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0. Introduction

Our principal objective in the present paper, which grew out of the second author’s Diplomarbeit
[6] at the Fachbereich Mathematik der FernUniversität in Hagen, is to establish the following result.

Main Theorem. Let p be a prime and n a positive integer. Then the number of isomorphism
classes of two-dimensional nonassociative algebras, possibly without a unit, over the field Fq with
q = pn elements is

q4 + q3 + 4q2 + 3q + 6 (for p = 2),

q4 + q3 + 4q2 + 4q + 6 (for p = 3),

q4 + q3 + 4q2 + 4q + 7 (for p 6= 2, 3).

Among these classes, precisely

1
2
q4 − q3 + q2 (for p = 2, n ≡ 0 mod 2),

1
2
q4 − q3 + q2 + 1 (for p = 2, n 6≡ 0 mod 2),

1
2
q4 − q3 + q2 − q +

1
2

(for p 6= 2, q 6≡ −1 mod 3),

1
2
q4 − q3 + q2 − q +

3
2

(for p 6= 2, q ≡ −1 mod 3)

are represented by division algebras.

The proof combines the first author’s general classification theory [3] for two-dimensional nonas-
sociative algebras over arbitrary base fields with elementary counting arguments over Fq. Most of
these counting arguments are addressed to the following situation: Given a finite set X (e.g., the
projective linear group of degree 2 over Fq) and a right action of Γ = Z/2Z on X, the problem is to
determine the cardinality of the orbit space X/Γ. To solve this problem in the special cases at hand,
refined versions for some of the classification theorems established in [3] are required which seem to



be of independent interest and are derived here in a purely algebraic setting. The aforementioned
counting arguments can then be carried out without difficulty and immediately lead to a proof of
the main theorem.

1. Two-dimensional algebras over arbitrary fields: A Survey.

1.0 All results presented in this section are either standard or taken from [3]. For proofs, the
reader is referred to [3] or the sources quoted therein. We fix an arbitrary base field k. The totality
of invertible elements in a structure S will invariably be written as S×, whenever this makes sense.

1.1 Unital algebras of dimension two. Let K be a two-dimensional k-algebra containing a
unit. Then precisely one of the following holds.

a) K is étale, so K/k is either a separable quadratic field extension or K ∼= k × k splits.

b) K = k[ε], ε2 = 0, is the algebra of dual numbers.

c) char k = 2 and K/k is an inseparable field extension.

In any event, K is quadratic, so there is a unique pair (t, n) consisting of a linear form t : K → k,
the trace, and a quadratic form n : K → k, the norm, satisfying x2 − t(x)x + n(x)1 = 0 for all
x ∈ K. We also have the conjugation

τ : K −→ K, x 7−→ x = τ(x) = t(x)1− x,

which is a k-automorphism of period two.

1.2 Regular algebras and the unital heart. Let A be a two-dimensional k-algebra. Given
linear maps f, g : A → A, the product (x, y) 7→ f(x)g(y) defines a new k-algebra which we denote
by A(f,g). The left, right multiplication of A will be written as LA, RA, respectively, or simply as
L,R if there is no danger of confusion. A is said to be left (resp. right) regular if there exists an
element u ∈ A making LA(u) (resp. RA(u)) bijective. Algebras that are both left and right regular
are called regular. A is regular if and only if there exist a unital k-algebra K of dimension 2 and
linear maps f, g : K → K satisfying A ∼= K(f,g). In this case, K is unique up to ismorphism, called
the unital heart of A.

1.3 Étale algebras. Fixing a quadratic étale k-algebra K, with trace t, norm n and conjugation
τ , we wish to describe the classification of two-dimensional regular k-algebras with unital heart
isomorphic to K. To this end, we put

S(K) = {x ∈ K | n(x) = 1} = {vv−1 | v ∈ K×},(1.3.1)

choose once and for all a full set M of representatives containing 1 of K× modulo S(K) and fix an
idempotent c 6= 0, 1 in K if K ∼= k × k happens to be split. We also write V for the vector space
over k underlying K. Every k-linear map f : V → V has a unique representation as

f = L(x) + L(y)τ (x, y ∈ V ),(1.3.2)
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and

det f = n(x)− n(y).(1.3.3)

1.4 Tight enumeration of regular algebras with étale heart. Notations being as in 1.3,
and writing 1 for the identity transformation of V , let A be a regular two-dimensional k-algebra
with unital heart isomorphic to K. Then A is isomorphic to precisely one of the following.

a) K(1+L(y)τ,g), y ∈ M − {1}, g ∈ GL(V ).

b) K(1,τ).

c) K(τ,L(y)τ), y ∈ S(K).

d) K(ρ,1+L(y)τ), ρ ∈ {1, τ}, y ∈ K, n(y) 6= 1.

e) K(ρ,L(c)+L(y)τ), Ksplit , ρ ∈ {1, τ}, y ∈ K×, cy = c.

f) K(1+L(c)τ,g), Ksplit , g ∈ GL(V ).

g) K(L(c)+τ,g), Ksplit , g ∈ GL(V ).

1.5 Classification of regular algebras with étale heart. Notations being as in 1.3, we have:

a) For y, z ∈ M − {1}, g, h ∈ GL(V ),

K(1+L(y)τ,g) ∼= K(1+L(z)τ,h)

if and only if y = z and there exists an element a ∈ k× such that h = ag or h = aτgτL(y−1).

c) For y, z ∈ S(K),
K(τ,L(y)τ) ∼= K(τ,L(z)τ)

if and only if y ≡ z mod S(K)3 or y ≡ z mod S(K)3.

d) For ρ, σ ∈ {1, τ}, y, z ∈ K satisfying n(y) 6= 1 6= n(z),

K(ρ,1+L(y)τ) ∼= K(σ,1+L(z)τ)

if and only if ρ = σ and either y = z or y = z.

e) Let K be split. For ρ, σ ∈ {1, τ} and y, z ∈ K× satisfying cy = c = cz,

K(ρ,L(c)+L(y)τ) ∼= K(σ,L(c)+L(z)τ)

if and only if ρ = σ and y = z.

f) Let K be split. For g, h ∈ GL(V ),

K(1+L(c)τ,g) ∼= K(1+L(c)τ,h)

if and only if there exists an element a ∈ k× such that h = ag.

g) Let K be split. For g, h ∈ GL(V ),

K(L(c)+τ,g) ∼= K(L(c)+τ,h)

if and only if there exists an element a ∈ k× such that h = ag.
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1.6 Dual numbers. Let K = k[ε], ε2 = 0, be the algebra of dual numbers. As before, we write
n for the norm, τ for the conjugation of K and V for the underlying vector space over k. The
k-linear map ∂ : V → V determined by ∂(1) = 0, ∂(ε) = 1 is a τ -derivation, so

∂(xy) = ∂(x)y + x∂(y) (x, y ∈ V ).(1.6.1)

Given s ∈ k×, there is a unique k-automorphism σs of K sending ε to sε. We also have

σs∂σ−1
s = s−1∂.(1.6.2)

Observe

σ1 = 1, σ−1 = τ.(1.6.3)

Every k-linear map f : V → V has a unique representation as

f = L(x) + L(y)∂ (x, y ∈ V ),(1.6.4)

and

det f = n(x) + ∆(x ∧ y)(1.6.5)

where ∆ stands for the k-linear isomorphism
∧2 V

∼→ k sending 1 ∧ ε to 1.

1.7 Classification of regular algebras with dual heart. Notations being as in 1.6, let A be
a regular two-dimensional k-algebra with unital heart isomorphic to K. Then A is isomorphic to
precisely one of the following.

a) K

b) K(1,L(bε)+∂) where b ∈ k× is unique mod k×2.

c) K(1,L(1+bε)+∂) where b ∈ k − {1} is unique.

d) K(1,a1+L(ε)∂) where a ∈ k − {0,−1} is unique.

e) K(L(bε)+∂,g), b ∈ k×, g ∈ GL(V ). Furthermore, given b, b′ ∈ k×, g, g′ ∈ GL(V ), we have

K(L(bε)+∂,g) ∼= K(L(b′ε)+∂,g′)

if and only if there are elements s, a ∈ k× satisfying b′ = bs2, g′ = aσsgσ−1
s .

f) K(a1+L(ε)∂,L(bε)+∂) where a ∈ k − {0, 1,−1} is unique and b ∈ k× is unique mod k×2.

g) K(a1+L(ε)∂,L(1+bε)+∂) where a ∈ k − {0, 1,−1} and b ∈ k − {1} are unique.

h) K(1+L(ε)∂,L(bε)+∂) where char k 6= 2 and b ∈ k× is unique mod k×2.

i) K(1+L(ε)∂,L(bε)+L(1+ε)∂) where char k 6= 2 and b ∈ k× is unique.

j) K(a1+L(ε)∂,α1+L(ε)∂) where a, α ∈ k − {0,−1} are unique.

k) K(a1+L(ε)∂,L(α1+ε)+L(ε)∂) where a ∈ k − {0,−1} is unique and α = − a
1+a .

l) K(a1+L(ε)∂,1) where a ∈ k − {0,−1} is unique.
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1.8 Bisingular algebras. Two-dimensional k-algebras which are neither left nor right regular
are called bisingular. Up to isomorphism, they are precisely of the form A(u, β) where u is a fixed
nonzero element in a two-dimensional k-vector space V and β : V ×V → k is a bilinear form, A(u, β)
living on V by the multiplication (x, y) 7→ β(x, y)u. More specifically, writing e1 for the first unit
vector in two-dimensional column space k2 and identifying bilinear forms of k2 with elements of
Mat2(k) (the algebra of 2-by-2 matrices over k) in the usual way, we have:

1.9 Classification of bisingular algebras. Notations being as in 1.8, a k-algebra A is bisingular
of dimension two if and only if it is isomorphic to A(e1, S) where S ∈ Mat2(k) satisfies one of the
following mutually exclusive conditions.

a) S = 0.

b) S =
(

0 0
0 1

)
.

c) S =
(

0 0
1 0

)
.

d) S =
(

0 1
−1 1

)
.

e) S =
(

0 1
a 0

)
where a ∈ k is unique.

f) S =
(

1 0
0 b

)
where b ∈ k is unique mod k×2.

g) S =
(

1 0
1 b

)
where b ∈ k is unique.

1.10 Strictly left singular algebras. Two-dimensional k-algebras which are right regular but
not regular are called strictly left singular. Dito for strictly right singular. Fixing a linear form
u∗ 6= 0 on a fixed two-dimensional k-vector space V , the strictly left singular k-algebras of dimension
two up to isomorphism are precisely of the form A(u∗, f) for some f ∈ GL(V ), where A(u∗, f) lives
on V by the multiplication (x, y) 7→ u∗(y)f(x). We always have

A(u∗, f) ∼= A(u∗, af) (a ∈ k×).(1.10.1)

More specifically, writing f∗ ∈ GL(V ∗) for the dual of f , the following classification theorem holds.

1.11 Classification of strictly left singular algebras. Notations being as in 1.10, let f, g ∈
GL(V ). Then the following statements are equivalent.

(i) A(u∗, f) ∼= A(u∗, g).
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(ii) There exists an element a ∈ k× satisfying the following conditions: f and ag have the
same characteristic polynomial as well as the same minimum polynomial and, for all b ∈
k, g∗(u∗) = bu∗ if and only if f∗(u∗) = abu∗.

1.12 Vista. Specifying k to a finite field, it follows that 1.4, 1.5, 1.7, 1.9, 1.11 cover all two-
dimensional k-algebras since inseparable quadratic field extensions do not exist. As we shall see
below, counting isomorphism classes in the various subcases of these results turns out to be quite
straightforward, except for the cases 1.4 a), c), d), 1.7 e) and 1.11. An adequate treatment of these
exceptions requires a series of purely algebraic preparations that will have to be presented before
we can turn to the proof of the main theorem.

2. Two-dimensional algebras over arbitrary fields: Refinements.

2.0 We continue to work over an arbitrary base field k.

2.1 Z/2Z-actions. Throughout this paper, we write Γ = Z/2Z for the group with two elements.
Giving a right action of Γ on a set X amounts to giving a map ∗ : X → X, x 7→ x∗, which is
involutorial: x∗∗ = x for all x ∈ X. Then XΓ = {x ∈ X | x∗ = x} is the set of fixed points under
the action of Γ. If X is finite, then |X/Γ| = |XΓ|+ 1

2 |X −XΓ|, hence

|X/Γ| = 1
2
(|X|+ |XΓ|).(2.1.1)

2.2 Examples of Z/2Z-actions. Let K be a unital two-dimensional k-algebra as in 1.1 and write
V for the underlying vector space over k. The element of PGL(V ) determined by f ∈ GL(V ) will
be denoted by [f ]. Given an invertible element y ∈ K, we put

[f ]∗ = [τfτL(y−1)].(2.2.1)

2.3 Lemma. Notations being as in 2.1, 2.2, we have:

a) The map ∗ : PGL(V ) → PGL(V ) is involutorial, hence defines a right action of Γ on PGL(V ).

b) For f ∈ GL(V ), the following statements are equivalent.

(i) [f ] ∈ PGL(V )Γ.

(ii) f = aτfτL(y−1) for some a ∈ k×.

In this case, n(y) = a2.

c) If n(y) ∈ k× is not a square, then PGL(V )Γ = ∅.
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Proof. a) We compute

[f ]∗∗ = [ττfτL(y−1)τL(y−1)] = [fL(y−1y−1)]

= [n(y)−1f ] = [f ].

b) The first part is obvious and the second one follows by taking determinants in (ii).
c) is an immediate consequence of b). �

If n(y) ∈ k× is a square, we wish to describe the elements of PGL(V )Γ in an explicit manner.
To do so, the cases that K is étale or the algebra of dual numbers will be discussed separately.

2.4 Proposition. Notations being as in 2.2, let K be étale and suppose n(y) = b2 for some b ∈ k×.
Then there are element w0, w1 ∈ K× satisfying

y = (−1)ibτ(wi)w−1
i

for i = 0, 1. Moreover, for all such b, w0, w1 and all f ∈ GL(V ), the following statements are
equivalent.

(i) [f ] ∈ PGL(V )Γ.

(ii) There exists i = 0, 1 such that either

[f ] = [L
(
τ(wi)

)
τ ](2.4.1)

or

[f ] = [L(wi) + L
(
cτ(wi)

)
τ ](2.4.2)

for some c ∈ k, c 6= ±1.

Proof. The existence of w0, w1 follows from (1.3.1). Using (1.3.2), (1.3.3), we find elements u, v ∈ K
satisfying

f = L(u) + L
(
τ(v)

)
τ, n(u) 6= n(v)(2.4.3)

and 2.3 b), combined with the computation

aτfτL(y−1) = a
(
L

(
τ(u)

)
+ L(v)τ

)
L(y−1)

= L
(
aτ(u)y−1

)
+ L

(
avτ(y−1)

)
τ,

shows that (i) is equivalent to

u = aτ(u)y−1, v = aτ(v)y−1(2.4.4)

for some a ∈ k×. This yields the implication (ii) ⇒ (i), so it remains to prove (i) ⇒ (ii). By (2.4.3),
at least one of the elements u, v is invertible, so (2.4.4) gives a = (−1)ib for some i = 0, 1. We
also claim that all nonzero elements x ∈ {u, v} are invertible and, in fact, scalar multiplies of wi.
Indeed, assuming n(x) = 0 implies x2 = an(x)y−1 (by (2.4.4)) = 0, hence x = 0, a contradiction,
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and the relation y = (−1)ibτ(x)x−1 shows x ∈ kwi. Hence (2.4.1), (2.4.2) for c = 0, or (2.4.2) for
c 6= 0 holds according as u = 0, v = 0, or u 6= 0 6= v, respectively. �

Remark. The elements of PGL(V ) described in 2.4 (ii) are independent of the choices of w0, w1.
Furthermore i in (ii) is unique unless char k = 2.

We now turn to the algebra of dual numbers and, with an eye on 1.7 e), confine ourselves to
the case y = 1.

2.5 Proposition. Notations being as in 1.6, 2.1, let K = k[ε], ε2 = 0, be the algebra of dual
numbers and suppose y = 1.

a) For char k = 2, Γ acts trivially on PGL(V ).

b) For char k 6= 2 and f ∈ GL(V ), the following statements are equivalent.

(i) [f ] ∈ PGL(V )Γ.

(ii) Either there exists a ∈ k, a 6= −1, satisfying

[f ] = [1V + L(aε)∂](2.5.1)

or there exists a ∈ k× satisfying

[f ] = [L(aε) + ∂](2.5.2)

Proof. a) We have τ = 1V (since char k = 2) and the assertion follows from 2.3 b).
b) Again by 2.3 b), (i) holds if and only if δf = τfτ for some sign δ = ±1. Using (1.6.4), we

write

f = L(u) + L(v)∂ (u, v ∈ K)

and compute

τfτ = L
(
τ(u)

)
+ L

(
τ(v)

)
τ∂τ

= L
(
τ(u)

)
− L

(
τ(v)

)
∂ (by (1.6.2) for t = −1),

so (i) is equivalent to τ(u) = δu, τ(v) = −δv. Since n(u) + ∆(u ∧ v) 6= 0 by (1.6.5), this amounts
to (2.5.1) for δ = 1, and to (2.5.2) for δ = −1. �

2.6 Cube roots of unity. We systematically write µ3 for the group scheme of cube roots of
unity [2]. In this subsection, we assume char k 6= 3. Given a quadratic étale k-algebra K as in
1.3, we wish to clarify the relation between µ3 and S(K). If K = k × k is split, the assignment
a 7→ (a, a−1) yields the identifications

S(k × k) = k×,(2.6.1)
µ3(k × k) ∩ S(k × k) = µ3(k).(2.6.2)

For separable quadratic field extensions, we record the following observation.
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2.7 Proposition. Notations and assumptions being as in 1.3, 2.6, let K/k be a separable quadratic
field extension containing the cube roots of unity. Then the following statements are equivalent.

(i) µ3(K) ∩ S(K) 6= {1}.

(ii) µ3(K) ⊂ S(K).

(iii) µ3(k) = {1}.

Proof. The equivalence (i) ⇔ (ii) being obvious, let us assume (ii) and ζ ∈ µ3(k) ⊂ µ3(K) ⊂ S(K).
Then ζ2 = n(ζ) = 1, hence ζ = 1, proving (iii). Conversely, suppose (iii) holds and let z ∈ µ3(K).
Then n(z) ∈ µ3(k) = {1}, giving (ii). �

2.8 Specifications. We wish to make the classification 1.11 of two-dimensional strictly left sin-
gular algebras more explicit. Notations being as in 1.10, we are allowed to identify V with two-
dimensional column space k2 and V ∗ with two-dimensional row space k2 over k. We may also put
u∗ = (1, 0) ∈ k2.

2.9 Theorem. Notations being as in 1.10, 2.8, a k-Algebra A is strictly left singular of dimension
two if and only if it is isomorphic to A(u∗, S) where S ∈ GL2(k) satisfies one of the following
mutually exclusive conditions.

a) S =
(

1 0
0 d

)
where d ∈ k× is unique.

b) S =
(

1 0
1 1

)
.

c) S =
(

0 1
c 0

)
where c ∈ k× is unique mod k×2.

d) S =
(

1 1
c 0

)
where c ∈ k× is unique.

Proof. Given S, T ∈ GL2(k), it makes sense by (1.10.1) to call [S], [T ] ∈ PGL2(k) equivalent, written
as [S] ∼ [T ], if A(u∗, S) and A(u∗, T ) are isomorphic. By 1.11, this amounts to some a ∈ k× giving
S and aT the same characteristic as well as the same minimum polynomial such that

T ∗(u∗) = bu∗ ⇐⇒ S∗(u∗) = abu∗ (for all b ∈ k).(2.9.1)

We begin by showing that any

T =
(

a b

c d

)
∈ GL2(k)

determines a matrix S ∈ GL2(k) as in a) – d) satisfying [S] ∼ [T ]. If T is a scalar multiple of
12, the 2-by-2 unit matrix, we may choose S as in a), with d = 1. Henceforth we may therefore
assume [T ] 6= [12]. Noting that u∗ is an eigenvector for T ∗ iff b = 0, we proceed by considering the
following cases.

Case 1. b = 0.
Then we may assume a = 1.
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Case 1.2. d = 1.
Then c 6= 0. Furthermore, S as in b) and T not only satisfy (2.9.1) but also have the same

characteristic polynomial, forcing [S] ∼ [T ] as desired.
Case 1.3. d 6= 1.
Then [S] ∼ [T ] for some S as in a), with d 6= 1.
Case 2. b 6= 0.
Then we may assume b = 1. Comparing traces and determinants yields

[T ] =
[
a 1
c d

]
∼

[
a + d 1
c− ad 0

]
,

so we are allowed to assume d = 0. For a = 0, S = T is as in c). For a 6= 0,

[T ] =
[
1 1

a
c
a 0

]
∼

[
1 1
c
a2 0

]
,

so we have found [S] ∼ [T ] for some S as in d).
Next we prove that the cases a) – d) are disjoint. First note that u∗ is an eigenvector for S∗ in

cases a), b) but is not in cases c), d). Hence these pairs of cases do not overlap. Furthermore, since
all matrices in a) are semi-simple but the one in b) is not, cases a), b) are disjoint. Finally, since
the trace form vanishes on all matrices in c) but on no matrix in d), cases c), d) are disjoint as well.
It remains to prove that, in each one of the individual cases a) – d), the parameters are unique as
indicated. In a), given d, e ∈ k× and putting S =

(
1 0
0 d

)
, T = ( 1 0

0 e ), we must show that [S] ∼ [T ]
implies d = e. Since the unit matrix is distinguished from all other matrices in a) by the property
of its minimum polynomial having degree 1, we may assume d 6= 1 6= e. By definition, some a ∈ k×

satisfying (2.9.1) gives S and aT the same characteristic polynomial. From S∗(u∗) = T ∗(u∗) = u∗

we conclude a = 1, hence d = e, as claimed. In c), given c, c′ ∈ k× and putting S = ( 0 1
c 0 ),

S′ =
(

0 1
c′ 0

)
, we must show that [S] ∼ [S′] implies c ≡ c′ mod k×2 and conversely. But this follows

immediately from the fact that [S] ∼ [S′] iff some a ∈ k× gives S′ and aS the same characteristic
polynomial. By a similar argument, the parameter c in d) is easily seen to be unique as well. This
completes the proof of the theorem. �

3. Proof of the main theorem

3.0 In this section, we fix a prime number p and a positive integer n to put k = Fq, the field with
q = pn elements.

3.1 In order to prove the main theorem, we will have to compute the number of nonisomorphic
Fq-algebras belonging to the various subcases of 1.4, 1.7, 1.9 and 1.11. Since we know the number
of square classes in F×q , which is 1 or 2 according as p is even or odd, and the order of the group
PGL2(Fq), which is given by the formula

|PGL2(Fq)| = (q − 1)q(q + 1) = q3 − q,(3.1.1)

these computations are quite straightforward most of the time and lead to the following results.
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3.2 Proposition. The number of nonisomorphic two-dimensional Fq-algebras which are regular
with unital heart isomorphic to Fq ×Fq and belong to one of the subcases 1.4 b), e), f), g) above is

2q3 − 1.

Proof. Applying 1.5 and 3.1 we see that the contributions of the individual cases listed above to
the sum total combine to

1 + 2(q − 1) + (q3 − q) + (q3 − q) = 2q3 − 1 ,

as claimed. �

3.3 Proposition. The number of nonisomorphic two-dimensional Fq-algebras which are regular
with unital heart isomorphic to the algebra of dual numbers but do not belong to subcase 1.7 e)
above is

2q2 − 2q − 1 (for p = 2),

2q2 − q − 2 (for p 6= 2).

Proof. This follows immediately from 1.7. �

3.4 Proposition. The number of nonisomorphic Fq-algebras which are bisingular of dimension
two is

2q + 6 (for p = 2),
2q + 7 (for p 6= 2).

Proof. This follows immediately from 1.9. �

3.5 Proposition. The number of nonisomorphic two-dimensional Fq-algebras which are strictly
left (resp. right) singular of dimension two is

2q (for p = 2),
2q + 1 (for p 6= 2).

Proof. For strictly left singular algebras, this follows immediately from 1.11 and 2.9. Passing to
the opposite algebras yields the rest. �

3.6 We are left with computing the number of nonisomorphic two-dimensional Fq-algebras be-
longing to one of the subcases 1.4 a), c), d), 1.7 e) and begin with 1.4 a), which happens to be the
most difficult. Keeping the notations of 1.3, let K be a quadratic étale Fq-algebra, so K = Fq × Fq

or K = Fq2 . We may assume that K lives on two-dimensional column space F2
q . Looking at the

norm epimorphism n : K× → F×q with kernel S(K), we see that n : M → F×q is bijective, forcing

|M | = q − 1.(3.6.1)
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We put

M1 := {y ∈ M − {1} | n(y) ∈ F×2
q }(3.6.2)

and conclude

M1 = M − {1} (for p = 2),(3.6.3)

|M1| =
q − 3

2
(for p 6= 2).(3.6.4)

Given y ∈ M , 2.3 a) induces a right action of Γ = Z/2Z on X = PGL2(k) depending on y, allowing
us to write Xy = XΓ, Xy = X/Γ. Now denote by N the number of nonisomorphic two-dimensional
Fq-algebras belonging to subcase 1.4 a). Then 1.5 a) implies

N =
∑

y∈M−{1}

|Xy| =
1
2

∑
y∈M−{1}

(|X|+ |Xy|) (by (2.1.1))

=
1
2
(q − 2)(q3 − q) +

1
2

∑
y∈M−{1}

|Xy| (by (3.1.1), (3.6.1))

But Xy = ∅ for y ∈ M − {1}, y 6∈ M1 by 2.3 c). Hence

N =
1
2
(q4 − 2q3 − q2 + 2q) +

1
2

∑
y∈M1

|Xy|(3.6.5)

Given y ∈ M1, 2.4 implies

|Xy| = q (for p = 2),(3.6.6)
|Xy| = 2q − 2 (for p 6= 2).(3.6.7)

Combining the relations (3.6.5) – (3.6.7), we obtain:

3.7 Proposition. The number of nonisomorphic two-dimensional Fq-algebras which are regular
with unital heart isomorphic to Fq2 (resp. Fq × Fq) and belong to subcase 1.4 a) above is

q4

2
− q3 (for p = 2),(3.7.1)

1
2
(q4 + 3) − q3 − q (for p 6= 2).(3.7.2)

�

3.8 We now turn to subcase 1.4 c) and write N for the number of nonisomorphic two-dimensional
Fq-algebras arising in that subcase. K being again one of the two quadratic étale Fq-algebras Fq×Fq

or Fq2 , the short exact sequence

1 → µ3(K) ∩ S(K) → S(K) → S(K)3 → 1

induced by taking cubes implies that the group X = S(K)/S(K)3 satisfies

|X| = |µ3(K) ∩ S(K)|(3.8.1)
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The involution τ , which acts on X by inversion, induces a right action of Γ on X via 2.1, and 1.5 c),
(2.1.1) imply

N = |X/Γ| = 1
2
(|X|+ |XΓ|).(3.8.2)

Since N = 1 for p = 3, we may assume p 6= 3. Since the group F×pr , for any positive integer r, is
cyclic of order pr − 1, the field Fpr contains the cube roots of unity if and only if pr ≡ 1 mod 3.
Hence, assuming K = Fq × Fq, (2.6.2), (3.8.1), (3.8.2) yield |X| = 3, |XΓ| = 1, N = 2 (resp.
N = |X| = 1) for q ≡ 1 mod 3 (resp. q ≡ −1 mod 3). By the same token, assuming K = Fq2 and
applying 2.7, we conclude |X| = 3, |XΓ| = 1, N = 2 (resp. N = |X| = 1) for q ≡ −1 mod 3 (resp.
q ≡ 1 mod 3). Summing up, we have

3.9 Proposition. The number of nonisomorphic two-dimensional Fq-algebras which are regular
with unital heart isomorphic to Fq2 (resp. Fq × Fq) and belong to subcase 1.4 c) above is

1 (for p = 3),
1 (resp. 2) (for q ≡ 1 mod 3),
2 (resp. 1) (for q ≡ −1 mod 3).

�

3.10 For K = Fq2 or K = Fq × Fq as before, the set X = K − S(K) is τ -invariant and hence
enherits a right Γ-action via 2.1. Thanks to 1.5 d), the number of two-dimensional Fq-algebras
belonging to subcase 1.4 d) is given by

N = 2|X/Γ| = |X|+ |XΓ|
= |K| − |S(K)|+ |XΓ|,

so we have

N = q2 − |S(K)|+ |XΓ|(3.10.1)

Note first |XΓ| = |Fq − S(K)| = Fq − {±1}, which implies

|XΓ| = q − 1 (for p = 2),(3.10.2)

|XΓ| = q − 2 (for p 6= 2).(3.10.3)

On the other hand, the short exact sequence

1 → F×q → K× → S(K) → 1

determined by the map v 7→ τ(v)v−1 gives

|S(Fq2)| = q + 1,(3.10.4)
|S(Fq × Fq)| = q − 1.(3.10.5)

Combining (3.10.1) - (3.10.5) we conclude:
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3.11 Proposition. The number of nonisomorphic two-dimensional Fq-algebras which are regular
with unital heart isomorphic to Fq2 (resp. Fq × Fq) and belong to subcase 1.4 d) above is

q2 − 2 (resp. q2) (for p = 2),

q2 − 3 (resp. q2 − 1) (for p 6= 2).

�

3.12 Finally, we are left with counting the number N of nonisomorphic two-dimensional Fq-
algebras belonging to subcase 1.7 e). Considering the right action of Γ on X = PGL2(Fq) deter-
mined by y = 1 via 2.2, we apply 1.7 e), (1.6.3) and obtain

N = [F×q : F×2
q ]|X/Γ|,(3.12.1)

where |X/Γ| may be computed by appealing to (2.1.1) und 2.5. Indeed, the latter yields

|XΓ| = |X| (for p = 2),(3.12.2)

|XΓ| = 2(q − 1) (for p 6= 2).(3.12.3)

Combining (3.12.1) – (3.12.3), we conclude:

3.13 Proposition. The number of nonisomorphic two-dimensional Fq-algebras which belong to
subcase 1.7 e) above is

q3−q (for p = 2),

q3 + q − 2 (for p 6= 2).

�

The first part of the main theorem now follows by simply adding up the numbers obtained in
3.2 – 3.5, 3.7, 3.9, 3.11, 3.13 and 1, the latter accounting for the fact that the preceding propositions
do not cover the case 1.4 b) with K = Fq2 . Details are left to the reader.

3.14 Division algebras. It remains to derive the formulae for the number of nonisomorphic two-
dimensional division algebras over Fq enunciated in the main theorem. Such algebras are clearly
regular, and their unital heart, being a division algebra itself, must be Fq2 . Hence the number we
are looking for can be read off immediately from 3.7, 3.9, 3.11 and 1.4 b) for K = Fq2 . Again
details are left to the reader.

4. Concluding remarks.

It is a natural question to ask whether the formulae of the main theorem extend to higher di-
mensions. While explicit generalizations seem to be hardly within reach at the moment, a crude
lower bound may be obtained quite easily as follows. Given a positive integer r, the totality of
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r-dimensional Fq-algebras may be parameterized by Fr3

q . The group G = GLr(Fq) acts on this space
by isomorphisms in the obvious way, so the number of nonisomorphic r-dimensional Fq-algebras is

|G \ Fr3

q | ≥
Fr3

q

|G|
(4.0.1)

=
qr3

(qr − 1)(qr − q) · · · (qr − qr−1)
=

qr3

qr2 − . . .

and hence has order of magnitudes at least qr2(r−1) as r → ∞. Since, by the main theorem, this
estimate is sharp for r = 2, the crude lower bound just obtained in the general case may not be
so crude after all. Another indication pointing in the same direction derives from the fact that the
obstructions to (4.0.1) becoming an equality are the stabilizers of the elements in Fr3

q under the
action of G, i.e., the automorphism groups of r-dimensional Fq-algebras, so the sharpness of the
corresponding lower bound largely depends on the question of whether these groups are generically
trivial. The answer to this question, though affirmative for r = 2 (cf. Kaminski [1]), doesn’t
seem to be known in general. However, further corroborative evidence has been supplied by Röhrl
[4], [5]. More precisely, let A be the generic r-dimensional algebra built over an arbitrary base
field, so, by definition, the structure constants of A relative to a preassigned basis are independent
indeterminates and A lives over the corresponding rational function field, say F . Then, combining
[4, Theorem 1] with the theorem in [5], we conclude that the idempotents in A are finite in number
and span A as a vector space over F . In particular, the automorphism group of A must be finite
as well. Though still far away from generic triviality, this is a step into the right direction.
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