
1

On polynomial identities in associative

and Jordan pairs

Fernando Montaner 1

Departamento de Matemáticas
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Abstract

We prove that a Jordan system satisfies a polynomial identity if and
only if it satisfies a homotope polynomial identity. In the obtention
of that result, we also prove an analogue for associative pairs with
involution of Amitsur’s theorem on associative algebras satisfying a
polynomial identity with involution.

1 Introducction

Polynomial identities play a basic structural role in nonassociative the-

ory. In contrast with the study of associative rings satisfying polynomial

identities, where that condition can be understood as a kind of finiteness

condition which allows a strengthen form for the structural results of the
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general theory, its nonassociative counterpart is an unavoidable ingredient

in the obtention of general structure theories. In particular, that is the case

in Zelmanov’s fundamental results [McZ] on Jordan algebras, where the ex-

istence of the so called hermitian polynomials leads to the study of algebras

that satisfy a particular kind of identities (Clifford identities) prior to the

obtention of the general classification theorem. For Jordan pairs and triple

systems the situation is entirely analogous to the algebra case. The only

difference is that the role played by polynomial identities is now played by

homotope polynomial identities (see [DA, DAMc1, DAMc2, M1, M2]), that

is, polynomial identities that hold in all homotope algebras of the system.

This partially motivated the study of “local PI-theory” in [M1, M2, M3],

that is, the sudy of Jordan systems with local algebras satisfying a poly-

nomial identity, and in particular, of Jordan systems satisfying a homotope

polynomial identity.

In spite of the effectiveness of the use of homotope polynomials in the

structural results, usual identities deserve some attention, both because they

are conceptually simpler, and because they seem easier to obtain than ho-

motope identities. In that respect, the study of graded polynomial identities

on 3-graded Lie algebras, which will be the subject of a forthcoming paper

by the authors, naturally leads through the Kantor-Koecher-Tits construc-

tion, to general identities in Jordan pairs. On the other hand, the result

of Zelmanov [Z, Theorem 3] asserting that in a PI-Jordan system, the Mc-

Crimmon radical and the nil-radical coincide, suggests that some significant

results could be reached for general polynomial identities.

The question of whether a theory of general identities of Jordan systems

could be developed remained however open, and was the content of a ques-

tion raised in [M2], namely: does every PI Jordan system satisfy a homotope

polynomial identity?

In this paper we answer in the affirmative that conjecture. Since our

approach makes use of the structure theory, we need to gain first some

information on Jordan pairs of hermitian elements H(A, ∗) for an associative

pair A with involution ∗. Thus, after a section of preliminaries, we devote

a section to the study of associative pairs satisfying a ∗-polynomial identity

(a polynomial identity with involution). We prove there a pair analogue
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of Amitsur’s celebrated result [Am] on algebras with involution satisfying a

∗-polynomial identity. Our proof is closely patterned after the proof of the

algebra result as exposed by Herstein in [H2], which is due to Montgomery

(see [H2, page 185]). Apart from its own interest, that result is instrumental

in the final section for the proof of the affirmative answer to the foregoing

question. Finally, we combine that positive answer with the local PI-theory

to obtain Jordan analogues of Kaplansky’s and Posner-Rowen’s theorems.

In view of the approach followed in the paper, one may ask whether the

structural results on PI-Jordan systems could be reached directly without

appealing to the local PI-theory. This might well be so, but a careful anal-

ysis of the associative GPI-theory uncovers the role played in it by local

algebras (see for instance [Ro1, Ro2], and specially the approach followed in

[BMM]). On the other hand, looking at the standard embedding of associa-

tive systems, the PI-condition seems to be in an intermediate place between

a PI and a GPI condition, and this suggests that, one way or another, local

PI-algebras should make its appearance in their study.

2 Preliminaries

2.1 We will work with associative and Jordan systems over a unital

commutative ring of scalars Φ which will be fixed throughtout. We refer to

[L1, Me, McZ] for notation, terminology and basic results. We recall in this

section some of those notations and basic results.

2.2 An associative pair over Φ is a pair A = (A+, A−) of Φ-modules

together with Φ-trilinear maps

〈 , , 〉σ : Aσ ×A−σ ×Aσ → Aσ

(x, y, z) 7→ 〈x, y, z〉σ

such that 〈〈x, y, z〉σ, u, v〉σ = 〈x, 〈y, z, u〉−σ, v〉σ = 〈x, y, 〈z, u, v〉σ〉σ for all x,

z, v ∈ Aσ, y, u ∈ A−σ and σ = ±.

An involution in the associative pair A is a pair of linear maps

∗ : Aσ → Aσ

x 7→ x∗
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such that (x∗)∗ = x and 〈x, y, z〉∗ = 〈z∗, y∗, x∗〉 for all x, z ∈ Aσ, y ∈ A−σ,

σ = ±.

To alleviate the notation, we will usually denote the products in asso-

ciative pairs simply by juxtaposition, so that if a, c ∈ Aσ, and b ∈ A−σ

for σ = ±, abc will mean 〈a, b, c〉σ. We recall that associative pairs have a

standard imbedding into an associative algebra where the juxtaposition of

any two factors makes sense.

Let A be an associative pair. An A-module is a pair of Φ-modules

(M+,M−) endowed with two bilinear maps

Mσ ×Aσ → M−σ

(m,x) 7→ mx

for σ = ±, that satisfy ((mx)y)z = m(xyz) for all x, z ∈ Aσ, y ∈ A−σ,

and m ∈ Mσ. It is clear how to define the notion of A-submodule of an

A-module, and the notions of irreducible and faithful A-modules.

2.3 Given any associative pair A = (A+, A−) we denote by UA, the stan-

dard Φ-imbedding of A. Recall that UA is a unital associative algebra with

two idempotents e1 + e2 = 1 such that if we consider the Peirce decom-

position of UA with respect these idempotents, then A = ((UA)12, (UA)21)

with the usual triple product. Every involution of A extends uniquely to an

algebra involution of UA that satisfies e∗1 = e2 [FT, 3.2].

2.4 The socle of A = (A+, A−) is Soc(A) = (Soc(A+), Soc(A−)), where

Soc(Aσ) is the sum of all minimal right ideals of Aσ. If A has no minimal

right ideals, we write Soc(A) = 0. An associative pair A has finite capacity

if it satisfies both the ascending and the descending chain condition on

principal inner ideals (see [L1] for definitions). In that case A equals its

socle and it contains a maximal idempotent: an idempotent e = (e+, e−)

whose Peirce 00-space A00 vanishes (see [L1]).

2.5 Any element a ∈ A−σ, determines a homotope algebra (Aσ)(a), an

associative algebra over the Φ-module Aσ with multiplication x ·a y = xay

for any x, y ∈ Aσ. The set KerA a = Ker a = {x ∈ Aσ | axa = 0} is

an ideal of Aσ(a), and the quotient Aσ
a = (Aσ)(a)/Ker a is an associative

algebra called the local algebra of A at a.
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2.6 Let X = (X+, X−) be a pair of nonempty sets. We denote by FAP (X)

the free associative pair over Φ on X, and call its elements (pair) polynomi-

als. Note that FAP (X) is the subpair of the pair (FA(X+∪X−), FA(X+∪
X−)) obtained by doubling the free associative algebra FA(X+∪X−), gen-

erated by (X+, X−). Clearly, every nonzero pair polynomial has odd degree.

By the universal property of FAP (X), any polynomial f(x+
1 , . . . , x+

n , x−1 , . . . ,

x−n ) can be evaluated in an associative pair A on fixed values xσ
i = aσ

i ∈ Aσ

for the indeterminates xσ ∈ Xσ. An associative polynomial fσ ∈ FAP (X)σ

is a polynomial identity of an associative pair A, and A is then said to be a

PI-associative pair, if fσ is monic in the sense that some leading monomial

in f has coefficient 1, and all the evaluations of fσ in A vanish. A poly-

nomial pσ ∈ FAP (X)σ of degree m = 2d + 1, and involving the variables

xσ
1 , . . . , xσ

d+1 and x−σ
1 , . . . , x−σ

d is multilinear if each monomial appearing in

pσ (note that FA(X)σ is a free Φ-module over the set of monomials) its

degree in each variable x±σ ∈ X is exactly 1. As for algebras, it is easy to

see that if an associative pair A satisfies a polynomial identity of degree m,

then it satisfies a multilinear identity of degree m.

2.7 Let X = (X+, X−) and Z = (Z+, Z−) be two pairs of sets and assume

that there are bijections ∗ : Xσ → Zσ (whose inverse we also denote by ∗).
Then the associative pair FAP (X, Z) = FAP (X+ ∪ Z+, X− ∪ Z−) can be

endowed with an involution extending ∗ in the obvious way. Its elements

are called ∗-polynomials. We have a notion of degree for any ∗-polynomial

pσ(x+, x−, (x+)∗, (x−)∗) = pσ(x+
1 , . . . , x+

n , (x+
1 )∗, . . . , (x+

n )∗, x−1 , . . . , x−n , (x−1 )∗

, . . . , (x−n )∗) ∈ FAP (X, Z)σ = FAP (X, X∗)σ. An associative pair A =

(A+, A−) with involution ∗ satisfies pσ(x+, x−, (x+)∗, (x−)∗) as before if that

polynomial vanishes under every substitution xσ
i ∈ Aσ (see [H2, p. 185]). An

associative pair is a ∗-PI-associative pair, if it satisfies a monic ∗-polynomial.

A ∗-polynomial pσ(x+
1 , . . . , x+

n , (x+
1 )∗, . . . , (x+

n )∗, x−1 , . . . , x−n , (x−1 )∗, . . . , (x−n )∗)

∈ FAP (X, X∗) is multilinear if the polynomial pσ(x+
1 , . . . , x+

n , z+
1 , . . . , z+

n ,

x−1 , . . . , x−n , z−1 , . . . , z−n ) ∈ FAP (X ∪ Z) is multilinear.

2.8 Lemma. Let A = (A+, A−) be an associative pair endowed with an invo-

lution ∗ , and satisfying a ∗-polynomial identity pσ(x+, x−, (x+)∗, (x−)∗) =

mσ(x+, x−, (x+)∗, (x−)∗) + · · · , of degree 2d + 1, where 0 6= α ∈ Φ and
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mσ(x+, x−, (x+)∗, (x−)∗) is a monomial of degree 2d + 1. Then A satisfies

p̃σ(x+, x−, (x+)∗, (x−)∗) = xσ
1x−σ

1 . . . xσ
dx−σ

d xσ
d+1 + qσ(x+, x−, (x+)∗, (x−)∗),

where each monomial of qσ(x+, x−, (x+)∗, (x−)∗) is of degree 2d+1, involves

each xσ
i or (xσ

i )∗ for every σ ∈ {+,−}, but not both, and where xσ
1x−σ

1 . . . xσ
d

does not occur in qσ(x+, x−, (x+)∗, (x−)∗). Therefore, A satisfies a multi-

linear identity of degree 2d + 1.

Proof. See [H2, Lemma 5.1.1].

2.9 A Jordan algebra has products Uxy and x2, quadratic in x and linear

in y, whose linearizations are Ux,zy = Vx,yx = {x, y, z} = Ux+zy−Uxy−Uzy

and x ◦ y = Vxy = (x + y)2 − x2 − y2.

A Jordan pair V = (V σ, V −σ) has products Qxy for x ∈ V σ and y ∈ V −σ,

σ = ±, with linearizations Qx,zy = Dx,yz = {x, y, z} = Qx+zy−Qxy−Qzy.

A Jordan triple system T has product Pxy, whose linearizations are

Px,zy = Lx,yz = {x, y, z} = Px+zy − Pxy − Pzy.

Any Jordan pair V = (V +, V −) gives rise to a polarized Jordan triple

system T (V ) = V + ⊕ V − with product Px+⊕x−y+ ⊕ y− = Px+y− ⊕ Px−y+.

Conversely doubling a Jordan triple system T produces a double Jordan pair

V (T ) = (T, T ) with Qxy = Pxy for any x, y ∈ T .

We denote by Γ(J) the centroid of a Jordan system J (see [L1, Mc] for

definitions). If J is a strongly prime Jordan system, then Γ(J) is a domain

acting faithfully on J , and we can form the central closure Γ(J)−1J as the

quotient module (or pair of modules if J is a Jordan pair) of J , which is a

Jordan system of the same type as J over the field of fractions Γ(J)−1Γ(J)

of J .

We refer to [M2] for the related notion of extended centroid of a Jordan

system J , which we denote C(J), and the attached scalar extension (for a

nondegenerate J): its extended central closure C(J)J .

2.10 Jordan systems can be obtained from associative systems by sym-

metrization. Every associative algebra A gives rise to a Jordan algebra A(+),

by taking Uxy = xyx and x2 = xx for x, y ∈ A. Similarly, every associa-

tive pair A = (A+, A−) produces a Jordan pair A(+) is obtained from an
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associative pair A = (A+, A−) simply by defining Qxy = xyx for xσ ∈ Aσ,

y−σ ∈ A−σ, σ = ±.

A Jordan system (algebra, pair or triple system) is special if it is isomor-

phic to a Jordan subsystem of A(+) for some associative system A.

2.11 Associative systems with involution give rise to important examples

of special Jordan systems. Given any associative algebra A with involution

∗, the set H(A, ∗) = {a ∈ A | a∗ = a} ⊂ A(+) of symmetric elements of

A is a hermitian Jordan algebra. More generally, we can consider ample

hermitian subspaces H0(A, ∗) ⊆ H(A, ∗) of symmetric elements containing

all traces {a} = a + a∗ and norms aa∗ of the elements of A and such that

aH0(A, ∗)a∗ ⊂ H0(A, ∗) for all a ∈ A. Recall that if 1
2 ∈ Φ, the only ample

subspace is H0(A, ∗) = H(A, ∗) [McZ].

If A = (A+, A−) is an associative pair with an involution ∗, then H(A, ∗) =(
H(A+, ∗),H(A−, ∗)

)
⊂ A(+) where H(Aσ, ∗) = {a ∈ Aσ | a∗ = a} is a her-

mitian Jordan pair. An ample hermitian subpair is a subpair H0(A, ∗) =(
H0(A+, ∗),H0(A−, ∗)

)
⊆ H(A, ∗) that contains all traces {a} = a + a∗ of

elements a ∈ Aσ and satisfies aH0(A−σ, ∗)a∗ ⊆ H0(Aσ, ∗) for all a ∈ Aσ,

σ = ±.

2.12 Given a Jordan pair V = (V +, V −) and a ∈ V −σ the Φ-module V σ

becomes a Jordan algebra denoted (V σ)(a) and called the a-homotope of V

by defining U
(a)
x y = QxQay and x(2,a) = Qxa, for any x, y ∈ V σ. The set

KerV a = Ker a = {x ∈ V σ | Qax = QaQxa = 0} is an ideal of (V σ)(a)

and the quotient V σ
a = (V σ)(a)/Ker a is a Jordan algebra, called the local

algebra of V at a. If V is nondegenerate, then Ker a = {x ∈ V σ | Qax = 0}.

2.13 The socle Soc(V ) =
(
Soc(V +), Soc(V −)

)
of a nondegenerate Jordan

pair V = (V +, V −) is the sum of all minimal inner ideals of V . The socle is

a direct sum of simple ideals [L2], therefore Soc(V ) is simple if the Jordan

pair is strongly prime. As for associative pairs, a Jordan pair V has finite

capacity if it satisfies both the ascending and the descending chain condition

on inner ideals. Again in this case, V equals its socle, and contains a maximal

idempotent e, an idempotent whose Peirce 0-space V0(e) vanishes (see [L3]).
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2.14 We refer to [Ro1, Ro2, M1, M2] for the basic notions on PI-theory

for associative and Jordan systems.

A polynomial f = f(x1, . . . , xn) ∈ FJ(X), the free Jordan algebra on

a set X, is called essential if its image in the free special Jordan algebra

FSJ(X) under the natural homomorphism has the same degree as f , and

has a monic leading term as an associative polynomial (note that FSJ(X)

is isomorphically embedded in the symmetrized Jordan algebra FA(X)(+)

of the free associative algebra FA(X)) . A Jordan PI-algebra is a Jordan

algebra which satisfies some essential f(x1, . . . , xn).

This definition extends to Jordan pairs by considering the free Jordan

pair FJP (X+, X−) on the sets of generators (X+, X−) (see [N]). Here

one considers the free special Jordan pair FSJP (X+, X−), which embeds

isomorphically into the Jordan pair FAP (X+, X−), and the natural homo-

morphism τ : FJP (X+, X−) → FSJP (X+, X−) extending the identity on

Xσ, σ = ±, and defines an essential polynomial as a nonzero polynomial

f ∈ FJP (X+, X−) such that τ(f) has the same degree as f , and has a

monic coefficient as an element of FAP (X+, X−). A PI-Jordan pair is then

a Jordan pair satisfying some essential polynomial. This definition extends

in the obvious way to Jordan triple systems.

If f(x1, . . . , xn) is a polynomial in the free Jordan algebra FJ [X] on a

countable set of generators X and z is an element of the free Jordan triple

system FJT (X), the polynomial f(z;x1, . . . , xn) = f (z)(x1, . . . , xn) is the

image of f under the only homomorphism FJ(X) → FJT (X)(z) extending

the identity on X [DA, DAMc1].

A Jordan triple system T satisfies a homotope polynomial identity (homo-

tope-PI or HPI, for short) if there exists an essential polynomial f(x1, . . . , xn)

in FJ [X] such that f(y;x1, . . . , xn) with y ∈ X different from xi vanishes

under all substitutions of elements y, xi ∈ T .

This definition extends to Jordan pairs V by considering polarized triple

systems. Indeed, since for every a+⊕a− ∈ T (V ) the homotope T (V )(a
+⊕a−)

is isomorphic to the product (V +)(a
−)×(V −)(a

+), a polynomial f(x1, . . . , xn) ∈
FJ [X] is an identity of all homotopes of T (V ) if and only if it is an iden-

tity of all homotopes of V . Note that a homotope polynomial identity on a
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Jordan pair is a pair of usual identities: If V satisfies f(y;x1, . . . , xn) for an

admissible Jordan polynomial f , then it satisfies g−σ = f(y−σ;xσ
1 , . . . , xσ

n)

for σ = ± (see however [GM]).

2.15 The fact that a Jordan system J satisfies a homotope-PI means that

all homotopes, and consequently all local algebras, satisfy a given identity.

Nonetheless, sometimes we are also be interested in the existence of some

aσ ∈ V σ such that the local algebra V −σ
aσ is PI. Such elements are called

PI-elements. If V is a Jordan pair we write PI(V ) = (PI(V +), P I(V −))

for the set of PI-elements of V . It was proved in [M1, 5.4] that PI(J) is an

ideal in every nondegenerate Jordan system J .

3 Polynomial identities in associative pairs.

The purpose of this section is to relate the existence of polynomial and

homotope polynomial identities on associative pairs endowed with involu-

tion. From now on we will assume those polynomial identities are as in

2.8.

We begin with primitive pairs.

3.1 Let A = (A+, A−) be a primitive associative pair. By the Density The-

orem [CGM, Theorem 1], there is a division Φ-algebra ∆ and two nonzero

∆-vector spaces M+, M− such that A is isomorphic to a dense subpair

of H = (Hom∆(M−,M+),Hom∆(M+,M−)). Besides the standard imbed-

ding UA of A is a primitive associative algebra and M = M−⊕M+ is a faith-

ful irreducible right UA-module such that ∆ is isomorphic to End (MUA
).

3.2 Lemma. Let A = (A+, A−) be an associative pair, and let (M+,M−)

be a faithful irreducible A-module. Then either A has no minimal right

ideals or given two finite dimensional vector spaces W σ ⊆ Mσ, σ = ±, and

vσ ∈ Mσ a vector not contained in W σ, there exists a−σ ∈ A−σ such that

W σa−σ = 0 and vσa−σ 6∈ W−σ.

Proof. Suppose that A does not have minimal right ideals. Then A has

no nonzero elements of finite rank, and therefore, Mσa−σ is an infinite di-
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mensional vector space for all nonzero a−σ ∈ A−σ. Since W−σ is finite

dimensional, this implies that there exists a−σ ∈ A−σ such that W σa−σ = 0

and vσa−σ 6∈ W−σ by [CGM, Theorem 1].

3.3 Lemma. Let A = (A+, A−) be a primitive associative pair with a pola-

rized involution ∗ and (M+,M−) be a faithful irreducible A-module. Then

(i) either A has minimal right ideals,

(ii) or given any two finite dimensional vector subspaces W σ ⊂ Mσ, σ =

±, and any vector v−σ ∈ M−σ not contained in W−σ, there exists an

element rσ ∈ Aσ that satisfies the followings conditions:

(a) W−σrσ = 0, (c) v−σ(rσ)∗ = 0,

(b) W−σ(rσ)∗ = 0, (d) v−σrσ 6∈ W σ.

Proof. Suppose that A has no minimal right ideals. Then, by [CGM, Theo-

rem 2], A has no nonzero elements of finite rank and M−σxσ is an infinite

dimensional ∆-subspace of Mσ for all 0 6= xσ ∈ Aσ.

Fix σ ∈ {+,−}. Then, given a finite dimensional ∆-space W−σ ⊂ M−σ

and v−σ ∈ M−σ not in W−σ, by [CGM, Theorem 2], there exists a nonzero

element aσ ∈ Aσ such that W−σaσ = 0 and v−σaσ = 0. Moreover, since W σ

is finite dimensional over ∆ and 0 6= M−σ(aσ)∗ is an infinite dimensional

vector ∆-subspace of Mσ, we can take 0 6= uσ ∈ M−σ(aσ)∗ such that uσ 6∈
W σ.

Consider now Bσ = {yσ ∈ Aσ | W−σyσ = 0}, which is a right ideal of A,

and satisfies v−σBσ 6= 0 by 3.2. It follows from the equalities v−σBσ = Mσ

and ((v−σBσ)A−σ)Aσ ⊆ v−σ(BσA−σAσ) ⊆ v−σBσ, that M = (v−σBσ, (v−σ

Bσ)A−σ). Hence there exists bσ ∈ Bσ such that 0 6= v−σbσ and therefore we

have M−σ = (v−σbσ)A−σ.

Finally since uσ ∈ M−σ(aσ)∗, we can write uσ = ((v−σbσ)x−σ)(aσ)∗ for

some x−σ ∈ A−σ and it is easily seen that rσ = bσx−σ(aσ)∗ satisfies the

required properties.

3.4 Proposition. Let A = (A+, A−) be a primitive associative pair.

a) If A is PI, then A has nonzero socle
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b) If A is endowed with an involution ∗, and A is ∗-PI, then A has

nonzero socle.

Proof. Let us first prove b). Suppose that A has no minimal right ideals.

Then, with the notation of 3.1, and applying 3.3 to W± = 0 and an arbitrary

nonzero vector v−σ ∈ M−σ, we obtain aσ
1 ∈ Aσ such that

W−σaσ
1 = 0, v−σ(aσ

1 )∗ = 0,

W−σ(aσ
1 )∗ = 0, v−σaσ

1 6∈ W σ.

Since v−σaσ
1 6= 0, we can apply 3.3 again with W−σ = ∆v−σ, W σ = 0, and

v−σaσ
1 6= 0, to obtain an element a−σ

1 ∈ A−σ such that

W σa−σ
1 = 0, (v−σaσ

1 )(a−σ
1 )∗ = 0,

W σ(a−σ
1 )∗ = 0, (v−σaσ

1 )a−σ
1 6∈ W−σ = ∆v−σ.

We claim that repeated application of 3.3 produces sequences a+
1 , · · · , a+

m ∈
A+ and a−1 , . . . , a−m ∈ A−, for any m ∈ N, that satisfy the following condi-

tions:

(1) (1.a) ((((. . . (v−σaσ
1 )a−σ

1 ) . . .)aσ
i )a−σ

i )aσ
j = 0 for all i + 1 < j ≤ m,

(1.b) (((. . . (v−σaσ
1 )a−σ

1 ) . . .)aσ
i )a−σ

j = 0 for all i < j ≤ m,

(2) (2.a) ((((. . . (v−σaσ
1 )a−σ

1 ) . . .)aσ
i )a−σ

i )(aσ
j )∗ = 0 for all i + 1 ≤ j ≤ m,

(2.b) (((. . . (v−σaσ
1 )a−σ

1 ) . . .)aσ
i )(a−σ

j )∗ = 0 for all i ≤ j ≤ m,

(3) The sets

(3.a) {v−σ, (v−σaσ
1 )a−σ

1 , . . . , (((. . . (v−σaσ
1 )a−σ

1 ) . . .)aσ
m)a−σ

m } ⊆ M−σ,

(3.b) {v−σaσ
1 , ((v−σaσ

1 )a−σ
1 )aσ

2 , . . . , ((. . . (v−σaσ
1 ) . . .)a−σ

m−1)a
σ
m} ⊆ Mσ.

are linearly independent over ∆

Indeed, take aσ
1 , a−σ

1 , . . . , aσ
k , a−σ

k satisfying (1)-(3). Then, since both

U−σ = ∆v−σ + ∆((v−σaσ
1 )a−σ

1 ) + · · · + ∆(((v−σaσ
1 ) . . .)a−σ

k−1) ⊆ M−σ and

Uσ = ∆(v−σaσ
1 ) + · · · + ∆((((v−σaσ

1 ) . . .)a−σ
k−1)a

σ
k) ⊆ Mσ are finite dimen-

sional over ∆ and v−σ
k = (((v−σaσ

1 ) . . .)aσ
k)a−σ

k 6∈ U−σ by 3.3, there exists

aσ
k+1 ∈ Aσ such that

U−σaσ
k+1 = 0, v−σ

k (aσ
k+1)

∗ = 0,

U−σ(aσ
k+1)

∗ = 0, v−σ
k aσ

k+1 6∈ Uσ.
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Continuing in this way, with Uσ = Uσ, U−σ = U−σ+∆(((v−σaσ
1 ) . . .)a−σ

k ) =

U−σ+∆v−σ
k , and vσ

k+1 = v−σ
k aσ

k+1 = ((((v−σ
k aσ

1 )a−σ
1 ) . . .)a−σ

k )aσ
k+1, we obtain

a−σ
k+1 ∈ A−σ such that aσ

1 , a−σ
1 ,. . .,aσ

k , a−σ
k , aσ

k+1, a
−σ
k+1 satisfies (1)-(3), thus

proving the claim.

We can assume that A satisfies a multilinear polynomial identity pσ of

degree 2d + 1 of the form 2.8. We claim that the above inductive process

gives rise to a sequence of elements in A on which that polynomial identity

does not vanish. Indeed, if we build the above sequence for m = d + 1, and

we evaluate pσ in xσ
1 = aσ

1 , x−σ
1 = a−σ

1 , . . . , x−σ
d = a−σ

d , xσ
d+1 = aσ

d+1, we

obtain

0 = v−σpσ(aσ
1 , . . . , aσ

d+1, a
−σ
1 , . . . , a−σ

d , (aσ
1 )∗, . . . , (a−σ

d )∗) =

= (((v−σaσ
1 )a−σ

1 ) . . .)aσ
d+1 + v−σqσ(aσ

1 , . . . , a−σ
1 , . . .).

So it suffices to check that v−σqσ(aσ
1 , . . . , a−σ

1 , . . .) = 0, since this would

imply (((v−σaσ
1 )a−σ

1 ) . . .)aσ
d = 0, contrary to (1)-(3).

To do this, first note that any monomial in qσ(aσ
1 , . . . , a−σ

1 , . . .) which

does not begin with aσ
1 annihilates v−σ. Indeed, by (1.a), v−σaσ

i = 0

for all i > 1 and, by (2.a), v−σ(aσ
i )∗ = 0 for all i ≥ 1. Thus, only

those monomials in qσ(aσ
1 , . . . , a−σ

1 , . . .) beginning by aσ
1 give a nonzero con-

tribution to v−σqσ(aσ
1 , . . . , a−σ

1 , . . .). Similarly, by (1.b) and (2.b), only

those monomials which continue with a−σ
1 give a nonzero contribution to

v−σqσ(aσ
1 , . . . , a−σ

1 , . . .). Therefore

v−σqσ(aσ
1 , . . . , a−σ

1 , . . .) = ((v−σaσ
1 )a−σ

1 )qσ,1(aσ
2 , . . . , a−σ

2 , . . .),

where qσ,1 denotes a sum of monomials involving either xτ
i or (xτ

i )
∗ for all

τ ∈ {+,−}, but not both, for all 2 ≤ i ≤ d.

Now, since the monomial xσ
1x−σ

1 . . . xσ
d does not occur in qσ, repeated

application of (1) and (2) above yields v−σqσ(aσ
1 , . . . , a−σ

1 , . . .) = 0. Hence

(((v−σaσ
1 )a−σ

1 ) . . .)aσ
d = 0, contrary to (1)-(3).

That proves b), and a) is proved in the same way by using 3.2 instead

of 3.3.
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3.5 Remark. Let A be an associative algebra, and consider the associative

pair (A,A). If (A,A) satisfies a polynomial identity p(x+
1 , . . . , x+

n , x−1 , . . . , x−n )

of degree d, then A satisfies the algebra identity p(x1, . . . , xn, y1, . . . , yn) of

degree d, and therefore it is a PI algebra. Similarly, if A possesses an in-

volution ∗, then ∗ induces an involution on (A,A), and if (A,A) satisfies

a ∗-polynomial identity p(x+, x−, (x+)∗, (x−)∗), then A satisfies an algebra

∗-identity p(x, y, x∗, y∗) of the same degree.

3.6 Theorem. Let A = (A+, A−) be a primitive associative pair, let (M+,M−)

be a faithful irreducible right A-module, and set ∆ = EndUA
(M+ ⊕M−).

a) If A satisfies a polynomial identity of degree 2d + 1, then for some

σ = + or −, the dimension of Mσ over ∆ is at most d.

b) If A has an involution ∗, and it satisfies a ∗-polynomial identity of

degree m, then M+ and M− are at most m-dimensional over ∆.

In both cases A is simple of finite capacity.

Proof. a) By 3.4, A has nonzero socle, and it is prime since it is primitive.

By [CGM, 2.8], Soc(A) is a simple associative pair [CFGM, Theorem 1] and,

by [CGM, Theorem 2], we have

Soc(A) = (F∆(M−,M+),F∆(M+,M−))

/ A ⊆ (Hom∆(M−,M+),Hom∆(M+,M−)).

Then for all n ∈ Z+ with n ≤ dim∆ M+ and ≤ dim∆ M−, there is

a subpair of matrices Mn(∆) = (Mn(∆),Mn(∆)) ⊆ Soc(A). This is the

associative pair of the algebra Mn(∆), and since it is a subpair of A, it

satisfies a polynomial identity of degree 2d + 1, hence Mn(∆) satisfies an

algebra identity of degree 2d + 1 by 3.5. Then 2d + 1 ≥ 2n, and we get

n ≤ d, hence dim∆ Mσ ≤ d for one of the σ = ±.

b) Since A has nonzero socle by 3.4, A is strongly prime [CGM, 2.8],

and therefore, by [FT, 3.14], ∆ has an involution ,̄ and there is a mapping

g : M+ ×M− → ∆ such that (M+,M−, g) form a pair of skew dual vector
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spaces the associative division Φ-algebra with involution (∆,−) (see [FT,

3.11]), and Soc(A) = (F∆(M−,M+),F∆(M+,M−)). Moreover, by [FT,

3.20], for any n ≤ dim∆(X), Soc(A) contains a ∗-subpair S ∗-isomorphic

to a full pair of matrices with involution
(
(Mn(∆),Mn(∆)), ∗

)
, and either

∗ = ] and then B∗ = B
t or ∆ is a field, − is the identity, ∗ = −], and

B∗ = −Bt for all B ∈ Mn(∆), where t is the transpose involution.

Suppose first that B∗ = B
t. Then,

(
(Mn(∆),Mn(∆)), ∗

)
is the pair with

involution obtained from the algebra Mn(∆) endowed with the involution

∗. Since A satisfies a ∗-polynomial identity of degree m, so does S, hence

(Mn(∆), ∗) satisfies an algebra ∗-polynomial identity of degree m by 3.5.

Then, by a theorem of Amitsur [Am], Mn(∆) satisfies the standard identity

S2m by [Ro2, 1.4.1], hence 2n ≤ 2m, and we get n ≤ m, which yields

dim∆ M+ = dim∆ M− ≤ m.

Suppose finally that B∗ = −Bt. Since by [FT, 3.20], ∆ is now a field

we write ∆ = F . If dimF Mσ ≥ 2n for some (hence both) σ, by [FT,

3.20], then Soc(A), hence A, contains a ∗-subpair S ∗-isomorphic to a full

pair of matrices with involution
(
(M2n(F ),M2n(F )), ∗

)
, such that, for any

B = (Cij) ∈ M2n(F ), B∗ = (Cij)∗ = (C∗ji), where C ∈ M2(F ) and

C∗ =

(
α β

γ δ

)∗
=

(
δ −β

−γ α

)

for all α, β, γ, δ ∈ F .

Again, S, hence
(
(M2n(F ),M2n(F )), ∗

)
, inherits the ∗-identity of A, and

since
(
(M2n(F ),M2n(F )), ∗

)
is the ∗-pair obtained from the algebra M2n(F )

endowed with some involution ∗, by 3.5, it satisfies an algebra ∗-identity of

degree m, hence by [Am], it satisfies the standard identity S2m. Thus we

get 4n ≤ 2m by [Ro2, 1.4.3], hence 2n ≤ m− 1 since m is odd. This implies

dimF Mσ ≤ m, σ = ±.

3.7 Remark. We point out that, as a consequence of the above proof,

if A is a primitive associative pair with involution ∗, and it satisfies a ∗-
polynomial identity of degree m, then there exists a division algebra ∆ and

a positive integer n such that A is isomorphic to a pair
(
Mn(∆),Mn(∆)

)
,

and Mn(∆) satisfies the standard identity S2m.
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3.8 Lemma. Let A = (A+, A−) be an associative pair with an involution ∗
that satisfies a polynomial identity pσ(x, x∗) of degree m. If P is a primitive

ideal of A , then A/P is simple, has finite capacity and all its local algebras

satisfy the standard identity S2m.

Proof. If P = P ∗, the pair A/P is primitive with an involution induced

by that of A, and clearly it satisfies the polynomial identity pσ(x, x∗) of

degree m. Thus, in this case we can assume that A is primitive. By 3.7,

A is then a simple pair of finite capacity of the form
(
Mn(∆),Mn(∆)

)
for

a division algebra ∆, and the matrix algebra Mn(∆) satisfies the standard

identity S2m. By a well known scalar extension argument (see [H1]), Mn(∆)

embeds in a matrix algebra Mk(F ) over a field F for some k ≤ m which

also satisfies the identity S2m. If now a ∈ Aσ, then the local algebra A−σ
a =

Mn(∆)a is (isomorphic to) a subalgebra of Mk(F )a, and it is easy to see

that Mk(F )a
∼= Mr(F ), where r ≤ k ≤ m is that rank of a. Therefore the

local algebra A−σ
a satisfies the standard identity S2m by Amitsur-Levitzki’s

theorem [Ro2, 1.4.1]

We assume next that P 6⊇ P ∗. (Note that this case includes the possi-

bility of A being ∗-primitive but not primitive, since then A has a primitive

ideal P such that P ∩ P ∗ = 0. See [Ro2, 7.3.5].)

Factoring out the ideal P ∩P ∗ we can assume that P ∩P ∗ = 0. Set I =

P +P ∗ = P ⊕P ∗. Since I is a ∗-ideal of A, it inherits the ∗-polynomial iden-

tity of A. Now, if (A, ∗) satisfies the ∗-polynomial p(x+, x−, (x+)∗, (x−)∗)

of degree m, then P ∗ satisfies the polynomial q = p(x+, x−, y+, y−), which

we can assume to be multilinear. Moreover P ∗ ∼= I/P is an ideal of the

primitive pair A/P , hence it is itself a primitive pair (since any faithful irre-

ducible A/P -module is easily seen to be a faithful irreducible I/P -module).

Therefore, P ∗ is a pair of finite capacity by 3.6, and by [CGM, Proposition

1] has the form
(
Hom∆(X, Y ),Hom∆(Y, X)

)
for a division algebra ∆, and a

pair of ∆-vector spaces X, Y , with one of the dimensions dim∆ X or dim∆ Y

finite. Note now that P ∗ is an associative pair over the center Z = Z(∆) of

∆, and let F be a maximal subfield of ∆. Consider now the scalar exten-

sion P ∗F = P ∗ ⊗Z F . Then, (Y, X) becomes an irreducible P ∗F -module, and

F = EndUP∗
F
(Y ⊕X) = F . Now P ∗F still satisfies the multilinear identity q



16

of degree m, hence by 3.6, if we set m = 2d + 1 (recall that m is odd), we

have that either dimF X ≤ d or dimF Y ≤ d, and P ∗F is isomorphic to the

pair B =
(
HomF (X, Y ),HomF (Y, X)

)
. Now, if bσ ∈ Bσ, it is easy to see

that the local algebra B−σ
bσ is isomorphic to a matrix algebra Mn(F ) where n

is the rank of the linear transformation bσ, which is at most the minimum of

dimF X and dimF Y , and hence r ≤ d < m. Therefore, every local algebra

of B satisfies the standard identity S2m, and so does every local algebra of

the subpair I/P = P ∗, of B.

Next we claim that I/P = A/P . Indeed, since I/P has finite capacity

by [L3, Theorem 3(v)], there is an idempotent e = (e+, e−) of I/P such that

(I/P )00(e) = 0. Then I/P = (I/P )11(e) ⊕ (I/P )10(e) ⊕ (I/P )01(e). But,

since (I/P )ij(e) = (A/P )ij(e) for all i, j ∈ {0, 1} such that (i, j) 6= (0, 0),

we have A/P = I/P ⊕ (A/P )00(e). Take now zσ ∈ (A/P )σ
00(e). By the

Peirce relations (see [L1, pp. 94-95]),

〈zσ, L−σ, zσ〉 ⊂
∑

(i,j) 6=(0,0)

〈(A/P )σ
00(e), (A/P )−σ

ij (e), (A/P )σ
00(e)〉 = 0,

which gives zσ ∈ Ann(A/P )J ((I/P )−σ) = 0 [CFGM, Lemma 2]. Hence

(A/P )σ
00(e) = 0 and then A/P = I/P , hence A/P has finite capacity and

all its local algebras satisfy the standard identity S2m.

3.9 Theorem. Let A be an associative pair with an involution ∗. If A

has a ∗-polynomial identity of degree m, then there exists a positive integer

k such that every local algebra of A satisfies the polynomial identity Sk
2m.

Moreover, if A is semiprime, then every local algebra satisfies the standard

identity S2m.

Proof. We can assume that A satisfies a multilinear ∗-identity p of degree m

as in 2.8. We consider first the case of a semiprime A. To deal with it, we

will embed A into a semiprimitive associative pair with the same identities

as A by means of its Martindale-McCrimmon embedding [M1, 5.2]: Let Ã

be the pair (Seq(A[t1])[t2], where t1 and t2 are polynomial variables, and

Seq(B) =
∏∞

1 B for an associative pair B. We set E(A) = Ã/Jac(Ã),

where Jac denotes the Jacobson radical. We denote by τ the composition

A ⊆ Ã → E(A). Clearly, the involution ∗ of A extends to E(A) making τ a

∗-homomorphism of associative pairs. This is the associative version of the
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construction of the Martindale-McCrimmon embedding, defined in [MMc]

for Jordan algebras, and extended to general Jordan systems in [M1]. In

fact, using [L1, 7.9] we easily get E(A)(+) = E(A(+)), hence by [M1, Lemma

5.3], τ is injective. Moreover, E(A) satisfies the ∗-identity p, hence by 3.8,

for every primitive ideal P of E(A), all local algebras of E(A)/P satisfy the

standard identity S2m. Therefore, the semipritivity of E(A) implies that all

its local algebras satisfy the identity S2m, and the same goes for A.

Finally, the assertion for a general A follows by Amitsur’s argument

[Ro2, 1.6.38].

As an immediate application of this result we consider associative pairs

with involution for which either the set of skew symmetric elements or the

set or symmetric elements satisfies a polynomial identity. More generally,

we can consider traces: t(r) = r + r∗, and the set of all traces T (A, ∗) of the

triple system with involution (A, ∗).

3.10 Corollary. If either the set of all symmetric elements (or, more gen-

erally, the set of all traces) or the set of all skew elements of an associative

pair A with involution satisfies a polynomial identity, then all local algebras

of A satisfy an identity Sk
2m where S2m is the standard identity.

4 Polynomial identities in Jordan pairs.

In this section we provide an affirmative answer to following conjecture

which was raised in [M2, 6.4].

4.1 Conjecture. Every PI-Jordan system satifies a homotope-PI.

We recall here that this result has already been proved for Jordan alge-

bras in [M1, 2.7(ii)]. Thus we will focus on Jordan pairs and triple systems,

but we first recall the definition of a family of Jordan polynomials which

will play for us to some extent the role of the associative standard identity

4.2 Following [M1, 2.2], we denote by Fm the family of essential polyno-
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mials in the free Jordan algebra FJ [x, y, z]

Fm(x, y, z) =
∑

σ∈Sm+1

(−1)σVxσ(1),y . . . Vxσ(m+1),y z.

We also write Gm(x, y, z) = Fm(x, y, z)3.

Before studying Jordan pairs, we return to algebras to obtain a sharper

version of [M1, 6.4(a)] for semiprime algebras:

4.3 Lemma. Let A be a semiprime associative algebra. If A satisfies the

standard identity S2n, then A(+) satisfies all the identities Fm for all m ≥ n2.

Proof. By Posner-Rowen’s theorem, the central localization B = Z(A)−1A

of A is a simple algebra finite dimensional over its center, and therefore a

matrix algebra over a division ring D, which still satisfies S2n. On the other

hand, after a suitable scalar extension of B (for instance by a maximal

subfield F of D), we obtain a matrix algebra Mk(F ) which still satisfies S2n.

Then k ≤ n by [Ro2, 1.4.3], hence Mk(F ) has dimension at most n2 over F ,

and Mk(F )(+) satisfies Fm for m ≥ n2 by [M1, 2.3], hence A(+) also satisfies

that identity.

4.4 Recall that a Jordan pair V is said to strictly satisfy a homotope poly-

nomial identity f(y;x1, . . . , xn) if every scalar extension V ⊗Ω for a commu-

tative associative Φ-ring Ω ⊇ Φ, still satisfies the identity f(y;x1, . . . , xn).

Since the strict validity of an identity amounts to the validity of all its par-

tial linearizations, it is easy to see that V strictly satisfies f (y), if and only

if the polynomial pair V [t] = V ⊗ Φ[t] satisfies f (y).

4.5 Lemma. Let V be a strongly prime Jordan pair and suppose that a

nonzero ideal I of V strictly satisfies some homotope polynomial identity

f(y;x1, . . . , xn) = f (y)(x1, . . . , xn) for a homogeneous admissible Jordan

polynomial f , then V satisfies f (y).

Proof. Consider the extended central closure Ṽ = C(V )V of V , and the ideal

Ĩ = C(V )I of Ṽ generated as a C(V ) module by I. Take now xσ ∈ Iσ and

y−σ ∈ I−σ and set zσ = Qxσy−σ. Then, for all a−σ
1 , . . . , a−σ

n ∈ V −σ we have

Qy−σf(y−σ;Qxσa−σ
1 , . . . , Qxσa−σ

n ) = 0 (since Qxσa−σ
i ∈ Iσ for all i). Thus
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we have 0 = QxσQy−σf(y−σ;Qxσa−σ
1 , . . . , Qxσa−σ

n ) = QxσQy−σQxσf(Qxσy−σ;

a−σ
1 , . . . , a−σ

n ) = Qzσf(zσ; a−σ
1 , . . . , a−σ

n ) by [GM, 0.19], hence the local alge-

bra V −σ
zσ is PI, and thus QIσI−σ ⊆ PI(V ). Since QIσI−σ 6= 0 by [M2, 1.3]

and the primality of V , this implies PI(V ) 6= 0. Therefore, by [M2, 5.1], Ṽ is

strongly prime with nonzero socle Soc(Ṽ ) = PI(C(V )V ), which is a simple

ideal by 2.13. Thus we get Ĩ = Soc(Ṽ ) ⊆ Ĩ, and therefore Soc(Ṽ ) satisfies

the homotope polynomial identity f (y), hence it has finite capacity by [M1,

4.10]. This implies that Ĩ = Soc(Ṽ ) = Ṽ using a complete idempotent as in

3.8, and therefore Ṽ , hence V , satisfies f (y).

4.6 Proposition. Let V be a nondegenerate Jordan pair. If V satisfies a

polynomial identity of degree m, then all its local algebras satisfy the iden-

tities Fk(x, y, z) for all k ≥ m2, hence V satisfies the homotope polynomial

identity Gk(t;x, y, z) for all k ≥ m2.

Proof. Since any nondegenerate Jordan pair is a subdirect product of strongly

prime Jordan pairs, it clearly suffices to consider the case of a strongly prime

V . In that case, by [ACMM, 4.3], either there exits a scalar extension Ṽ of V

which is Clifford, bi-Cayley or Albert, or V consists of hermitian elements:

V has a nonzero ideal I = H0(A, ∗) which is an ample subpair of a ∗-prime

associative pair A with involution ∗, and V ⊆ H(Q(A), ∗), where Q(A) is

the Martindale pair of symmetric quotients of A.

We consider first the hermitian case. Note that we can assume that

V satisfies a multilinear polynomial identity p of degree m. Consider the

polynomial extension I[t] = I ⊗Φ Φ[t]. It is straightforward that I[t] =

H0(A[t], ∗) is an ample subpair of the ∗-prime associative pair A[t], and it

still satisfies the polynomial identity p. By 3.9, every local algebra of the

semiprime pair A[t] satisfies the standard identity S2m, and since these are

again semiprime, every local algebra of A[t](+) satisfies all the identities Fm

for all m ≥ n2 by 4.3, and so does every local algebra of I[t]. Thus I strictly

satisfies all the identities Fm(t;x, y, z) for all m ≥ n2 by 4.4. Thus V satisfies

all the identities F
(t)
m for all m ≥ n2 by 4.5.

Now if V is bi-Cayley or Albert type, then all its local algebras are at

most 27-dimensional over their centroids, and if V is of Clifford type, then

its local algebras are generically algebraic of degree 2 over their centroids.
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Therefore they all satisfy Fk(x, y, z) for k ≥ 27. Since m ≥ 3, all local

algebras of V satisfy Fk for k ≥ m2.

4.7 Theorem. Let J be a Jordan system. If J satisfies a polynomial identity

of degree m, then J satisfies the homotope polynomial identity F l
k(t;x, y, z) =

Fk(t;x, y, z)(l,t) for all k ≥ m2 and some l ≥ 3.

Proof. For Jordan pairs, this follows from 4.6 by Amitsur’s argument [Ro2,

1.6.38]. The result for Jordan triple systems follows from that result by

using the double pair V (J) attached to a Jordan triple system J .

As a consequence of that theorem we can improve the Jordan analogues

of Kaplansky’s and Posner-Rowen theorems obtained in [M1, M2, M3].

4.8 Theorem. Let V be a Jordan pair, and suppose that V satisfies a poly-

nomial identity, then:

a) If V is primitive, then it is simple of finite capacity.

b) If V is strongly prime, then its central closure Γ(V )−1V is simple of

finite capacity.

c) The McCrimmon radical and the properly nilpotent radical of V coin-

cide.

Proof. Since by 4.7 every PI Jordan system satisfies a homotope polynomial

identity, the result immediatelly follows from [M1, 4.10(ii),6.3(b)] and [M3,

4.3]

4.9 Remark. Part c) of 4.8 was first proved by Zelmanov in [Z, Theorem

3]. This raises the question of whether the present proof is independent of

that result, which was used in [Z] to prove its prime dichotomy theorem

(every strongly prime Jordan system is either i-special or an Albert form),

which in turn is needed in the proof of 4.6. However a careful reading of [Z]

reveals that the only result that is needed is [M1, 6.3(b)], which does not

require the classification theorem of strongly prime Jordan systems.
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We can also obtain as a corollary the extension to arbitrary Jordan

systems of a result that was proved in [M3] for nondegenerate systems:

4.10 Corollary. If a Jordan system J satisfies a homotope polynomial iden-

tity, then it strictly satisfies a homotope polynomial identity of the form

F l
k(t;x, y, z) = Fk(t;x, y, z)(l,t).

Proof. Since J satisfies a homotope polynomial identity, it is PI, and the

result follows from 4.7.
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cobson density for associative pairs and its applications, Comm.

Algebra 17 (10) (1989), 2595-2610.

[DA] A. D’Amour, Quadratic Jordan Systems of Hermitian Type,

J. Algebra 149 (1992), 197-233.

[DAMc1] A. D’Amour, K. McCrimmon, The local algebras of Jordan Sys-

tems, J. Algebra 177 (1995), 199-239.

[DAMc2] A. D’Amour, K. McCrimmon, The Structure of Quadratic Jor-

dan Systems of Clifford Type, J. Algebra 234 (2000), 31-89.



22
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[GM] E. Garćıa Rus, F. Montaner, Maximal Modular Inner Ideals in

Jordan Systems, Comm. Algebra 31 (2) (2003), 697-749.

[H1] I. N. Herstein, Noncommutative Rings, The Carus Mathematical

Monographs, Vol. 15, The Mathematical Association of America,

Washington, DC, 1968.

[H2] I. N. Herstein, Rings with Involution, Chicago Lectures in Ma-

thematics, The University of Chicago Press, Chicago, 1976.

[L1] O. Loos, Jordan Pairs, Lecture Notes in Mathematics, Vol. 460,

Springer, Berlin/Heidelberg/New York, 1975.

[L2] O. Loos, On the socle of a Jordan pair, Collect. Math. 40 (1989),

109-125.

[L3] O. Loos, Finiteness conditions in Jordan pairs, Math. Z. 206

(1991), 577-587.

[MMc] W. S. Martindale III, K. McCrimmon, Imbedding nondegenerate

Jordan algebras in semiprimitive algebras, Proc. Amer. Math.

Soc. 103 (4) (1988), 1031-1036.

[Mc] K. McCrimmon, Jordan Centroids, Comm. Algebra 27 (2)

(1999), 933-954.

[McZ] K. McCrimmon, E. Zelmanov, The Structure of strongly prime

Quadratic Jordan Algebras, Adv. Math. 69 (2) (1988), 133-222.

[Me] K. Meyberg, Lectures on Jordan Algebras and Triple Systems.

Lecture Notes, University of Virginia, Charlottesville, 1972.

[M1] F. Montaner, Local PI-theory of Jordan Systems, J. Algebra 216

(1999), 302-327.

[M2] F. Montaner, Local PI-theory of Jordan Systems II, J. Algebra

241 (2001), 473-514.



23

[M3] F. Montaner, Homotope polynomial identities in prime Jordan

systems, J. Pure Appl. Algebra 208 (200), 107-116.

[N] E. Neher, Polynomial identities and nonidentities in split Jordan

pairs, J. Algebra 211 (1999), 206-224.

[Ro1] L. H. Rowen, The theory of generalized polynomial identities,

in Ring Theory, Proceedings of the Ohio University Conference

(S. K. Kain and K. E. Eldridge, Eds.), Dekker, New York, 1977.

[Ro2] L. H. Rowen, Polynomial Identities in Ring Theory, Academic

Press, New York, 1980.

[Z] E. I. Zelmanov, Prime Jordan triple systems, Siberian Math. J.

24 (1983), 509-520.


