
Outer Fractions in Quadratic Jordan Algebras

James Bowling
Department of Mathematics and Computer Science

Bridgewater College, Bridgewater, Virginia
jbowling@bridgewater.edu∗

Kevin McCrimmon
Department of Mathematics

University of Virginia, Charlottesville, Virginia
kmm4m@virginia.edu

Abstract

Using new techniques of Zel’manov, C. Martinez improved on work of Jacobson, McCrim-
mon, and Parvathi to give a necessary and sufficient Ore-type condition for an arbitrary linear
Jordan algebra (with no 2- or 3-torsion) to have an algebra of fractions. In this paper we extend
to quadratic algebras the concept of algebras of outer fractions with respect to an Ore monad,
and describe necessary and sufficient Ore-type conditions for the imbedding in such an algebra
of fractions. The details of the actual imbedding will appear in a subsequent paper.

In the early years of quadratic Jordan algebras it was natural to look for an Ore-like theory
of Jordan fractions. In those pre-Zel’manov days it was still possible to hope for a non-Albert
exceptional Jordan division algebra. In 1978 Jacobson, McCrimmon, and Parvathi [6] obtained an
imbedding of a Jordan algebra J with set S of Ore denominators in an algebra JS of outer Jordan
S-fractions, in the sense that (1) every element of S is invertible in JS , (2) every element q ∈ JS

is an outer S-fraction q = U−1
s a for some s ∈ S and a ∈ J . However, to make the product Uqr be

quadratic in the variable q they had to impose an unnatural extra condition.
In 2001 Consuelo Martinez [8] discovered a beautiful way to construct an algebra of fractions

JS from a linear Jordan algebra over scalars Φ 3 1
6 by imbedding it in a Tits-Kantor-Koecher Lie

algebra via a → Ada, constructed as a Lie algebra of germs of derivations (just as in associative ring
theory algebras of right quotients as−1 are constructed as germs of right R-module homomorphisms
Las−1 : sR → R).

Since the impetus came from imbedding a Jordan algebra in a division algebra, the map J → JS

was to be injective, and hence the elements of S were injective in the sense that their U -operators
were injective. In this paper we will keep the same focus, and not discuss the more general question
of localization at an arbitrary S. Much work has been done recently by Anquela, Garcia, Gomez
Lozano, Montaner, and others [1, 4, 5] on Jordan algebras of quotients with respect to denominators
which are dense or essential ideals or inner ideals, not necessarily containing injective elements.
Much of this work makes use of the structure theory of Jordan systems, whereas the original work of
Jacobson, McCrimmon, Parvathi and Martinez gave intrinsic constructions of algebras of fractions.

The extension to quadratic Jordan algebras over arbitrary rings of scalars (for example, Jordan
rings over Z) of Martinez’s results is much more involved technically. In this paper, the first of a
two-part program, we will develop the general theory of Jordan algebras of outer fractions. We will
define what it means for an element q of an over-algebra Q ⊃ J to be an outer S-fraction from J ,

∗This paper consists of part of the Ph.D. dissertation of the first author. The second author has contributed the
material on generic denominators.
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a fraction U−1
s a with numerator a ∈ J and outer denominator s ∈ S for a suitable denominator

set S. We discuss various possible “denominators”. One of the crucial steps in Martinez’ work [8]
is to demand that a denominator s do more than just map q into J (Usq = a ∈ J as in [6]), it
should annihilate q mod J in the sense of the Zelmanov annihilator ({s, q, Ĵ } ⊆ J), in particular
{s, q} = {s, q, 1} ∈ J. We will use a quadratic version of the annihilator. §1 recalls the notation for
the rest of the paper, §2 introduces inner ideals of denominators. §3 discusses generic denominators.
§4 discusses Ore monads S and the Ore Condition on J relative to S, and in §5 we relate this to
movability of operators, showing that the Ore condition is equivalent to a two-sided Ore condition in
the universal multiplication envelope. In §6 we show that the Ore condition (as well as an Unwelcome
Condition) must hold if an algebra of fractions is to exist. §7 derives Martinez’s lovely result that
whenever we can find a home where fractions live, the set of all fractions forms a subalgebra which
is an algebra of fractions. We expect these results to have analogues for Jordan triples and pairs,
where creation of inverses will be possible only for systems which already imbed in Jordan algebras.

1 Introduction

We begin by recalling some basic concepts for associative algebras, quadratic Jordan algebras, Lie
algebras, and Jordan pairs. Throughout the paper we will consider algebras over a fixed unital,
commutative associative ring of scalars Φ. Let R be an associative Φ-algebra and let S ⊆ R be
an Ore monoid, a subset of regular elements (injective elements in the sense that their right and
left multiplications are injective maps) which is closed under multiplication. An overalgebra Q ⊇ R
is called an algebra of right S-fractions for R if the following two conditions hold: (i) each s ∈ S
becomes invertible in Q, (ii) each q ∈ Q has the form of a right S-fraction q = as−1 for some
a ∈ R, s ∈ S. Ore found a necessary and sufficient condition on R,S (now known as the the right
Ore condition) for the existence of such an algebra of right fractions [14]: for each a ∈ R and s ∈ S
there exists a′ ∈ R and s′ ∈ S such that as′ = sa′. Intuitively, this says that every “left S-fraction”
can be rewritten as a right S-fraction, s−1a = a′s′

−1
.

A unital quadratic Jordan algebra J = (J, U, 1) over an arbitrary ring of scalars Φ, is a Φ-module
J containing a distinguished element 1, and having a quadratic map U : J → EndΦ(J) such that

(QJ1) U1 = Id, (QJ2) UxVy,x = Vx,yUx = UUxy,x, (QJ3) UUxy = UxUyUx

hold strictly in the sense that they continue to hold in all scalar extensions, equivalently, if all
their linearizations hold in J . Here Ux,z := Ux+z − Ux − Uz is the linearization of the U -operator,
and Vx,y(z) := {x, y, z} := Ux,z(y). A quadratic Jordan algebra is just a subspace J = (J, U,2 )
of some unital quadratic Jordan algebra, closed under the U -operator and squaring x2 := Ux1,
equivalently, the free unital hull Ĵ := Φ1 ⊕ J becomes a unital quadratic Jordan algebra under
Uα1⊕x(β1⊕ y) := α2β ⊕

(
α2y + 2αβx + α{x, y}+ βx2 + Uxy

)
where Vxy := {x, y} := Ux,y1 denotes

the linearization of the square. The operator Vx,y = VxVy − Ux,y is generated by the U - and V -
operators Ua, Va. Unless otherwise stated, we will deal with non-unital quadratic Jordan algebras, but
we will always make use of the unital hull. The linear map Ux : y 7→ Uxy is outer multiplication
by x, and is a quadratic function of x; turning this on its head, the quadratic map ∩x : y 7→ Uyx is
inner multiplication by x, and is a linear function of x. Outer and inner multiplications play the
role in Jordan theory that left and right multiplications do in associative theory. The archetypal
example of a Jordan algebra is A+ for an associative algebra, with Uxy = xyx, Vx,yz = {x, y, z} =
xyz + zyx, x2 = xx, Vxy = {x, y} = xy + yx; an algebra is special if it can be imbedded in an
algebra A+.

We will use [9] as reference for all formulas (especially the Fundamental Formulas FF on p. 202);
remember that for a Jordan operator identity in two variables it suffices by Macdonald’s Principle
[9, p. 466] to verify it in associative algebras. The following are used frequently enough in the paper
for us to display them:
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(1.1.1) Vx,yUz + UzVy,x = U{x,y,z},z, [Vx,y, Vz,w] = V{x,y,z},w − Vz,{y,x,w},
(1.1.2) VUxy = Vx,{y,x} − Vx2,y, Vx2 = Vx,x, V{x,y} = Vx,y + Vy,x,
(1.1.3) U{x,y} −

{
Ux, Uy

}
= Vx,yVy,x − VUxy2 = VxUyVx − UUxy,y,

(1.1.4) U{x,y,z} = UxUyUz − UzUyUx − UUxUyz,z + U{x,y,z},zVy,x − UzVy,Uxy,
(1.1.5) Vx,Uyx = VUxy,y, Vx,Uyz = V{x,y,z},y − Vz,Uyx = Vx,yVz,y − Ux,zUy,
(1.1.6) VUyz,x = Vy,{z,y,x} − VUyx,z = Vy,zVy,x − UyUz,x,
(1.1.7) UUxy,z = Ux,zVy,x − Vz,yUx = Vx,yUx − UxVy,z,
(1.1.8) Uαx+Uxy = Bα,x,yUx = UxBα,y,x (Bα,x,y := α21 + αVx,y + UxUy),
(1.1.9) UxBα,y,Uxz = Bα,Uxy,zUx, UxVy,Uxz = VUxy,zUx.

For a subalgebra K ⊆ J, the unital multiplication algebra of K on J is denoted by M(K|J); it
is generated over Φ by the identity operator 1 and all operators of the form Va, Ua for a ∈ K; when
K = J we get the full multiplication algebra M(J). The universal gadget for multiplications is the
universal multiplication envelope UME(J) [12, 10] generated by 1 and all

≈
V a,

≈
Ua for a ∈ J ;

if K is a subalgebra of J , we denote by UME(K|J) the subalgebra generated by 1 and all
≈
V a,

≈
Ua

for a ∈ K. We will consistently use ≈ to denote generic multiplication operators. The universal
multiplication envelope satisfies all Jordan operator identities, in particular, (QJ1-3) and (1.1.1-9).
In UME(K|J) we have

(1.2)
≈
V UK

bK ⊆
≈
V K,K , [

≈
V K ,

≈
V K,K ] ⊆

≈
V K,K ,

≈
V Us

bJ, bJ

≈
Us =

≈
Us

≈
V
bJ,Us

bJ .

since for z, w ∈ I all of [by (1.1.2)]
≈
V Uzw =

≈
V z,{w,z}−

≈
V z2,w,

≈
V z2 =

≈
V z,z,

≈
V {z,w} =

≈
V z,w +

≈
V w,z, [by

(1.1.1)] [
≈
V x,

≈
V z,w] =

≈
V {x,z},w −

≈
V z,{x,w} lie in

≈
V K,K , [by (1.1.9)]

≈
V Usx̂,ŷ

≈
Us =

≈
Us

≈
V x̂,Usŷ.

Whenever J ⊆ Q (for example, when Q = Ĵ is the unital hull), we have a natural epimorphism
UME(J) −→M(J |Q) sending 1,

≈
V a,

≈
Ua,

≈
V a,b → 1, Va, Ua, Va,b ∈ End(Q). In particular, Q becomes

a left UME(J)-module, and we can form
≈
M(q) for any

≈
M ∈ UME(J) and any q ∈ Q.

A crucial feature of the universal envelope is the universal reversal involution
≈
M →

≈
M∗ deter-

mined on the generators by
≈
V a,

≈
Ua,

≈
V a,b →

≈
V a,

≈
Ua,

≈
V b,a. This provides duality among Jordan operator

identities: if
≈
M vanishes identically in all Jordan algebras, so does its dual

≈
M∗. [Caution: this does

not induce an involution on each M(Ĵ |Q): we can have
≈
M → W = 0 but

≈
M∗ → W ∗ 6= 0.]

2 Denominators

We begin by describing various denominators for fractions. Throughout this section, let K ⊆ J ⊆ Q
be a subalgebra of a quadratic Jordan algebra which is in turn a subalgebra of Q, with x ∈ K, q ∈ Q.

Denominator Definition 2.1 A K-prenominator (= pre-denominator) for q ∈ Q is an element
x ∈ K whose V and U operators push q into K,

(Pren1) Vxq ∈ K, (Pren2) Uxq ∈ K.

The set of K-prenominators for q will be denoted by PrenK(q). Note that U -operator pushing holds
automatically when q ∈ J by innerness of K.

An element x ∈ K will be called a K-denominator for q if

(D1) Uxq ∈ K, (DS2) UxUqK̂ ⊆ K, (D3) {x, q, K̂} ⊆ K,

(D1)′ Uqx ∈ K, (DS2)′ UqUxK̂ ⊆ K, (D3)′ {q, x, K̂} ⊆ K.

An element x ∈ K will be called a strong K-denominator for q if

(SD1) Uxq ∈ UKK̂, (SD2) UxUqK̂ ⊆ UKK̂, (SD3) {x, q, K̂} ⊆ UKK̂,

(SD1)′ Uqx ∈ UKK̂, (SD2)′ UqUxK̂ ⊆ UKK̂, (SD3)′ {q, x, K̂} ⊆ UKK̂.
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The set of K-denominators and strong denominators for q will be denoted by DenK(q), SDenK(q)
respectively.

More generally, let L C K be an ideal of K, and LDenK(q) denote the L,K-denominators for
q, the elements x ∈ K which satisfy the product conditions

(LD1) Uxq ∈ L, (LD2) UxUqK̂ ⊆ L, (LD3) {x, q, K̂} ⊆ L,

(LD1)′ Uqx ∈ L, (LD2)′ UqUxK̂ ⊆ L, (LD3)′ {q, x, K̂} ⊆ L.

where (LD3) implies the analogue of (Pren1),

(LD0) {x, q} ∈ L.

LDenK(q) is just the quadratic Zelmanov annihilator ZannK,L(q) of q from K into L. Here L = K

corresponds to ordinary K-denominators (D), L = UKK̂ corresponds to strong K-denominators
(SD). �

We remark that (LD3) ⇐⇒ (LD3)′, and in the presence of either of these (LD2) ⇐⇒ (LD2)′.
Indeed, (3) ⇐⇒ (3)′ since {q, x, K̂} + {x, q, K̂} = {{q, x}, K̂} ⊆ {L, K̂} ⊆ L by (1.1.2) since both
(3) and (3)′ imply {q, x} = {q, x, 1̂} = {x, q, 1̂} fall in L. When these hold, (2) ⇐⇒ (2)′ because by
(1.1.3) we have (UqUx+UxUq−U{x,q})K̂ =

(
−VUxUq1+Vx,qVq,x

)
K̂ =

(
−VUqUx1+Vq,xVx,q

)
K̂ where

{x, q} ∈ L [by (0)]; UxUq1 ∈ UxUqK̂ or UqUx1 ∈ UqUxK̂ falls in L [by (2) or (2)′]; Vx,qVq,xK̂ +
Vq,xVx,qK̂ ⊆ L [by (3),(3)′]. Thus a plain, strong, or L-denominator needs only to satisfy 4 conditions
(1), (1)′, (2), (3), not all 6.

At times we will need to find more and stronger denominators. The following result shows how
to get more denominators of the same kind.

Innerness Lemma 2.2 For any ideal L in the subalgebra K, the denominators LDenK(q) =
ZannK,L(q) always form an inner ideal in K (not of J ! ).

Proof: It is well known that the Zelmanov Annhilator produces inner ideals in contexts where
annihilation is modulo an ideal (the original archetype being the case L = 0). We first must show
that LDenK(q) is a linear subspace of K. Consider x, y ∈ LDenK(q); clearly αx ∈ LDenK(q) for
α ∈ Φ. We claim that x + y ∈ LDenK(q) because it satisfies (LD1), (LD1)′, (LD2), (LD3). For
(LD1) we have Ux+y(q) = Uxq +Uyq +Ux,y(q) ∈ L+L+{x, q, K} ⊆ L [by (LD1) for x, y and (LD3)
for x]. For (LD1)′ we have Uq(x + y) = Uqx + Uqy ∈ K [by (LD1)′ for x, y]. For (LD2) we see from
(1.1.5) that Ux+yUqK̂ = Ux,yUqK̂ + UxUqK̂ + UyUqK̂ = Vx,qVy,qK̂ − Vx,UqyK̂ + UxUqK̂ + UyUqK̂,

where all 4 terms fall in L: (1) Vx,qVy,qK̂ ⊆ Vx,qK ⊆ L [by (LD3) for y, x], (2) Vx,UqyK̂ ⊆ VK,LK̂

[by (LD1)′ for y] ⊆ L [by L C K], (3,4) UxUqK̂ + UyUqK̂ ⊆ L [by (LD2) for x, y]. For (LD3) we
have {x + y, q, K̂} = {x, q, K̂}+ {y, q, K̂} ⊆ L + L ⊆ L [by (LD3) for x, y]. Thus x + y ∈ LDenK(q)
as desired, and LDenK(q) is indeed a linear subspace.

To show innerness of LDenK(q) in K, we will show that y := Uxa ∈ LDenK(q) for any x ∈
LDenK(q), a ∈ K̂ by showing that it satisfies (LD1), (LD1)′, (LD2), (LD3). It lies in the subalgebra
K by UKK̂ ⊆ K. It satisfies (LD1) since Uy(q) = UxUa(Uxq) ∈ L [because Uxq ∈ L by (LD1) and
x ∈ K, â ∈ K̂]. It satisfies (LD1)′ since Uqy = UqUxa ∈ L [by (LD2)′ for x]. It satisfies (LD2) since
UyUqK̂ = UxUaUx(UqK̂) ⊆ UxUaL [by (LD2) for x] ⊆ L [by x, a ∈ K̂]. It satisfies (LD3) since from
(1.1.6) {y, q, K̂} = VUxa,qK̂ = Vx,{q,x,a}K̂ − VUxq,aK̂ ⊆ L [because x, a ∈ K̂ and {q, x, a}, Uxq ∈ L
by (LD3)′, (LD1) for x]. �

It seems quite difficult to produce denominator inner ideals in J when K itself is inner. Notice
that in all these definitions, an element will remain a denominator or prenominator for any larger
subalgebra K ′ ⊇ K. The following result shows how denominators can be made stronger by powers
instead of steroids.
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Strengthening Lemma 2.3 (I) If x ∈ K is a K-prenominator for q ∈ Q, then x4 will be a
K-denominator in DenK(q).

(II) If x ∈ K is a K-denominator for q ∈ Q, then x3 will be a strong K-denominator in
SDenK(q).

Proof: (I) We must show that x4 ∈ DenK(q) by showing that it satisfies conditions (D1),
(D1)′, (D2), (D3). Using x, {x, q}, Uxq ∈ K repeatedly, we compute (D1): Ux4q = Ux3(Uxq) ∈
Ux3(K) ⊆ K; (D1)′: Uqx

4 = (Uxq)2 − {{x, q}, x, Uxq} + U{x,q}x
2 [by Macdonald’s Theorem] ∈ K;

(D3): {x4, q, K̂} = {x3, {x, q}, K̂} − {x2, Uxq, K̂} [by Macdonald] ⊆ K; (D2): taking the identity

Ux2Uqz =
(
U{x2,q} − UqUx2 + 2UUxq − Vx,{x,q}V{x,q},x + VUx({x,q})2 + U{x2,q},Uxq

)
z

[by Macdonald] for z ∈ K̂ gives Ux2Uqz ∈ K −UqUx2z [noting {x2, q} = {x, {x, q}}− 2Uxq ∈ K], so
multiplying by Ux gives Ux4Uqz ∈ UKK − Ux(UUxq)Uxz ⊆ UKK − UK(UK)UKK̂ ⊆ UKK.

(II) We are given that x ∈ K satisfies (D1)-(D3)′ and we must show that x3 satisfies (SD1),
(SD1)′, (SD2), (SD3). We again compute (SD1): Ux3q = UxUx(Uxq) ∈ UKUKK ⊆ UkK̂; (SD1)′:
Uqx

3 = −UxUqx− VxUqUx1 + U{x,q}x [by Macdonald] ∈ −UKK −{K, K}+ UKK [by (D1)′, (D2)′,
(D3) for x] ⊆ UKK; (SD2): Ux3UqK̂ = UxUx(UxUqK̂) ⊆ UKUKK ⊆ UKK̂ [by (D2) for x]; (SD3):
{x3, q, K̂} = {x, {x, x, q}, K̂}− {Uxq, x, K̂} ⊆ {K, K, K̂} [by (D3)′, (D1) for x] ⊆ UKK + {K, K} ⊆
UKK̂. �

3 Generic Denominators

In this section we discuss the “ultimate” K-denominators for principal inner ideals K = Is, which
remain denominators for q in any larger algebra Q̃ ⊇ Q. We speak of s-denominators instead of
Is-denominators, denoting PrenIs and DenIs simply by Prens and Dens.

Genominator Definition 3.1 If q ∈ Q ⊇ J , then an element x ∈ Is is called an s-genominator
(= generic denominator) if it generically pushes multiplications by q into s-multiplications,

(G1) Uxq = Usw1 ∈ Is, (G1)′ Uqx = Usw2 ∈ Is, (G1)′′ UqUxq = Usw3 ∈ Is,

(G2)
≈
V x,q =

≈
S ∈

≈
V
bIs,Is

, (G3)
≈
Ux

≈
Uq =

≈
Us

≈
No

≈
Us, (G4)

≈
Ux

≈
V q =

≈
Us

≈
Mo

≈
Us

for some elements w1, w2, w3 ∈ J and generic multiplications
≈
S,

≈
Mo,

≈
No ∈ UME(J |Q). Any s-

genominator x is automatically a prenominator,

(G0) {x, q} = Vx,q1̂ = Usw0, {x, q, s} = Vx,qs = Usv0 ∈ V
bIs,Is

Îs ⊆ Is.

Due to the reversal involution and the strong assumption of two-sided factors s in (G1-4), these
relations automatically imply dually that the genominator absorbs multiplications by q into multipli-
cations by Is,

(G0)∗{q, x, s} = Usv
∗
0 , (G2)∗

≈
V q,x =

≈
S
∗ ∈

≈
V
bIs,Is

, (G3)∗
≈
Uq

≈
Ux =

≈
Us

≈
N
∗
o

≈
Us, (G4)∗

≈
V q

≈
Ux =

≈
Us

≈
M
∗
o

≈
Us.

We denote the s-genominators of q by Gens(q). �

Hull Genominator Proposition 3.2 If x ∈ Is is an s-genominator for a ∈ J, it is also an
s-genominator for every â := α1̂ + a ∈ Q = Ĵ .

Proof: The 6 genominator conditions hold for x, â in
≈
U = UME(J |Ĵ): (G1) Ux(α1̂ + a) ∈

UIs
Ĵ ⊆ Is [by innerness]; (G1)′ Uα1̂+ax = α2x + α{x, a} + Uax ∈ Is [by x ∈ Is, (G0),(G1)′ for
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x, a]; (G1)′′ Uα1̂+aUxâ = α2Uxâ + α
≈
V a

≈
Uxâ +

≈
Ua

≈
Uxâ ∈ Is + α

≈
Us

≈
M∗

o

≈
Usâ +

≈
Us

≈
N∗

o

≈
Usâ [by (G1) above,

(G4)∗,(G3)∗ for x, a] ⊆ Is + UsJ = Is; (G2)
≈
V x,α1̂+a = α

≈
V x +

≈
V x,a ⊆

≈
V
bIs,Is

[by x ∈ Is, (G2) for

x, a]; (G3)
≈
Ux

≈
Uα1̂+a = α2≈Ux + α

≈
Ux

≈
V a +

≈
Ux

≈
Ua ∈

≈
Us

≈
U
≈
Us [by x ∈ UsJ, (G4), (G3) for x, a]; (G4)

≈
Ux

≈
V α1̂+a = 2α

≈
Ux +

≈
Ux

≈
V a ∈

≈
Us

≈
U
≈
Us [by (QJ3) and x ∈ Is = UsJ, (G4) for x, a]. �

Unlike the denominators previously discussed, these genominators do not seem to form an inner
ideal: they are closed under scaling and principal inner multiplication, but not under addition.

Genominator Innerness 3.3 The s-genominators are closed under principal inner multiplication
by Is :

x ∈ Gens(q) =⇒ Kx,Is := Φx + UxÎs ⊆ Gens(q).

Proof: We must show that for I := Is and any x = Usb ∈ Gens(q), α ∈ Φ, â ∈ Î , the element
y := αx + Uxâ satisfies the G-conditions. This y still lies in the inner ideal I. It satisfies (G1) since
Uy(q) = Bα,x,âUxq [by (1.1.8)] = (α21 + α

≈
V x,â +

≈
Ux

≈
U â)I [by (G1) for x] ⊆ I + VI,bII + UIJ ⊆ I. It

satisfies (G1)′ since Uqy = αUqx + UqUxâ ∈ I + UsJ ⊆ I [by (G1)′, (G3)∗ for x]. It satisfies (G1)′′

since UqUyq = α2UqUxq+αUqUx,Uxâq+Uq(UxUâUx)q ∈ α2I+α(UqUx){Î , x, q}+(UqUx)U
bI(Uxq) [by

(G1)′′ for x]⊆ I [by (G3)∗, (G2)∗, (G1) for x]. It satisfies (G2) since we have
≈
V y,q = α

≈
V x,q+

≈
V Uxa,q =

α
≈
V x,q +

≈
V x,{q,x,a} −

≈
V Uxq,a [by (1.1.6)] ∈ α

≈
V
bI,I +

≈
V

I,
≈
V

bI,I(a)
−

≈
V I,a [by (G2),(G2)∗,(G1) for x ∈ I]

⊆
≈
V
bI,I [by a ∈ I]. It satisfies (G3) since

≈
Uy

≈
Uq =

≈
Bα,x,â

≈
Ux

≈
Uq [by (1.1.8)] =

≈
Bα,Usb,â

≈
Us

≈
M

≈
Us [by

(G3) for x] =
≈
Us

(≈
Bα,b,Usâ

≈
M

)≈
Us [by (1.1.9)]. Similarly, it satisfies (G4) since

≈
Uy

≈
V q =

≈
Bα,x,â

≈
Ux

≈
V q =

≈
Us

(≈
Bα,b,Usâ

≈
N

)≈
Us [by (G4) for x]. �

It will be important that prenominators become genominators by empowerment.

Generic Strengthening Lemma 3.4 If x ∈ Prens(q) is an s-prenominator for q ∈ Q, then
xn ∈ Gens(q) is an s-genominator for q for all n ≥ 4.

Proof: For I = Is as usual (still allowing s = 1̂, I = J), we will show that the 6 G-conditions
needed for an s-genominator are satisfied by sufficiently high powers of a prenominator x satis-
fying only {x, q}, Uxq ∈ I as in (Pren1-2). In the proofs we make constant use of Macdonald’s
Principle to create operator-identities in

≈
U = UME(J |Q) involving only x and q. Clearly any xn

lies in I, and for (G1) Uxnq = Uxn−1(Uxq) ∈ I for n ≥ 1. For (G1)′, Uqx
n ∈ I for n ≥ 4

because then Uqx
n = U{x,q}x

n−2 + UUxqx
n−4 − {{x, q}, xn−3, Uxq} ∈ UI Î − {I, I, I} ⊆ I. Sim-

ilarly, for (G1)′′ UqUxnq ∈ I for n ≥ 4 because UqUxnq = U{q,x}Uxn−2Uxq − UUxqUxn−3Uxq −
{{q, x2}, Uxn−3Uxq, Uxq} + {UxUUxqx

n−4, xn−4, Uxq} [with {q, x2} = {x, {x, q}} − 2Uxq ∈ I]. For
(G2),

≈
V xn,q ∈

≈
V
bI,I for n ≥ 2 by

≈
V xn,q =

≈
V xn−1,{x,q} −

≈
V xn−2,Uxq. For (G3),

≈
Uxn

≈
Uq ∈

≈
Us

≈
U
≈
Us for

n ≥ 4 by
≈
Uxn

≈
Uq =

≈
Uxn−1

≈
U{x,q} +

≈
Uxn−2

≈
UUxq +

≈
Uxn−3

(≈
V x2,(Uxq)2 +

≈
V Ux(Uxq),Uxq −

≈
V x2,{x,q}

≈
V x,Uxq

)
∈

≈
Us

≈
U
≈
Us +

≈
Us

≈
UJ

≈
Us

(≈
V I,I +

≈
V I,I

≈
V I,I

)
[since then x, xn−1, xn−2, xn−3, {x, q}, Uxq ∈ I = UsJ where

≈
UI ⊆

≈
Us

≈
UJ

≈
Us by (QJ3)] ⊆

≈
Us

≈
U
(
1 +

≈
V I,J +

≈
V I,J

≈
V I,J

)≈
Us [since

≈
Us

≈
V J,I ⊆

≈
V I,J

≈
Us by (1.1.9) with

x → s]. Similarly, for (G4)
≈
Uxn

≈
V q ∈

≈
Us

≈
U
≈
Us for n ≥ 2 since

≈
Uxn

≈
V q =

≈
Uxn−2

≈
Ux(

≈
U{x,q},x −

≈
V q

≈
Ux)

[by (1.1.1)] =
≈
Uxn−2(

≈
Ux

≈
U{x,q},x −

≈
UUxq,x2) [by (QJ3)] ∈

≈̂
UI(

≈
UI

≈
UI,I −

≈
UI,I) ⊆

≈
Us

≈
U
≈
Us [by (QJ3) for

I = UsJ ]. �
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Martinez’s work with linear Jordan algebras uses prenominators (Pren), which we may think of
as linear denominators; for the quadratic case (as with the case of Zel’manov annihilators), it is
important to have the full strength of the axioms (G), and the Generic Strengthening Lemma shows
that without loss of generality we may adopt the generic quadratic denominators (G) as the basic
concept.

4 Ore Monads and Denominators

Since our denominators s are destined to become invertible in Q, they certainly must be injective
on J to begin with (in the sense that their U -operators are injective transformations). In order to
be able to add fractions we need to be able to find common denominators, which leads us to the
concept of an Ore monad.

Ore Monad Definition 4.1 (1) A Jordan monad of a quadratic Jordan algebra J is a nonempty
subset S of injective elements of J closed under products,

(4.1.1) s, t ∈ S =⇒ s2, Ust ∈ S (i.e., UsŜ ⊆ S for Ŝ := S ∪ {1̂}).

(2) An Ore monad of J is a Jordan monad S with the Common Inner Multiple Property
(CIMP):

(4.1.2) s, t ∈ S =⇒ Us(S) ∩ Ut(S) 6= ∅.

The set InnS(J) := {K Cin J | K ∩ S 6= ∅} of S-inner ideals, those which contain an element of
S, form a downward-directed family of inner ideals. Since s ∈ K ∩ S ⇔ Is3 ⊆ Ks3 ⊆ Is ⊆ Js ⊆
Ks ⊆ K, the principal inner ideals Is or Js or Ks form cofinal subsets of InnS(J).

Throughout this section, let s be a fixed element in an Ore monoid S generating a principal inner
ideal in a quadratic Jordan algebra J, and q an element of a larger algebra Q :

I := Is = UsJ C J ⊆ Q 3 q.

We allow s = 1̂ ∈ Ŝ to be an honorary member of S, in which case I is just J . We will be mostly
interested in genominators which fall in the Ore monad S. When s = 1̂ we write GenJ(q) in place
of Gen1̂(q), and call the elements J-genominators. A genominator for a ∈ J is also a genominator
for every â ∈ Φ1̂ + a in the unital hull.

Ore Condition 4.2 J is said to satisfy the Ore condition with respect to an Ore monad S if for
all s ∈ S, a ∈ J there exists s′ ∈ UsS such that

(4.2.1) {s′, a} ∈ Is.

Since automatically Us′a ∈ UIsa ⊆ Is, s′ is an s-prenominator for a according to definition 2.1
(Pren). Thus the Ore condition is equivalent to

(4.2.2) s ∈ S, a ∈ J =⇒ ∃s′ ∈ UsS ∩ Prens(a),

and hence by Generic Strengthening 3.4 to

(4.2.3) s ∈ S, a ∈ J =⇒ ∃s′′ ∈ UsS ∩Gens(a).

The CIMP allows us to choose our denominators from any principal inner ideal we wish.

Choice Corollary 4.3 If q ∈ Q ⊇ J has an s-prenominator s′ in an Ore monad S ⊆ J , then any
element in Us′5S ∩Us1S ∩ · · · ∩Usn

S for s1, . . . , sn ∈ S will be an s-genominator for q lying in each
UsiS ⊆ Isi . If s′ is already an s-genominator, we may replace s′5 by s′2.
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Proof: If q has an s-prenominator s′ it has s-genominator s′′ := s′4 ∈ S ∩Gens(q) by Generic
Strengthening 3.4. Any element of Us′5S∩Us1S∩· · ·∩Usn

S 6= ∅ [by the CIMP] will lie in Us′4(Us′S) ⊆
Us′4(Is) ⊆ Gens(q) [by Genominator Innerness 3.3] and again be an s-denominator for q. If s′ is
already an s-genominator then already Us′2S ∩ Us1S ∩ · · · ∩ UsnS ⊆ Us′(Us′S) ⊆ Us′I ⊆ Gens(q).
[Note that 3.3 does not guarantee Us′′S falls in Gens(q), only that Us′′(I ∩ S) does.] �

The Ore condition is an intrinsic condition relating J and S, but it has far-reaching consequences
for denominators of elements outside J.

Genominator Inheritance 4.4 If q ∈ Q ⊇ J has a J-prenominator in an Ore monad S ⊆ J , and
J satisfies the Ore condition relative to S, then q has s-genominators in UsS for each s ∈ S.

Proof: Fix an arbitrary s ∈ S, and set I := Is = UsJ. By Choice Corollary 4.3 for s = 1̂, q has a
J-denominator s0 = Ust ∈ UsS∩GenJ(q) ⊆ I. Then a1 := {s0, q}, a2 := Us0q, a3 := {s0, a1} lie in J ,
and by the Ore condition a3 has an s-genominator s3. We claim that s′ := U2

s0
s3 is an s-prenominator

for q. It certainly lies in Us0S = UsUtUsS ⊆ UsS and by (QJ3) Us′q = U2
s0

Us3Us0(Us0q) =
U2

s0
Us3Us0(a2) ∈ UsJ. As always, the crux is the V -operator: Vs′q = VqUs0(Us0s3) =

(
U{q,s0},s0 −

Us0Vq

)
(Us0s3) [by (1.1.1)] = Ua1,s0Us0s3 − Us0({q, Us0s3}) ∈

(
U{a1,s0},s2

0
− Us0Ua1,s0

)
s3 − Us0J [by

linearized (QJ3) and Us0s3 ∈ UGenJ (q)J ⊆ GenJ(q) by Genominator Innerness 3.3] ⊆ {a3, s3, s
2
0} −

Us0{a1, s3, s0} − Us0J ⊆ V
bI,II − UIJ ⊆ I [by 3.1 (G2)∗ for s3 as an s-genominator for a3]. By the

Generic Strengthening Lemma 3.4, once q has an s-prenominator s′ ∈ UsS it has an s-genominator
s′4 ∈ UsS. �

The Ore condition implies that q will have a J-genominator as soon as it is an outer S-fraction,
q = U−1

s0
n0 (i.e., some Us0q ∈ J): though the other prenominator condition {s0, q} ∈ J may not

hold for s0, the Ore condition inside J guarantees that there is another s ∈ S with q = U−1
s n where

{s, q} = {n, s−1} ∈ J .

Archetypal Example 4.5 Suppose q = U−1
s0

n0 ∈ Q ⊇ J for s0, n0 ∈ J with s0 invertible in Q,
and suppose further that n0 has an invertible s0-genominator t0 ∈ Is0 . Then we have an alternate
formulation q = U−1

s n of the element q, where s := Us0t0 is a J-genominator for q which dominates
the numerator n = Us0Ut0n0 as in (1.4)(G1-4) in Q :

(4.5.1)
{q, s} = w0, Usq = n, Uqs = w2, UqUsq = w3,

≈
V s,q =

≈
S,

≈
Us

≈
Uq =

≈
N ,

≈
Us

≈
V q =

≈
M =

≈
S
≈
V s −

≈
V n,

≈
Un =

≈
N

≈
Us =

≈
Us

≈
N∗,

≈
Un,s =

≈
S
≈
Us =

≈
Us

≈
S∗

for some w0, w2, w3 ∈ J,
≈
S,

≈
M ,

≈
N ∈ UME(J |Q). Moreover, these relations imply that the element n

is also a genominator for q,

(4.5.2)
{q, n} = {w2, s}, Unq = Usw3, Uqn = w3, UqUnq = Uw2n,

≈
V n,q =

≈
V s,w2 ,

≈
Un

≈
Uq =

≈
Us

≈
Uw2 =

≈
N2,

≈
Un

≈
V q =

≈
N

≈
M , Uns−1 = Usw2.

In addition we have the structural relations

(4.5.3)

≈
N

≈
Un =

≈
Un

≈
N =

≈
N

≈
Us

≈
N∗ =

≈
UUsw2,s,

≈
N

≈
Un

≈
N∗ =

≈
UUsw3 ,

≈
Uw2

≈
N =

≈
N∗≈Uw2 =

≈
Uw3 ,

≈
S
≈
Ua

≈
S +

≈
N

≈
Ua +

≈
Ua

≈
N∗ =

≈
U≈

S(a)
+

≈
U ≈

N(a),a
.

We say that q is an Ore fraction if it can be written q = U−1
s n for s ∈ S, n ∈ J satisfying (4.5.1).

Proof: By definition 3.1 of s0-genominator, in J and
≈
U := UME(J |Q) we have
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(4.5.4)
Un0t0 = Us0w2, Un0Ut0n0 = Us0w3, {n0, t0, s0} = Us0v

∗
0 , {n0, Ut0n0, s0} = Us0v2,

≈
V n0,t0 ∈

≈
V
bI0,I0

,
≈
Un0

≈
Ut0 =

≈
Us0

≈
No

≈
Us0 ,

≈
V n0

≈
Ut0 =

≈
Us0

≈
Mo

≈
Us0

for some
≈
No,

≈
Mo ∈

≈
U, noting that by (1.1.5) {n0, Ut0n0, s0} = {Un0t0, t0, s0} = {Us0w2, t0, s0} =

Us0v20 for v2 := {w2, s0, t0}.
For (1), since s−1

0 exists in Q, we know that
≈
Us0 is generically invertible in UME(Q). To establish

(G1-4) for s, 1̂ replacing x, s in 3.1, we compute (G1): Usq = Us0Ut0Us0(U
−1
s0

n0) = Us0Ut0n0 = n ∈ J
[by definition]; (G1)′: Uqs = U−1

s0
Un0U

−1
s0

(Us0t0) = U−1
s0

(Un0t0) = U−1
s0

(Us0w2) [by (4)] = w2 ∈ J ;
(G1)′′ : UqUsq = U−1

s0
Un0U

−1
s0

(Us0Ut0Us0)q = U−1
s0

(Un0Ut0n0) = U−1
s0

(Us0w3) [by (4)] = w3 ∈ J ;

(G2):
≈
V s,q =

≈
V Us0 t0,q = −

≈
V Us0q,t0 +

≈
V s0,{q,s0,t0} = −

≈
V n0,t0 +

≈
V s0,v0 [from (1.1.6), cancelling Us0

from Us0{q, s0, t0} = {Us0q, t0, s0} = {n0, t0, s0} = Us0v0 by (4)] =:
≈
S ∈

≈
V J,J ; [hence (G0):

{s, q} = Vs,q1̂ = S(1̂) = −{n0, t0}+ jts0, v0 = m0 ∈ J ]; (G3):
≈
Us

≈
Uq = (

≈
Us0

≈
Ut0

≈
Us0)(

≈
U
−1

s0

≈
Un0

≈
Us−1

0
) =

≈
Us0(

≈
Ut0

≈
Un0)

≈
U
−1

s0
=

≈
Us0(

≈
Us0

≈
No

≈
Us0)

≈
U
−1

s0
=

≈
U

2

s0

≈
No [by (4)] =:

≈
N ∈

≈
U1

≈
U
≈
U1; and finally (G4):

≈
Us

≈
V q =

≈
V s,q

≈
V s −

≈
V Usq [by (1.1.6) with x = 1] =

≈
S
≈
V s −

≈
V n =:

≈
M ∈

≈
U1

≈
U
≈
U1. Thus q has J-genominator s as

in (1).
For domination of n by s as in (1.4), we have

≈
Un =

≈
Us

≈
Uq

≈
Us =

≈
N

≈
Us (hence also =

≈
Us

≈
N∗), and

≈
Un,s =

≈
UUsq,s =

≈
V s,q

≈
Us =

≈
S
≈
Us (hence also =

≈
Us

≈
S). Therefore Ks�n is an inner ideal.

For (2) for n, we note that s is invertible in Q since s0, t0 are with U−1
s n = (Us0Ut0Us0)

−1Us0Ut0n0 =
U−1

s0
n0 = q, and compute directly from (1) using (QJ3) that Uns−1 = UsU

−1
s UnU−1

s s = UsUqs =
Usw2, {q, n} = {U−1

s n, n} = {s−1, Uns−1} [by (1.1.5)] = {s−1, Usw2} = {w2, s}, Uqn =
UqUsq = w3, Unq = UsUqUsq = Usw3, UqUnq = UqUsUqUsq = UUqsn = Uw2n,

≈
V n,q =

≈
V n,U−1

s n =
≈
V Uns−1,s−1 [by (1.1.5) again] =

≈
V Usw2,s−1 =

≈
V s,w2 ,

≈
Un

≈
Uq =

≈
Us

≈
Uq

≈
Us

≈
Uq =

≈
N2 =

≈
Us

≈
UUqs =

≈
Us

≈
Uw2 ,

≈
Un

≈
V q = (

≈
Us

≈
Uq)(

≈
Us

≈
V q) =

≈
N

≈
M .

From (2) we derive (3),
≈
UUsw2 =

≈
Un

≈
U
−1

s

≈
Un =

≈
N

≈
Un =

≈
N

≈
Us

≈
N∗ and dually,

≈
UUsw3 =

≈
UUnq =

≈
Un

≈
Uq

≈
Un = (

≈
N

≈
Us)

≈
Uq(

≈
Us

≈
N∗) =

≈
N

≈
Un

≈
N∗,

≈
Uw2

≈
N = (

≈
Uq

≈
Us

≈
Uq)(

≈
Us

≈
Uq) =

≈
UUqUsq =

≈
Uw3 and dually,

while for p = U−1
s a ∈ Q we have

≈
S
≈
Us =

≈
V s,q

≈
Us =

≈
UUsq,s =

≈
Un,s and dually, therefore

≈
S
≈
Ua

≈
S +

≈
N

≈
Ua +

≈
Ua

≈
N∗ −

≈
U≈

S(a)
−

≈
U ≈

N(a),a
=

≈
S
≈
Us

≈
Up

≈
Us

≈
S∗ +

≈
N

≈
Us

≈
Up

≈
Us +

≈
Us

≈
Up

≈
Us

≈
N∗ −

≈
U≈

S(Usp)
−

≈
U ≈

N(Usp),Usp
=

≈
Un,s

≈
Up

≈
Un,s +

≈
Un

≈
Up

≈
Us +

≈
Us

≈
Up

≈
Un −

≈
UUn,sp −

≈
UUnp,Usp = 0 by linearized (QJ3). �

The above example shows it is important to choose the right denominator and numerator for an
outer fraction q: the original q = U−1

s0
n0 has degree −2 in s, whereas U−1

s n has degree −1 in s since
n “contains an s”. If J ⊆ H(Q, ∗) is special n ≈ sw = w∗s and q ≈ ws−1 = s−1w∗ is a standard
“associative fraction” of degree −1 in s. Here

≈
N(a) ≈ waw∗,

≈
N∗(a) ≈ w∗aw,

≈
S(a) ≈ wa + aw∗, n =

sw = w∗s, w0 = w + w∗, w2 ≈ ws−1w∗, w3 ≈ w2w
∗ = ww2. In fact, w2 ∈ J shows w “contains

s1/2”, so n ≈ sw “contains s3/2. Indeed, we can choose denominators s so that n contains s2−1/k

arbitrarily close to s2!! The reason is easily seen by considering J = Φ[t], Q = Φ(t), q = t−1 = U−1
s n

for s = tk, n = t2k−1 = tk(2−1/k) = s2−1/k.

5 Moving Multiplications

In a direct construction [6] of an algebra of fractions, a crucial step is to show that any element
WU−1

s a for W ∈ M(J |Q) can be rewritten as an outer S-fraction U−1
s′ a′, and in fact of the form

U−1
s′ W ′a independently of a: for every W, s we can find W ′ ∈ M(J), s′ ∈ S with WU−1

s = U−1
s′ W ′.
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Thus we move W to the right past U−1
s . This may be formulated without inverses as Us′W = W ′Us,

where a pile of s’s attack W from the left and manage to move a single Us to the right across
W . It turns out that left-movability WUs′ = UsW

′ is even more important. This movability
will hold universally on all Q ⊇ J (equivalently, on all J-bimodules M) if it holds in the universal
multiplication envelope UME(J). The concept of movability is strictly internal to J , making no
reference to any extension Q.

Movable Definition 5.1 An ordinary multiplication W ∈ M(J) is left-s-movable with left-s-
mover s′ ∈ UsS if there exists W ′ ∈ M(J) such that WUs′ = UsW

′. A universal multiplication
≈
M ∈ UME(J) is left-s-movable with left-s-mover s′ ∈ UsS if there exist

≈
M
′
∈ UME(J) such

that

(5.1.1)
≈
M

≈
Us′ =

≈
Us

≈
M
′, (hence also

≈
Us′

≈
M
∗ =

≈
M
′∗≈

Us).

A universal multiplication
≈
M is s-movable with s-mover s′ ∈ UsS if there exist

≈
M
′
∈ UME(J)

and w′ ∈ J such that

(5.1.2)
≈
M

≈
Us′ =

≈
Us

≈
M
′≈
Us,

≈
M(s′) = Usw

′ (hence also
≈
Us′

≈
M
∗ =

≈
Us

≈
M
′∗≈

Us).

Notice that if both
≈
M and

≈
M∗ are s-movable (in particular, if all

≈
M are movable), then we have

right-movability
≈
Us′

≈
M =

≈
Us

≈
M ′′≈Us for

≈
M ′′ =

≈
M ′∗.

We say that W ∈ M(J) is left-S-movable if it is left-s-movable for each s ∈ S, and
≈
M ∈

UME(J) is S-movable if it is s-movable for each s ∈ S.

In fact, any left-mover s′ ∈ UsS can be turned into a mover,

(5.1.3) if
≈
M has left-s-mover s′ ∈ UsS, it has s-mover any s′′ ∈ Us′ Ŝ,

because s′′ = Us′ t̂ has
≈
M

≈
Us′′ =

≈
M

≈
Us′

≈
U t̂

≈
Us′ =

≈
Us

(≈
M ′≈U t̂

≈
Us′

)
=

≈
Us

≈
M ′′≈Us, and

≈
M(s′′) = (

≈
M

≈
Us′)t̂ =

(
≈
Us

≈
M ′)t̂ = Us(w′′).

In fact, left S-movability of V -operators is the crucial condition, implying movability of all
multiplication operators.

Ore Equivalence Theorem 5.2 The following are equivalent for an Ore monad S in a quadratic
Jordan algebra J and any algebra Q ⊇ J :

(i) Each
≈
M ∈ UME(J) is S-movable in UME(J).

(ii) Each
≈
M ∈ UME(J) is left S-movable in UME(J)).

(iii) For each a ∈ J,
≈
Ua and

≈
V a are S-movable in UME(J).

(iv) For each a ∈ J, Va is left S-movable in M(J).
(v) Each a ∈ J has an s-prenominator in UsS for each s ∈ S.
(vi) Each a ∈ J has an s-genominator in UsS for each s ∈ S.

By (v), these are equivalent ways of saying that J satisfies the Ore condition (4.2.2-3) with respect
to S.

Proof: Clearly (i) ⇒ (ii), (iii) and both (ii) and (iii) ⇒ (iv) since if
≈
V a

≈
Us′ =

≈
Us

≈
W ′ in UME(J)

then under the canonical homomorphism UME(J) π−→M(J) we have VaUs′ = Usπ(
≈
W ′) = UsW

′.
(iv) ⇒ (v): For a ∈ J, s ∈ S we know by (iv) that Va is left s-movable using some s′ ∈ UsS:

VaUs′ = UsW
′. Then s′′ = Us′s ∈ UsS has Vs′′a = Vas′′ = VaUs′s = UsW

′s ∈ Is. Since Us′′a ∈ Is

trivially, this gives (v).
(v) ⇐⇒ (vi) follows by (4.1.2-3) from Generic Strengthening. Now that we have followed impli-

cations down the tower, we turn around and go back up.
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(vi) ⇒ (iii): For a ∈ J, s ∈ S by (vi) there exists an s-denominator s′ = Ust ∈ UsS such that
{s′, a} = Usb, Uas′ = Usc for b, c ∈ J . Then the V -operator is universally s-left-movable by s′ since
≈
V a

≈
Us′ =

≈
U{s′,a},s′ −

≈
Us′

≈
V a [by (1.1.1) with y = 1] =

≈
UUsb,Ust −

≈
UUst

≈
V a =

≈
Us

(≈
Ub,t

≈
Us −

≈
Ut

≈
Us

≈
V a

)
[by

(QJ3)] :=
≈
Us

≈
V ′

a, while the U -operator is universally left-s-movable since
≈
Ua

≈
Us′ =

≈
U{s′,a}+

≈
UUas′,s′ −

≈
Us′

≈
Ua−

≈
V a

≈
Us′

≈
V a [by (1.1.3)] =

≈
Us

(≈
Ub

≈
Us +

≈
Uc,t

≈
Us−

≈
Ut

≈
Us

≈
Ua−

≈
V ′

a

≈
V a

)
[by linearized (QJ3) and above]

=:
≈
Us

≈
U ′a. But then s′2 = Us′ 1̂ ∈ Us′ Ŝ is a s-mover by (5.1.3). This holds for any s ∈ S, so

≈
V a and

≈
Ua are S-movable.

(iii) ⇒ (i): Let W ⊆
≈
U := UME(J) denote the set of all “multiplications” (elements in the

associative algebra UME(J)) which are S-movable, which by (5.1.3) is equivalent to being just left-
s-movable for each s. We will show that W is a unital subalgebra of

≈
U: for any

≈
M1,

≈
M2 ∈ W, any

α ∈ Φ, and any s ∈ S, we must show 1,
≈
M1 +

≈
M2, α

≈
M1,

≈
M1

≈
M2 are left-s-movable. Now

≈
M1,

≈
M2 are

left-s-movable using movers s1, s2 ∈ S, and since S is an Ore monad, we can find a common mover
s12 ∈ Us1S∩Us2S 6= ∅ [

≈
M i

≈
Us12 =

≈
Us

≈
M ′

i] by (5.1.3). (1) 1 is trivially left-s-movable by s. (2) The sum
≈
M1+

≈
M2 is left-s-movable using s12 since (

≈
M1+

≈
M2)

≈
Us12 =

≈
M1

≈
Us12 +

≈
M2

≈
Us12 =

≈
Us

(≈
M ′

1+
≈
M ′

2

)
. (3) The

scalar multiple α
≈
M1 is left-s-movable using s1:

(
α

≈
M1

)≈
Us1 = α

≈
Us

≈
M ′

1 =
≈
Us

(
α

≈
M ′

1

)
. (4) The product

≈
M1

≈
M2 is left-s-movable since

≈
M1 is left-s-movable using s1 and since

≈
M2 is S-movable it is also

s1-movable using some s11 ∈ UsS [
≈
M2

≈
Us11 =

≈
Us1

≈
M ′

2], so (
≈
M1

≈
M2

)≈
Us11 =

≈
M1(

≈
Us1

≈
M ′

2) =
≈
Us

(≈
M ′

1

≈
M ′

2

)
.

Together these facts give us thatW is a subalgebra of
≈
U, containing the identity and all the generators

≈
Ua,

≈
V a by condition (iii), so it must be all of

≈
U as in (i). �

Ore Remark 5.3 An associative algebra A has the right-Ore condition for a monad S if for all
a ∈ A, s ∈ S we have aS∩sA 6= ∅, equivalently a is left-s-movable (we can move an s to the left over
a): ∃s′ ∈ S, a′ ∈ A � as′ = sa′ (so s−1a can become a right fraction a′s′−1). Professor Dorfmeister
has pointed out that the Jordan Ore condition holds with respect to S in J iff the right Ore condition
holds with respect to

≈
S :=

≈
US in

≈
A :=

≈
U : for each ≈

a =
≈
M ,

≈
s =

≈
Us there is ≈

a′ =
≈
M ′,

≈
s ′ =

≈
Us′ with

≈
a
≈
s ′ = ≈

s
≈
a′. However, it is not known whether the

≈
Us ∈ S̃ are universally injective in

≈
A: does

≈
Us

≈
M = 0

imply
≈
M = 0? What can one say about the universal

≈
M that are killed on the left by

≈
Us? It is also

unknown whether there can be nonzero W ∈ M(J) with W (UsJ) = 0. How is the associative Ore
quotient algebra Q≈

US

(
≈
U) related to the universal multiplication envelope UME(QS(J)) of a Jordan

algebra of outer S-fractions QS(J)? �

While we are on the subject of moving, let us observe two consequences for later use.

Movement Consequences 5.4 Let s ∈ S, x, x′, y ∈ J be such that {y, t, Usx} = Usx̂, {y, t, Usx
′} =

Usx̂′ for some x̂, x̂′ ∈ Ĵ , and such that
≈
Uy,

≈
Uy,s are left s-movable with left mover t ∈ S :

≈
Uy

≈
Ut =

≈
Us

≈
My,

≈
Uy,s

≈
Ut =

≈
Us

≈
My,s

for linear operators
≈
My,

≈
My,s ∈ UME(J). Then

(5.4.1)
(≈
Wx,y

≈
Wx′,y − (

≈
UUst

≈
Ux,x′

≈
Us)

≈
M
∗
y −

≈
V UUstx,WyUsx′

)≈
Us = 0

where
≈
Wx,y :=

≈
V Ust,x̂ −

≈
V UsUty,x (analogously for

≈
Wx′,y), and

(5.4.2)
(≈
V t,Usx

≈
M
∗
y +

≈
M
∗
y

≈
V Ust,x −

≈
M
∗
s,y

≈
V s,x̂ +

≈
Ut

≈
V y,x̂

)≈
Us = 0.

If s becomes invertible in some Q ⊇ J, then these operators in parentheses vanish on Q (not just
UsQ).
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Proof: (1) Start by observing that if we introduce abbreviations a := Usx, b := Uta and dually
a′ := Usx

′, b′ := Uta
′, then

≈
Wx,y

≈
Us =

≈
Us

≈
V b,y,

≈
Wx′,y

≈
Us =

≈
Us

≈
V b′,y

since
(≈
V Ust,x̂ −

≈
V UsUty,x

)≈
Us =

≈
Us

(≈
V t,Usx̂ −

≈
V Uty,Usx

)
[by (1.1.9)] =

≈
Us

(≈
V t,{y,t,Usx} −

≈
V Uty,Usx

)
[by

hypothesis on x̂] =
≈
Us

≈
V Uta,y [by linearized (1.1.5)], and dually for x′. Then we use

≈
M∗

y

≈
Us =

≈
Ut

≈
Uy

and compute(≈
Wx,y

≈
W z,y −

≈
UUst

≈
Ux,x′

≈
Us

≈
M∗

y −
≈
V UUstx,WyUsx′

)≈
Us

=
≈
Wx,y

≈
Us

≈
V b′,y−

≈
Us

≈
Ut

≈
Us

≈
Ux,x′

≈
Us

≈
Ut

≈
Uy−

≈
V UsUtUsx,Wya′

≈
Us [by above, (QJ3) twice, ∗ on hypothesis]

=
≈
Us

(≈
V b,y

≈
V b′,y −

≈
UUtUsx,UtUsx′

≈
Uy −

≈
V b,UsWya′

)
[by above, (QJ3) twice]

=
≈
Us

(≈
V b,y

≈
V b′,y −

≈
Ub,b′

≈
Uy −

≈
V b,Uyb′

)
which vanishes by (1.1.5) with x → b, z → b′.

(2) Here from
≈
M∗

y

≈
Us =

≈
Ut

≈
Uy,

≈
M∗

y,x

≈
Us =

≈
Ut

≈
Uy,s we have(≈

V t,Usx
≈
M∗

y +
≈
M∗

y

≈
V Ust,x −

≈
M∗

s,y

≈
V s,x̂ +

≈
Ut

≈
V y,x̂

)≈
Us

=
≈
V t,Usx

≈
Ut

≈
Uy +

≈
M∗

y

≈
Us

≈
V t,Usx −

≈
M∗

s,y

≈
Us

≈
V x̂,s +

≈
Ut

≈
V y,x̂

≈
Us [by ∗ on hypothesis, (1.1.9), (QJ2)]

=
≈
Ut

(≈
V Usx,t

≈
Uy +

≈
Uy

≈
V t,Usx −

≈
Us,y

≈
V x̂,s +

≈
V y,x̂

≈
Us

)
[by (1.1.9), ∗ on hypotheses twice]

=
≈
Ut

(≈
U{Usx,t,y},y −

≈
Us,y

≈
V x̂,s +

≈
V y,x̂

≈
Us) [by (1.1.1)]

=
≈
Ut

(≈
UUsx̂,y −

≈
Us,y

≈
V x̂,s +

≈
V y,x̂

≈
Us

)
[by hypothesis on x̂]

which vanishes by (1.1.9). �

6 Algebras of Outer Fractions

Outer Fraction Definition 6.1 We say that a quadratic Jordan algebra Q ⊇ J is an algebra of
outer S-fractions of J for an Ore monad S ⊆ J if

(OFI) Every s ∈ S is invertible in Q,
(OFII) Every q ∈ Q has a J-prenominator s ∈ S : {s, q}, Usq ∈ J.

Notice that invertibility (OFI) of s in Q implies injectivity of s in J . Condition (OFII) that Usq =
n ∈ J guarantees that q = U−1

s n has the form of an outer-fraction with numerator n ∈ J and
denominator s ∈ S. A crucial step in Martinez’s approach is the added condition in (OFII) that
{s, q} = w0 ∈ J.

As the associative case tells us, it is not easy for an algebra J to have an algebra of S-fractions.
An immediate consequence is that everyone has s-denominators, not just J-denominators.

Ore Necessity Proposition 6.2 Let J be a Jordan algebra with Ore monad S. If J has an
algebra of S-fractions, then J must satisfy the Ore condition with respect to S: every element of J
must have an s-denominator for every s ∈ S. Indeed, as soon as the element q := U−1

s a ∈ Q (or
q′ := {s, a, s−1}) has a J-prenominator in S, then a must have an s-denominator.

Proof: If q := U−1
s a ∈ Q has a J-prenominator, by the Choice Corollary 4.3 it has a J-

denominator s′ = UsUst ∈ Us2S. Then s′′ := (Ust)2 is an s-prenominator for a, since in Q we
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compute {(Ust)2, a} = {Ust, Ust, Usq} = Us

(
{t, Us(Ust), q}

)
[by linearized (QJ3)] ∈ Us{J, s′, q} ∈

UsJ [by (G2)∗ for s′ ∈ GenJ(q)], so s′′ is an s-prenominator for a by 2.1 (Pren).
We could avoid the denominator strengthening in 4.3 by supposing only that q′ := {s−1, a, s}

has a J-prenominator of the form s′ = Ust: {s′, q′} = a′ ∈ J. Then s′′ := Us2t ∈ UsS has {s′′, a} :=
{Us2t, Usq} = Us{Ust, s

2, q} = Us

(
{Ust, {s2, q}}−{Ust, q, Us1}

)
[by (1.1.2)] = Us

(
{s′, q′}−UsUt,1Usq

)
[note that q′ := Us−1,sa = Us−1,sUsq = {s2, q} by cancelling Us from UsUs−1,sUs = Us,s3 = UsU1,s2

(which follows by linearized (QJ3) and Power-Associativity [9, 5.3.1(2),p.201] = Us

(
a′ − {t, a}

)
∈

UsJ, so s′′ is an s-prenominator for a. �

The following condition on elements of J is necessary for a ring of fractions to exist, but (unfor-
tunately) does not seem to be a consequence of the Ore axioms alone.

Unwelcome Condition 6.3 If s, x, y ∈ J are such that the operators
≈
Uy,

≈
Uy,s,

≈
Uy,x are left-s-

movable by t ∈ S, so there are
≈
M in UME(J) with

≈
Uy

≈
Ut =

≈
Us

≈
My,

≈
Uy,s

≈
Ut =

≈
Us

≈
My,s,

≈
Uy,x

≈
Ut =

≈
Us

≈
My,x, then whenever s is invertible in some Jordan algebra Q ⊇ J we have

(6.3.1)
(≈
M
∗
y,s

≈
Ux,s −

≈
M
∗
y,x

≈
Us

)≈
My =

≈
UW∗

yx,Uty =
≈
M
∗
y

(≈
Us,x

≈
My,s −

≈
Us

≈
My,x

)
in the envelope UME(J |Q).

Proof: In UME(Q) we have a
≈
U
≈
V -inverse identity

≈
Uz,s

≈
U
−1
s =

≈
V z,s−1

because
≈
Us−1(

≈
V z,s−1 −

≈
Uz,s

≈
Us−1) =

≈
UUs−1z,s−1 −

≈
UUs−1z,Us−1s = 0 [by (QJ2) and linearized (QJ3)]

and dually. Our hypothesis
≈
Uy

≈
Ut =

≈
Us

≈
M yields

≈
My =

≈
U−1

s

≈
Uy

≈
Ut and (via the involution)

≈
M∗

y,x

≈
Us =

≈
Ut

≈
Uy,x,

≈
M∗

y,s =
≈
Ut

≈
Uy,s

≈
U−1

s =
≈
Ut

≈
V y,s−1 [by

≈
U
≈
V -inverse]. Abreviating q := U−1

s x we have(≈
M∗

y,s

≈
Ux,s −

≈
M∗

y,x

≈
Us

)≈
My −

≈
UW∗

yx,Uty

=
(
(
≈
Ut

≈
Uy,s

≈
U−1

s )
≈
Ux,s − (

≈
Ut

≈
Uy,x

≈
U−1

s )
≈
Us

)
(
≈
U
−1

s

≈
Uy

≈
Ut)−

≈
U(UtUyU−1

s )x,Uty

=
≈
Ut

(≈
V y,s−1

≈
V x,s−1 −

≈
Uy,x

≈
Us−1

)≈
Uy

≈
Ut −

≈
Ut

≈
UUyq,y

≈
Ut [by

≈
U
≈
V -inverse for y, x, (QJ3)]

=
≈
Ut

(≈
V y,q

≈
Uy −

≈
UUyq,y

)≈
Ut [by (1.1.5)]

which vanishes by (QJ2). The second equality follows dually. �

7 A Home for Fractions

Another important observation of Martinez is the surprising fact that we don’t need to construct
the algebra of fractions precisely (as in [6]), we only need to find a home where it can live, and the
algebra of fractions will materialize as the set of elements having an S-denominator.

Fraction Materialization Theorem 7.1 If J is a Jordan algebra satisfying the Ore condition with
respect to an Ore monad S, and Q is any unital Jordan algebra containing J with the property that
the elements of S are invertible in Q, then the set Q(J) of all elements in Q having a J-prenominator
in S forms an algebra of outer S-fractions for J .

Proof: The set Q(J) contains J and the identity element of Q [any s ∈ S will serve as J-
prenominator for a ∈ J and 1, since {s, a}, Usa, {s, 1} = 2s, Us1 = s2 lie in J ] as well as S−1 [every
s−1 ∈ Q has J-prenominator s2, since {s2, s−1} = 2s and Us2s−1 = s3 lie in J ]. Every q ∈ Q(J)
has a J-prenominator in S by definition of Q(J), so the two conditions (OFI),(OFII) for an algebra
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of outer S-fractions are trivially met. The only question is whether the set Q(J) is actually an
algebra. It is child’s play to see that Q(J) is a linear subspace: if q1, q2 have J-prenominators s1, s2

then by Choice Corollary 4.3 they will share a common J-prenominator s ∈ Us5
1
S ∩Us5

2
S, which will

remain a J-prenominator for any linear combination because Ms(α1q1+α2q2) = α1Msq1+α2Msq2 ∈
α1J + α2J ⊆ J for Ms = Vs, Us, and therefore α1q1 + α2q2 ∈ Q(J).

The crux is to prove that Q(J) is closed under quadratic products Uq1q2 (in particular, Uq11 =
q2
1). Since by hypothesis q1 has a J-prenominator in S, by Generic Strengthening 3.4 it has a

J-genominator s1 ∈ S ∩ GenJ(q1); then t1 = s1 has I1 := Ut1J ⊆ UG1J ⊆ G1 := GenJ(q1) by
Genominator Innerness 3.3 (with s = 1̂):

(7.1.1) t1 ∈ S ∩G1, I1 ⊆ G1 ⊆ J (G1 := GenJ(q1)).

Next, by hypothesis q2 also has a J-prenominator in S, so by Genominator Inheritance 4.4 it has
a t1-genominator s2 ∈ S ∩ Gent1(q2); then any t2 ∈ Us2Ut1S has I2 := Ut2J ⊆ Us2Ut1J [by (QJ3)]
⊆ UG2It1 ⊆ G2 := Gent1(q2) [by Generic Innerness 3.3 (with s = t1)]. Choosing one such, we have

(7.1.2) t2 ∈ S ∩G2, I2 ⊆ G2 ⊆ I1 (G2 := Gent1(q2)).

Once again, by Genominator Inheritance 4.4 q1 has a t2-genominator s3 ∈ S ∩ Gent2(q1), and any
t3 ∈ Us3Ut2S has I3 := Ut3J ⊆ Us3Ut2J [by (QJ3)] ⊆ UG3It2 ⊆ G3 := Gent2(q1) [by Innerness 3.3
(with s = t2)]. Choosing one such, we have

(7.1.3) t3 ∈ S ∩G3, I3 ⊆ G3 ⊆ I2 ⊆ I1 (G3 := Gent2(q1)).

We will show that x = t23 is a J-prenominator in S for Uq1q2, establishing that Uq1q2 ∈ Q(J).
For U -pushing in 2.1 (Pren), Ux

(
Uq1q2

)
= Ut3

(
Ut3Uq1

)
q2 ⊆ UJ

(
Ut2M(J |Q) Ut2

)
(q2) [by 3.1 (G3)

for t3 ∈ Gent2(q1) by (7.1.3)] ⊆ M(J |Q)J ⊆ J since by definition 3.1 (G1) for Gent1(q2) we have
Ut2q2 ∈ I1 ⊆ J .

The crux, as always, is V -pushing. We have {x,Uq1q2} = {t23, Uq1q2} = −{q2, Uq1t
2
3}+{{t23, q1, q2}, q1}

[by (1.1.5)] = −{Uq1t
2
3, q2}+{

(
{t3, {t3, q1}, q2} − {Ut3q1, q2}

)
, q1}. We will show that each of these 3

pieces separately falls in J . For the first piece, {Uq1t
2
3, q2} = {Uq1Ut3 1̂, q2} ∈ {Ut2M(J |Q)Ut2 1̂, q2}

[by 3.1 (G3)∗ for t3 ∈ G3 = Gent2(q1) by (7.1.3)] ⊆ {It2 , q2} ⊆ I1 [by (G0) for I2 ⊆ G2 = Gent1(q2)
by (7.1.2)] ⊆ J. For the second piece we have {t3, {t3, q1}, q2} ∈ {I2, I2, q2} [by 3.1 (G0) for
t3 ∈ Gent2(q1) ⊆ I2 by (7.1.3)] ⊆ Vq2,G2I2 ⊆ V

bI1,I1
I1 [by 3.1 (G2)∗ for G2 = Gent1(q2) ⊆ I1

by (7.1.2)] ⊆ I1, and similarly the third piece {Ut3q1, q2} ∈ {I2, q2} [by 3.1 (G1) for t3 ∈ Gent2(q1)]
⊆ I1 [by 3.1 (G0) for I2 ⊆ G2 = Gent1(q2) by (7.1.2)], and therefore the two pieces combined
yield {

(
{t3, {t3, q1}, q2} − {Ut3q1, q2}

)
, q1} ⊆ {I1, q1} ⊆ J [by 3.1 (G0) for I1 ⊆ G1 = GenJ(q1) by

(7.1.1)]. Thus all the pieces fall in place, and we have closure of Q(J). �

Martinez [8] found a home for linear Jordan fractions (over scalars with 1
6 ) as germs of derivations

of a TKK algebra via a 7→ Ada+ . Finding a home for quadratic Jordan algebras is much more
complicated. Especially in characteristic 2, the Lie algebra by itself does not provide a home for the
quadratic Jordan structure. For example, if Ω is a commutative associative ring of characteristic 2,
the Jordan algebra J = Ω+ has trivial linear structure {J, J} = {J, J, J} = 0, only the quadratic
outer and inner multiplications Ua(b) = a2b = ∩b(a) survive. But then the TKK algebra £(J) =
J+ ⊕ 0 ⊕ J−1 has [a+, b−] = Va,b = 0, so the Lie bracket vanishes completely and the imbedding
a → Ada is identically zero. If Ω is an imperfect field of characteristic 2, then for Φ := Ω2 any
subalgebra Φ ⊆ J ⊆ Ω is an upstanding Jordan division algebra (x−1 = (x2)−1x) and yet won’t
imbed in £(J). Of course, as a division algebra it is not in need of inverses, but the polynomial
algebra Ω[t] is almost as respectable an algebra and is in dire need of inverses, yet they cannot be
found in £(J) either. It is also not enough to consider the derivation Ada together with its “divided-
square” Ua ≈ 1

2Ad2
a since if a is nilpotent of index 2 then its outer multiplication too disappears,

Ua = 0, but its inner multiplication never vanishes: if a 6= 0 then ∩a 6= 0 since ∩a(s) = Usa 6= 0 by
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injectivity of s ∈ S. To obtain an imbedding which includes these extremely radical elements, one
would have to further enrich the structure of £(J).

In a subsequent paper [3] the first author will establish an imbedding (injective up to extremely
radical elements) of a Jordan algebra as divided-square derivations on a TKK algebra, and in [11]
the second author will begin an injective imbedding of the whole Jordan algebra as enriched Jordan
derivations on a TKK algebra.

8 Afterthoughts

We mention here some additional results which will not play a direct role in our subsequent work. In the setting of
the Innerness Lemma 2.2, any K-prenomnator x ∈ PrenK(q) can be strengthened to a version of (G2): y = x2 or

any y ∈ Ux2a where a ∈ bJ satisfies Uxa + {x, a, K} ⊆ K (e.g., if a ∈ bK, or a ∈ bJ but K is an inner ideal), will be
(i) a K-prenominator for q whose multiplications Vy,q , Vq,y become pure K-multiplications in V

K, bK
= VK,K + VK .

Indeed, when a = 1 the element y = x2 for Since {x, q}, Uxq ∈ K we have {x2, q} = {x, {x, q}} − 2Uxq ∈ K and
Ux2q = UxUxq ∈ UxK contained in K as in (i), and for (ii) Vx2,q = Vx,{x,q} − VUxq ∈ VK,K − VK and dually

Vq,x2 ∈ V
K, bK

. When y = Ux2a then {y, q} = VqUx(Uxâ) =
�
U{q,x},x + Vx,{x,q} − VUxq

�
Uxa − Vx{Uxq, a, x}

[by Macdonald] ⊆
�
UK,K + VK,K − VK

�
Uxa − VK{K, a, x} ⊆ K by hypothesis, and UU

x2aq = Ux2UaUx2q =

UxUUxa(Uxq) ∈ UKUKK ⊆ K by (QJ3). Thus y = Ux2a is a K-prenominator for q, and we have by (1.1.5) that
Vy,q = VU

x2a,q = VUx(Uxa),q = −VUxq,Uxa+Vx,{Uxa,x,q} ∈ VK,K [note that {Uxa, x, q} = {Uxa, {x, q}}−Vx,a(Uxq) ∈
{Uxa, K} − {x, a, K} ⊆ K by the hypotheses], and dually Vq,y ∈ VK,K .

Extending this idea, a stronger-than-strong K-denominator x in the subalgebra K would turn multiplications
with q into explicit K-multiplications, satisfying (SD1), (SD1)′, (SSD2) Vx,q ∈ VK,K , (SSD3) UxUq ∈ M2,K ,

[hence automatically (SSD2)′ Vq,x ∈ VK,K , (SSD3)′ UqUx ∈ M2,K ], (SD0) {x, q} ∈ UK
bK], where M2,K :=

M(K|Q)UK + M(K|Q)VK,K [with more effort we could replace this with the sharper UK + UKUK + UKVK,K +

VK,K + V 2
K,K ]. This form guarantees these multiplications will push bK down into UK

bK: M2,K( bK) ⊆ UK
bK C

K, M2,K(K) ⊆ UKK C K, V
UK

bK
⊆ VK,K [because for z, w ∈ K all of VUzw = Vz,{w,z} − Vz2,w, Vz2 =

Vz,z , V{z,w} = Vz,w + Vw,z lie in VK,K by (1.1.2)], where VK,K
bK = {K, K} + {K, K, K} ⊆ UK

bK. A standard

argument shows that SSDenK(q) is an inner ideal in K : the element y := Uxâ ∈ UK
bK lies in the subalgebra K;

for (SD1) Uy(q) ∈ UKU
bK
(Uxq) ⊆ UKK by (QJ3), (SD1) for x; for (SD1)′ Uqy ∈ M2,K

bK [by (SSD3)′ for x and
(2.1.1)]; for (SSD2) when â = a ∈ K by Vy,q = Vx,{q,x,a}−VUxq,a ∈ VK,K [by (1.1.6) and (SSD2)′, (SD1) for x], and

when â = 1̂ we have Vy,q = Vx,{x,q} − VUxq ∈ VK,K + V
UK

bK
[by (1.1.2), (SD1) for x, and (2.1.1)]; and for (SSD3)

UyUq = UxUâUxUq ∈ UKU
bK
M2,K [by (SSD3) for x].

Alternately, we could require a K-denominator to satisfy (D1), (D1)′, (D2), (D2)′ and the stronger conditions

(D3-3′)∗ UxUq , UxUq ∈ U2,K , (D4)∗ Wx,q ∈ U2,K for U2,K := UKUK + UK spanned by U -operators alone, but

these elements don’t seem to form an inner ideal in K, since in (D3)∗ Ux,yUq = Vx,qVy,q − Vx,Uqy passes out of

U2,K into M2,K . �
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