INFINITE DIMENSIONAL

LIE AND JORDAN ALGEBRAS

Consuelo Martínez López
Departament of Mathematics
University of Oviedo

Workshop on Jordan Algebras and Related Fields

University of Ottawa, Sept. 21-24, 2005

F algebraically closed field of zero characteristic

- Z-graded algebras
V. Kac \rightarrow Local Lie algebra

If $L=\oplus_{i \in Z} L_{i}$, is a simple graded Lie algebra of finite growth (i.e. $\operatorname{dim} L_{i} \leq$ $\left.|i|^{c}+d\right)$ and L is generated by the vector subspace $L_{-1} \oplus L_{0} \oplus L_{1}, L$ infinite dimensional and L_{-1} is faithful simple $L_{0^{-}}$ module, then L is isomorphic to an affine algebra or L is a Cartan algebra.

Kac's Conjecture
O. MATHIEU: Simple graded Lie algebras of polynomial growth :

- (twisted) loop algebra, or
- Cartan type algebra, or
- the Virasoro algebra, Vir
- \mathcal{G} simple finite dimensional Lie (resp. Jordan) algebra, $\mathcal{L}(\mathcal{G})=\mathcal{G} \otimes F\left[t^{-1}, t\right]$ its (non twisted)loop algebra.
- If \mathcal{G} is $Z / l Z$-graded, $\mathcal{G}=\mathcal{G}_{0}+\cdots+$ \mathcal{G}_{l-1}, then $\sum_{i=j \bmod l} \mathcal{G}_{i} \otimes t^{j}$ is " twisted loop algebra".
- $W=$ Vir is the algebra of derivations of Laurent polynomials.

It has a basis $\left\{e_{j} \mid j \in Z\right\}$ with multiplication

$$
\left[e_{i}, e_{j}\right]=(j-i) e_{i+j}
$$

- W_{n} is the algebra of derivations of the polynomial ring $F\left[t_{1}, \ldots, t_{n}\right]$.
- Cartan algebras are some particular subalgebras of W_{n}.

C.M. and E. Zelmanov: Jordan algebras

Examples of simple graded Jordan algebras of finite growth

- Loop algebras $\mathcal{L}(\mathcal{G})$, where \mathcal{G} is now a $Z / l Z$-graded simple Jordan algebra.
- $J=F 1+V$ the Jordan algebra of a bilineal form, where V is a Z-graded vector space, $V=\sum_{i \in Z} V_{i}$, s.t. $\operatorname{dim} V_{i} \leq|i|^{c}+d$ and with a nondegenerate symmetric bilineal form defined on V.

Theorem: Let $J=\sum_{i \in Z} J_{i}$ be a Z graded simple graded Jordan algebra of finite growth. Suppose J is infinite dimensional. Then J is isomorphic to one of the following Jordan algebras:
(a) a loop algebra
(b) a simple Jordan algebra of a bilineal form over an infinite dimensional vector space V.

Prime Z-graded Jordan algebras

- An algebra J is prime if $I J \neq(0)$ if I, J are non zero ideals of L.
- A Jordan algebra is nondegenerate if it has not absolute zero divisors.

Change finite growth by growth ≤ 1
C. M. and E. Zelmanov :

If J is a finitely generated Jordan algebra with GK-dimension one, then its McCrimmon radical is nilpotent. Furthermore, if J is nondegenerate then $Z(J) \neq(0)$ and J is a finite module over $Z(J)$. In particular J is PI.

Theorem: Let $J=\sum_{i \in Z}$ be a prime nondegenerate Jordan algebra satisfying that $\operatorname{dim} J_{i}<d \forall i \in Z$. Then
(a) Either J is graded simple or
(b) $\exists s \geq 1$ such that $J_{i}=0$ for $i<-s$ (resp. $i>s$). Furthermore, there is a finite dimensional $Z / l Z$-graded algebra \mathcal{G} and an isomorphism $\phi: J \longrightarrow \mathcal{L}(\mathcal{G})$ s.t. $\phi\left(J_{k}\right)=$ $\left(\mathcal{L}(\mathcal{G})_{k} \forall k>m\right.$ (resp. $\left.k<-m\right)$ for some $m \geq 1$. (one sided graded)

Application to superconformal algebras
Definition: A superconformal algebra is a Z-graded simple Lie superalgebra, $L=$ $\sum_{i \in Z} L_{i}$, with $\operatorname{dim} L_{i} \leq d \forall i \in Z$ and containing the Virasoro algebra.

Conjecture. (V. Kac, van de Leur, 1989) $W(1, n)+$ Cartan type sub-superalgebras + Cheng-Kac CK(6).

$$
\begin{aligned}
& W(1, n)=\operatorname{Der} F\left[t^{-1}, t, \xi_{1}, \ldots, \xi_{n}\right] . \\
& -(\mathrm{V} . \text { Kac }+ \text { C.M. }+ \text { E. Zelmanov })
\end{aligned}
$$

Confirmation of the above conjecture in the "Jordan case"

Kantor-Koecher-Tits Construction

J Jordan algebra $\rightarrow K(J)=J^{-}+$ $\left[J^{-}, J^{+}\right]+J^{+}$Lie algebra

$$
F e+F h+F f \subseteq L, \text { adh }: L \rightarrow L
$$ diagonalizable

$$
L=L_{-2}+L_{0}+L_{2}
$$

$J=L_{-2}$ is a Jordan algebra: $x_{-2} \cdot y_{-2}=$ $\left[\left[x_{-2}, f\right], y_{-2}\right]$
L can be recovered (up to central extensions) from J

If $L=L_{\overline{0}}+L_{\overline{1}}$ is a Z-graded Lie superalgebra with the dimensions $\operatorname{dim} L_{i}$ uniformly bounded.

- $L_{0}=L_{0 \overline{0}}+L_{0 \overline{1}}$ is a finite dimensional Lie superalgebra.
- If L_{0} is not solvable, then $L_{0 \overline{0}}$ contains a copy of $s l_{2}(F)=F e+F h+F f$, $[e, f]=h,[h, e]=2 e,[h, f]=-2 f$.
- The adjoint operator $a d(h): L \rightarrow$ L is diagonalizable and has finitely many eigenvalues.
- L has a finite grading that is compatible with the initial Z-grading.

Jordan case if only $-2,0,2$ appear.

Theorem: Let $J=\sum_{i \in Z}$ be a Z-graded simple graded Jordan algebra with $\operatorname{dim} J_{i} \leq$ d. Then J is isomorphic to one of the following:
i) a loop superalgebra $\mathcal{L}(\mathcal{G})$,
ii) $J=F 1+V$ a Jordan superalgebra of a nondegenerate bilineal form on $V=$ $V_{\overline{0}}+V_{\overline{1}}$,
iii) A Kantor double $J=A+A x$ with $A=\sum_{i \in Z} G(V)_{\bar{i}} \otimes t^{i}$ a commutative associative superalgebra with a Jordan bracket.
iv) A superalgebra of Cartan type
v) A Cheng Kac superalgebra corresponding to $C K(6)$.

If A is the even part of J, I the biggest \mathcal{D}-invariant ideal of A with I_{0} nilpotent, \mathcal{D} the linear span of derivations $R(x)^{2}: J \rightarrow$ $J, x \in J_{\overline{1}}$, then

1) A / I loop algebra, $I \neq(0)$ nilpotent,
2) A / I is one sided graded,
3) $I \neq(0)$ and A / I simple finite dimensional of a bilinear form,
4) $A=A^{1} \oplus A^{2}$ with A^{1}, A^{2} simple finite dimensional or loop algebras or one sided graded or infinite dimensional of a bilinear form,
5) A is a loop algebra
6) A is simple finite dimensional
7) A / I simple infinite dimensional of a bilinear form, $I \neq(0)$,
8) A simple infinite dimensional of a bilinear form.

In the general case

What is the structure of the even part of a conformal algebra?
Z - graded prime nondegenerate Lie algebras of growth one

- L is nondegenerate if $a \in L$ and $[[L, a], a]=(0)$ implies $a=0$.
- L has a finite grading if

$$
L=\sum_{i \in Z} L_{(i)},
$$

with $\left[L_{(i)}, L_{(j)}\right] \subseteq L_{(i+j)}$, where $\left\{i \mid L_{(i)} \neq\right.$ (0) $\}$ is finite.

The grading is nontrivial if

$$
\sum_{i \neq 0} L_{(i)} \neq(0)
$$

\longleftrightarrow Jordan algebras and their generalizations.

If \mathcal{G} is simple $Z / l Z$-graded, then $\mathcal{L}(\mathcal{G})$ has a Z-grading and a $Z / l Z$-grading that are compatible.

Virasoro acts naturally on $\mathcal{L}(\mathcal{G})$ and the semidirect sum $L \simeq \mathcal{L}(\mathcal{G})>\triangleleft V i r$ is prime nondegenerate.

THEOREM I

Let $L=\sum_{i \in Z} L_{i}$ be a prime nondegenerate Z-graded Lie algebra containing the Virasoro algebra and having the dimensions $\operatorname{dim} L_{i}$ uniformly bounded. Let's assume that L has a nontrivial finite grading that is compatible with the Z-grading. Then $L \simeq \mathcal{L}(\mathcal{G})>$ Vir for some simple finite dimensional Lie algebra \mathcal{G}.

Strongly PI Case

Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a nonzero element of the free associative algebra.

- A satisfies the polynomial identity

$$
f\left(x_{1}, \ldots, x_{n}\right)=0
$$

if $f\left(a_{1}, \ldots, a_{n}\right)=0$ for arbitrary elements $a_{1}, \ldots, a_{n} \in A$.

- An algebra that satisfies some polynomial identity is said to be a PI-algebra.
- If A is an algebra, its multiplication algebra $M(A)$ is the subalgebra of $\operatorname{End}_{F}(A)$ generated by the right multiplications

$$
R(a): x \rightarrow x a,
$$

and the left multiplications

$$
L(a): x \rightarrow a x \quad a \in A .
$$

- An algebra A is strongly PI if its multiplication algebra $M(A)$ is PI.
- An element a in a Lie algebra L over a field F is said to be of $\operatorname{rank} 1$ if $[[L, a], a] \subseteq$ Fa.
- An ideal of the free Lie (resp. associative) algebra is called a T-ideal if it is invariant with respect to substitutions.
- The ideal that consists of all the identities that an arbitrary algebra L satisfies is a T-ideal.

Lemma 1

Let $A=\sum_{i \in Z} A_{i}$ be a graded algebra whose centroid $\Gamma=\sum_{i \in Z} \Gamma_{i}$ contains an invertible homogeneous element $\gamma \in \Gamma_{i}$ of degree $i \neq 0$. Then $A \simeq \mathcal{L}(\mathcal{G})$ is a (twisted) loop algebra.

Lemma 2 Let $\Gamma=\sum \Gamma_{i}$ be a (commutative and associative) Z-graded domain over an algebraically closed field F with the dimensions $\operatorname{dim}_{F} \Gamma_{i}$ uniformly bounded.

Then, $\Gamma \simeq F\left[t^{-m}, t^{m}\right]$ or

$$
\sum_{i \geq k} F t^{m i} \subseteq \Gamma \subseteq F\left[t^{m}\right] \text { or }
$$

$$
\sum_{i \geq k} F t^{-m i} \subseteq \Gamma \subseteq F\left[t^{-m}\right], \quad \text { where }
$$

$$
m \geq 1, \bar{k} \geq 1
$$

Let $L=\sum_{i \in Z} L_{i}$ be a Z-graded Lie algebra that is strongly PI, prime and nondegenerate.

Let's consider $d=\max _{i \in Z} \operatorname{dim} L_{i}$.
Γ the centroid of L (the centralizer of the multiplication algebra $M(L)$ in $E n d_{F}(L)$, Γ_{h} the set of homogeneous elements of Γ.

Lemma 3
(1) $\Gamma \neq(0)$ is an integral domain and the fractions ring $(\Gamma \backslash\{0\})^{-1} L$ is a simple finite dimensional Lie algebra over the field $K=(\Gamma \backslash\{0\}) \Gamma$.
(2) The algebra $\tilde{L}=\left(\Gamma_{h} \backslash\{0\}\right)^{-1} L$ is a graded simple algebra and $\operatorname{dim}_{F} \widetilde{L}_{i} \leq d$, for an arbitrary $i \in Z$.
(3) Either L is isomorphic to a loop algebra or there exists a graded embedding $\varphi: \Gamma \rightarrow F\left[t^{-m}, t^{m}\right]$ s.t.
$\sum_{i \geq k} F t^{i m} \subseteq \varphi(\Gamma) \subseteq F\left[t^{m}\right]$ or
$\sum_{i \geq k} F t^{-i m} \subseteq \varphi(\Gamma) \subseteq F\left[t^{-m}\right]$.

Lemma 4

Let $L=\sum_{i \in Z} L_{i}$ be a prime Lie algebra, that is nondegenerate and strongly PI, with $\operatorname{dim} L_{i} \leq d$.

Let us assume that Vir $=\sum_{i \in Z}$ Vir $_{i}$ can be embedded in $\operatorname{Der}(L)$ as a graded algebra. Then L is isomorphic to a (nontwisted) loop algebra.

Lemma 5

Let L be a prime nondegenerate Lie algebra and let I be a nonzero ideal of L. Then I is a prime nondegenerate algebra.

Lemma 6

Let $L=\sum_{i \in Z}^{n} L_{i}$ be a Z-graded, prime non- degenerated Lie algebra containing the Virasoro algebra and with the dimensions $\operatorname{dim} L_{i}$ uniformly bounded. Let us assume that L contains a nonzero graded ideal I that is strongly PI. Then L is isomorphic to the semidirect sum of a loop algebra $\mathcal{L}(\mathcal{G})$ (fore some simple finite-dimensional lie algebra \mathcal{G}) and the Virasoro algebra.

Lie-Jordan Connections

A Jordan pair $P=\left(P^{-}, P^{+}\right)$is a pair of vector spaces with two trilinear operations :

$$
\begin{aligned}
& \{,,\}: P^{-} \times P^{+} \times P^{-} \rightarrow P^{-}, \\
& \{,,\}: P^{+} \times P^{-} \times P^{+} \rightarrow P^{+}
\end{aligned}
$$

satisfying:

$$
\begin{aligned}
& \text { (P.1) }\left\{x^{\sigma}, y^{-\sigma},\left\{x^{\sigma}, z^{-\sigma}, x^{\sigma}\right\}\right\}= \\
&\left\{x^{\sigma},\left\{y^{-\sigma}, x^{\sigma}, z^{-\sigma}\right\}, x^{\sigma}\right\}, \\
& \text { (P.2) }\left\{\left\{x^{\sigma}, y^{-\sigma}, x^{\sigma}\right\}, y^{-\sigma}, u^{\sigma}\right\}= \\
&\left\{x^{\sigma},\left\{y^{-\sigma}, x^{\sigma}, y^{-\sigma}\right\}, u^{\sigma}\right\}, \\
& \text { (P.3) }\left\{\left\{x^{\sigma}, y^{-\sigma}, x^{\sigma}\right\}, z^{-\sigma},\left\{x^{\sigma}, y^{-\sigma}, x^{\sigma}\right\}\right\}= \\
&\left\{x^{\sigma},\left\{y^{-\sigma},\left\{x^{\sigma}, z^{-\sigma}, x^{\sigma}\right\}, y^{-\sigma}\right\}, x^{\sigma}\right\},
\end{aligned}
$$

for every $x^{\sigma}, u^{\sigma} \in P^{\sigma}, y^{-\sigma}, z^{-\sigma} \in P^{-\sigma}$, $\sigma= \pm$.

If $L=\sum_{i=-n}^{n} L_{(i)}$ has a finite grading, then the pair $\left(L_{(-n)}, L_{(n)}\right)$ with

$$
\left\{x^{\sigma}, y^{-\sigma}, z^{\sigma}\right\}=\left[\left[x^{\sigma}, y^{-\sigma}\right], z^{\sigma}\right],
$$

$\sigma= \pm$ is a Jordan pair.

Lemma 7

Let L be a Lie algebra with a finite grading

$$
L=\sum_{k=-n}^{n} L_{(k)}, L_{(0)}=\sum_{k=1}^{n}\left[L_{(-k)}, L_{(k)}\right]
$$

and $L_{(n)} \neq(0)$.
If L is prime and nondegenerate, then:
(1) Every nonzero ideal of L has nonzero intersection with $L_{(n)}$,
(2) The Jordan pair $V=\left(L_{(-n)}, L_{(n)}\right)$ is prime and nondegenerate.

Lemma 8

Let $L=\sum_{k=-n}^{n} L_{(k)}$ be a Lie algebra with a finite grading. Let's assume that the Jordan pair $V=\left(L_{(-n)}, L_{(n)}\right)$ is prime and nondegenerate and an arbitrary nonzero ideal of L has nonzero intersection with V. Then L is prime and nondegenerate.

THEOREM II

Let $V=\left(V^{-}, V^{+}\right)=\sum_{i \in Z} V_{i}$ be a $Z-$ graded Jordan pair that is prime and nondegenerated, having the dimensions $\operatorname{dim} V_{i}$ uniformly bounded. Then either V is isomorphic to a (twisted) loop pair $\mathcal{L}(W)$, with W a simple finite-dimensional Jordan pair or V can be embedded in $\mathcal{L}(W)$.
Furthermore $\sum_{i \geq k} \mathcal{L}(W)_{i} \subseteq V \subseteq \mathcal{L}(W)$ or $\sum_{i \geq k} \mathcal{L}(W)_{-i} \subseteq V \subseteq \mathcal{L}(W)$.

Proof of Theorem I from Theorem II
 If $L=\sum_{i \in Z} L_{i}=\sum_{k=-n}^{k=n} L_{(k)}$ is our

 Lie algebra and $V=\left(L_{(-n)}, L_{(n)}\right.$ the associated Jordan pair, then V can be embedded into $\mathcal{L}(W)=\sum_{i=q \bmod l} W_{i} \otimes t^{q}$ the (twisted) loop pair associated to W a simple, f.d. Jordan pair graded by $Z / l Z$, $W=\sum_{i=0}^{l-1} W_{i}$.From x element of first order in \mathcal{G}, the Lie algebra associated to W we find an element $a \in V$ such the ideal $\operatorname{id}_{L}(a)$ is strongly PI \rightarrow Apply Lemma 6

Proof of Theorem II

- $K(V)$ is strongly PI
- $\mathcal{K}(V)=\mathcal{K}(V)_{-1}+\mathcal{K}(V)_{0}+\mathcal{K}(V)_{1}$ is a Z-graded Lie algebra,

$$
\mathcal{K}(V)_{0}=\left[\mathcal{K}(V)_{-1}, \mathcal{K}(V)_{1}\right]
$$

$\left(\mathcal{K}(V)_{-1}, \mathcal{K}(V)_{1}\right)=V$ and $\mathcal{K}(V)_{0}$ does not contain nonzero ideals of $\mathcal{K}(V)$.

- Every nonzero ideal of $\mathcal{K}(V)$ has nonzero intersection with V^{+}.
- $\mathcal{K}(V)$ is prime.
- $L=\mathcal{K}(V)$ prime and strongly PI \Rightarrow the centroid Γ de L is nonzero and $(\Gamma \backslash\{0\})^{-1} L$ f. d. over $(\Gamma \backslash\{0\})^{-1} \Gamma$.
- $\Gamma \simeq$ centroid of V.
- Γ is a commutative graded domain, $\Gamma=\sum_{i \in Z} \Gamma_{i}$ with $\operatorname{dim} \Gamma_{i} \leq 1$.
- If $\Gamma=\Gamma_{0} \Rightarrow \Gamma=F$ and $\operatorname{dim}_{F} V<\infty$.
- If there exist $i, j \geq 1$ with $\Gamma_{i} \neq(0) \neq$ Γ_{-j}, then V is a (twisted) loop Jordan pair.
- If there are only negative components in Γ (resp. positive) then V is embedded in a loop pair.

f.g. Case

E. Zelmanov : V is either strongly PI or V is special

Lema 11

If V is a finitely generated special Jordan pair and A is an associative algebra such that $\left(V^{-}, V^{+}\right) \subseteq\left(A^{-}, A^{+}\right)$and $A=$ $A^{-}+\left(A^{-} A^{+}+A^{+} A^{-}\right)+A^{+}$, then $G K-$ $\operatorname{dim}(V)=G K-\operatorname{dim}(A)$.

By the result of Small, Stafford and Warfield $\mathrm{Jr}, G K-\operatorname{dim}(A)=1 \Rightarrow A$ is PI .
V is strongly PI (previous case)

General Case

Lema 12
Let $V=\sum_{i \in Z} V_{i}$ a Z-graded Jordan pair with the dimensions $\operatorname{dim} V_{i}$ uniformly bounded. Then the locally nilpotent radical $\operatorname{Loc}(V)$ coincides with the McCrimmon radical $M(V)$.

- Let V be a Jordan pair as in Theor. 2 and \tilde{V} a f.g. graded subpair of V :
- The (nondeg.) pair $\tilde{V} / M(\tilde{V})$) is approximated by f. g.prime Jordan pairs
- By the f.g. case each of those pairs is $\mathcal{L}(U)$ or can be embedded in a loop pair $\mathcal{L}(U)$, with U simple finite - dimensional.
$-\operatorname{dim} U \leq N(d)$, where $d=\operatorname{maxdim}_{i}$.
- T ideal of the free Jordan pair that consists of elements that are identically zero in all Jordan pairs of dimension $\leq N(d)$.

$$
\begin{aligned}
-T(\tilde{V}) \subseteq \operatorname{Loc}(\tilde{V}) & \Rightarrow T(V) \subseteq \operatorname{Loc}(V) . \\
\operatorname{Loc}(V)=M(V)=(0) & \Rightarrow T(V)=(0) .
\end{aligned}
$$

- The pair V is strongly PI.

