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(André Conseibo), ouatt.mouss@univ-ouaga.bf (Moussa Ouattara ), zitanf@yahoo.fr (Fouad
Zitan).

Preprint submitted to Elsevier 1 April 2008



0 INTRODUCTION

The class of power-associative algebras assumes an important place in the theory of “nearly

associative algebras”, including Jordan algebras whose origin lies in the algebraic formula-

tion of quantum mechanics. Another kind of non-associative algebras consists of the so-called

train algebras, which have been introduced by Etherington [5] in connection with the sym-

bolism of genetics. During the past twenty years, a lot of effort was made to study train

algebras from various points of view, particularly for low ranks. However, due to their in-

trinsic complexity, little is known about train algebras of arbitrary ranks. In [26], Schafer

discovered the presence of some Jordan algebras among train algebras, through the gametic

and zygotic algebras for simple Mendelian inheritance (see also [12]). Motivated by these

results, Ouattara presented subsequently a study on Jordan train algebras in a more general

context [21]. Later, Guzzo and Vicente [10] founded the coefficients of the train equation of a

power-associative train algebra. Recently, Mallol and Varro [17] used the Peirce decomposi-

tion to analyze the train equation of a train algebra that is power-associative or alternative.

But as far as we know, power-associative algebras that are train algebras have not been

studied systematically.

On the other hand, the existence of idempotents in power-associative algebras, as well as

in train algebras, is quite important, since idempotents produce the Peirce decompositions

of the algebra [1,8,11,27]. But in addition to their mathematical importance, idempotents

also have genetic significance in train algebras [24,33]. Some results in this direction were

given in [6,14,33] for ranks ≤ 4.

The main goal of the present paper is to develop a structure theory for power-associative

algebras that are train algebras. Our point of departure is the previous paper [20], where

two special cases have been examined. This paper is organized as follows. After a section of

preliminaries, we first prove in Section 2 the existence of idempotents, which are all princi-

pal and absolutely primitive. The train equations of such algebras are revisited in order to

illuminate some new aspects. In particular, for finite-dimensional algebras, we give a partial

affirmative answer to an open question raised in [17] by establishing that the upper bounds

for the nil-indexes of the Peirce components are achieved for some idempotent. We also show

that the dimensions of the Peirce components are independent of the idempotent and that

every locally train algebra is a train algebra.

In Section 3 we study with two different methods the behavior of the set of idempo-

tents by furnishing their specific expressions and applying to concrete situations. Section 4

is devoted to the Jordan case by providing conditions under which power-associative train

algebras become Jordan algebras. It is also proved that Jordan train algebras that are fi-

nitely generated are finite-dimensional. In the final section, dedicated to nth-order Bernstein

algebras, we establish that any power-associative nth-order Bernstein algebra of period p

is necessarily a nth-order Bernstein algebra. Furthermore, 2n−1 possible train equations are

found for nth-order Bernstein algebras that are power-associative. Various examples are pre-
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sented throughout the article to serve as motivation and illustration for our results. Some

connections of our development with other approaches are also discussed.

1 PRELIMINARIES

In this section we briefly summarize notation, terminology and classical properties for

both train algebras and power-associative algebras. We would still recommend [15,33] for

train algebras, although there is now the most readable [24]. The reader may opt for [1,27]

for references about power-associative algebras. Throughout this paper, unless otherwise

mentioned, A is a commutative non-associative algebra of arbitrary dimension over an infinite

field K of characteristic 6= 2, 3, 5, even if many results hold in any characteristic 6= 2. We say

that A is a baric algebra if there exists a nonzero homomorphism of algebras ω : A → K,

called the weight function. Denoting by H the unit hyperplane H = {x ∈ A / ω(x) = 1}, we

have A = Ka ⊕ ker(ω) for each a ∈ H. A baric algebra (A,ω) is called a train algebra of

rank r if there exist γ1, . . . , γr−1 in K such that

xr + γ1ω(x)xr−1 + · · ·+ γr−1ω(x)r−1x = 0, (1.1)

for all x ∈ A, where r ≥ 2 is the smallest integer for which such an equation holds, and

x1 = x, . . . , xk+1 = xkx are the principal powers of x. Equation (1.1) is called the train

equation of A, where we have necessarily 1 + γ1 + · · · + γr−1 = 0. Then the weight function

ω is unique and ker(ω) is the set of nilpotent elements. Consider the ordinary polynomial

P (X) = Xr +γ1X
r−1 + · · ·+γr−1X, called the train polynomial of A. In a suitable extension

of K, P (X) splits into linear factors P (X) = X(X − 1)(X − λ1) · · · (X − λr−2), where

λ0 = 1, λ1, . . . , λr−2 are called the principal train roots of A. In an abuse of notation as

in [33], we write (1.1) in the form x(x − ω(x))(x − λ1ω(x)) · · · (x − λr−2 ω(x)) = 0, which

really means (Lx − ω(x) idA) (Lx − λ1ω(x) idA) · · · (Lx − λr−2 ω(x) idA) x = 0 for all x ∈ A,

where Lx indicates the multiplication by x and idA stands for the identity mapping.

For any polynomial Q(X) = b0X
s+ · · ·+bs−1X in K[X] with no constant term, we define

Q(a) = b0 as + · · ·+ bs−1 a for all a ∈ H. It is known that the set of polynomials Q(X) with

no constant term satisfying Q(a) = 0 for all a ∈ H is an ideal in K[X] generated by the

train polynomial P (X) (see [8,15]). An element e ∈ A is an idempotent if e2 = e 6= 0. We will

denote by I(A) the set of idempotents of A. It is important to note that every idempotent

in a train algebra has weight 1. For a finite sequence {x1, . . . , xn} of elements of an algebra

A, we shall write < x1, . . . , xn > for the subspace spanned by x1, . . . , xn.

On the other hand, an algebra A is power-associative if every element lies in an associative

subalgebra. A is called a Jordan algebra if the identity x2(yx) = (x2y)x holds in A. It is

well known that power-associativity is equivalent to the identity x2x2 = x4, and that Jordan

algebras are power-associative.
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Let A be a power-associative algebra that possesses an idempotent e. Then we have a

Peirce decomposition A = A1 ⊕ A1/2 ⊕ A0, where Aλ = {x ∈ A / ex = λx}. The Peirce

components Aλ are connected according to the relations

AλAλ ⊆ Aλ, AλA1/2 ⊆ A1/2 ⊕ A1−λ (λ = 0, 1), A1/2A1/2 ⊆ A0 ⊕ A1, A0A1 = 0. (1.2)

Following the notation of Albert [1], for each x1 ∈ A1 we define the maps S1/2(x1) :

A1/2 → A1/2, x1/2 7→ (x1x1/2)1/2 and S0(x1) : A1/2 → A0, x1/2 7→ (x1x1/2)0.

Similarly, each x0 ∈ A0 defines the maps T1/2(x0) : A1/2 → A1/2, x1/2 7→ (x0x1/2)1/2 and

T1(x0) : A1/2 → A1, x1/2 7→ (x0x1/2)1. Then we have the following crucial Peirce identities

(see details in [1]).

Lemma 1.1 For all x0, y0 ∈ A0, x1, y1 ∈ A1 and a1/2 ∈ A1/2, we have

(i) S1/2(x1y1) = S1/2(x1)S1/2(y1) + S1/2(y1)S1/2(x1),
1
2
S0(x1y1) = S0(x1)S1/2(y1) + S0(y1)S1/2(x1);

(ii) T1/2(x0y0) = T1/2(x0)T1/2(y0) + T1/2(y0)T1/2(x0),
1
2
T1(x0y0) = T1(x0)T1/2(y0) + T1(y0)T1/2(x0);

(iii) T1/2(x0)S1/2(y1) = S1/2(y1)T1/2(x0);

(iv) [T1(x0)a1/2]y1 = 2T1(x0)S1/2(y1)a1/2,

[S0(y1)a1/2]x0 = 2S0(y1)T1/2(x0)a1/2;

(v) xλ(x1/2y1/2) = [x1/2(xλy1/2)1/2 + y1/2(xλx1/2)1/2]λ

+1
2
[x1/2(xλy1/2)1−λ + y1/2(xλx1/2)1−λ]λ (λ = 0, 1);

(vi) S1/2(w1)a1/2 = T1/2(w0)a1/2, where a2
1/2 = w1 + w0.

Let A = A1 ⊕ A1/2 ⊕ A0 be the Peirce decomposition of a power-associative algebra A

relative to an idempotent e. The idempotent e is said to be principal if there is no idempotent

in A0, and primitive if it is the unique idempotent in A1. The idempotent e is called absolutely

primitive if each element of A1 has the form αe+x, where α ∈ K and x is a nilpotent element.

In this case, A1 = Ke⊕ A1 where A1 is a nil-subalgebra of A. We say that the algebra A is

e-stable if AiA1/2 ⊆ A1/2 (i = 0, 1), and A is stable if it is stable for every idempotent e. In

particular, Jordan algebras are stable.

2 BASIC RESULTS

In this section we deal with the structure of power-associative train algebras involving

their Peirce decompositions.

Proposition 2.1 Let A be a power-associative algebra. If A is a train algebra, then

(i) A admits at least an idempotent;

(ii) Every idempotent of A is both principal and absolutely primitive.
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Proof. (i) Let x ∈ A with ω(x) 6= 0. By (1.1), the subalgebra K[x] generated by x coincides

with the subspace < x, x2, . . . , xr−1 >. Hence, K[x] is a finite-dimensional power-associative

algebra that is not a nil-algebra. It follows from [27, Proposition 3.3] that K[x] has an

idempotent.

(ii) Let e be an idempotent of A and let A = A1⊕A1/2⊕A0 be the Peirce decomposition of

A induced by e. Each element x0 ∈ A0 satisfies ex0 = 0, so ω(x0) = ω(ex0) = 0 and therefore

x0 is nilpotent. Thus, A0 is a nil-algebra, so e is principal. Clearly, e is absolutely primitive,

because every x ∈ A1 is expressible in the form αe + y, where α = ω(x) and y ∈ ker(ω) is a

nilpotent element. Moreover, it easily seen that A1 = Ke⊕ A1, where A1 = A1 ∩ ker(ω). ¥

The previous result has a converse in the finite-dimensional case, which we state as:

Proposition 2.2 Let A be a finite-dimensional power-associative algebra.

If A has an idempotent e which is both principal and absolutely primitive, then

(i) The linear map ω : A = Ke⊕A1 ⊕A1/2 ⊕A0 → K, x = αe + x1 + x1/2 + x0 7→ α, is the

unique weight function of A;

(ii) (A,ω) is a train algebra.

Proof. (i) According to [20, Lemme 0.1] and its proof, the given linear map ω is the unique

weight function of A and ker(ω) = A1 ⊕ A1/2 ⊕ A0 is the nil-radical of A.

(ii) Let m be the nil-index of ker(ω). For any x ∈ A, since x2 − ω(x)x ∈ ker(ω), we have

(x2 − ω(x)x)m = 0. This gives, by power-associativity,

x2m +
m∑

k=1

(−1)k

(
m

k

)
ω(x)kx2m−k = 0,

and hence (A,ω) is a train algebra. ¥

Combining Propositions 2.1 and 2.2 actually shows that, if a finite-dimensional power-

associative algebra A admits an idempotent e that is both principal and absolutely primitive,

then so is any other idempotent of A.

One of the present authors explored in [20] the cases in which A0 = 0 or A1 = 0. Here we

consider the general situation. Our first main result in this section is the following theorem.

Theorem 2.3 Let A be a power-associative train algebra. Then

(i) The train equation of A is xs(x− ω(x))t = 0, for some integers s, t ≥ 1;

(ii) If A = Ke ⊕ A1(e) ⊕ A1/2(e) ⊕ A0(e) is the Peirce decomposition of A associated to an

idempotent e, we have nil-index of A0(e) ≤ s and nil-index of A1(e) ≤ t;

(iii) If A is finite-dimensional, then the above bounds s and t are simultaneously attained for

some idempotent e.

To prove this, we need the following auxiliary lemma, which covers the associative setting:
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Lemma 2.4 Let A = Ke⊕A1⊕A1/2⊕A0 be the Peirce decomposition of a power-associative

train algebra attached to an idempotent e. If A1/2 = 0, then

(i) e is the unique idempotent of A;

(ii) The train equation of A is xs(x−ω(x))t = 0, where s and t are respectively the nil-indexes

of A0 and A1.

Proof. (i) Let e′ be an idempotent of A and decompose e′ = e+x1 +x0, where x1 ∈ A1 and

x0 ∈ A0. Then e′2 = e′ implies that x1 = −x2
1 and x0 = x2

0. Since x1 and x0 are nilpotent,

x1 = x0 = 0, so e′ = e.

(ii) Recall from [9] that if (A,ω) is a baric algebra with idempotent e such that ker(ω) is nil

of nil-index d ≥ 2, and if there is λ ∈ K with ea = λa for all a ∈ ker(ω), then (A,ω) is a

train algebra of train polynomial Xd+1 + γ1X
d + · · ·+ γdX, where

γi = (d, i, λ) := (−1)i

((
d− 1

i

)
λi +

(
d− 1

i− 1

)
λi−1

)
, for 1 ≤ i ≤ d.

Applying this fact to the baric subalgebras B = Ke⊕ A0 and C = Ke⊕ A1, and observing

that (s, i, 0) = 0 for 2 ≤ i ≤ s, (s, 1, 0) = −1, and (t, i, 1) = (−1)i
(

t
i

)
, we infer that

B and C are train algebras with respective train polynomials P (X) = Xs+1 − Xs and

Q(X) = X t+1 −
(

t
1

)
X t +

(
t
2

)
X t−1 + · · ·+ (−1)tX = X(X − 1)t.

On the other hand, since A0A1 = 0, the baric algebra A = Ke⊕A1⊕A0 is isomorphic to the

join B∨C of the baric algebras B and C (see [3] for details about the join of baric algebras).

It follows from [4] that the train polynomial of A is the least common multiple Xs(X − 1)t

of P (X) and Q(X). ¥

Proof of Theorem 2.3. Part (i) is obtained as for Proposition 2.2(ii) by writing (x2 −
ω(x)x)r = 0 for all x ∈ A, where r = rank A. The train polynomial of A, which must divide

(X2 −X)r, takes the form Xs(X − 1)t.

(ii) By Lemma 2.4, the subalgebra Be = Ke ⊕ A1(e) ⊕ A0(e) is a train algebra of train

equation xse(x − ω(x))te = 0, where te and se are respectively the nil-indexes of A1(e) and

A0(e). Now, since the train polynomial of Be divides that of A, we get se ≤ s and te ≤ t.

(iii) In view of [15] (see also [8] and [17, Proposition 2]), there exists a ∈ A with ω(a) = 1 such

that a, a2, . . . , ar−1 are linearly independent, where r = s+ t = rank A. Thus, the subalgebra

S := K[a] generated by a is a train algebra of rank r and train equation xs(x− ω(x))t = 0.

Let e be the unique idempotent of S and consider the Peirce decomposition S = Ke⊕S1(e)⊕
S0(e). According to Lemma 2.4, the train equation of S is xsa(x−ω(x))ta = 0, where ta and

sa are respectively the nil-indexes of S1(e) and S0(e). Consequently, sa = s and ta = t. But

the idempotent e produces a Peirce decomposition A = Ke⊕A1(e)⊕A1/2(e)⊕A0(e) of A,

where S1(e) ⊆ A1(e) and S0(e) ⊆ A0(e). Therefore t = ta ≤ nil-index of A1(e) and s = sa ≤
nil-index of A0(e). The proof is finally complete, because the reverse inequalities hold by

part (ii). ¥
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In a recent paper [17] by Mallol and Varro, finite-dimensional power-associative and alter-

native train algebras that are not necessarily commutative were considered. Let us explain

the relationships between our previous results and those of [17]. Let (A,ω) be a noncommu-

tative power-associative train algebra of arbitrary dimension with train equation (1.1). Then

the symmetrized algebra A+ with product x.y = 1
2
(xy + yx) is a baric algebra with weight

function ω. Since powers in A+ coincide with those in A, then (A+, ω) is a commutative

power-associative train algebra with the same train equation (1.1). It follows from Proposi-

tion 2.1 and Theorem 2.3(i) that A possesses an idempotent e and that the train equation

of A has the form xs(x−ω(x))t = 0. These facts extend the results of [17, Théorèmes 5 and

6] to the infinite-dimensional case. Concerning the Peirce decomposition of A, it is known

[27, page 131] that A = A1 ⊕ A1/2 ⊕ A0, where Ai = {x ∈ A / ex = xe = ix} for i = 0, 1,

and A1/2 = {x ∈ A / ex + xe = x}. Since A1 = Ke ⊕ A1, where A1 = A1 ∩ ker(ω), it

follows that the two inequalities in Theorem 2.3(ii) are still valid in the noncommutative

case, generalizing the result of [17, Théorème 7] obtained for finite-dimensional alternative

algebras.

Now, if A is alternative, it was conjectured in [17] that t =nil-index of A1 and s =nil-

index of A0. Actually, our statement (iii) in Theorem 2.3 provides a partial affirmative answer

to this question, even in the power-associative case. Clearly, the natural question to know

whether the nil-indexes of A1(e) and A0(e) are independent of the chosen idempotent e

remains open.

Returning to Theorem 2.3, we have the following consequence, containing [10, Theorem

2.1].

Corollary 2.5 Let A be a train algebra of rank r with train equation (1.1). If A is power-

associative, then there exists an integer t with 1 ≤ t ≤ r − 1 such that

γk = (−1)k

(
t

k

)
for 1 ≤ k ≤ t, and γk = 0 for t + 1 ≤ k ≤ r.

In addition, xr−t
0 = 0 and xt

1 = 0 for all idempotent e ∈ A, x0 ∈ A0(e) and x1 ∈ A1(e).

An arbitrary train algebra is said to be of presentation (s, t) if its train equation is xs(x−
ω(x))t = 0. By Corollary 2.5, there are exactly r−1 possible presentations (or train equations)

for power-associative train algebras of rank r. We note in passing that, contrarily to the

case when rank A ≤ 3 (see [21, Théorème 2.1] or [10, Proposition 2.2]), a train algebra of

presentation (s, t) need not be power-associative. In fact, for each r ≥ 4, it has been exhibited

in [10, Example 1] a train algebra of presentation (r − 1, 1) which is not power-associative.

Remark 2.6 As pointed out in [17, Théorème 7], there is a duality between power-associative

train algebras of presentation (s, t) and those of presentation (t, s). Precisely, one assigns to

every baric algebra (A,ω) a new baric algebra (A?, ω) with the same vector space A and

multiplication x?y = ω(x)y+ω(y)x−xy (see a more general construction in [16]). Then A is
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a power-associative train algebra of presentation (s, t) if and only if A? is a power-associative

train algebra of presentation (t, s). Moreover, I(A) = I(A?), and if A = Ke⊕A1⊕A1/2⊕A0

and A? = Ke⊕ A?
1 ⊕ A?

1/2 ⊕ A?
0 are the Peirce decompositions of A and A? with respect to

an idempotent e, then A1 = A?
0, A1/2 = A?

1/2 and A0 = A?
1. We will use occasionally this

duality in order to simplify some proofs in the text.

We now continue to establish some fundamental properties of power-associative train alge-

bras. Our next task is to discuss the invariance of the dimensions of the Peirce components.

Theorem 2.7 Let A = A1(e) ⊕ A1/2(e) ⊕ A0(e) be the Peirce decomposition of a finite-

dimensional power-associative train algebra A. Then the dimensions of A1(e), A1/2(e) and

A0(e) are independent of the choice of the idempotent e.

Proof. Since A is a train algebra, it follows from [15, page 110] (see also [8]) that the

characteristic polynomial P (X) = det(La − X idA) of the operator La is the same for all

a ∈ H. In particular, P (X) = det(Le − X idA) for each idempotent e ∈ A. On the other

hand, the direct sum A = A1(e)⊕A1/2(e)⊕A0(e) says that the only possible eigenvalues of

Le are 1, 0 and 1
2
. Hence P (X) = (X − 1)n(1)(X − 1

2
)n( 1

2
)Xn(0), where the integers n(1), n(1

2
)

and n(0) are independent of the chosen idempotent e. Finally, since A = ker(Le− idA)n(1)⊕
ker(Le − 1

2
idA)n( 1

2
) ⊕ ker(Ln(0)

e ) and Ak(e) = ker(Le − k idA) ⊆ ker(Le − k idA)n(k), we

conclude that Ak(e) = ker(Le − k idA)n(k) has dimension n(k), for k = 1, 1
2
, 0. ¥

The triplet (dim A1, dim A 1
2
, dim A0), whose uniqueness has just been proved, is called the

type of A.

On the other hand, it is evident that, if (A,ω) is an arbitrary train algebra, then also is

every baric subalgebra B of A. We shall proceed to show that the converse is also true in the

finite-dimensional power-associative situation. We say that a baric algebra (A,ω) is a locally

train algebra if the subalgebra K[x] is a train algebra for every x ∈ H.

Theorem 2.8 Let (A,ω) be a finite-dimensional power-associative baric algebra. If (A,ω)

is a locally train algebra, then (A,ω) is a train algebra.

Proof. By hypothesis and Lemma 2.4, for each element x ∈ H, there exist integers sx ≥ 1 and

tx ≥ 1 such that ysx(y−ω(y))tx = 0 for all y ∈ K[x]. Moreover, sx and tx are the nil-indexes of

the Peirce components of K[x]. Since A is finite-dimensional, the sets S = {sx / x ∈ H} and

T = {tx / x ∈ H} are bounded. Setting s = maxS and t = max T , we have xs(x−ω(x))t = 0

for all x ∈ H. It follows from [16, Proposition 3] (see also [8]) that xs(x− ω(x))t = 0 for all

x ∈ A. ¥

It is not known if the previous result remains true when power-associativity is relaxed.
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3 ON THE SET OF IDEMPOTENTS

A very interesting topic in the study of train algebras is the existence and the knowledge

of idempotents. Guzzo [11] and Gutiérrez [8] assumed the existence of an idempotent to find

the Peirce decomposition of a train algebra. We have already proved in Proposition 2.1 the

existence of such elements in power-associative train algebras of arbitrary dimensions. In

this section we will derive in two distinct ways interesting formulas for the idempotents.

A) The theorem below shows how to compute idempotents in terms of elements of

weight 1.

Theorem 3.1 Let (A,ω) be a power-associative train algebra of train equation xs(x −
ω(x))t = 0. Let f(X) and g(X) be the unique polynomials satisfying the Bezout identity

f(X)Xs + g(X)(X − 1)t = 1, deg f(X) < t, deg g(X) < s. (3.1)

Then the set of all idempotents of A is given by I(A) = {ea := h(a) / a ∈ H}, where

h(X) = f(X)Xs.

Proof. Consider the train polynomial P (X) = Xs(X − 1)t and write f(X) =
t−1∑
i=0

biX
i. It

is clear from (3.1) that f(1) = 1. Hence ω(ea) =
t−1∑
i=0

bi ω(as+i) =
t−1∑
i=0

bi = f(1) = 1, and

therefore ea 6= 0. On the other hand, (3.1) implies that h(X)2 − h(X) = h(X)[h(X) −
1] = f(X)Xs [−g(X)(X − 1)t] = −P (X)f(X)g(X) ≡ 0 mod P (X). This shows that e2

a =

h(a)2 = h(a) = ea. Conversely, each idempotent e arises in this fashion, since h(e) =
t−1∑
i=0

bie
s+i =

(
t−1∑
i=0

bi

)
e = e. ¥

The foregoing theorem shows that to obtain the full determination of the idempotents, we

only need to compute the polynomial f(X). This is the subject of the next lemma.

Lemma 3.2 The polynomial f(X) in (3.1) is given by

f(X) =
t−1∑

p=0

(
p + s− 1

p

)
(1−X)p. (3.2)

Proof. The case t = 1 is immediate, since deg f(X) < 1 implies that f(X) = f(1) = 1,

which equals the right side of (3.2). Let t ≥ 2 and set

T (X) := Xf ′(X) + sf(X). (3.3)

A derivation of (3.1) gives

Xs−1T (X) = −(X − 1)t−1 [tg(X) + g′(X)(X − 1)] .
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Hence, (X−1)t−1 divides Xs−1T (X), and so divides also T (X). Since deg T (X) < t, we have

T (X) = α(X − 1)t−1, (3.4)

for some α ∈ K. Now, making use of (3.9), it follows that

T (p+1)(X) = Xf (p+1)(X) + (s + p)f (p)(X), (3.5)

for every p ≥ 0. Taking X = 1 in (3.5) yields

f (p+1)(1) = −(s + p)f (p)(1), for all p ∈ {0, 1, . . . , t− 2}, (3.6)

because in this case we have T (p)(1) = 0 in virtue of (3.4). An easy induction on p ≥ 0

shows, with the aid of (3.6), that

f (p)(1) = (−1)p (s + p− 1)!

(s− 1)!
, for all p ∈ {0, 1, . . . , t− 1}. (3.7)

Finally, by insertion of (3.7) into Taylor’s formula, we get the required relation (3.2). ¥

Remark 3.3 Let Ã be the algebra obtained from A by the usual unitization process. Then,

for every a ∈ H, the element e′a = g(a)(a − 1)t is an idempotent in Ã, which is orthogonal

to ea = f(a)as. Notice that it is also possible to evaluate the polynomial g(X). For this,

replacing X by 1−X in (3.1), where we write fs,t(X) and gs,t(X) instead of f(X) and g(X),

gets

(−1)tgs,t(1−X)X t + (−1)sfs,t(1−X)(X − 1)s = 1.

Comparison of this identity with ft,s(X)X t + gt,s(X)(X − 1)s = 1 shows that ft,s(X) =

(−1)tgs,t(1−X), implying that gs,t(X) = (−1)tft,s(1−X). It follows from Lemma 3.2 that

gs,t(X) = (−1)t
s−1∑

p=0

(
p + t− 1

p

)
Xp. (3.8)

Remark 3.4 Using Theorem 3.1, an alternative proof of Theorem 2.3(iii) can be furnished.

Indeed, pick a ∈ H such that a, a2, · · · , as+t−1 are linearly independent, so that Xs(X − 1)t

is the minimal polynomial of a, and decompose S = K[a] = Ke ⊕ S1(e) ⊕ S0(e), as in the

proof of Theorem 2.3(iii). Since e is the unique idempotent of S, we have e = ea = f(a)as

by Theorem 3.1. Now, the element x0 := a(a− 1)t ∈ S satisfies ex0 = f(a)a [as(a− 1)t] = 0,

and therefore x0 ∈ S0(e). Further, as Xs(X − 1)t does not divide Xs−1(X − 1)t(s−1), we

have xs−1
0 = as−1(a − 1)t(s−1) 6= 0, so x0 is nilpotent of index s. It follows from this and

Theorem 2.3(ii) that s is the nil-index of the subspace S0(e). We may show analogously that

the element x1 := as(a− 1) belongs to S1(e) and xt−1
1 6= 0, so that S1(e) has nil-index t.

By the way we point out that S0(ea) =< a(a − 1)t, a2(a − 1)t, . . . , as−1(a − 1)t > and

S1(ea) =< as(a− 1), as(a− 1)2, . . . , as(a− 1)t−1 >.

Applying Theorem 3.1 together with Lemma 3.2, we obtain the following consequences.
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Corollary 3.5 Let (A,ω) be a power-associative train algebra of rank n. If the presentation

of A is either (n−1, 1), (n−2, 2), (n−3, 3), (n−4, 4) or (n−5, 5), then I(A) = {ea / a ∈ H},
where we have respectively

ea = an−1,

ea = (n− 1)an−2 − (n− 2)an−1,

ea = (n−1)(n−2)
2

an−3 − (n− 1)(n− 3) an−2 + (n−2)(n−3)
2

an−1,

ea = (n−1)(n−2)(n−3)
6

an−4 − (n−1)(n−2)(n−4)
2

an−3

+ (n−2)(n−3)(n−4)
2

an−2 − (n−1)(n−3)(n−4)
6

an−1

ea = (n−1)(n−2)(n−3)(n−4)
24

an−5 − (n−1)(n−2)(n−3)(n−5)
6

an−4 + (n−1)(n−3)(n−4)(n−5)
4

an−3

− (n−1)(n−3)(n−4)(n−5)
6

an−2 + (n−2)(n−3)(n−4)(n−5)
24

an−1.

Proof. It suffices to calculate the polynomial f(X) with the aid of Lemma 3.2 in each case.

The verification is straightforward and is left to the reader. ¥.

We note that the particular cases (n− 1, 1), (n− 2, 2) and (n− 3, 3) were already accom-

plished by Giovanni Reyes in his Ph.D. thesis [25], using other techniques.

The general expression of the idempotents in presentation (t, s) can be immediately de-

duced with a slight modification from that in presentation (s, t). Indeed, let (A,ω) be a power-

associative train algebra of presentation (t, s). In view of Remark 2.6, the attached baric al-

gebra (A?, ω) is a power-associative train algebra of presentation (s, t) and I(A) = I(A?). Let

fs,t(X) =
t−1∑
i=0

biX
i and hs,t(X) = fs,t(X)Xs. By Theorem 3.1, I(A?) = {ea := h?

s,t(a) / a ∈

H}, where h?
s,t(a) =

t−1∑
i=0

bia
?(i+s) and the a?(i+s) are the powers of a in A?.

On the other hand, according to [16, page 6], we have a?k =
k∑

i=1
(−1)k

(
k
i

)
ai, which can be

formally written as a?k = 1− (1− a)k. Therefore,

ea = h?
s,t(a) =

t−1∑

i=0

bi

[
1− (1− a)i+s

]
=

t−1∑

i=0

bi −
t−1∑

i=0

bi(1− a)i+s

= 1−
t−1∑

i=0

bi(1− a)i+s. (3.9)

For instance, taking into account Corollary 3.5, we obtain directly from (3.9) the following

corollary.

Corollary 3.6 If the presentation of A is either (1, n− 1), (2, n− 2), (3, n− 3), (4, n− 4) or
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(5, n− 5), then I(A) = {ea / a ∈ H}, where we have respectively

ea = 1− (1− a)n−1,

ea = 1− (n− 1)(1− a)n−2 + (n− 2)(1− a)n−1,

ea = 1− (n−1)(n−2)
2

(1− a)n−3 + (n− 1)(n− 3) (1− a)n−2 − (n−2)(n−3)
2

(1− a)n−1,

ea = 1− (n−1)(n−2)(n−3)
6

(1− a)n−4 + (n−1)(n−2)(n−4)
2

(1− a)n−3

− (n−1)(n−3)(n−4)
2

(1− a)n−2 + (n−2)(n−3)(n−4)
6

(1− a)n−1

ea = 1− (n−1)(n−2)(n−3)(n−4)
24

(1− a)n−5 + (n−1)(n−2)(n−3)(n−5)
6

(1− a)n−4

− (n−1)(n−3)(n−4)(n−5)
4

(1− a)n−3 + (n−1)(n−3)(n−4)(n−5)
6

(1− a)n−2

− (n−2)(n−3)(n−4)(n−5)
24

(1− a)n−1.

As illustration, we offer in the following table the list of all train equations of ranks ≤ 7

with their manifolds of idempotents. The results are quickly obtained from Theorem 3.1 by

direct application of the extended Euclidean algorithm in a symbolic computation software

as MAPLE or MATHEMATICA.

Rank (s, t) Train-equation
Idempotent ea

2 (1, 1) x2 − ω(x)x = 0 a

3
(2, 1) x3 − ω(x)x2 = 0 a2

(1, 2) x3 − 2ω(x)x2 + ω(x)2x = 0 2a− a2

4

(3, 1) x4 − ω(x)x3 = 0 a3

(2, 2) x4 − 2ω(x)x3 + ω(x)2x2 = 0 3a2 − 2a3

(1, 3) x4−3ω(x)x3+3ω(x)2x2−ω(x)3x = 0 3a− 3a2 + a3

5

(4, 1) x5 − ω(x)x4 = 0 a4

(3, 2) x5 − 2ω(x)x4 + ω(x)2x3 = 0 4a3 − 3a4

(2, 3) x5−3ω(x)x4+3ω(x)2x3−ω(x)3x2 =
0

6a2 − 8a3 + 3a4

(1, 4) x5−4ω(x)x4+6ω(x)2x3−4ω(x)3x2+
ω(x)4x = 0

4a− 6a2 + 4a3 − a4
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Rank (s, t) Train-equation
Idempotent ea

6

(5, 1) x5 − ω(x)x4 = 0 a5

(4, 2) x5 − 2ω(x)x4 + ω(x)2x3 = 0 5a4 − 4a5

(3, 3) x5−3ω(x)x4+3ω(x)2x3−ω(x)3x2 =
0

10a3 − 15a4 + 6a5

(2, 4) x5−4ω(x)x4+6ω(x)2x3−4ω(x)3x2+
ω(x)4x = 0

10a2 − 20a3 + 15a4 − 4a5

(1, 5) x5−4ω(x)x4+6ω(x)2x3−4ω(x)3x2+
ω(x)4x = 0

5a− 10a2 + 10a3 − 5a4 + a5

7

(6, 1) x5 − ω(x)x4 = 0 a6

(5, 2) x5 − 2ω(x)x4 + ω(x)2x3 = 0 6a5 − 5a6

(4, 3) x5−3ω(x)x4+3ω(x)2x3−ω(x)3x2 =
0

15a4 − 24a5 + 10a6

(3, 4) x5−4ω(x)x4+6ω(x)2x3−4ω(x)3x2+
ω(x)4x = 0

20a3 − 45a4 + 36a5 − 10a6

(2, 5) x5−4ω(x)x4+6ω(x)2x3−4ω(x)3x2+
ω(x)4x = 0

15a2 − 40a3 + 45a4 − 24a5 + 5a6

(1, 6) x5−4ω(x)x4+6ω(x)2x3−4ω(x)3x2+
ω(x)4x = 0

6a− 15a2 + 20a3 − 15a4 + 6a5 − a6

B) The next objective is to presenting an alternative characterization of the set of

idempotents. A natural question consists on finding all the idempotents starting with a fixed

one. To this end, we assume in the following that the algebra A is e-stable. Before starting

discussion, we require some preparation. The first key ingredient is the next lemma, which

is just a reformulation of Lemma 1.1 for e-stable algebras.

Lemma 3.7 Let A = A1 ⊕ A1/2 ⊕ A0 be the Peirce decomposition of a power-associative

algebra induced by an idempotent e. If A is e-stable, then for all xi, yi ∈ Ai (i = 0, 1) and

a1/2 ∈ A1/2, we have

(a) (x1y1)a1/2 = x1(y1a1/2) + y1(x1a1/2) ;

(b) (x0y0)a1/2 = x0(y0a1/2) + y0(x0a1/2) ;

(c) x0(y1a1/2) = y1(x0a1/2) ;

(d) x0(x1/2y1/2) = [x1/2(y1/2x0)]0 + [y1/2(x1/2x0)]0;

x1(x1/2y1/2) = [x1/2(y1/2x1)]1 + [y1/2(x1/2x1)]1;

(e) (a2
1/2)1a1/2 = (a2

1/2)0a1/2 = 1
2
a3

1/2.

Let A = A1 ⊕ A1/2 ⊕ A0 be the Peirce decomposition of an e-stable power-associative

algebra produced by e. For all λ ∈ {0, 1} and xλ ∈ Aλ, we consider the map Sxλ
: A1/2 →
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A1/2, x1/2 7→ xλx1/2. By parts (a) and (b) of Lemma 3.7, we have Sxλ
Syλ

+ Syλ
Sxλ

= Sxλyλ
.

Thus, one easily obtain as in [20, Lemme 1.4] the following

Lemma 3.8 For all k ≥ 2, λ ∈ {0, 1} and xλ ∈ Aλ, we have:

(i) Sxλ
k = 2k−1Sk

xλ
;

(ii) Sxλ
k = 2Sxλ

Sxλ
k−1;

(iii) Sxλ
Sxλ

k−1 = Sxλ
k−1Sxλ

.

The next lemma is also necessary for our intended applications.

Lemma 3.9 For all k ≥ 1 and x1/2 ∈ A1/2, we have

x1/2(x
2
1/2)

k
0

(iv)
= x1/2(x

2
1/2)

k
1

(v)
=

1

2
x2k+1

1/2 .

Proof. We carry out an induction to show (iv). For k = 1 the result is just Lemma 3.7(e).

Let k ≥ 2. With the aid of Lemmas 3.7 and 3.8, together with the induction hypothesis

(I.H.), we have:

x1/2(x
2
1/2)

k+1
0

(ii)
= 2(x2

1/2)0[x1/2(x
2
1/2)

k
0]

(I.H.)
= 2(x2

1/2)0[x1/2(x
2
1/2)

k
1]

(c)
= 2(x2

1/2)
k
1[x1/2(x

2
1/2)0]

(e)
= 2(x2

1/2)
k
1[x1/2(x

2
1/2)1]

(iii)
= 2(x2

1/2)1[x1/2(x
2
1/2)

k
1]

(ii)
= x1/2(x

2
1/2)

k+1
1 .

which proves (iv). Now (v) follows from (iv), because

x2k+1
1/2 = x1/2(x

2
1/2)

k = x1/2[(x
2
1/2)

k
0 + (x2

1/2)
k
1]

(iv)
= 2x1/2(x

2
1/2)

k
1. ¥

Combining Lemma 3.9 and Theorem 2.3(ii) allows us to state:

Corollary 3.10 Let A be an e-stable power-associative train algebra of presentation (s, t).

Then x2r+1
1/2 = 0 for all x1/2 ∈ A1/2, where r = min(s, t).

It follows from the preceding corollary that, if s = 1 or t = 1, that is A0 = 0 or A1 = 0,

then x3
1/2 = 0 for all x1/2 ∈ A1/2.

Remark 3.11 Since x2r+1
1/2 = 0, we have (x2

1/2)
r+1 = 0. Hence (x2

1/2)
r+1
0 = (x2

1/2)
r+1
1 = 0, and

so (x2
1/2)

k
0 = (x2

1/2)
k
1 = 0 for all k ≥ r + 1.

Having these preparations at hand, we come now to the following principal result.

Theorem 3.12 Let A = Ke ⊕ A1 ⊕ A1/2 ⊕ A0 be the Peirce decomposition of an e-stable

power-associative train algebra of presentation (s, t). Then the set of idempotents of A is

given by

I(A) =



e + x1/2 +

r∑

p=1

µp

[
(x2

1/2)
p
0 − (x2

1/2)
p
1

]
/ x1/2 ∈ A1/2



 , (3.10)
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where r = min(s, t) and the scalars µ1, . . . , µr depending only on r satisfy the following

combinatorial equation

µ1 = 1 and µp =
∑

p/2≤k≤p−1

µk (−1)p−k+1

(
k

p− k

)
(p ≥ 2). (3.11)

The proof of the theorem depends upon the following technical lemma, which seems to be

of independent interest:

Lemma 3.13 Let a be an element in a power-associative algebra A with ar = 0.

(i) If v = a− a2, then a =
∑r−1

p=1 µpv
p, where the sequence {µp} is given by (3.11).

(ii) Conversely, if a =
∑r−1

p=1 µpv
p and v ∈ A with vr = 0, then v = a− a2.

Proof. (i) Without loss of generality, we may assume that ar−1 6= 0. As vr = 0 and vr−1 6= 0,

the family {v, v2, . . . , vr−1} is a basis of K[a]. Hence, there are µ1, . . . , µr−1 in K such that:

a =
r−1∑

k=1

µkv
k =

r−1∑

k=1

µk

(
k∑

i=0

(−1)i

(
k

i

)
ak+i

)
.

This implies that a =
∑r−1

p=1 λp ap, where

λ1 = µ1 = 1 and λp =
∑

1≤k≤r−1, 0≤i≤k, k+i=p

µk(−1)i

(
k

i

)
(2 ≤ p ≤ r − 1).

But the conditions 0 ≤ i ≤ k and k + i = p entail k ≤ p ≤ 2k. It follows that

λp =
∑

p/2≤k≤p

µk (−1)p−k

(
k

p− k

)

= µp +
∑

p/2≤k≤p−1

µk (−1)p−k

(
k

p− k

)
(2 ≤ p ≤ r − 1). (3.12)

On the other hand, we have obviously a =
∑r−1

p=1 λp ap, with λ1 = 1 and λp = 0 for 2 ≤ p ≤
r − 1. Comparing this with (3.12), we conclude the desired relation (3.11).

(ii) By hypothesis and part (i), we have a =
∑r−1

p=1 µpv
p =

∑r−1
p=1 µpw

p, where w = a − a2.

Then ar−1 = vr−1 = wr−1. Now, ar−2 = vr−2 + (r− 2) µ2 vr−1 = wr−2 + (r− 2) µ2 wr−1 yields

vr−2 = wr−2. Continuing in this way with the powers ak (1 ≤ k ≤ r − 1), we get finally

v = w. ¥

Putting l = p− k, (3.11) becomes

µ1 = 1 and µp =
∑

1≤l≤p/2

(−1)l+1

(
p− l

l

)
µp−l (p ≥ 2).

The first values of the sequence {µp}p up to p = 10 are available in the next table.

15



p 1 2 3 4 5 6 7 8 9 10

µp 1 1 2 5 14 42 132 429 1430 4862

We emphasize in passing the following consequence of the lemma: Let a and b two elements

in a power-associative algebra A. If ar = br = 0 and a− a2 = b− b2, then a = b.

Proof of Theorem 3.12. Let f = e + x1/2 + x0 + x1 be an idempotent of A, necessarily of

weight 1. Then f 2 = f is equivalent to

(x2
1/2)0 + x2

0 = x0, (x2
1/2)1 + x2

1 + x1 = 0, x1/2x0 + x1/2x1 = 0. (3.13)

Since xs
0 = 0 and xt

1 = 0, we apply Lemma 3.13(i) to a = x0, v = (x2
1/2)0 on the one hand,

and to a = −x1, v = (x2
1/2)1 on the other hand, to derive

x0 =
s−1∑

p=1

µp(x
2
1/2)

p
0 and x1 = −

t−1∑

p=1

µp(x
2
1/2)

p
1.

As (x2
1/2)

s
0 = 0 and (x2

1/2)
t
1 = 0, we have also

x0 =
s∑

p=1

µp(x
2
1/2)

p
0 and x1 = −

t∑

p=1

µp(x
2
1/2)

p
1. (3.14)

Now, by Remark 3.11 and (3.14), we infer that

x0 =
r∑

p=1

µp(x
2
1/2)

p
0 and x1 = −

r∑

p=1

µp(x
2
1/2)

p
1, (3.15)

so f takes the form in (3.10).

Conversely, every element f = e + x1/2 + x0 + x1 satisfying (3.15) is an idempotent. In-

deed, x1/2x0+x1/2x1 =
∑r

p=1 µp[x1/2(x
2
1/2)

p
0−x1/2(x

2
1/2)

p
1] = 0, thanks to Lemma 3.9. Further,

since (x2
1/2)

r+1
0 = (x2

1/2)
r+1
1 = 0 by Remark 3.12, it follows from (3.15) that xr+1

0 = xr+1
1 = 0.

Consequently, we obtain from (3.15) and Lemma 3.13(ii) that (x2
1/2)0 = x0−x2

0 and (x2
1/2)1 =

−x1 − x2
1. Thus (3.13) is satisfied, that is f is an idempotent, which ends the proof of the

theorem. ¥

Theorem 3.12 shows that the set of idempotents of A is parameterized by the subspace

A1/2. This confirms that dim A1/2 must be independent of the idempotent e, as was already

mentioned in Theorem 2.7.

Specializing Theorem 3.12 to the cases of presentations (s, 1) and (1, t), we obtain the

earlier results [20, Propositions 1.5 and 4.2]:
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Corollary 3.14 Under the hypotheses of Theorem 3.12, we have:

(i) If A = Ke⊕A1/2⊕A0 is of presentation (s, 1), then I(A) = {e+x1/2+x2
1/2 / x1/2 ∈ A1/2}.

(i) If A = Ke⊕Ā1⊕A1/2 is of presentation (1, t), then I(A) = {e+x1/2−x2
1/2 / x1/2 ∈ A1/2}.

4 JORDAN ALGEBRAS

In this section we concentrate our efforts on Jordan train algebras. In particular, we

provide some conditions guaranteeing power-associative train algebras to be Jordan algebras.

Let A = A1 ⊕ A1/2 ⊕ A0 be the Peirce decomposition of a Jordan algebra induced by the

idempotent e. It is known [1,23] that A is stable and satisfies the identity

[(xλx1/2)y1/2]1−λ = [(xλy1/2)x1/2]1−λ, (4.1)

for all xλ ∈ Aλ, x1/2, y1/2 ∈ A1/2 and λ = 0, 1.

In [1], Albert constructed an example of a commutative power-associative algebra that

is not a Jordan algebra, because it is not stable. The next example shows that e-stable

power-associative train algebras need not satisfy (4.1).

Example 4.1 Let A =< e, u1, u2, u3, u4, v, w > be the commutative algebra with multi-

plication table given by e2 = e, eui = 1
2
ui (i = 1, . . . , 4), ew = w, u1v = u1w = u3,

u2v = u2w = u4, u2u3 = −u1u4 = v+w, other products being zero. Then A is equipped with

the weight function ω such that ω(e) = 1, ω(ui) = ω(v) = ω(w) = 0. By straightforward

calculation, one may check that A is a power-associative train algebra of presentation (2, 2),

with A1(e) =< w >, A1/2(e) =< u1, u2, u3, u4 > and A0(e) =< v >. Moreover, A is e-stable.

Since [(vu1)u2]1 = w and [(vu2)u1]1 = −w, A does not satisfy (4.1), and so it is no longer a

Jordan algebra.

Next, we recall the result below, stated in [20, Théorème 1.3].

Proposition 4.2 Let A = A1⊕A1/2⊕A0 be a power-associative train algebra of presentation

(s, 1) or (1, t). Then A is a Jordan algebra if and only if the subalgebras A0 and A1 are Jordan

algebras.

It is well known that any commutative nil-algebra of nil-index ≤ 3 is a Jordan algebra.

Hence we deduce from Proposition 4.2 and Theorem 2.3(ii):

Corollary 4.3 Every power-associative train algebra of presentation (s, 1) or (1, t) with 1 ≤
s, t ≤ 3 is a Jordan algebra

A special case of this corollary is:

Corollary 4.4 Every power-associative train algebra of rank ≤ 3 is a Jordan algebra.
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It is worth noticing that the simplest case of rank 2 corresponds to the well-known gametic

algebras for simple Mendelian inheritance [33], which are special Jordan algebras [26]. For

rank 3, the presentation is either (2, 1) or (1, 2), so the train equation is either x3−ω(x)x2 = 0

or x3−2ω(x)x2+ω(x)2x = 0, recovering the results of [10, Proposition 2.2] and [21, Théorème

2.1]. It should be pointed out that the train equation x3− ω(x)x2 = 0 characterizes also the

class of Bernstein-Jordan algebras [19,31].

For rank 4, Corollary 4.3 permits us to get immediately the results of [2,13] concerning

respectively the presentations (3, 1) and (1, 3). Namely,

Corollary 4.5 Let A be a power-associative train algebra of rank 4 with train equation

x4−ω(x)x3 = 0 (resp. x4− 3ω(x)x3 +3ω(x)2x2−ω(x)3x = 0 ). Then A is a Jordan algebra.

Proof. Apply Corollary 4.3 after observing that the presentation is either (3, 1) or (1, 3).¥

The remainder class of power-associative train algebras of rank 4 have presentation (2, 2)

and train equation x4 − 2ω(x)x3 + ω(x)2x2 = 0. We emphasize that such algebras are no

longer Jordan algebras [21, Exemple 2.2], so that 3 is the best rank in Corollary 4.4.

At present, we give a criterion for some power-associative train algebras of rank 5 to be

Jordan.

Proposition 4.6 Let A be a power-associative train algebra of rank 5 with train equation

x5 − ω(x)x4 = 0 (resp. x5 − 4ω(x)x4 + 6ω(x)2x3 − 4ω(x)3x2 + ω(x)4x = 0). Then A is a

Jordan algebra if and only if the identity (x2y)x = 0 holds in A0 (resp. in A1).

Proof. Here the presentation is (4, 1) (resp. (1, 4)), so A0 (resp. A1) has nil-index ≤ 4. Lin-

earizing the identity (x2)2 = 0 implies x2(yx) = 0. The result follows then from Proposition

4.2. ¥

In concluding this section, we shall develop a result about finitely generated algebras. It

is known [28, Corollary 1] that every finitely generated Jordan Bernstein algebra is finite-

dimensional. This result was extended in [36, Theorem 6.7] to nth-order Bernstein algebras.

Our contribution in this spirit is to establish an analogous version for train algebras. To this

aim, the characteristic of K is assumed to be zero in the following theorem.

Theorem 4.7 Every finitely generated Jordan train algebra is finite-dimensional.

Proof. We start by showing that N = ker(ω) is finitely generated as an algebra. Let A =

Ke⊕A1⊕A1/2⊕A0 be the Peirce decomposition of A with respect to an idempotent e. Choose

a system of generators a1, . . . , an of A, and decompose each ai into ai = αie + bi + ci + di,

with αi ∈ K, bi ∈ A1, ci ∈ A1/2 and di ∈ A0. Let x = f(a1, ..., an) ∈ N , where f is a non-

associative polynomial. Then x = f(α1, . . . , αn)e + g(e, b1, . . . , bn, c1, . . . , cn, d1, . . . , dn) for

some non-associative polynomial g such that y = g(e, b1, . . . , bn, c1, . . . , cn, d1, . . . , dn) ∈ N .
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Since ω(x) = 0, ω(e) = 1 and ω(y) = 0, then f(α1, . . . , αn) = 0 and x = y. By the inclusion

(A2
1/2 ⊆ A1 + A0, we may write cicj = b′ij + d′ij, where b′ij ∈ A1 and d′ij ∈ A0. Keeping in

mind that A0A1 = 0, A1A1/2 ⊆ A1/2, and A0A1/2 ⊆ A1/2, it is not difficult to see that

x = h
(
b1, . . . , bn, c1, . . . , cn, d1, . . . , dn, {b′ij}1≤i,j≤n, {d′ij}1≤i,j≤n

)
,

where h is a non-associative polynomial. This proves that N is finitely generated as an

algebra.

Next, since N is a nil-algebra of bounded index over a field of characteristic zero, it is solvable

[34]. But finitely generated solvable Jordan algebras are nilpotent [35, Theorem 2, page 90].

Hence, N is nilpotent. Finally, to end the proof, it suffices to apply the standard fact that

each finitely generated nilpotent algebra is finite-dimensional. ¥.

5 BERNSTEIN ALGEBRAS OF ARBITRARY ORDER

In this last section we will touch on some aspects of power-associative Bernstein algebras

of order n. Considerably more can be said in this context.

We begin by recalling that the plenary powers of an element x in an algebra A are defined

by x[1] = x and x[k+1] = x[k]x[k], k ≥ 1. A baric algebra (A,ω) is said to be a nth-order

Bernstein algebra of period p, or simply a B(n, p)-algebra, if the identity

x[n+p+1] = ω(x)2n(2p−1)x[n+1] (5.1)

holds in A, where n ≥ 0, p ≥ 1 and the ordered pair (p, n) is minimal for the lexicographic

order [30]. B(n, 1)-algebras satisfy x[n+2] = ω(x)2n
x[n+1] and are called nth-order Bernstein al-

gebras [18]. In particular, B(1, 1)-algebras are just the well-known Bernstein algebras [19,33].

First of all, we start by stating the following useful lemma.

Lemma 5.1 Let (A,ω) be a train algebra of rank n and train equation xn − ω(x)n−pxp = 0

with 1 ≤ p ≤ n− 1. If A is power-associative, then n = p + 1.

Proof. By Theorem 2.3, the train polynomial of A is P (X) = Xs(X−1)t for some s, t ≥ 1.

Since P (X) coincides with Q(X) = Xn −Xp = Xp(Xn−p − 1), it follows that s = p, t = 1

and n− p = 1. ¥

Let us record a couple of consequences of the lemma.

Proposition 5.2 Let (A,ω) be a train algebra with train equation xn−ω(x)n−1x = 0, n ≥ 2

(resp. xn − ω(x)n−2x2 = 0, n ≥ 3). Then the following assertions are equivalent:

(i) A is power-associative ;
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(ii) A is a Jordan algebra ;

(iii) A is a Bernstein algebra of order 0 (resp. of order 1);

(iv) n = 2 (resp. n = 3).

Proof. According to Lemma 5.1, (i) implies obviously (iv). On the other hand, it is known

that baric algebras satisfying x2−ω(x)x = 0 (resp. x3−ω(x)x2 = 0) are Jordan and Bernstein

algebras of order 0 (resp. of order 1), so (iv) implies (ii) and (iii). To complete the proof, it

only remains to show that (iii) implies (iv). If A is Bernstein of order 0, then clearly n = 2.

Assume A is Bernstein of order 1. Since, by hypothesis, A is also a train algebra, it follows

from [22] or [32] that A satisfies an equation of the form (x3 − ω(x)x2)(x − 1
2
ω(x))t = 0,

where t ≥ 0. Hence P (X) = Xn −X2 divides (X3 −X2)(X − 1
2
)t, and therefore n = 3. ¥

Proposition 5.3 Let (A,ω) be a train algebra with train equation xn − ω(x)n−3x3 = 0,

n ≥ 4. The following assertions are equivalent:

(i) A is power-associative;

(ii) A is a Jordan algebra ;

(iii) A satisfies x[3] − ω(x)x3 = 0.

Besides, if one of these conditions is satisfied, then A is a second-order Bernstein algebra.

Proof. In virtue of Lemma 5.1, (i) entails n = 4, which yields (iii). Conversely, it is known

from [2, Theorem 2.2] that any baric algebra satisfying (iii) is a Jordan algebra that is also

a second-order Bernstein algebra. ¥

We now give a result about B(n, p)-algebras.

Proposition 5.4 Let (A,ω) be a power-associative B(n, p)-algebra. Then A satisfies x2n+1−
ω(x)x2n

= 0 and A is a nth-order Bernstein algebra.

Proof. By power-associativity, (5.1) becomes x2n+p − ω(x)2n(2p−1)x2n
= 0, so A is a train

algebra. According to Theorem 2.3, the train polynomial of A has the form P (X) = Xs(X−
1)t. Since P (X) must divide Q(X) = X2n+p − X2n

= X2n
(X2n(2p−1) − 1), we see that

s ≤ 2n and t = 1. Then A satisfies xs+1 − ω(x)xs = 0, and so also x2n+1 − ω(x)x2n
= 0.

An easy induction shows that x2n+k = ω(x)kx2n
for all k ≥ 1. Putting k = 2n yields

x2n+1
= ω(x)2n

x2n
, that is x[n+2] = ω(x)2n

x[n+1]. Comparison of this with (5.1) gives p = 1,

that is A is a nth-order Bernstein algebra. ¥

In [7, Proposition 4.5], the authors indicate that a power-associative train algebra of rank

2n + 1 and train equation x2n+1 − ω(x)x2n
= 0 is necessarily a nth-order Bernstein algebra.

On the other hand, it was shown in [20, Théorème 3.7] that any power-associative nth-order

Bernstein algebra satisfies x2n+1−ω(x)x2n
= 0, so it is a train algebra of rank ≤ 2n +1. The

theorem which follows is of special interest for the matter we are developing in this section. It

explores all the possible train equations for a power-associative nth-order Bernstein algebra.
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Theorem 5.5 Let (A,ω) be a power-associative baric algebra. The following statements

holds:

(i) If A is a nth-order Bernstein algebra, then A is a train algebra of rank m + 1 and train

equation xm+1 − ω(x)xm = 0, for some integer m with 2n−1 < m ≤ 2n.

(ii) Conversely, if A is a train algebra of rank m+1 and train equation xm+1−ω(x)xm = 0,

then A is a nth-order Bernstein algebra, where n is the unique integer with 2n−1 < m ≤ 2n.

Proof. (i) Assume that A is a nth-order Bernstein algebra. Then by [20, Théorème 3.7], the

identity x2n+1 − ω(x)x2n
= 0 holds in A. Hence A is a train algebra whose train polynomial

P (X) divides Q(X) = X2n+1 − X2n
= X2n

(X − 1). Thus, P (X) = Xm(X − 1) for some

m ≤ 2n, so the train equation of A is xm+1 − ω(x)xm = 0. We claim that 2n−1 < m. Indeed,

suppose instead that m ≤ 2n−1. Multiplying xm+1 − ω(x)xm = 0 by x2n−1−m gets x2n−1+1 =

ω(x)x2n−1
. From this, we deduce as in the proof of Proposition 5.4 that x[n+1] = ω(x)2n−1

x[n],

so A is a Bernstein algebra of order < n, a contradiction.

(ii) Conversely, suppose A satisfies the train equation xm+1 − ω(x)xm = 0, and let n be the

unique integer with 2n−1 < m ≤ 2n. We multiply xm+1 − ω(x)xm = 0 by x2`−m to obtain

x2`+1−ω(x)x2`
= 0. Therefore we infer as above that x[`+2] = ω(x)2`

x[`+1], which means that

A is a Bernstein algebra of order ` ≤ n. It follows from part (i) that 2`−1 < m ≤ 2`. Finally,

since by hypothesis 2n−1 < m, we have necessarily ` = n, completing the proof. ¥

As a consequence of the last result, we have exactly 2n−1 possible train equations for a

power-associative nth-order Bernstein. For instance, the train equations for n ≤ 3 are:

• n = 1 : x3 − ω(x)x2 = 0;

• n = 2 : x4 − ω(x)x3 = 0, x5 − ω(x)x4 = 0;

• n = 3 : x6 − ω(x)x5 = 0, x7 − ω(x)x6 = 0, x8 − ω(x)x7 = 0, x9 − ω(x)x8 = 0.

Note that the particular case of power-associative second-order Bernstein algebras and

their corresponding train equations x4−ω(x)x3 = 0 and x5−ω(x)x4 = 0 has been discussed

in [7].

Given arbitrary integers n ≥ 1 and m ≥ 2 with 2n−1 < m ≤ 2n, we will construct below

an associative nth-order Bernstein algebra that is a train algebra of rank m + 1.

Example 5.6 Let Am =< e, v1, v2, . . . , vm−1 > be the associative algebra with multiplica-

tion table e2 = e and vivj = vi+j whenever i+j ≤ m−1, other products being zero. Then Am

is endowed with the weight function ω given by ω(e) = 1 and ω(vi) = 0. Select an element

x = αe +
∑m−1

i=1 αivi ∈ Am. It is routine to check that

xp = αpe +
m−1∑

i=p

β
(p)
i vi,

for some scalars β
(p)
i . In particular, xm−1 = αm−1e + β

(m−1)
m−1 vm−1, xm = αme and xm+1 =

αm+1e, so xm+1− ω(x)xm = 0. On the other hand, x[n] = x2n−1
= α2n−1

e +
∑m−1

i=2n−1 β
(2n−1)
i vi.
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As m− 1 < 2n ≤ i + j whenever 2n−1 ≤ i, j ≤ m− 1, it follows that x[n+1] =
(
x[n]

)2
= α2n

e

and x[n+2] = α2n+1
e, implying x[n+2]−ω(x)2n

x[n+1] = 0. Consequently, Am is both a nth-order

Bernstein algebra and a train algebra of rank m + 1.

We close our article by making the following observations. Let (A, ω) be a power-associative

nth-order Bernstein algebra. We have seen in Theorem 5.5 that (A,ω) is a train algebra of

presentation (m, 1), where 2n−1 < m ≤ 2n. Let A = Ke ⊕ A1/2(e) ⊕ A0(e) be the Peirce

decomposition of A attached to an idempotent e ∈ A. Then, by Theorem 2.3(ii), we have

xm
0 = 0 for all x0 ∈ A0(e). Moreover, Theorem 2.7 contains the result by Towers and Bowman

[29, Corollary 5.2] asserting that the dimensions of A1/2(e) and A0(e) are invariant. We note

finally that Corollary 3.14(i) was also obtained in [29, Proposition 4.1].
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Nonassociative algebra and its applications (Oviedo, 1993), 384–388, Math. Appl., 303, Kluwer
Acad. Publ., Dordrecht, 1994.

[31] S. Walcher, Bernstein algebras which are Jordan algebras, Arch. Math. 50 (1988), no. 3, 218-
222.

[32] S. Walcher, On Bernstein algebras which are train algebras, Proc. Edinb. Math. Soc. (2) 35
(1992), no. 1, 159–166.

[33] A. Wörz-Busekros, Algebras in Genetics, Lecture Notes in Biomathematics, Vol. 36, Springer-
Verlag, Berlin-New York, 1980.

[34] E. I. Zel’manov, On solvability of Jordan nil-algebras, Siberian Adv. Math. 1 (1991), no. 1,
185–203.

[35] K. A. Zhevlakov, A. M. Slin’ko, I. P. Shestakov, A. I. Shirshov, Rings that are nearly associative,
Academic Press, New York, 1982.

[36] F. Zitan, Some results on baric algebras, Algebras, Groups Geom. 19 (1) (2002) 109–128.

23


