morphism sets of AC of the form A(X,X)
being normed as C*-algebras. This fact is immediate from Proposition 2.7.

The ideal K of C defined by (X,Y )K = (X,Y )C if X 6= Y and (X,X)K = 0, is the kernel

of the functor F given by Remark 3.9, so it induces a faithful functor F̃ = F/K from C/K to
AC . �

The following is the category analog of the Hamana extension of a TRO homomorphism to a
*-homomorphism of the linking C*-algebras, [2, 8.3.5].

Remark 4.12. Let ρ be a T*-functor from a T*-category C to a T*-category D. Then there is a
C*-functor ρ̂ from AC to AD which extends ρ.

Proof. For each object X of AC , set ρ̂(X) = ρ(X), which is an object of D and hence of
AD. If X 6= Y , then (X,Y )AC = 0, so set ρ̂((X,Y )AC ) = 0. For φ = ρ|(X,X)AC

where

(X,X)AC = A(X,X), let ρ̂(φ) be the element A(φ) ∈ (ρ(X), ρ(X))AD = A(ρ(X), ρ(X)) given

by Lemma 2.6. �

Remark 4.13. Direct sums of categories were defined in [19, Definition 3.8]. The same definition
can be made for ternary categories.

(i) If C and D are categories (resp. ternary categories) whose objects may be considered
identical, then the direct sum C ⊕ D is defined as the category (resp. ternary category) whose
objects are identified with the objects of C or D, and with morphism sets

Hom(X,Y )C⊕D = Hom(X,Y )C ⊕Hom(X,Y )D,
and composition defined coordinatewise.

(ii) If C is a T*-category, T*-subcategories C± are defined as follows. Recall that by Theo-
rem 2.1, we have (X,Y ) = (X,Y )+⊕ (X,Y )− for each pair of objects X,Y of C. The objects of
C± are the same as the objects of C, and for such objects X,Y ,

(X,Y )C± := (X,Y )±.
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It is clear that C is isomorphic to C+ ⊕ C− and that AC is isomorphic to AC+ ⊕AC− .
(iii) The category H consisting of complex Hilbert spaces H,K,L, . . . as objects and bounded

linear maps B(H,K) as morphisms is a C*-category with composition ST for S ∈ B(K,L) and
T ∈ B(H,K) (See Definition 4.2). It is a T*-category with composition RS∗T . We shall now
denote this T*-category H by H+ and let H− denote H as a T*-category with composition
−RS∗T .

The following may be called the Gelfand-Naimark theorem for T*-categories.

Theorem 4.14. Let C be a T*-category. Then there is an ideal K 6= C in C and a faithful
T*-functor from C/K to the T*-category H+ ⊕H−.

Proof. By Theorem 4.5, there is a faithful C*-functor G± from AC± to H. With AC± considered

as a T*-category, we have that G± is a T*-functor from AC± to H±. By Theorem 4.11, there

is a T*-functor F± from C± to AC± , and it suffices to consider H/K, where K is the ideal in

Theorem 4.11, and H = (G+ ◦ F+)⊕ (G− ◦ F−). �

We close this subsection with some examples of linking C*-categories.

Example 4.15. (Cf. Example 1.6) If X is a TRO, and C is the T*-category ({X}, X) with X
as its sole object and the elements of X as its morphisms from X to X, and with composition
[zyx] = xy∗z, then AC is the category ({X},A(X,X)) with X as its sole object and the elements
of A(X,X) as its morphisms from X to X, and with composition being the multiplication in
A(X,X). As expected, the C*-algebra A(X,X) is *-isomorphic to the linking algebra AX of
the TRO X under the map

AX 3
[∑

i xiy
∗
i z

w∗
∑

j u
∗
jvj

]
7→
[∑

i([xiyi·], [[yixi·]) z
w

∑
j([·ujvj ], [·vjuj ])

]
∈ A(X,X).

Example 4.16. If (Z, (·, ·, ·)) is a C*-ternary ring, and C is the T*-category ({Z}, Z) with Z
as its sole object and the elements of Z as its morphisms from Z to Z, and with composition
[zyx] = (x, y, z), then AC is the category ({Z},A(Z,Z)) with Z as its sole object and the
elements ofA(Z,Z) as its morphisms from Z to Z, and with composition being the multiplication
in A(Z,Z).

The C*-algebra A(Z,Z) = A(Z+)⊕A(Z−) is *-isomorphic to AX⊕B where X is a TRO which
is isomorphic to Z+, and B is a C*-algebra which is related to a TRO Y which is anti-isomorphic
to Z−. Precisely, A(Z+) is isomorphic to AX , which is the closure of{[∑

i xiy
∗
i z

w∗
∑

j u
∗
jvj

]
: xi, yi, uj , vj , z, w ∈ X

}
with multiplication [

α z
w∗ β

] [
α′ z′

w′∗ β′

]
=

[
αα′ + xy′∗ αx′ + xβ′

y∗α′ + βy′∗ y∗α′ + ββ′

]
and A(Z−) is isomorphic to B, which is the closure of{[∑

i xiy
∗
i z

w∗
∑

j u
∗
jvj

]
: xi, yi, uj , vj , z, w ∈ Y

}
with multiplication [

α z
w∗ β

] [
α′ z′

w′∗ β′

]
=

[
αα′ − xy′∗ −αx′ − xβ′
−y∗α′ − βy′∗ −y∗α′ + ββ′

]
.
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Example 4.17. If C is the T*-category H+ of Hilbert spaces and bounded linear maps (see
Remark 4.13(iii)), then AH+

is the C*-category with the same objects as H+, and for each such

object (Hilbert space) H, (H,H)H+
= B(H) and (H,H)AH+

= A(H,H) = B(H) ⊕ B(H) =

M2(B(H)).

Example 4.18. If C is any C*-category, considered as a T*-category then AC is the C*-category
with the same objects as C, and for each such objectX, (X,X)AC is a C*-algebra and (X,X)AC =

A(X,X) = M2((X,X))).

Example 4.19. Let A be a C∗-algebra. Then the class C of all Hilbert C∗-modules over A
(as objects) together with all bounded A-linear and adjointable operators (as morphisms), with
morphism composition (f, g, h) 7→ hg∗f , forms a T ∗-category. In this case A(X,X) is isomorphic
to the linking algebra as defined in [2, 8.1.17, pp. 303–304] and AC is therefore a subcategory
of the C*-category of C*-Hilbert A-modules and bounded A-linear maps.

4.3. The linking W*-category of a TW*-category. The proofs of the main results in
this section (Theorems 4.23 and 4.25 below) are based on the tools leading up to the following
Gelfand-Naimark theorem for W*-ternary rings, which recall are C*-ternary rings with a predual.

Theorem 4.20 (Theorem 4.1 in [23]). A W*-ternary ring Z is the direct sum of two W*-ternary
subrings Z+ and Z−which are respectively normally isometrically isomorphic and normally iso-
metrically anti-isomorphic to a W*-TRO. Normally means the isomorphism and anti-isomorphic
are weak*-continuous.

Let V be a C*-ternary ring with triple product denoted by [hgf ]. By Proposition 2.3, V is
the off-diagonal corner of a C*-algebra A(V ), where

A(V ) =

[
L V
V R

]
,

and L = L(V ) and R = R(V ) are C*-algebras. Consider

(4.1) Ã(V ) =

[
M(L) V
V M(R)

]
,

where M(L) and M(R) are the multiplier algebras of L and of R.

Proposition 4.21. If the C*-ternary ring V is a dual space, then M(R(V )) and M(L(V )) are
W*-algebras, and therefore V is the off-diagonal corner of a W*-algebra.

Proof. In order to use the results of [23, section 4], we recall that the C*-algebra A in Remark 2.2
is the closed span of {[·gh] : g, h ∈ V } and it is *-isomorphic to R(V ) via the map A 3 B1 7→
σ(B1) = (B1, B

∗
1) ∈ R(V ). Similarly τ : B → L(V ) is the *-isomorphism A1 7→ (A1, A

∗
1),

where B is the close span of {[gh·] : g, h ∈ V }. The C*-ternary ring V is thus both a Banach
(L,R)-bimodule and a Banach (B,A)-bimodule.

Using only the assumption that V is a right Hilbert A-module, it is proved in [23, section 4],
that M(A) is a W*-algebra. It follows that, provided V is a right Hilbert Rop-module, M(R) is
a W*-algebra, and by a parallel argument, that M(L) is also a W*-algebra. The reduction to
V being a Hilbert module is obtained by considering V with a triple product modified by the
operator T in Theorem 2.1(iii). It follows that

Ã(V ) = M(L)⊕ V ⊕ V ⊕M(R)

is the dual of
Ã(V )∗ = M(L)∗ ⊕ V∗ ⊕ V ∗ ⊕M(R)∗,

where V∗ is the predual of V , so Ã(V ) is a W*-algebra. �
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Recall that a TW*-category is a T*-category in which each morphism set is a dual space.
A W*-ternary ring was introduced in [23] as a C*-ternary ring which is a dual space. For
any objects X,Y in a TW*-category, (X,Y ) is a W*-ternary ring. A W ∗-ternary ring X, or
its concrete analogue, a weakly closed ternary ring of operators (W*-TRO), can be viewed as
a TW*-category with one object X and the elements of X themselves as morphisms, with
morphism composition given by the ternary operation in X.

Definition 4.22. Given a TW*-category C, the linking W*-category ÃC of C is as follows. The
objects of the category AC are the same as the objects of C. The morphism set Hom(X,Y ) is

defined to be {0} if X 6= Y , and Hom(X,X) = Ã(X,X), as in (4.1) with V = (X,X), and with
composition as follows. If a ∈ Hom(X,Y ) and b ∈ Hom(Y, Z), then b ◦ a must be {0} unless

X = Y = Z, in which case b ◦ a is defined to be the product ab in Ã(X,X).

The following is the W*-version of Theorem 4.11.

Theorem 4.23. If C is a TW*-category then ÃC is a W*-category and there is an ideal K 6= C
of C and a faithful TW*-functor from C/K to ÃC , the latter considered as a TW*-category.

Proof. It is clear that ÃC , as defined in Definition 4.22, is a linear non-unital category which,
when considered as a ternary category, satisfies (ii), (iii) and (vi) in Definition 4.1. Items (i),

(iv), and (v) in Definition 4.1 are tantamount to the morphism sets of ÃC of the form Ã(X,X)
being W*-algebras. This fact is immediate from Proposition 4.21.

The ideal K of C defined by (X,Y )K = (X,Y )C if X 6= Y and (X,X)K = 0, is the kernel

of the functor F given by Remark 3.9, so it induces a faithful functor F̃ = F/K from C/K to

ÃC . �

The following is the appropriate version of Proposition 4.9.

Proposition 4.24. Each TW*-category C is the direct sum CI ⊕ CII ⊕ CIII , where Ci, i =
I, II, III, is a TW*-category of type i.

Proof. In a TW*-category, each morphism space (X,Y ) is isomorphic as a W*-ternary ring to
a W*-TRO. By Ruan’s classification

(X,Y )± = ((X,Y )±)I ⊕ ((X,Y±))II ⊕ ((X,Y )±)III

and it suffices to take Ci to be the T*-category with morphism sets

(X,Y )i = ((X,Y )+)i ⊕ ((X,Y )−)i.

�

The following is the W*-version of Theorem 4.14.

Theorem 4.25. Let C be a TW*-category. Then there is an ideal K 6= C in C and a faithful
TW*-functor H from C/K to the TW*-category H+ ⊕H−.

Proof. By [11, Proposition 2.13], there is a faithful W*-functor G± from ÃC± to H. With

ÃC± considered as a TW*-category, we have that G± is a TW*-functor from ÃC± to H±. By

Theorem 4.23, there is a TW*-functor F± from C± to ÃC± , and it suffices to consider H/K,

where K is the ideal in Theorem 4.23, and H = (G+ ◦ F+)⊕ (G− ◦ F−). �
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5. Bidual categories

5.1. The bidual of a C*-category. We begin by reviewing the well-known and celebrated
Arens multiplications. If A is an algebra with algebraic dual A′ and bidual A′′, the following
two multiplications on A′′ were defined in [1], and are referred to as the first and second Arens
products, denoted by FG and F · G respectively for F,G ∈ A′′. Each product extends the
product in A when A is identified with its canonical image in A′′.

domain First Arens product FG Second Arens product F ·G
A× A (a, b) 7→ ba ∈ A (product in A) (a, b) 7→ ab ∈ A (product in A)
A′ × A (f, b) 7→ bf ∈ A′ 〈bf, a〉 = 〈f, ba〉 (f, b) 7→ fb ∈ A′ 〈fb, a〉 = 〈f, ab〉
A′′ × A′ (F, f) 7→ fF ∈ A′ 〈fF, b〉 = 〈F, bf〉 (F, f) 7→ Ff ∈ A′ 〈Ff, b〉 = 〈F, fb〉
A′′ × A′′ (F,G) 7→ FG ∈ A′′ 〈FG, f〉 = 〈F, fG〉 (F,G) 7→ F ·G ∈ A′′ 〈F ·G, f〉 = 〈G,Ff〉

If ϕ : A→ B is an algebra homomorphism, then ϕ′′ : A′′ → B′′ is an algebra homomorphism
in either product extending ϕ. When the two products coincide, the algebra A is called Arens
regular. If A is a *-algebra, its involution extends to a mapping on A′′ via 〈F ∗, f〉 = 〈F, f∗〉 and

〈f∗, a〉 = 〈f, a∗〉 for f ∈ A′, a ∈ A. However, since (FG)∗ = G∗ ·F ∗, F 7→ F ∗ is not an involution
unless A is Arens regular.

In the following analog of the Arens construction for categories, there is essentially only one
Arens multiplication. This simplification is due to the fact that in the morphism spaces (X,Y ),
a ◦ b and b ◦ a are simultaneously defined only if X = Y . We shall therefore only use the
first Arens product, with the understanding that morphism spaces (X,X) might not be Arens
regular. Also, because the composition in categories is more akin to composition of functions, we
shall use the notation G◦F for the analog of FG. For all other products, including composition,
for notation’s sake, we shall just use juxtaposition.

Definition 5.1. Let C be a linear category with objects X,Y, Z, . . ., morphism spaces (X,Y ) =
{a, b, c, . . . }, dual spaces (X,Y )′ = {f, g, h, . . .}, and bidual spaces (X,Y )′′ = {F,G,H, . . .}. For
objects X,Y, Z a composition defined on (X,Y )′′ × (Y,Z)′′ → (X,Z)′′ and given by the Arens
construction is as follows.

(X,Y )× (Y,Z) 3 (a, b) 7→ ba := b ◦ a ∈ (X,Z) ( composition in C)
(X,Z)′ × (Y,Z) 3 (f, b) 7→ bf ∈ (X,Y )′ 〈bf, a〉 = 〈f, ba〉, a ∈ (X,Y )
(X,Y )′′ × (X,Z)′ 3 (F, f) 7→ fF ∈ (Y,Z)′ 〈fF, b〉 = 〈F, bf〉, b ∈ (Y, Z)

(X,Y )′′ × (Y,Z)′′ 3 (F,G) 7→ G ◦ F ∈ (X,Z)′′ 〈G ◦ F, f〉 = 〈G, fF 〉, f ∈ (X,Z)′

The composition

G ◦ F : (X,Y )′′ × (Y,Z)′′ → (X,Z)′′

is an extension of the composition

b ◦ a : (X,Y )× (Y,Z)→ (X,Z)

in C. That is, if a 7→ â denotes the canonical inclusion of (X,Y ) into (X,Y )′′, then for (a, b) ∈
(X,Y )× (Y,Z),

b̂ ◦ â = b̂a.

The following lemma is a straightforward consequence of Definition 5.1 and justifies Defini-
tion 5.3. We include the proof for completeness.

Lemma 5.2. For F ∈ (X,Y )′′, G ∈ (Y, Z)′′, H ∈ (Z,W )′′, we have G ◦ F ∈ (X,Z)′′, H ◦ G ∈
(Y,W )′′, and (H ◦G) ◦ F = H ◦ (G ◦ F ).
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Proof. For f ∈ (X,Z)′,

〈H ◦ (G ◦ F ), f〉 = 〈H, f(G ◦ F )〉,
and

〈(H ◦G) ◦ F, f〉 = 〈H ◦G, fF 〉 = 〈H, (fF )G〉.
Thus it suffices to prove

f(G ◦ F ) = (fF )G.

For a ∈ (Z,W ),

〈f(G ◦ F ), a〉 = 〈G ◦ F, af〉 = 〈G, (af)F 〉,
and

〈(fF )G, a〉 = 〈G, a(fF )〉,
so it suffices to prove

a(fF ) = (af)F.

For b ∈ (Y,Z),

〈a(fF ), b〉 = 〈fF, ab〉 = 〈F, (ab)f〉,
and

〈(af)F, b〉 = 〈F, b(af)〉,
so it suffices to prove

(ab)f = b(af).

For c ∈ (X,Y ),

〈(ab)f, c〉 = 〈f, (ab)c〉,
and

〈b(af), c〉 = 〈af, bc〉 = 〈f, a(bc)〉,
completing the proof. �

The composition G ◦ F is weak*-continuous in its first variable G, for if Gα → G, then for
f ∈ (Y, Z)′, 〈Gα, f〉 → 〈G, f〉 and so if g ∈ (X,Z)′, 〈Gα◦F, g〉 = 〈Gα, gF 〉 → 〈G, gF 〉 = 〈G◦F, g〉.

Definition 5.3. The Arens bidual of a linear category C, denoted by C′′, or by (C′′,Arens), is
the linear category having the same objects as C, morphism sets Hom(X,Y ) = (X,Y )′′ and
composition given by the Arens construction in Definition 5.1. The category C is said to be
Arens regular if the composition G ◦ F is separately weak*-continuous, that is, it is also weak*-
continuous in the second variable.

Lemma 5.4. If C is an Arens regular *-linear category with involutions (X,Y ) 3 a 7→ a∗ ∈
(Y,X), then the linear involution defined as

(X,Y )′′ 3 F 7→ F ∗ ∈ (Y,X)′′ with 〈F ∗, f〉 = 〈F, f∗〉, f ∈ (Y,X)′,

(Y,X)′ 3 f 7→ f∗ ∈ (X,Y )′ with 〈f∗, a〉 = 〈f, a∗〉, a ∈ (X,Y ),

is an algebra involution. Hence, the Arens bidual (C′′,Arens) is a *-linear category.

Proof. Let F ∈ (X,Y )′′, G ∈ (Y,Z)′′, and by Arens regularity, we may assume that F = â,

G = b̂ for a ∈ (X,Y ), b ∈ (Y, Z). Then

〈(G ◦ F )∗, f〉 = 〈G ◦ F, f∗〉 = 〈G, f∗F 〉 = 〈f∗F, b〉 = 〈F, bf∗〉

= 〈bf∗, a〉 = 〈f∗, ba〉 = 〈f, (ba)∗〉 = 〈f, a∗b∗〉

and
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〈F ∗ ◦G∗, f〉 = 〈F ∗, fG∗〉 = 〈F, (fG∗)∗〉 = 〈(fG∗)∗, a〉

= 〈fG∗, a∗〉 = 〈G∗, a∗f〉 = 〈G, (a∗f)∗〉

= 〈(a∗f)∗, b〉 = 〈a∗f, b∗〉 = 〈f, a∗b∗〉.

�

Lemma 5.5. A C*-category is Arens regular.

Proof. 8 Let ρ be a faithful C*-functor from a C*-category C to H, and for objects X and Y of
C, consider the following commutative diagram:

A
↑⊂

(X,Y )
ρ−→ R π−→ π(R)

↓ κ ↓ κ ↓⊂
(X,Y )′′

ρ′′−→ R′′ π′′−→ S ⊂ B(Hπ),

where by Remark 4.8, ρ = ρX,Y is, in particular, a C*-ternary ring isomorphism onto a TRO
R = R(X,Y ) = ρ((X,Y )), π = πX,Y is the restriction to R of the universal representation of
the C*-algebra A generated by R on the Hilbert space Hπ, S = S(X,Y ) is the weak operator
closure of the TRO π(R), and κ denotes the canonical inclusion of a Banach space into its
bidual. By [16, Lemma], the bi-adjoint π′′ of π is, as well as a TRO-isomorphism of R′′ onto
S, a homeomorphism of R′′ with its weak*-topology and S with its the weak operator topology
from B(Hπ) (which coincides with its weak*-topology). It follows that composition at the level
of the R(X,Y )′′ spaces is separately weak*-continuous, and since each ρ′′X,Y is a weak*-weak*

homeomorphism, the same holds for composition at the level of the (X,Y )′′. �

Proposition 5.6. If C is a C*-category, then it’s Arens bidual (C′′,Arens) is a C*-category.

Proof. Items (i), (ii), and (iv) in Definition 4.1 are immediate. Item (iii) holds by Lemmas 5.4
and 5.5. By Remark 4.8, (X,Y ) is a C*-ternary ring which is isomorphic to a TRO M . The
bidual M ′′ of M is also isomorphic to a TRO, by [16, Lemma], from which items (v) and (vi)
in Definition 4.1 follow. Indeed, for (v), since the faithful C*-functor ρ from C to H satisfies
ρ(c ◦ b∗ ◦ a) = ρ(c)ρ(b)∗ρ(a), we have (by a familiar argument)

‖H‖3 = ‖ρ′′(H)‖3 = ‖ρ′′(H)ρ′′(H)∗ρ′′(H)‖ ≤ ‖ρ′′(H)‖‖ρ′′(H)∗ρ′′(H)‖
= ‖H‖‖ρ′′(H∗ ◦H)‖ = ‖H‖‖H∗ ◦H‖ ≤ ‖H3‖,

so ‖H‖2 = ‖H∗ ◦ H‖. As for (vi), if H ∈ (X,Y )′′, observe that ρ′′(H)∗ρ′′(H) is a positive
operator in the C*-algebra ρ′′(X,X) on the Hilbert space ρ(X). �

Let us now consider a different approach to the definition of the bidual of a C*-category
which is based on the Sherman-Takeda proof that the bidual of a C*-algebra is a C*-algebra
[22, III.2.4], [14, 10.1.12], [7, 12.1.3].

In the proof of Lemma 5.5, set σ := π ◦ ρ, which is also a faithful C*-functor mapping
(X,Y ) onto π(R), and set τ = τX,Y := σ′′ = π′′ ◦ ρ′′, which is a homeomorphism of (X,Y )′′

with the weak*-topology onto S with the weak operator topology. Then, for F ∈ (X,Y )′′ and

8After giving this proof, we discovered that this Lemma follows as in the proof of Proposition 5.13. We are
including this proof since, besides its intrinsic interest, it is needed in the definition of the Sherman-Takeda bidual
of a C*-category (Definition 5.7).
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G ∈ (Y, Z)′′, note that τ(G) ∈ S(Y,Z), τ(F ) ∈ S(X,Y ), so that for G =w*-limβ b̂β, bβ ∈ (Y,Z)
and F =w*-limα âα, aα ∈ (X,Y ), we have

τ(G)τ(F ) = τ(w*- lim
β
b̂β)τ(w*- lim

α
âα)

= (W- lim
β
σ(bβ))(W- lim

α
σ(aα))

= W- lim
α

(W- lim
β
σ(bβ))σ(aα)

= W- lim
α

W- lim
β
σ(bβaα) ∈ S(X,Z).

Thus we can define G • F ∈ (X,Z)′′, by

(5.1) G • F = τ−1(τ(G)τ(F )),

more precisely,
G • F = τ−1X,Z(τY,Z(G)τX,Y (F )),

and we have, for F ∈ (X,Y )′′, G ∈ (Y,Z)′′, H ∈ (Z,W )′′,

H • (G • F ) = τ−1(τ(H)τ(G • F )) = τ−1(τ(H)τ(G)τ(F ))

= τ−1(τ(H •G)(τ(F )) = (H •G) • F.
Moreover, since τ(G • F ) = τ(G)τ(F ), and π′′ is a *-isomorphism, in the sense that

π′′X,Z(ρ′′Y,Z(G)ρ′′X,Y (F )) = π′′Y,Z(ρ′′Y,Z(G))π′′X,Y (ρ′′X,Y (F )),

we have
ρ′′(G • F ) = ρ′′(G)ρ′′(F ),

that is,
ρ′′X,Z(G • F ) = ρ′′Y,Z(G)ρ′′X,Y (F ).

Also, for a ∈ (X,Y ), b ∈ (Y, Z),

b̂ • â = τ−1(τ(b̂)τ(â)) = (ρ′′)−1(ρ′′(b̂)ρ′′(â))

so that
ρ′′(b̂ • â) = ρ′′(b̂)ρ′′(â) = ρ̂(b)ρ̂(a).

Definition 5.7. The Sherman-Takeda bidual of a C*-category C, denoted by C′′, or (C′′,S-T),
is the linear category having the same objects as C, morphism sets Hom(X,Y ) = (X,Y )′′ and
composition defined on (X,Y )′′ × (Y,Z)′′ → (X,Z)′′ given by (5.1).

Proposition 5.8. If C is a C*-category, then it’s Sherman-Takeda bidual (C′′,S-T) is a C*-
category.

Proof. Items (i)-(iii) in Definition 4.1 are immediate. As for (iv) and (v), for F ∈ (X,Y )′′ and
G ∈ (Y, Z)′′,

‖G • F‖ = ‖τ(G)τ(F )‖ ≤ ‖τ(G)‖‖τ(F )‖ = ‖G‖‖F‖
and since τX,X is a *-isomorphism,

‖F ∗ • F‖ = ‖τ(F ∗)τ(F )‖ = ‖τ(F )∗τ(F )‖ = ‖τ(F )‖2 = ‖F‖2.
Finally, since τ(F )∗τ(F ) is a positive operator in S(X,X), it equals A∗A for some A ∈ S(X,X),
and A = τ(G) for some G ∈ (X,X)′′, so that F ∗ • F = τ−1(τ(G)∗τ(G)) = τ−1(τ(G∗)τ(G)) =
G∗ •G, proving (vi) in Definition 4.1. �

Proposition 5.9. If C is a C*-category, then G ◦F = G •F , that is, the Arens bidual coincides
with the Sherman-Takeda bidual.
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Proof. For f ∈ (X,Z)′, 〈G ◦ F, f〉 = 〈G, fF 〉 and 9

〈G • F, f〉 = 〈τ−1(τ(G)τ(F )), f〉
= 〈(ρ′′)−1 ◦ (π′′)−1(τ(G)τ(F )), f〉
= 〈(ρ′′)−1(ρ′′(G)ρ′′(F )), f〉
= 〈ρ′′(G)ρ′′(F ), (ρ′)−1f〉
= 〈ρ′′(G), R′ρ′′(F ) ◦ (ρ′)−1f〉

= 〈G, ρ′ ◦R′ρ′′(F ) ◦ (ρ′)−1f〉.

Hence 〈G ◦ F, f〉 = 〈G • F, f〉 if and only if

(5.2) fF = ρ′ ◦R′ρ′′(F ) ◦ (ρ′)−1f.

For b ∈ (Y,Z), 〈fF, b〉 = 〈F, bf〉 and

〈ρ′ ◦R′ρ′′(F ) ◦ (ρ′)−1f, b〉 = 〈R′ρ′′(F ) ◦ (ρ′)−1f, ρ(b)〉

= 〈ρ̂(b), R′ρ′′(F ) ◦ (ρ′)−1f〉

= 〈ρ′′(F ), L′
ρ̂(b)
◦ (ρ′)−1f〉

= 〈F, ρ′ ◦ L′
ρ̂(b)
◦ (ρ′)−1f〉,

so (5.2) is equivalent to

(5.3) bf = ρ′ ◦ L′
ρ̂(b)
◦ (ρ′)−1f.

For a ∈ (X,Y ), 〈bf, a〉 = 〈f, ba〉 = 〈b̂a, f〉 and

〈ρ′ ◦ L′
ρ̂(b)
◦ (ρ′)−1f, a〉 = 〈L′

ρ̂(b)
◦ (ρ′)−1f, ρ(a)〉

= 〈ρ̂(a), L′
ρ̂(b)
◦ (ρ′)−1f〉

= 〈ρ̂(b)ρ̂(a), (ρ′)−1f〉

= 〈(ρ′′)−1(ρ̂(b)ρ̂(a)), f〉,

so (5.3) is equivalent to

(5.4) ρ′′(b̂a) = ρ̂(b)ρ̂(a),

which is equivalent to

(5.5) ρ(ba) = ρ(b)ρ(a),

which holds since ρ is a C*-functor.
For completeness, we give details of the last stated equivalence. First note that (5.4) is the

same as

(5.6) ρ̂(ba) = ρ̂(b)ρ̂(a).

By (5.6) we have

〈f, ρ(ba)〉 = 〈L′
ρ̂(b)

f, ρ(a)〉 = 〈L′ρ(b)f, ρ(a)〉 = 〈f, ρ(b)ρ(a)〉.

9The elements Rρ′′(F ) : R(Y,Z)′′ → R(X,Z)′′ and L
ρ̂(b)

: R(X,Y )′′ → R(Y,Z)′′ which appear below are the

operators of right multiplication and left multiplication respectively and are each weak*-continuous.
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Hence (5.6) implies (5.5). Conversely, by (5.5),

〈ρ̂(ba), f〉 = 〈f, ρ(ba)〉 = 〈f, ρ(b)ρ(a)〉

= 〈L′ρ(b)f, ρ(a)〉 = 〈ρ̂(a), L′ρ(b)f〉

= 〈ρ̂(a), L′
ρ̂(b)

f〉 = 〈ρ̂(b)ρ̂(a), f〉.

Hence (5.5) implies (5.6). �

5.2. The bidual of a T*-category.

Definition 5.10. Let C be a linear ternary category with objects X,Y, Z, . . ., morphism spaces
(X,Y ) = {a, b, c, . . . }, dual spaces (X,Y )′ = {f, g, h, . . .}, and bidual spaces (X,Y )′′ = {F,G,H, . . .}.
For objects X,Y, Z,W a composition defined on (X,Y )′′×(Z, Y )′′×(Z,W )′′ → (X,W )′′, denoted
by

(X,Y )′′ × (Z, Y )′′ × (Z,W )′′ 3 (F,G,H) 7→ [HGF ] ∈ (X,W )′′

and given by the Arens construction is as follows.

(1) (X,Y )× (Y,Z)× (Z,W ) 3 (a, b, c) 7→ [cba] ∈ (X,W )

(composition in C)

(2) (X,W )′ × (X,Y )× (Z, Y ) 3 (f, a, b) 7→ µ0(f, a, b) ∈ (Z,W )′

〈µ0(f, a, b), c〉 = 〈f, [cba]〉, c ∈ (Z,W )

(3) (Z,W )′′ × (X,W )′ × (X,Y ) 3 (F, f, a) 7→ µ1(F, f, a) ∈ (Z, Y )′

〈µ1(F, f, a), b〉 = 〈F, µ0(f, a, b)〉, b ∈ (Z, Y )

(4) (Z, Y )′′ × (Z,W )′′ × (X,W )′ 3 (F,G, f) 7→ µ2(F,G, f) ∈ (X,Y )′

〈µ2(F,G, f), a〉 = 〈F, µ1(G, f, a)〉, a ∈ (X,Y )

(5) (X,Y )′′ × (Z, Y )′′ × (Z,W )′′ 3 (F,G,H) 7→ [HGF ] ∈ (X,W )′′

〈[HGF ], f〉 = 〈F, µ2(G,H, f)〉, f ∈ (X,W )′

We note that [HGF ] is linear in the outer variables and conjugate linear in the middle variable,
and in the case of normed ternary categories, is weak*-continuous in the right variable F .

The following lemma is a straightforward consequence of Definition 5.10. Again, for com-
pleteness, we include the proof.

Lemma 5.11. Let C be a linear normed ternary category. Then for F ∈ (X,Y )′′, G ∈ (Z, Y )′′, H ∈
(Z,W )′′,K ∈ (U,W )′′ and L ∈ (U, V )′′, we have

(i): [LK[HGF ]] = [[LKH]GF ].
(ii): Assume that the triple product [HGF ] is separately weak*-continuous, that is, is also

weak*-continuous in the left variable H and the middle variable G. Then

[LK[HGF ]] = [L[GHK]F ] = [[LKH]GF ].

Proof. (i) For f ∈ (X,V )′,

〈[LK[HGF ]], f〉 = 〈[HGF ], µ2(K,L, f)〉 = 〈F, µ2(G,H, µ2(K,L, f))〉,
and

(5.7) 〈[[LKH]GF, f〉 = 〈F, µ2(G, [LKH], f)〉,
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so it suffices to prove
µ2(G,H, µ2(K,L, f)) = µ2(G, [LKH], f).

For a ∈ (X,Y ),

〈µ2(G,H, µ2(K,L, f)), a〉 = 〈G,µ1(H,µ2(K,L, f), a)〉,
and

(5.8) 〈µ2(G, [LKH], f), a〉 = 〈G,µ1([LKH], f, a)〉,
so it suffices to prove

µ1(H,µ2(K,L, f), a) = µ1([LKH], f, a).

For b ∈ (Z, Y ),

〈µ1(H,µ2(K,L, f), a), b〉 = 〈H,µ0(µ2(K,L, f), a, b)〉,
and

(5.9) 〈µ1([LKH], f, a), b〉 = 〈[LKH], µ0(f, a, b)〉 = 〈H,µ2(K,L, µ0(f, a, b)〉,
so it suffices to prove

µ0(µ2(K,L, f), a, b) = µ2(K,L, µ0(f, a, b)).

For c ∈ (Z,W ),

〈µ0(µ2(K,L, f), a, b), c〉 = 〈µ2(K,L, f), [cba]〉 = 〈K,µ1(L, f, [cba])〉,
and

(5.10) 〈µ2(K,L, µ0(f, a, b), c〉 = 〈K,µ1(L, µ0(f, a, b), c)〉,
so it suffices to prove

µ1(L, f, [cba]) = µ1(L, µ0(f, a, b), c).

For d ∈ (U,W ),

〈µ1(L, f, [cba]), d〉 = 〈L, µ0(f, [cba], d)〉,
and

(5.11) 〈µ1(L, µ0(f, a, b), c), d〉 = 〈L, µ0(µ0(f, a, b), c, d)〉,
so it suffices to prove

µ0(f, [cba], d) = µ0(µ0(f, a, b), c, d).

For e ∈ (U, V ),
〈µ0(f, [cba], d), e〉 = 〈f, [ed[cba]]〉,

and

(5.12) 〈µ0(µ0(f, a, b), c, d), e〉 = 〈µ0(f, a, b), [edc]〉 = 〈f, [[edc]ba]〉.
This proves [LK[HGF ]] = [[LKH]GF ].

(ii) For f ∈ (X,V )′,

(5.13) 〈[L[GHK]F ], f〉 = 〈F, µ2([GHK], L, f)〉,
so by (5.7) and (5.13), it suffices to prove

µ2([GHK], L, f)) = µ2(G, [LKH], f).

For a ∈ (X,Y ),

〈µ2([GHK], L, f)), a〉 = 〈[GHK], µ1(L, f, a)〉
= 〈RK,HG,µ1(L, f, a)〉
= 〈G,R′K,H(µ1(L, f, a))〉,(5.14)
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where RK,H is, by assumption, the weak*-continuous operator sending G to [GHK], so by (5.8)
and (5.14), it suffices to prove

R′K,H(µ1(L, f, a)) = µ1([LKH], f, a).

For b ∈ (Z, Y ),

〈R′K,H(µ1(L, f, a)), b〉 = 〈̂b, R′K,H(µ1(L, f, a))〉

= 〈[̂bHK], µ1(L, f, a)〉
= 〈H,Q′

b̂,K
(µ1(L, f, a)〉)(5.15)

where QH,K is the conjugate linear and weak*-continuous operator sending G to [HGK], and
by (5.9) and (5.15), it suffices to prove

(5.16) 〈H,µ2(K,L, µ0(f, a, b))〉 = 〈H,Q′
b̂,K

(µ1(L, f, a))〉.

We shall complete the proof by verifying (5.16), and we may assume that H = ĉ for some

c ∈ (Z,W ). We may also assume, by weak*-continuity in the right variable, that K = d̂. Thus

〈H,Q′
b̂,K

(µ1(L, f, a))〉 = 〈[̂bĉK], µ1(L, f, a)〉

= 〈K,L′
b̂ĉ

(µ1(L, f, a))〉
= 〈µ1(L, f, a), [bcd]〉
= 〈L, µ0(f, a, [bcd])〉

and

〈H,µ2(K,L, µ0(f, a, b))〉 = 〈µ2(K,L, µ0(f, a, b)), c〉
= 〈K,µ1(L, µ0(f, a, b), c)〉
= 〈µ1(L, µ0(f, a, b), c), d〉
= 〈L, µ0(µ0(f, a, b), c, d))〉.

Thus (5.16) is equivalent to

(5.17) µ0(µ0(f, a, b), c, d)) = µ0(f, a, [bcd])〉.
Take e ∈ (U, V ). Then

〈µ0(µ0(f, a, b), c, d)), e〉 = 〈µ0(f, a, b), [edc]〉 = 〈f, [[edc]ba]〉
and

〈µ0(f, a, [bcd]), e〉 = 〈f, [e[bcd]a]〉
thus proving (5.17) and [LK[HGF ]] = [L[GHK]F ]. �

Definition 5.12. The Arens bidual of a linear ternary category C, denoted C′′, or (C′′,Arens),
is the linear category having the same objects as C, morphism sets Hom(X,Y ) = (X,Y )′′ and
composition given by the Arens construction in Definition 5.10. The category C is said to be
Arens regular if the composition [HGF ] is separately weak*-continuous.

Proposition 5.13. A T*-category C is Arens regular, and hence its Arens bidual C′′ is a T*-
category.

Proof. As stated in [15, Remark 2.10], every multilinear map f : X1 × · · · × Xn → Y from
Banach spaces Xi satisfying Pelczynski’s property V to a Banach space Y admits a unique
separately weak*-continuous extension from X ′′1 × · · · × X ′′n to Y ′′. C*-ternary rings are JB*-
triples and JB*-triples satisfy Pelczynski’s property V ([5]). As stated in [15, Remark 2.3], if
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f : X1×X2×X3 → Y admits a norm preserving extension F : X ′′1×X ′′2×X ′′3 → Y ′′ (produced by
any method) which is separately weak*-continuous, then f is Aron-Berner regular and therefore
the extension given by Definition 5.10 (denoted by f∗∗∗∗ in [15]) is separately weak*-continuous.
Thus a T*-category is Arens regular.

Items (i), (iii), and (iv) in Definition 4.6 are immediate. Item (ii) holds by Lemma 5.11. By
Remark 4.8, (X,Y ) is a C*-ternary ring. The bidual (X,Y )′′ of (X,Y ) is also a C*-ternary ring,
by [16, Theorem 2], from which item (v) in Definition 4.6 follows. �

6. Proof of Proposition 2.3(iv)

Let M be a C*-ternary ring. Recall that, M being a normed associative triple system, it is,
by Remark 1.4, a left L(M)-Banach module via L(M)×M 3 (A, f) 7→ A · f = A1f ∈M and a
right R(M)op-Banach module via M ×R(M) 3 (f,B) 7→ f ·B = B1f ∈M , and that

A = {a =

[
A f
g B

]
: A ∈ L(M), B ∈ R(M), f, g ∈M},

is an algebra with multiplication (1.1) and involution (1.2).

Proposition 6.1 (Restatement of Proposition 2.3). With the above notation, we have

(i): R(M) is a C*-algebra with the norm from B(M).
(ii): M is a right Banach R(M)op-module.
(iii): With 〈f |g〉 = 〈f |g〉M : M ×M → R(M) defined by 〈f |g〉 = r(g, f) = ([·gf ], [·fg]), we

have

〈f ·B|g〉 = 〈f |g〉 ◦B.

(iv): If M is a right R(M)op-Hilbert module, then A can be normed to be a C*-algebra.

Proof. (i)-(iii) have been proved in section 2.
(iv) We mimic the proof in [2, 8.1.17, p. 303] by showing that the map π : A → B(M ⊕R) to

the bounded operators on the right Rop-Hilbert module M ⊕R defined, for a =

[
A f
g B

]
∈ A by

(6.1) π(a)

[
f ′

B′

]
=

[
A f
g B

] [
f ′

B′

]
=

[
A · f ′ + f ·B′
r(g, f ′) +B ◦B′

]
,

is an injective *-homorphism. Letting ‖a‖ = ‖π(a)‖ turns A into a C*-algebra.
We will use the facts that R is a right Rop-Hilbert module, via

R×Rop 3 (B′, B) 7→ B ·B′ = B′ ◦B ∈ R,

and that M ⊕R is a right Rop-Hilbert module, via

(M ⊕R)×Rop 3 ((f,B′), B) 7→ (f,B′) ·B = (f ·B,B′ ◦B) ∈M ⊕R.

Thus for b′ =

[
f ′

B′

]
, and b′′ =

[
f ′′

B′′

]
in M ⊕R,

〈b′, b′′〉M⊕R = 〈f ′, f ′′〉M + 〈B′, B′′〉R,

where 〈f, g〉M := r(g, f) = ([·gf ], [·fg]) and 〈B′, B〉R = B ◦B′.

First, with a =

[
A f
g B

]
∈ A, b′ =

[
f ′

B′

]
, and b′′ =

[
f ′′

B′′

]
in M ⊕R, we have
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〈π(a#)b′, b′′〉 = 〈
[
A g

f B

] [
f ′

B′

]
,

[
f ′′

B′′

]
〉 =

[
A · f ′ + g ·B′
r(f, f ′) +B ◦B′

]
,

[
f ′′

B′′

]
〉

= 〈A · f ′ + g ·B′, f ′′〉M + 〈r(f, f) +B ◦B′, B′′〉R
= 〈A · f ′, f ′′〉M + 〈g ·B′, f ′′〉M + 〈r(f, f ′), B′′〉R + 〈B ◦B′, B′′〉R

and

〈π(a)∗b′, b′′〉 = 〈
[
f ′

B′

]
, π(a)

[
f ′′

B′′

]
〉 = 〈

[
f ′

B′

]
,

[
A · f ′′ + f ·B′′
r(g, f ′′) +B ◦B′′

]
〉

= 〈f ′, A · f ′′〉M + f ·B′′〉M + 〈B′, r(g, f ′′) +B ◦B′′〉R.
= 〈f ′, A · f ′′〉M + 〈f ′, f ·B′′〉M + 〈B′, r(g, f ′′)〉R + 〈B′, B ◦B′′〉R.

The fact that π(a#) = π(a)∗ now follows from the following four identities,

(6.2) 〈A · f ′, f ′′〉M = 〈f ′, A · f ′′〉M

(6.3) 〈g ·B′, f ′′〉M = 〈B′, r(g, f ′′)〉R

(6.4) 〈r(f, f ′), B′′〉R = 〈f ′, f ·B′′〉M

(6.5) 〈B ◦B′, B′′〉R = 〈B′, B ◦B′′〉R.

To prove (6.2), we may assume that A = `(h, k) = ([hk·], [kh·]). Then

〈A · f ′, f ′′〉M = 〈([kh·], [hk·]) · f ′, f ′′〉M
= 〈[khf ′], f ′′〉M
= r(f ′′, [khf ′])

= ([·f ′′[khf ′]], [·[khf ′]f ′′]),

and

〈f ′, A · f ′′〉M = 〈f ′, [hkf ′′]〉M
= r([hkf ′′], f ′)

= ([·[hkf ′′]f ′], [·f ′[hkf ′′]]).

To prove (6.3), we may assume that B′ = r(h, k) = (·[hk], [·kh]). Then

〈g ·B′, f ′′〉M = 〈[ghk], f ′′〉M
= r(f ′′, [ghk])

= ([·f ′′[ghk]], [·[ghk]f ′′]),

and

〈B′, r(g, f ′′)〉R = r(g, f ′′) ◦ ([·hk], [·kh])

= ([·f ′′g], [·gf ′′]) ◦ ([·hk], [·kh])

= ([·hk], [·kh])([·f ′′g], [·gf ′′])
= ([·hk][·f ′′g], [·gf ′′][·kh])

= ([[·f ′′g]hk], [[·kh]gf ′′]).
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To prove (6.4), we may assume that B′′ = r(h, k) = (·[hk], [·kh]). Then

〈r(f, f ′), B′′〉R = 〈r(f, f ′), r(h, k)〉R
= r(h, k) ◦ r(f, f ′)
= ([·ff ′], [·f ′f ])([·kh], [·hk])

= ([·ff ′][·kh], [·hk][·f ′f ])

= ([[·kh]ff ′], [[·f ′f ]hk])

and

〈f ′, f ·B′′〉M = 〈f ′, [fhk]〉M
= r([fhk], f ′)

= ([·[fhk]f ′], [·f ′[fhk]]).

Finally to prove (6.5), we have

〈B ◦B′, B′′〉R = B′′ ◦ (B ◦B′) = (B ◦B′)B′′ = B′BB′′

and
〈B′, B ◦B′′〉R = B ◦B′′ ◦B′ = B′(B′′B) = B′BB′′.

Next, we show that with a, a′′ ∈ A and b′ =

[
f ′

B′

]
, we have

π(a′′)π(a)b′ = π(a′′a)b′,

so that π is a homorphism.
We have

π(a′′)π(a)b′ =

[
A′′ f ′′

g′′ B′′

] [
A · f ′ + f ·B′
r(g, f ′) +B ◦B′

]
=

[
A′′ · (A · f ′) +A′′ · (f ·B′) + f ′′ · r(g, f ′) + f ′′ · (B ◦B′)
r(g′′, A · f ′) +B′′ ◦ r(g, f ′) + r(g′′, f ·B′) +B′′ ◦ (B ◦B′)

]
and

π(a′′a)b′ =

[
A′′A+ `(f ′′, g) A′′ · f + f ′′ ·B
g′′ ·A+B′′ · g r(g′′, f) +B′′ ◦B

] [
f ′

B′

]
=

[
(A′′A) · f ′ + `(f ′′, g) · f ′ + (A′′ · f) ·B′ + (f ′′ ·B) ·B′

r(g′′ ·A, f) + r(B′′ · g, f ′) + r(g′′, f) ◦B′ + (B′′ ◦B) ◦B′
]
.

The first components of π(a′′)π(a)b′ and π(a′′a)b′ are equal by the module properties and

(6.6) `(f ′′, g) · f ′ = f ′′ · r(g, f ′),
and the second components are equal because of the three identities

(6.7) r(g′′ ·A, f ′) = r(g′′, A · f ′)

(6.8) r(B′′ · g, f ′) = B′′ ◦ r(g, f ′)

(6.9) r(g′′, f) ◦B′ = r(g′′, f ·B′).
To prove (6.6), we have

`(f ′′, g) · f ′ = ([f ′′g·], [gf ′′·]) · f ′ = [f ′′gf ′]

and
f ′′ · r(g, f ′) = f ′′ · ([·gf ′], [·f ′g]) = [f ′′gf ′].
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To prove (6.7), we may assume that A = `(h, k) = ([hk·], [kh·]). Then

r(g′′ ·A, f ′) = r(g′′ · ([hk·], [kh·]), f ′) = r([khg′′], f ′) = ([·[khg′′]f ′], [·f ′[khg′′])

and

r(g′′, A · f ′) = r(g′′, ([hk·], [kh·]) · f ′) = r(g′′, [hkf ′]) = ([·g′′[hkf ′], [·[hkf ′]g′′]).
To prove (6.8), we may assume that B′′ = r(h, k) = (·[hk], [·kh]). Then

r(B′′ · g, f ′) = r([gkh], f ′) = ([·[gkh]f ′], [·f ′[gkh])

and

B′′ ◦ r(g, f ′) = r(g, f ′)(·[hk], [·kh])

= ([·gf ′], [·f ′g])(·[hk], [·kh])

= ([·gf ′], [·hk])(·[kh], [·f ′g])

= ([[·hk]gf ′], [[·f ′g]kh]).

To prove (6.9), we may assume that B′ = r(h, k) = (·[hk], [·kh]). Then

r(g′′, f) ◦B′ = ([·g′′f ], [·fg′′]) ◦ ([·hk], [·kh])

= (·[hk], [·kh])([·g′′f ], [·fg′′])
= ([·hk][·g′′f ], [·fg′′][·kh])

= ([[·g′′f ]hk], [[·kh]fg′′])

and

r(g′′, f ·B′) = r(g′′, [fhk]) = ([·g′′[fhk]], [·[fhk]g′′]).

Let us now show that π is injective. For a =

[
A f
g B

]
∈ A, if π(a) = 0, then by (6.1)

A · f ′ + f ·B′ = 0 and r(g, f ′) +B ◦B′ = 0

for all f ′ ∈M,B′ ∈ R, and in particular,

(6.10) A · f ′ = 0 and f ·B′ = 0,

and

(6.11) r(g, f ′) = 0 and B ◦B′ = 0.

From (6.10) with B′ = r(f, f), [fff ] = 0 so f = 0. From (6.11), B∗B = 0 and r(g, g) = 0, so
B = 0 and g = 0.

It remains to show that A = 0. Since π(a#) = 0, we have

(6.12) A · f ′ = 0 for all f ′ ∈M.

Suppose first that A = `(g, h). Then by (6.10) and (6.12), [f ′gh] = 0 and [f ′hg] = 0 so that
A = ([·gh], [·hg]) = 0. By the same argument, if A =

∑
i `(gi, hi), then A = 0.

Now suppose A ∈ L, let ε > 0 and choose A′ =
∑

i `(gi, hi) with ‖A − A′‖ < ε. Then
‖A′ · f ′‖ = ‖(A−A′) · f ′‖ ≤ ε‖f ′‖, so that ‖A‖ ≤ ‖A−A′‖+ ‖A′‖ < 2ε, and A = 0.

It remains to show that π(A) is a C*-algebra, that is, complete, and for this it is enough to
show that the range of π is closed. For T = [tij ] ∈ B(M ⊕ R), we have ‖tij‖ ≤ ‖T‖. Thus if

T ∈ π(A), then t11 ∈ L = L, t12 ∈M = M , . . . , and so T ∈ π(A). �
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