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Abstract. We describe the nilpotent and invertible elements in group alge-
bras k[G] for k a commutative associative unital ring and G a unique product
group, for example an ordered group.

Introduction. A fundamental problem in the theory of group algebras is to
determine their units = invertible elements. The reader can find a short introduc-
tion to this question in [3, §6] and a much more substantial one in [6, Ch. 13] and
[7, Ch. II and VI]. Since 1 − a is invertible for any nilpotent element a, a closely
related problem is that of describing all nilpotent elements.

In this short note we give a description of the nilpotent and invertible elements
in group algebras k[G] where k is an arbitrary commutative associative unital ring
and G is a unique product group, e.g. an ordered group (Cor. 5.). Our result is
well-known in case k is an integral domain: If G is a unique product group, 0 is
the only nilpotent element and all units are trivial. So the main point here is the
generality of k.

Our approach uses a little bit of algebraic geometry and might possibly also be
of interest to solve other problems related to group algebras. It is inspired by a
recent result of Ottmar Loos in [4], where he determines the invertible elements in
a Laurent polynomial ring k[t±1]. In Th. 3 we describe the nilpotent and invertible
elements in k[G] under the assumption that for all k-algebras K which are fields
the group algebra K[G] is a domain or, respectively, has only the trivial units. The
case of group algebras k[G] for G a unique product group is then an immediate
corollary.

A different characterization of the units in k[G] for G a right-ordered and thus
unique product group is proven in [5].

1. Notation. Throughout we use the following notation: k is a commutative
associative unital ring, Spec(k) is the prime spectrum of k equipped with the Zariski
topology, κ(p) is the quotient field of k/p for p ∈ Spec(k), x(p) is the canonical image
of x ∈ k in κ(p) and k-alg is the category of associative commutative and unital
k-algebras. The invertible elements of an associative unital k-algebra A are denoted
A×.

Let G be a group, written multiplicatively and let A = k[G] be the group algebra
of G over k. Thus A is a free k-module with k-basis (ug : g ∈ G) in bijection with
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G by g 7→ ug and the multiplication of the k-algebra A is determined by the rule
uguh = ugh for g, h ∈ G. It is immediate that any element xug, x ∈ k× is invertible.
These are the so-called trivial units of A.

We endow G with the discrete topology. Recall the definition of the constant
group scheme G associated to G [2, II, §1, no. 2.12]: For R ∈ k-alg, G(R) is the set
of continuous (= locally constant) maps d : Spec(R) → G with the group structure
inherited from G. In particular, this applies to R = k.

Since Spec(k) is quasi-compact [1, II, §4.3, Prop. 12], it follows from [1, II, §4.3,
Prop. 15] that there exists a bijection I : G(k) → E from G(k) to the set E of all
families ε = (εg)g∈G of orthogonal idempotents in k with εg 6= 0 for only finitely
many g ∈ G and

∑
g∈G εg = 1k. The bijection d 7→ I(d) = (εg)g∈G is given by the

relations

d(p) = g ⇐⇒ εg 6∈ p ⇐⇒ p ∈ (Spec(k))εg
⇐⇒ εg(p) = 1κ(p) (1)

where, for x ∈ k, (Spec(k))x denotes the basic open subset of all p ∈ Spec(k) with
x 6∈ p. We will usually view I as an identification. The product of ε = (εg) and
ε′ = (ε′g) in the group G(k) is then given by the formula

(ε · ε′)x =
∑

gh=x εgε
′
h, (x ∈ G) (2)

Indeed, a locally constant function d : Spec(k) → k gives rise to a partition of
Spec(k) by basic open sets Spec(kεg) = Spec(k)εg , where ε = (εg) is the complete
orthogonal system corresponding to d and where Spec(k)x is canonically identified
with a subset of Spec(k). Given two locally constant functions d and d′ with
corresponding orthogonal systems ε = I(d) and ε′ = I(d′) we get a partition of
Spec(k) by open sets

(
Spec(k)

)
εg
∩ (

Spec(k)
)
ε′h

=
(
Spec(k)

)
εgε′h

= Spec(kεgε
′
h)

on which the function dd′ has the value gh. Hence dd′ has value x ∈ G precisely on
⋃

gh=x Spec(kεgε
′
h) = Spec

(
k(

∑
gh=x εgε

′
h)

)
.

In terms of the ε’s, the unit element of G(k) is the family ε(0) = (ε(0)
g ) with

ε(0)
g =

{
1k, g = 1G,

0, g 6= 1G.

and the inverse of ε = (εg)g∈G is ε−1 = (ε−1
g )g∈G with ε−1

g = εg−1 .

Let now A = k[G] be the group algebra of G. We then have a group monomor-
phism

G(k) → k[G]×, d 7→ ud :=
∑

g∈G εgug, for ε = I(d).

Indeed, it follows from (2) that udud′ = udd′ for all d, d′ ∈ G(k).

We recall that a nil ideal of an associative algebra A is an ideal consisting of
nilpotent elements. By definition [3, 10.26], the upper nil radical of an associative
algebra A is the sum Nil∗(A) of all nil ideals of A, equivalently, Nil∗(A) is the biggest
nil ideal of A. If A is also commutative, Nil∗(A) = {a ∈ A : a nilpotent} = Nil(A),
the nil radical of A.
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2. Theorem. (a) Assume K[G] is a domain for every field K ∈ k-alg. Then
the upper nil radical of k[G] is

Nil∗(k[G]) =
{ ∑

g∈G ngug : ng ∈ Nil(k) for every g ∈ G
} ∼=

(
Nil(k)

)
[G]. (3)

It coincides with the set of nilpotent elements of k[G].
(b) Suppose that K[G] has only trivial units whenever K ∈ k-alg is a field. Then

an element a ∈ k[G] is invertible if and only if there exists d ∈ G(k), a unit v ∈ k×

and an element n ∈ Nil∗(k[G]) such that

a = v ud + n; (v ∈ k×, d ∈ G(k), n ∈ Nil∗(k[G])). (4)

The element d is uniquely determined by a, called the degree of a and the map

deg : k[G]× → G(k), deg(v ud + n) = d

is a group homomorphism.

Proof. (a) We abbreviate A = k[G]. It is easily seen that N :=
{ ∑

g∈G ngug :
ng ∈ Nil(k) for every g ∈ G

}
is an ideal of A consisting of nilpotent elements.

Indeed, as an element of A, an n ∈ N has only finitely many non-zero components,
say n1ug1 , . . . , npugp . Hence there exists q ∈ N such that nq

i = 0 for all 1 ≤ i ≤ p.
Then npq is a sum of terms nr1

1 · · ·nrp
p ug where g is an appropriate product of pq

factors taken from the g1, . . . , gr and where at least one ri ≥ q. Thus npq = 0.
Hence N ⊂ Nil∗(A) (observe that this holds in general).

To finish the proof of (a), it is now sufficient to show n ∈ N for every nilpotent
element n of A. We write n =

∑
g∈G ngug with ng ∈ k and let p ∈ Spec(k).

The element n(p) ∈ A ⊗k κ(p) ∼=
(
κ(p)

)
[G] is then nilpotent too. But since by

assumption κ(p)[G] is a domain, it follows that n(p) = 0, i.e., ng(p) = 0 for all
p ∈ Spec(k) and all g ∈ G. Thus, every ng is nilpotent and n ∈ N.

(b) We will first show that any element of the form (4) is invertible. This is
clear for vuε, so that it suffices to prove invertibility of (vuε)−1a = 1 + v−1uδn for
δ = ε−1. But this is clear since v−1uδn ∈ N is nilpotent.

Conversely, suppose that a ∈ k[G] is invertible. If k is a field, a has the form
a = vug for some v ∈ k× by assumption, which is a special case of (4).

Let now k be arbitrary. We write a =
∑

g∈G agug with ag ∈ k. Let p ∈ Spec(k).
Then there exits a unique g ∈ G such that a(p) = ag(p)ug 6= 0. This gives rise to
a map d : Spec(k) → G which, we claim, is locally constant. Indeed, if d(p0) = g
then ag(p) 6= 0 and hence ag(p) 6= 0 for all p in the basic open neighborhood
U = (Spec(k))x, x = ag. Since then ah(p) = 0 for all h 6= g and p ∈ U , we see that
d is constant equal to g on U . Thus d ∈ G(k).

Let ε = (εg)g∈G be the family corresponding to d. Then
(
ag(1− εg)

)
(p) = 0 for

all p ∈ Spec(k). Indeed, if d(p) = g then (1−εg)(p) = 1κ(p)−1κ(p) = 0 by (1), while
if d(p) 6= g then ag(p) = 0 by definition of d. Hence ng = ag(1−εg) ∈ k is nilpotent.
Also v =

∑
g∈G agεg ∈ k× since, for any p ∈ Spec(k), v(p) =

∑
g∈G ag(p)εg(p) =

ad(p)(p) 6= 0. Thus,

a =
∑

g∈G agεgug +
∑

g∈G ag(1− εg)ug =
(∑

g∈G ag

) ( ∑
h∈G εhuh

)
+ n

as required in (4).
Uniqueness of d, i.e. of ε, is clear from the construction above. For the proof

of the last claim, let a′ = v′uε′ + n′ be another invertible element of A. Then
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aa′ = vv′uεε′ + b where b = vuεn
′ + v′uε′n

′ + nn′ ∈ N. Thus aa′ has degree
εε′ = I(dd′) proving that deg is a homomorphism.

3. Example. Suppose k is reduced (= semiprime) and that K[G] has only
trivial units for any field K ∈ k-alg. Then Th. 2 says that for any unit a ∈ k[G]
there exists a decomposition of k into a finite direct sum of ideals I such that a
decomposes into trivial units in each I[G].

4. Unique product groups. It is well-known that the assumptions in (a) and
(b) of Th. 2 are fulfilled for ordered groups, see for example [3, Th. 6.29]. However,
they are also fulfilled for the much more general class of so-called unique product
groups.

Recall [6] that a group G is called a unique product group, abbreviated u.p.
group, if, given any two finite non-empty subsets A,B of G, there is an element of
AB that can be uniquely written in the form ab with a ∈ A and b ∈ B. It follows
immediately [6, 13, Lemma 1.9(i)] that if R is an integral domain and G is a u.p.
group then R[G] is a domain. Furthermore, it is also known [6, Appendix, Th. 15]
that a u.p. group G is the same as a two unique products group: if A,B ⊂ G are
finite non-empty subsets, not both singletons, there are at least two elements in
AB which are uniquely represented. It then follows [6, 13, Lemma 1.9(ii)] that any
unit in R[G], R an integral domain, is trivial. To summarize:

5. Corollary. If G is a u.p. group, e.g. an ordered group, the assumptions in
(a) and (b) are fulfilled. Hence (3) and (4) describe the nilpotent and invertible
elements of the group algebra k[G].

6. Acknowledgments. The author thanks Ottmar Loos, Donald Passman
and Sudarshan Sehgal for very useful comments on earlier versions of this paper.
In particular, it was Donald Passman who pointed out that the main result of this
note, originally stated only for ordered groups, actually holds for u.p. groups.
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