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Abstract. We look at classes of semiassociative algebras, with an emphasis on those

that are canonical generalizations of associative (generalized) cyclic algebras. We inves-

tigate their behaviour in the semiassociative Brauer monoid defined by Blachar, Haile,

Matri, Rein, and Vishne. A possible generalization of this monoid in characteristic p

that includes nonassociative differential algebras is briefly considered.

Introduction

Recently, semiassociative algebras and their semiassociative Brauer monoid were intro-

duced by Blachar, Haile, Matri, Rein, and Vishne as a canonical generalization of associative

central simple algebras and their Brauer group [4]. Semiassociative algebras A over a field F

are F -central and are characterized by having an étale algebra E contained in their nucleus,

such that A is cyclic and faithful as an E ⊗F E-module via the action (e ⊗ e′)a = eae′ for

all a ∈ A, e, e′ ∈ E. This definition makes it possible to use classical Brauer factor sets [12,

Chapter 2] when developing the theory, and guarantees that the algebras are forms of skew

matrix algebras, which are defined and investigated in depth [4].

Together with the tensor product, equivalence classes of semiassociative algebras over

F form a monoid denoted Brsa(F ) that contains the classical Brauer group as the unique

maximal subgroup. The skew matrix algebras play the role of classical matrices in the

Brauer group. In particular, a semiassociative algebra is called split if it is isomorphic to a

skew matrix algebra. The authors state that “the key example for semiassociative algebras

are skew matrices” [4].

In this paper we will look at another important example of semiassociative algebras;

the nonassociative (generalized) cyclic algebras (and their opposite algebras). It is well

known that (generalized) cyclic algebras play a prominent role in the structure theory of

classical central simple algebras. Now we look at the role nonassociative (generalized) cyclic

algebras play in the structure theory of semiassociative simple algebras. These algebras

are canonical generalizations of associative cyclic algebras (respectively, of the generalized

associative cyclic algebras introduced by Jacobson [12]) over F .

If F has a cyclic Galois field extension of degree n, then there exist nonassociative (gen-

eralized) cyclic algebras, and these are semiassociative algebras of degree n that have this
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cyclic field extension as their nucleus (respectively, a central simple algebra in their nucleus

with center a separable field extension of F ). These semiassociative algebras are not semi-

central, and thus in particular not homogeneous. They have infinite order in Brsa(F ), even

when they are not division algebras. Nonassociative (generalized) cyclic algebras also show

that the splitting behaviour of an algebra in Brsa(F ) (i.e., whether or not it will be split or

split under a field extension) only depends on its nucleus.

Cyclic algebras (K/F, σ, d) of degree n that are not associative are division algebras in

many cases, e.g. for all prime n. Some of the tensor products we consider yield examples

of semiassociative algebras of degree mn which again are division algebras, and are obvious

generalizations of the classical generalized cyclic algebras.

The nonassociative (generalized) cyclic algebras we present here already appeared in

space-time block coding [27, 26, 19, 21], and in (f, σ, δ)-codes [23]. We now generalize their

definition which previously usually employed skew polynomials in D[t;σ] over division rings

D, and define them in a more general setting, dropping the assumption that D has no

zero divisors. Generalized Menichetti algebras [16, 28] can be seen as generalizations of

both crossed products and nonassociative cyclic algebras, and make up the second class of

semiassociative algebras we present.

We finish by suggesting possible generalizations of the semiassociative Brauer monoid,

which allow us to include nonassociative (generalized) differential extensions as classes of

algebras in the monoid, if the characteristic of F is prime.

The structure of the paper is as follows: we collect the basic results needed in Section

1. In Section 2, we generalize the definition of nonassociative cyclic algebras (K/F, σ, d)

to allow for the case that K/F is an étale extension, and the definition of generalized

nonassociative cyclic algebras (D,σ, d) to include the case that the algebra D employed in

the construction with the skew polynomial tm− d ∈ D[t;σ] has zero divisors, collecting and

generalizing several previously achieved results. In Section 3, we look at the tensor product

of a central simple algebra and a nonassociative cyclic algebra. We investigate the behaviour

of nonassociative (generalized) cyclic algebras in the Brauer monoid Brsa(F ) in Section 4,

and briefly look at Brsa(R) and Brsa(Fq).
When F is a field of prime characteristic p, the definition of Brsa(F ) may benefit from

a generalization that includes a class of algebras that generalize algebras that are asso-

ciative differential extensions [12]. All associative central division algebras over a field F

of characteristic zero can be constructed using differential polynomials (Amitsur [2], and

later [11], [12, Sections 1.5, 1.8, 1.9]). The construction method is an analogue to the well-

known crossed product construction, except that instead of their algebraic splitting fields it

uses splitting fields K of the algebras, where the field F is algebraically closed in K. For

p-algebras over base fields of characteristic p > 0 the construction employs differential poly-

nomial rings D[t; δ] (where D is a division algebra over F ), factoring out a two-sided ideal

generated by f ∈ D[t; δ]. This construction was generalized to the nonassociative setting

in [24]. We briefly consider these algebras in characteristic p and the challenges to include

them in potential generalizations of Brsa(F ) in the last two sections.
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1. Preliminaries

1.1. Nonassociative algebras. Let F be a field. An F -vector space A is an algebra over F ,

if there exists an F -bilinear map A×A→ A, (x, y) 7→ x ·y, denoted simply by juxtaposition

xy, the multiplication of A. An algebra A is called unital if there is an element in A, denoted

by 1, such that 1x = x1 = x for all x ∈ A. We only consider unital algebras. The center

of A is C(A) = {x ∈ Nuc(A) |xy = yx for all y ∈ A} and A is called (F -)central if it has

center F .

Associativity in A is measured by the left nucleus Nucl(A) = {x ∈ A | [x,A,A] = 0},
the middle nucleus Nucm(A) = {x ∈ A | [A, x,A] = 0} and the right nucleus Nucr(A) =

{x ∈ A | [A,A, x] = 0} of A, where [x, y, z] = (xy)z − x(yz) is the associator. Nucl(A),

Nucm(A), and Nucr(A) are associative subalgebras of A, and their intersection Nuc(A) =

{x ∈ A | [x,A,A] = [A, x,A] = [A,A, x] = 0} is the nucleus of A. Nuc(A) is an associative

subalgebra of A containing F1 and x(yz) = (xy)z whenever one of the elements x, y, z is in

Nuc(A). Multiplication on both sides make A into a bimodule over its nucleus. Moreover,

for every subalgebra N of the nucleus the N -bimodule structure of A can be viewed as a

left module structure over the ring Ne = N ⊗F Nop.

An algebra A 6= 0 is called a division algebra if for any a ∈ A, a 6= 0, the left multiplication

with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are bijective. If A has

finite dimension over F , A is a division algebra if and only if A has no zero divisors [30, pp.

15, 16].

An étale algebra over F is a finite direct product of finite separable field extensions of F .

1.2. Semiassociative algebras. (cf. [4])

A finite dimensional nonassociative F -central algebra A is called semiassociative if its

nucleus has an étale F -subalgebra E, such that A is cyclic and faithful over E⊗F E via the

action (e⊗ e′)a = eae′ for all a ∈ A, e, e′ ∈ E. The dimension of a semiassociative algebra

A is a square [4, Corollary 3.4 ] and the root of the dimension of A is called the degree of A.

If A is semiassociative of degree n, then any n-dimensional étale subalgebra E of Nuc(A) is

a maximal commutative subalgebra of A [4, Corollary 7.3].

If A is a nonassociative algebra containing an étale subalgebra E in its nucleus, then any

two of the following conditions imply the third: A is faithful over E ⊗Eop, A is cyclic over

E ⊗ Eop, and dimA = (dimE)2 [4, Remark 3.3].

Every associative central simple algebra of degree n has a maximal étale subalgebra E

of dimension n and is semiassociative. We call A E-semiassociative if E is an étale F -

subalgebra of its nucleus, such that A is cyclic and faithful over Ee = E ⊗F E. The

nucleus of a nonassociative algebra may contain more than one étale subalgebra of the same

dimension. However, if A is a semiassociative algebra with respect to one étale subalgebra

of its nucleus, then it is semiassociative with respect to all étale subalgebras of its nucleus

[4, Proposition 3.6]. A scalar extension of a semiassociative algebra is semiassociative [4,

Proposition 12.1].

A tensor cijk of degree n of n × n × n scalars in F is called a skew set c of degree n. A

skew set c is called reduced if ciij = cjii = 1 for all i, j. Let c be such a reduced skew set.
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Then the skew matrix algebra Mn(F ; c) is the F -vector space with basis the matrix units

eij and multiplication given by eijekl = δjkcijleil. Note that Mn(F ) = Mn(F ; 1).

A semiassociative algebra A is called split, if it is a skew matrix algebra. The split

nonassociative quaternion algebra from [33] is the skew matrix algebra of degree 2 mentioned

in [4, Example 6.12 (3)]. A field extension K/F splits a semiassociative algebra A, if

AK = A ⊗F K is split. A semiassociative algebra of degree n is split if and only if Fn

is a unital subalgebra of the nucleus [4, Proposition 7.2]. Let A be an E-semiassociative

algebra with E = Nuc(A). Then a field extension K/F splits A if and only if it splits

E [4, Corollary 7.5]. If K is a field that splits an étale subalgebra in the nucleus of an

n-dimensional semiassociative algebra A of degree n, and F is an infinite field, then K splits

A [4, Theorem 7.1].

If A is semiassociative of degree n, then any n-dimensional étale subalgebra E of Nuc(A)

is a maximal commutative subalgebra of A [4, Corollary 7.3].

Let J(Nuc(A)) denote the radical of the associative algebra Nuc(A). For a semiassociative

algebra A, the simple components of the semisimple quotient σ(A) = Nuc(A)/J(Nuc(A))

are called the atoms of A. A semiassociative algebra over F is called semicentral, if all of

its atoms are F -central [4, Definition 16.1]. A semiassociative algebra is homogeneous if it

is semicentral, and the atoms are all Brauer equivalent to each other [4, Definition 17.2].

Two semiassociative algebras A and B over F are called Brauer equivalent, if there exist

skew matrix algebras Mn(F ; c) and Mm(F, c′) such that A⊗F Mn(F ; c) ∼= B⊗F Mm(F ; c′).

The semiassociative Brauer monoid Brsa(F ) is the set of equivalence classes with respect

to Brauer equivalence, with product [A]sa[B]sa = [A⊗F B]sa and unit element [F ]sa. If A is

a homogeneous semiassociative algebra, and D the (associative) underlying division algebra

of its atoms, then there is a decomposition A ∼= D⊗F M , where M is a skew matrix algebra

and D is the unique member of minimal degree in the class [D]sa ∈ Brsa(F ) [4, Proposition

18.2, Corollary 18.3].

1.3. Nonassociative algebras obtained from skew polynomial rings. (for details, cf.

[23])

Let S be a unital associative noncommutative ring, σ ∈ Aut(S), and δ : S → S a σ-

derivation, i.e. an additive map such that δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ S. The

skew polynomial ring R = S[t;σ, δ] is the set of skew polynomials a0 + a1t+ · · ·+ ant
n with

ai ∈ S, where addition is defined term-wise and multiplication by ta = σ(a)t + δ(a) for all

a ∈ S. For σ = id and δ = 0, this is the ring of left polynomials S[t] = S[t; id, 0].

For f(t) = a0 + a1t+ · · ·+ ant
n with an 6= 0 define deg(f) = n and deg(0) = −∞. Then

deg(gh) ≤ deg(g) + deg(h) for f, g ∈ S[t] (with equality if h or g have an invertible leading

coefficient, or if S is a division ring). An element f ∈ R is irreducible in R if it is not a unit

and it has no proper factors, i.e if there do not exist g, h ∈ R with deg(g),deg(h) < deg(f)

such that f = gh. We call f ∈ R a (right) semi-invariant polynomial if for every a ∈ D
there is b ∈ D such that f(t)a = bf(t). If also f(t)t = (ct+ d)f(t) for some c, d ∈ D then f

is called (right) invariant. The invariant polynomials are also called two-sided, as the ideals

they generate are left and right ideals.
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Let f ∈ R have degree m and an invertible leading coefficient. Then for all g(t) ∈ R of

degree l ≥ m, there exist uniquely determined r, q ∈ R with deg(r) < deg(f), such that

g(t) = q(t)f(t) + r(t). This generalizes the right division algorithm in R that is well-known

when S is a division ring [12, p. 6]. In that case, R = S[t;σ, δ] is a left principal ideal domain

(i.e., every left ideal in R is of the form Rf).

From now on we assume that f is monic. Let modrf denote the remainder of right division

by f . Since the remainder is uniquely determined, the skew polynomials of degree less that

m canonically represent the elements of the left S[t;σ, δ]-module S[t;σ, δ]/S[t;σ, δ]f .

Suppose f ∈ R = S[t;σ, δ] is monic of degreem. The additive group {g ∈ R |deg(g) < m},
together with the multiplication g ◦h = gh modrf for all g, h ∈ R of degree less than m, is a

unital nonassociative algebra over S0 = {a ∈ S | ah = ha for all h ∈ Sf}, denoted by Sf or

R/Rf , and called a Petit algebra, as the construction for S a division algebra goes back to

Petit [17]. S0 is a commutative subring of S, and if S is a division algebra, it is a subfield of

S. Sf is associative if and only if f is two-sided. If Sf is not associative then S ⊂ Nucl(Sf ),

S ⊂ Nucm(Sf ) (if S is a division ring, the inclusions become equalities), and the eigenspace

of f is the right nucleus: Nucr(Sf ) = {g ∈ R |deg(g) < m and fg ∈ Rf}.
If f ∈ S[t;σ, δ] is reducible then Sf contains zero divisors: when f = gh then g and h are

zero divisors in Sf . If S is a division ring, then Sf has no zero divisors if and only if f is

irreducible.

If Rf is a two-sided ideal in R (i.e. f is two-sided, also called invariant) then Sf is the

associative quotient algebra obtained by factoring out the ideal generated by a two-sided

f ∈ S[t;σ, δ].

For all g ∈ R of degree l ≥ m, there also exist uniquely determined r, q ∈ R with

deg(r) < deg(f), such that g(t) = f(t)q(t) + r(t). Let modlf denote the remainder of left

division by f . Then the additive group {g ∈ R |deg(g) < m} together with the multiplication

g�h = gh modlf defined for all g, h ∈ R of degree less than m, is also a unital nonassociative

algebra fS over S0 denoted by R/fR. Moreover, The canonical anti-automorphism

ψ : S[t;σ, δ]→ Sop[t;σ−1,−δ ◦ σ−1], ψ(

n∑
k=0

akt
k) =

n∑
k=0

(

k∑
i=0

∆n,i(ak))tk

induces an anti-automorphism between the rings Sf = S[t;σ, δ]/S[t;σ, δ]f and ψ(f)S =

Sop[t;σ−1,−δ ◦ σ−1]/ψ(f)Sop[t;σ−1,−δ ◦ σ−1]. Recall that ∆n,j is defined recursively via

∆n,j = δ(∆n−1,j) + σ(∆n−1,j−1), with ∆0,0 = idS , ∆1,0 = δ, ∆1,1 = σ and so ∆n,j is the

sum of all polynomials in σ and δ of degree j in σ and degree n− j in δ [12, p. 2]. If δ = 0,

then ∆n,j = σn.

Note that Sopf = ψ(f)S

2. Nonassociative (generalized) cyclic algebras and (generalized)

Menichetti algebras

2.1. Nonassociative cyclic algebras. The equivalence class of a homogeneous semiasso-

ciative algebra in Brsa(F ) is represented by a unique central associative division algebra [4].

However, we will see now that the question whether an algebra is a division algebra or not

is much less important in Brsa(F ).
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Nonassociative cyclic algebras of degree n are canonical generalizations of associative

cyclic algebras of degree n and were first introduced over finite fields by Sandler [29]. Indeed,

nonassociative quaternion algebras (the case n = 2) were the first known example of a

nonassociative division algebra [9]. Over arbitrary fields they were investigated by Steele

[31, 32] (Steele studied the opposite algebras of the nonassociative algebras we define here,

but used our notation).

Definition 1. Let K be an étale algebra of dimension n over F and σ ∈ AutF (K) of order n.

Let f(t) = tn−d ∈ K[t;σ] with d ∈ K×. We call the F -central algebra Sf = K[t;σ]/K[t;σ]f

a nonassociative cyclic algebra over F and denote it by (K/F, σ, d).

This definition of a nonassociative cyclic algebra generalizes the one treated so far in most

papers, where K is assumed to be a cyclic Galois field extension of degree n (for an earlier

generalization, cf. [23]).

If K/F is a cyclic Galois field extension of degree n with Galois group Gal(K/F ) = 〈σ〉,
then (K/F, σ, d) is a classical associative cyclic algebra over F of degree n if d ∈ F×, and a

nonassociative cyclic algebra as defined in [6, 29, 31], if d ∈ K \ F . We note that with our

more general definition, we now have for instance that (K/F, σ, d) ⊗F K ∼= (K ⊗F K,σ, d)

with σ denoting the canonical extension σ⊗ id of σ to K⊗F K. For more details and proofs

in the case that K is a division algebra, cf. [6, 31].

If K is a cyclic Galois field extension of F , then Nuc((K/F, σ, d)) = K. The proof that

K ⊂ Nucr((K/F, σ, d)) in the general case that K is étale is analogous to the case where K

is a field and implies that K ⊂ Nuc((K/F, σ, d)) holds in the general setup, too.

The easiest example of a nonassociative cyclic algebra is a nonassociative quaternion

division algebra (K/F, σ, d), where K/F is a quadratic field extension, and d ∈ K \F . This

is, up to isomorphism, also the only simple K-semiassociative division algebra of degree 2

that is not associative [33]. This algebra and the simple skew matrix algebra that represents

it when it splits over the field extension K are presented in [33].

Theorem 1. Let K/F be a cyclic Galois field extension of degree n with Galois group

Gal(K/F ) = 〈σ〉 and d ∈ K \ F . Let H = {τ ∈ G | τ(d) = d}. Then H = 〈σs〉 for some

integer s such that n = sr and

Nucr((K/F, σ, d)) = (K/E, σs, d)

is a cyclic algebra of degree r over E = Fix(σs), where [E : F ] = |H|. In particular, if n is

prime then Nucr((K/F, σ, d)) = K.

Proof. By [32, Proposition 3.2.3], Nucr((K/F, σ, d)) = K⊕Kts⊕· · ·⊕Kt(r−1)s. By [31, The-

orem 5.1], the linear subspace K⊕Kts⊕· · ·⊕Kt(r−1)s is the cyclic subalgebra (K/E, σs, d)

of degree r over E = Fix(σs), where [E : F ] = |H| and d ∈ E. �

Corollary 2. Let K/F be a cyclic Galois field extension of degree n with Galois group

Gal(K/F ) = 〈σ〉 and d ∈ K \F . Let H = {τ ∈ G | τ(d) = d} = 〈σs〉 for some integer s with

1 < s < n. Then (K/F, σ, d)op is not isomorphic to a nonassociative cyclic algebra.
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Proof. If 1 < s < n then Nucr((K/F, σ, d)) = (K/F, σs, d) and E is a proper intermediate

field of K/F . Thus Nucl((K/F, σ, d)op) = (K/F, σs, d) is unequal to K = Nucl((K/F, σ, d
′))

for any nonassociative cyclic algebra (K/F, σ, d′). (Note that the fact that the middle nucleus

of a nonassociative cyclic algebra is K, so if A is a nonassociative cyclic algebra isomorphic

to (K/F, σ, d)op, A must involve the same field extension K/F .) �

Nonassociative cyclic algebras (and analogously, their opposite algebras) are important

examples of semiassociative (division) algebras that are not semicentral, thus in particular

not homogeneous:

Proposition 3. (i) Every nonassociative cyclic algebra (K/F, σ, d) over F is K-semiassociative

of degree n and thus semiassociative.

(ii) (K/F, σ, d) is split if and only if K = Fn.

(iii) (K/F, σ, d)⊗F K splits.

(iv) [31] Let K/F be a cyclic field extension of degree n. Then (K/F, σ, d) is a division

algebra for all d ∈ K \ F , such that 1, d, . . . , dn−1 are linearly independent over F . If K/F

has prime degree then (K/F, σ, d) is a division algebra for all d ∈ K \ F .

(v) Let K/F be a cyclic field extension, then for all d ∈ K\F , (K/F, σ, d) is not semicentral.

The proof of (i), (ii), (iii) is straightforward employing results from [4] listed in Section

1.2. For n = 2, (i) was already pointed out in [4]. (v) is clear because K = Nuc((K/F, σ, d)).

Remark 4. Let K be an étale algebra of dimension n over F and σ ∈ AutF (K) of order

n. Let f(t) = tn ∈ K[t;σ]. Then Sf = K[t;σ]/K[t;σ]f is an associative algebra over F

which is semiassociative but not simple; the semisimple quotient is K. Abusing notation we

denote it by (K/F, σ, 0) (cf. [4, Remark 3.8] for n = 2).

2.2. Nonassociative generalized cyclic algebras. (for details on the case that B is a

division algebra, cf. [6])

Let B be a central simple algebra over F (i.e., F -central) of degree n, and σ ∈ Aut(B)

such that σ|F has finite order m and for F0 = Fix(σ)∩F assume that F/F0 is a cyclic Galois

field extension of degree m with Gal(F/F0) = 〈σ|F 〉. (This last assumption is automatically

satisfied, if B is a division algebra.)

Definition 2. Let f(t) = tm − d ∈ B[t;σ], d ∈ B×. We call the Petit algebra

(B, σ, d) = B[t;σ]/B[t;σ]f

a nonassociative generalized cyclic algebra over F0.

This definition generalizes the definition of both a nonassociative and an associative

generalized cyclic algebra in [6] (see [12, p. 19] for the associative case), which also assumed

that B is a division algebra.

The algebra (B, σ, d) has dimension m2n2 over F0 and is F0-central. If d ∈ F×0 and B is

a division algebra, then (B, σ, d) is a classical associative generalized cyclic algebra over F0

of degree mn. Indeed, (B, σ, d) is associative if and only if d ∈ F0.
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In particular, if B = F , F/F0 is a cyclic Galois extension of degree m with Galois group

generated by σ and f(t) = tm − d ∈ F [t;σ], we obtain the nonassociative cyclic algebra

(F/F0, σ, d).

Lemma 5. (i) [7] B ⊂ Nucl((B, σ, d)) = Nucm((B, σ, d)) with equality when B is a division

algebra.

(ii) [7] Suppose that d ∈ F \ F0. Then B ⊂ Nucr((B, σ, d)), i.e. B ⊂ Nuc((B, σ, d)) with

equalities when B is a division algebra.

(ii) [4, Remark 3.3] Let K be a maximal étale subalgebra of B of dimension n. Then (B, σ, d)

has the étale algebra K/F0 of dimension mn in its nucleus. (B, σ, d) is a faithful Ke-module,

thus cyclic as a Ke-module.

If B = D is a division algebra over F , then (D,σ, d) is a division algebra over F0 if and

only if f(t) = tm−d ∈ D[t;σ] is irreducible [17, (7)]. We know that f(t) = t2−d ∈ D[t;σ] is

irreducible if and only if σ(z)z 6= d for all z ∈ D, f(t) = t3 − d ∈ D[t;σ] is irreducible if and

only if d 6= σ2(z)σ(z)z for all z ∈ D, and f(t) = t4 − d ∈ D[t;σ] is irreducible if and only if

σ2(y)σ(y)y+σ2(x)y+σ2(y)σ(x) 6= 0 or σ2(x)x+σ2(y)σ(y)x 6= d for all x, y ∈ D (cf. [17, 25],

and [5, Theorem 3.19], [7]). More generally, if F0 contains a primitive mth root of unity and

m is prime then f(t) = tm − d ∈ D[t;σ] is irreducible if and only if d 6= σm−1(z) · · ·σ(z)z

for all z ∈ D ([5, Theorem 3.11], see also [25, Theorem 6]), which generalizes the equivalent

condition in the associative setup.

Lemma 6. Suppose that B contains the maximal étale subalgebra K of dimension n. Then

for all d ∈ F×, (B, σ, d) is a K-semiassociative algebra over F0 of degree mn. (B, σ, d) is

not semicentral.

Proof. If d ∈ F0 then (B, σ, d) is an associative central simple algebra over F0 and trivially

semiassociative. For all d ∈ C(B) = F , d 6∈ F0 we have B ⊂ Nuc((B, σ, d)) and the étale

algebra K/F0 of degree mn lies in Nuc((B, σ, d)). The rest is a straightforward calculation

as well. In particular, since B ⊂ Nuc((B, σ, d)) is an F -central simple algebra, (B, σ, d) is

not semicentral. �

2.3. Menichetti algebras. ([16, 28])

Let K/F be a Galois field extension of F of degree m with Gal(K/F ) = {τ0, . . . , τm−1}.
Let ki ∈ K×, i ∈ 0, . . . ,m− 1, and let

ci,j = k−10 k−11 · · · k
−1
j−1kiki+1 · · · ki+j−1

for all i, j ∈ Zm. Let z0, . . . , z
m−1 be an F -basis of Km and define a multiplication on

(K/F, k0, . . . , km−1) = Km via

(azi) · (buj) = τj(a)b(ui · uj), zi · z0 = z0 · zi = zi for all i ∈ Zm,

and

zi · zj = cjizi+j for all i ∈ Zm \ {0}

for all a, b ∈ K. Then (K/F, k0, . . . , km−1) is a nonassociative unital algebra over F of

dimension m2, called a Menichetti algebra, as the construction generalizes the one in [16].
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Define

M(x0, . . . , xm−1) =



x0 cm−1,1τ1(xm−1) ... c1,m−1τm−1(x1)

x1 τ1(x0) ... c2,m−1τm−1(x2)

x2 c1,1τ1(x1) τ2(x0) c3,m−1τm−1(x3)

... ... ... ...

xm−2 cm−3,1τ1(xm−3) ... cm−1,m−1τm−1(xm−1)

xm−1 cm−2,1τ1(xm−2) ... τm−1(x0)


,

identify x0z0 + · · ·+ xm−1zm−1 with (x0, . . . , xm−1), xi ∈ K, then

(x0, . . . , xm−1) · (y0, . . . , ym−1) = M(x0, . . . , xm−1)(y0, . . . , ym−1)t.

It is easy to see that K ⊂ Nuc((K/F, k0, . . . , km−1)) and that (K/F, k0, . . . , km−1) is a

semiassociative algebra over F that generalizes nonassociative cyclic algebras [28].

2.4. Generalized Menichetti algebras. ([28])

Let D be a central simple algebra over F of degree n. Let σ ∈ Aut(D) such that σ|F
has finite order m, and put F0 = Fix(σ) ∩ F . Assume that F/F0 is a cyclic Galois field

extension of degree m with Gal(F/F0) = 〈σ|F 〉. (This is automatically satisfied, if D is a

division algebra.) Let ki ∈ F×, i ∈ 0, . . . ,m− 1, and

ci,j = k−10 k−11 · · · k
−1
j−1kiki+1 · · · ki+j−1

for all i, j ∈ Zm. Let z0, . . . , z
m−1 be an F0-basis of Dm and define a multiplication on Dm

via

(azi) · (bzj) = σj(a)b(zi · zj),

zi · z0 = z0 · zi = zi for all i ∈ Zm,

zi · zj = cjizi+j for all i ∈ Zm \ {0}

for all a, b ∈ D. This yields a nonassociative unital algebra over F0 of dimension n2m2 that

we denote by (D,σ, k0, . . . , km−1) and call a generalized Menichetti algebra of degree mn.

Its multiplication is given by the matrix

M(x0, . . . , xm−1) =



x0 cm−1,1σ(xm−1) ... c1,m−1σ
m−1(x1)

x1 σ(x0) ... c2,m−1σ
m−1(x2)

x2 c1,1σ(x1) σ2(x0) c3,m−1σ
m−1(x3)

... ... ... ...

xm−2 cm−3,1σ(xm−3) ... cm−1,m−1σ
m−1(xm−1)

xm−1 cm−2,1σ(xm−2) ... σm−1(x0)


for all xi ∈ D. Let E be a maximal étale subalgebra ofD of dimension n. Then (D,σ, k0, . . . , km−1)

has the étale algebra E/F0 of dimension mn in its nucleus. (D,σ, k0, . . . , km−1) is a faithful

Ee-module, thus is cyclic as a Ee-module [4, Remark 3.3] and is a semiassociative algebra

[4].

Let now K/F be a cyclic field extension of degree m with Gal(K/F ) = 〈σ〉. Let D0 be

a central simple algebra over F of degree n, and put D = D0 ⊗F K. Let σ̃ be the unique

extension of σ to D such that σ̃|D0 = idD0 . Then

A = D0 ⊗F (K/F, k0, . . . , km−1) ∼= (D0 ⊗F K, σ̃, k0, . . . , km−1)
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is a nonassociative generalized Menichetti algebra over F of degree mn. Since Nuc(A) =

D0 ⊗Nuc((K/F, k0, . . . , km−1)), we have D ⊂ Nuc(A). A is a semiassociative algebra.

3. The tensor product of an associative algebra and a nonassociative

cyclic algebra

The tensor product of two semiassociative algebras is again a semiassociative algebra.

The special case of tensoring an associative central division algebra and a nonassociative

cyclic division algebra appeared already in the context of constructing space time block codes

[27, 18, 20, 15, 25]. The resulting algebra is a generalized nonassociative cyclic algebra (cf.

[12, p. 36] for the associative setup, where D is assumed to be a division algebra, but the

proof goes through verbatim if not):

Let E/F be a cyclic field extension of degree m with Gal(E/F ) = 〈τ〉. Let D0 be a

central simple algebra over F of degree n, and put D = D0 ⊗F E. Let D1 = (E/F, τ, d) be

a nonassociative cyclic algebra over F of degree m (i.e. c ∈ F× and d ∈ E×), and let τ̃ be

the unique extension of τ to D such that τ̃ |D0
= idD0

. Then

A = D0 ⊗F (E/F, τ, d) ∼= (D0 ⊗F E)[t, τ̃ ]/(D0 ⊗F E)[t, τ̃ ](tm − d) = (D, τ̃ , d)

is a nonassociative generalized cyclic algebra over F of degree mn. Now (E/F, τ, d) is

associative if and only if d ∈ F×, so assume that d ∈ E \ F . Then Nuc((D, τ̃ , d)) =

D0⊗F E = D is a normal algebra over F and D0⊗F (E/F, τ, d) is a semiassociative algebra

over F of degree mn that is not semicentral.

For any maximal étale subalgebra L in D0, K = L ⊗F E ⊂ Nuc(A) is a maximal étale

subalgebra of A of degree mn over F .

Proposition 7. Let H = {γ ∈ Gal(E/F ) | γ(d) = d} = 〈τs〉 for some integer s such that

m = sr.

(i) Let M = Fix(τs). Then

Nucr((D, τ̃ , d)) = D0 ⊗F (K/M,σs, d) ∼= D ⊕Dts ⊕ · · · ⊕Dts(r−1)

with (K/M,σs, d) a cyclic algebra of degree r over M , where [M : F ] = |H|. In particular,

if m is prime then Nucr((D, τ̃ , d)) = D.

(ii) If 1 < s < m, then (D, τ̃ , d)op is not a generalized nonassociative cyclic algebra.

Proof. (i) We have Nucr((D, τ̃ , d)) = D0 ⊗F Nucr((E/F, τ, d)), where Nucr((E/F, τ, d)) is

the cyclic subalgebra (E/M, τ s, d) of degree r over M = Fix(τs). Here, Nucr((K/F, τ, d)) =

(K/M,σs, d) is a cyclic algebra of degree r over M = Fix(τs), and [M : F ] = |H|. In

particular, if m is prime then Nucr((K/F, τ, d)) = D0 ⊗F E = D.

(ii) The proof is straightforward, we just compare the left nuclei. �

Remark 8. (i) Let K be an étale algebra of dimension n over F . Note that the associative

algebra D0 ⊗F (K/F, σ, 0) also is a semiassociative algebra over F0. It is not simple, the

semisimple quotient is D. Abusing notation we denote it by (D0⊗F K,σ, 0) (cf. [4, Remark

3.8] for n = 2).

(ii) The nucleus of (D, τ̃ , d)⊗F (D, τ̃ , d)op is Mn2m2(K), so this algebra is not split.
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In the following, let L/F be a cyclic Galois field extension of degree n with Gal(L/F ) =

〈σ〉. Let K = L⊗F E, then σ and τ canonically extend to K.

Let now D0 = (L/F, σ, c) be an associative cyclic algebra over F and D1 = (E/F, τ, d) be

a nonassociative cyclic algebra over F , i.e. c ∈ F×. Then D = (L/F, σ, c)⊗F E is a central

simple algebra over E of degree n and K/E is a maximal étale subalgebra of D of degree n

(i.e., we also have D ∼= (K/E, σ, c) using our new generalized definition of a cyclic algebra

employing Petit algebras). Then

A = (L/F, σ, c)⊗F (E/F, τ, d)

is a semiassociative algebra over F of degree mn, and if d ∈ E\F then Nuc(A) = D0⊗F E =

D and K = L ⊗F E ⊂ Nuc(A) is a maximal commutative subalgebra of A that is an étale

algebra of degree mn over F (if d ∈ F× then (E/F, τ, d) is associative).

In this case τ̃ is the unique L-linear automorphism of D such that τ̃ |K = τ , i.e. for

x = x0 + x1t+ x2t
2 + · · ·+ xn−1t

n−1 ∈ D (xi ∈ K, 1 ≤ i ≤ n), define

τ̃(x) = τ(x0) + τ(x1)t+ τ(x2)t2 + · · ·+ τ(xn−1)tn−1.

So here τ̃ |E has order m and Fix(τ̃) = F .

Corollary 9. The algebra (L/F, σ, c)⊗F (E/F, τ, d) ∼= (D, τ̃ , d) is a generalized nonassocia-

tive cyclic algebra over F , which is associative if d ∈ F×, and has nucleus D if d ∈ E \ F .

It is K-semiassociative of degree mn and, if it is not associative, it is not semicentral.

Remark 10. The proof of this result is also a straightforward generalization of the proof

[25, Theorem 11] which assumed that D is a division algebra, and that L and E are lin-

early disjoint over F , so that K is a field: the proof that (L/F, σ, c) ⊗F (E/F, τ, d) ∼=
(D, τ̃ , d)D[t; τ̃ ]/D[t; τ̃ ]f where f(t) = tm − d goes through verbatim in our more general

setting, as the whole theory does not depend on these two assumptions (it was originally

developed for space-time block codes which are built from division algebras). Since we look

at the opposite cyclic algebras than the one employed throughout [25, Theorem 11], τ̃−1 in

[25, Theorem 11] in our setup becomes τ̃ . If d ∈ E \ F the algebra has as the nucleus the

central simple algebra D = (L/F, σ, c)⊗F E, and K/F is a maximal étale subalgebra of the

nucleus of degree mn.

Let (E/F, τ, d) be a cyclic associative division algebra of prime degree m. Suppose that

B0 is a central associative algebra over F such that B = B0 ⊗F E is a division algebra. By

a classical result by Jacobson, the tensor product B0 ⊗F (E/F, τ, d) is a division algebra if

and only if d 6= τ̃m−1(z) · · · τ̃(z)z for all z ∈ B ([12, Theorem 1.9.8], see also [1, Theorem

12, Ch. XI]).

This result can be generalized to the tensor product of a cyclic and a nonassociative cyclic

algebra, if the base field contains a suitable root of unity [25]. We now put the main results

from [25] into the context of semiassociative algebras, adjusting them where needed (some

of the algebras studied in [25, Section 3] are the opposite algebras of ours).

The generalization of Jacobson’s condition is a necessary condition for d ∈ E× in our

general nonassociative case as well:
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Proposition 11. [25, Proposition 20] Let D0 = (L/F, σ, c) be an associative cyclic algebra

of degree n over F , such that D = D0 ⊗F E is a division algebra. If D0 ⊗F (E/F, τ, d) is a

division algebra then d 6= zτ̃(z) · · · τ̃m−1(z) for all z ∈ D.

From now on, let L and E be linearly disjoint over F , then K = L ⊗F E = L · E is

the composite of L and E over F , with Galois group Gal(K/F ) = 〈σ〉 × 〈τ〉, and K/E is a

maximal separable subfield of D = (L/F, σ, c)⊗F E of degree n.

Theorem 12. ([25, Theorems 14, 15, 16]) Suppose that D = (L/F, σ, c)⊗F E is a division

algebra, m is prime and in case m 6= 2, 3, additionally that F contains a primitive mth root

of unity.

(i) (L/F, σ, c)⊗F (E/F, τ, d) is a semiassociative division algebra if and only if d 6= zτ̃(z) · · · τ̃m−1(z)

for all z ∈ D, if and only if f(t) = tm − d ∈ D[t; τ̃ ] is irreducible.

(ii) If τ(dn) 6= dn then (L/F, σ, c)⊗F (E/F, τ, d) is a K-semiassociative division algebra of

degree mn with nucleus D.

(iii) If d ∈ E such that dn 6∈ ND/F (D×), then (L/F, σ, c)⊗F (E/F, τ, d) is a K-semiassociative

division algebra of degree mn with nucleus D. In particular, for all d ∈ E \ F with dn 6∈ F ,

(L/F, σ, c)⊗F (E/F, τ, d) is a K-semiassociative division algebra of degree mn.

Theorem 13. [25, Theorem 17] Let F be of characteristic not 2. Let (a, c)F be a quaternion

algebra over F which is a division algebra over E = F (
√
b), and (F (

√
b)/F, τ, d) a nonas-

sociative quaternion algebra over F . Then (a, c)F ⊗F (F (
√
b)/F, τ, d) is a semiassociative

division algebra over F of degree 4 with nucleus (a, c)F (
√
b).

More generally, let B be a central simple algebra over F of degree n, and σ ∈ Aut(B)

such that σ|F has finite order m, F0 = Fix(σ)∩F and F/F0 is a cyclic Galois field extension

of degree m with Gal(F/F0) = 〈σ|F 〉 and d ∈ F×. Let D0 be a central simple algebra over

F0 of degree s, and let σ̃ be the unique extension of σ to D0 ⊗F0
B such that σ̃|D0

= idD0

Then σ̃ has order m over F0, and

D0 ⊗F0
(B, σ, d) ∼= (D0 ⊗B, σ̃, d)

with (D0 ⊗F0
B, σ̃, d) = (D0 ⊗F0

B)[t; σ̃]/(D0 ⊗F0
B)[t; σ̃](tm − d). We get a generalized

nonassociative cyclic algebra of degree mns with D0 ⊗F0
B contained in its nucleus.

4. The semiassociative Brauer monoid

4.1. The classes in Brsa(F ) that contain the homogeneous semiassociative algebras are

determined by the Brauer group and are of the kind [B]sa with B an associative central

simple algebra over F . In particular, if D is an associative F -central division algebra, then

[D]sa is the unique element of minimal degree in the class [D]sa ∈ Brsa(F ) which contains

the homogeneous semiassociative algebras of the kind D ⊗F M , where M is a skew matrix

algebra [4, Example 14.5, Corollary 18.3]. Moreover, if F is a field with nontrivial Brauer

group, then Brsa(F ) has elements [A]sa of infinite order [4, Corollary 20.4]. From the proof

of [4, Corollary 20.4], it is clear that these elements are constructed by finding semiassociative

algebras A, such that σ(A) = F ⊕B, where B is a central division algebra over F of index p,
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so the similarity class [A]sa contains elements that are all semicentral (although the algebras

are not explicitly constructed there).

We now collect some observations on elements in the semiassociative Brauer monoid

Brsa(F ). In particular, Brsa(F ) can be nontrivial even if the classical Brauer group is

trivial, as we can easily conclude from our previous results:

Proposition 14. (i) Let F be a field that has a cyclic Galois field extension K/F of degree

n, Gal(K/F ) = 〈σ〉. Then [F ]sa 6= [(K/F, σ, d)]sa for all d ∈ K \ F and so Brsa(F ) is

nontrivial. Moreover, [(K/F, σ, d)]sa has infinite order in Brsa(F ), i.e. the powers of these

element are distinct.

(ii) Let F be a field that has a Galois field extension K/F of degree n, and (K/F, k0, . . . , km−1)

be any Menichetti algebra that is not associative. Then [F ]sa 6= [(K/F, k0, . . . , km−1)]sa and

so Brsa(F ) is nontrivial, and [(K/F, k0, . . . , km−1)]sa has infinite order in Brsa(F ).

Proof. A semiassociative algebra over F of degree kn is split if and only if F kn is contained

in its nucleus as a unital subalgebra.

(i) Now A = (K/F, σ, d) ⊗F · · · ⊗F (K/F, σ, d) (k-times) has degree kn and nucleus K ⊗F
K⊗F · · ·⊗F K (k-times). If K/F is a cyclic field extension of degree n with Galois group G

then K⊗F K⊗F · · ·⊗F K ∼=
∏
Gk−1 K, where the index set Gk−1 is the (k−1)-fold product

of G. So clearly the étale algebra Fnk−n is a unital subalgebra of the nucleus of A, but F kn

is not.

(ii) (K/F, k0, . . . , km−1) ⊗F · · · ⊗F (K/F, k0, . . . , km−1) has degree kn and nucleus K ⊗F
K ⊗F · · · ⊗F K (k-times), so the assertion follows as in (i). �

Since (K/F, σ, d) is not semicentral for all d ∈ K \ F , it does not lie in the similarity

class of any F -central simple algebra B in Brsa(F ), and if n is prime (or if 1, d, . . . , dn−1 are

linearly independent over F ), then (K/F, σ, d) is always a division algebra, thus is a division

algebra of smallest degree in [(K/F, σ, d)]sa.

Lemma 15. Let K/F be a field extension of degree m and D be a central simple algebra

over F of degree n. Then

[D]sa[(K/F, σ, d)]sa = [(D ⊗F K, σ̃, d)]sa

for all d ∈ K. In particular, for all d ∈ K \ F we have

[(K/F, σ, d)]sa = [(Mn(K), σ̃, d)]sa 6= [F ]sa

and

[D]sa[(K/F, σ, d)]sa = [(Mn(K), σ̃, d)]sa = [(K/F, σ, d)]sa

if K is a splitting field of D.

Moreover, for a generalized nonassociative cyclic algebra (B, σ, d) over F , we have

[D]sa[(B, σ, d)]sa = [(D ⊗F B, σ̃, d)]sa,

where σ̃ is the unique extension of σ to D ⊗F B such that σ̃|D = idD.

For a Menichetti algebra (K/F, k0, . . . , km−1) over F , we have analogously

[D]sa[(K/F, k0, . . . , km−1)]sa = [(D ⊗F K, σ̃, k0, . . . , km−1)]sa
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and for a generalized Menichetti algebra (B, σ, k0, . . . , km−1) over F , we have analogously

[D]sa[(B, σ, k0, . . . , km−1)]sa = [(D ⊗F B, σ̃, k0, . . . , km−1)]sa

for all ki ∈ F , where σ̃ is the unique extension of σ to D ⊗F B such that σ̃|D = idD.

Proof. Since D⊗F (K/F, σ, d) ∼= (D⊗FK, σ̃, d) is a nonassociative generalized cyclic algebra

over F of degree nm, we obtain

[D]sa[(K/F, σ, d)]sa = [(D ⊗F K, σ̃, d)]sa = [M2(F )]sa[(K/F, σ, d)]sa = [(K/F, σ, d)]sa

for all d ∈ K \F . In particular, Mn(F )⊗F (K/F, σ, d) ∼= (Mn(K), σ̃, d) has nucleus Mn(K).

The maximal étale F -algebra in its nucleus is Kn. This yields the assertion that [F ]sa 6=
[(Mn(K), σ̃, d)]sa = [Mn(F )]sa[(K/F, σ, d)]sa = [(K/F, σ, d)]sa. The rest is clear. �

Theorem 16. Let A and A′ be two semiasssociative algebras over F .

(i) Let Nuc(A) = K and Nuc(A′) = L be two field extensions of F . If [A]sa = [A′]sa ∈
Brsa(F ) then K ∼= L.

(ii) Let A and A′ have a simple nucleus N , respectively N ′, where N is an E-central simple

algebra and N ′ is an E′-central simple algebra, with E and E′ some separable field extensions

of F . If [A]sa = [A′]sa ∈ Brsa(F ) then E ∼= E′ and [N ] = [N ′] ∈ Br(E).

Proof. Since A ∼ A′ we have A⊗F Mn(F ; c) ∼= A′ ⊗F Ms(F ; c′) for suitable skewed matrix

algebras Mn(F ; c), Ms(F ; c′). From σ(A⊗F Mn(F ; c)) ∼= σ(A′ ⊗F Ms(F ; c′)) it follows that

σ(A)⊗Fσ(Mn(F ; c)) ∼= σ(A′)⊗Fσ(Ms(F ; c′)) by [4, Proposition 13.5]. Now σ(Mn(F ; c)) and

σ(Ms(F ; c′)) are sums of matrix algebras over F whose degrees sum up to n, respectively to s:

σ(Mn(F ; c)) ∼= Mn1
(F )⊕· · ·⊕Mnr

(F ), respectively σ(Ms(F ; c′)) ∼= Ms1(F )⊕· · ·⊕Msj (F ).

(i) Since K and L are fields we have Nuc(A) = K = σ(K) and Nuc(A′) = L = σ(L). We

obtain Mn1(K)⊕· · ·⊕Mnr (K) ∼= Ms1(L)⊕· · ·⊕Msj (L). These decompositions are unique

up to permutations of summands, so r = j and K ∼= L.

(ii) Here, J(Nuc(A)) = J(Nuc(A′)) = 0 and so N = Nuc(A) = σ(A) and N ′ = Nuc(A′) =

σ(A′) and the above argument yields Mn1
(N)⊕ · · · ⊕Mnr

(N) ∼= Ms1(N ′)⊕ · · · ⊕Msj (N ′).

These decompositions are unique up to permutations of summands, so r = j and Mn1
(N) ∼=

Mnt(N
′) for some t, where N is an E-central simple algebra and N ′ is an E′-central simple

algebra, with E and E′ some separable field extensions of F . This implies that E ∼= E′ as

both algebras must have the same center. Moreover, then [N ] = [N ′] ∈ Br(E).

�

In particular, if K/F and L/F are two cyclic field extensions and [(K/F, σ, d)]sa =

[(L/F, τ, d′)]sa then K = L. It is an open and seemingly non-trivial problem, if two non-

isomorphic cyclic algebras (K/F, σ, d) and (K/F, σ, d′) which are both not associative, can

lie in the same similarity class in Brsa(F ).

Corollary 17. (i) Let K/F and L/F be two cyclic field extensions and (K/F, σ, d), (L/F, σ′, d′)

be two nonassociative cyclic algebras. If K and L are not isomorphic then [(K/F, σ, d)]sa 6=
[(L/F, σ′, d′)]sa in Brsa(F ).

(ii) Let Nuc(A) = K be a field extension of degree n and Nuc(A′) = D an F -central algebra

of degree m ≥ 2. Then [A]sa 6= [A′]sa in Brsa(F ).
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(iii) Let D0, D′0 be two central simple algebras, and A = D0 ⊗F (E/F, τ, d) ∼= (D, τ̃ , d)

and B = D′0 ⊗F (E′/F, τ ′, d′) ∼= (D′, τ̃ ′, d′) with E/F , E′/F two separable field exten-

sions and d ∈ E \ F , d′ ∈ E′ \ F . If [A]sa = [A′]sa ∈ Brsa(F ) then E ∼= E′ and

[D0 ⊗F E] = [D′0 ⊗F E] ∈ Br(E).

Proof. (i) is clear.

(ii) The analogous argument as in Theorem 16 (i) and (ii) shows that if [A]sa = [A′]sa ∈ Brsa,

then Mn1
(K) ⊕ · · · ⊕Mnr

(K) ∼= Ms1(D) ⊕ · · · ⊕Msj (D) implies Mn1
(K) ∼= Mntb(D0) for

some b, t and some F -central division algebra D0, a contradiction.

(iii) Since d ∈ E \ F and d′ ∈ E′ \ F , we have Nuc((D, τ̃ , d)) = D0 ⊗F E = D, and

Nuc((D′, τ̃ ′, d′)) = D′0 ⊗F E′ = D′, therefore [(D, τ̃ , d)]sa = [(D′, τ̃ ′, d′)]sa implies [D0 ⊗F
E] = [D′0 ⊗F E′] ∈ Br(E) by Theorem 16 (iii). �

Proposition 18. Let (Ki/F, σi, di) be nonassociative cyclic algebras of degree ni which are

all not associative (i.e., di ∈ K \ F ), i = 1, . . . , r, and let

A = (K1/F, σ1, d1)⊗F · · · ⊗F (Kr/F, σr, dr)

be their tensor product (which is a semiassociative algebra of degree n1 · · ·nr).

(i) The nucleus of A is the étale algebra E = K1 ⊗F · · · ⊗F Kr.

(ii) A is split if and only if E is a split étale algebra.

(iii) If K1, . . . ,Kr are linearly disjoint field extensions over F (e.g. all of different prime

degrees) then A is a semiassociative algebra of degree n1 · · ·nr with nucleus the field extension

E/F of degree n1 · · ·nr. In particular, A is not semicentral.

(iv) If A is a division algebra then K1, . . . ,Kr are linearly disjoint field extensions over F

and E/F is a field extension of degree n1 · · · dr. In particular, A is not semicentral.

The proof is trivial, employing previously mentioned results from [4].

Mirrowing the classical setup, the semiassociative Brauer monoid of an algebraically

closed field is trivial, Brsa(C) = 1 [4, Example 14.5], and any semiassociative algebra over

C splits.

4.2. Brsa(R). It is well-known that Br(R) = {[R], [H]} is a cyclic group of order 2; and

H ⊗R H ∼= M4(R). Therefore the two classes in Brsa(R) that contain the homogeneous

semiassociative algebras are [R]sa and [H]sa.

Up to isomorphism, every nonassociative simple algebra of dimension 4 with C as its

nucleus is a nonassociative quaternion algebra [33] (ote that (C/R, , 0) is semiassociative,

even associative, but not simple). For every a ∈ C\R, the nonassociative quaternion algebra

(C/R, , a) is a semiassociatve division algebra over R of degree two that is not semicentral,

and [(C/R, , a)]sa has infinite order in Brsa(R). The class [(C/R, , a)]sa thus contains

algebras that are not semicentral and (C/R, , a) is a division algebra of smallest degree in

[(C/R, , a)]sa. We know that for a, b ∈ C \R, we have (C/R, , a) ∼= (C/R, , b) if and only

if there is x ∈ R such that either a = x2b or ā = x2b [33]. It is not clear, however, if two

nonisomorphic quaternion division algebras can lie in the same similarity class in Brsa(R).

Furthermore, for all d ∈ C \ R we have

[H]sa[(C/R, , d)]sa = [(M2(C), ˜, d)]sa 6= [R]sa,
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[Mn(R)]sa[(C/R, , d)]sa = [Mn(C), ˜, d)]sa,

so that

[H]sa[(C/R, , d)]sa = [(M2(C), ˜, d)]sa = [M2(R)]sa[(C/R, , d)]sa = [(C/R, , d)]sa.

4.3. Brsa(Fq). The Brauer group Br(Fq) is trivial. Therefore the only class in Brsa(Fq)
that contains homogeneous semiassociative algebras is the trivial class [Fq]sa = [Mn(Fq; c)]sa

with Mn(Fq; c) a skew matrix algebra over F . The semiassociative Brauer monoid Brsa(Fq)
is not trivial:

For each finite field extension K/Fq of degree n, there exist simple nonassociative cyclic al-

gebras (K/Fq, σ, a) of degree n, with nucleus K if a ∈ K\Fq. Two such algebras (K/Fq, σ, a)

and (K ′/Fq, σ′, a′) will automatically be nonisomorphic for two nonisomorphic field exten-

sions K and K ′, and are not semisimple.

Here, [Mn(Fq)]sa[(K/Fq, σ, d)]sa = [(Mn(K), σ̃, d)]sa, i.e. [(K/Fq, σ, d)]sa = [(Mn(K), σ̃, d)]sa.

There also exist large classes of semifields, e.g. Menichetti algebras, to name just one,

that are all semiassociative.

5. Algebras that are not semiassociative

Semiassociative algebras over F may be defined in terms of simple subalgebras of the

nucleus whose center is separable over F [4, Section 5]. This excludes nonassociative algebras

that have nuclei that are simple subalgebras but whose centers are (purely) inseparable over

F , so may create restrictions when char(F ) = p is prime. The definition of semiassociative

algebras in particular also excludes algebras that have a purely inseparable field extension

as their nucleus. This avoids problems when tensoring these algebras, as the tensor product

of two field extensions that are not both separable may

An example of such algebras are nonassociative algebras of square dimension that are a

canonical generalization of cyclic p-algebras, and of Amitsur’s differential algebras ([2, 3, 11],

[12, Sections 1.5, 1.8, 1.9]). Their nucleus is a purely inseparable field extension of F :

5.1. Nonassociative differential extensions of a field. LetK be a field of characteristic

p together with a algebraic derivation δ : K → K of K of degree p with minimum polynomial

g(t) = tp− t ∈ F [t], where F = Const(δ) = {a ∈ K | δ(a) = 0}. Put R = K[t; δ]. Then K/F

is a purely inseparable extension of exponent one, and [K : F ] = p. Let f(t) = tp − t− d ∈
K[t; δ], then the nonassociative F -central algebra

(K, δ, d) = K[t; δ]/K[t; δ]f

has dimension p2 and is called a (nonassociative) differential extension of K. (K, δ, d) is

associative if and only if d ∈ F , and is a division algebra if and only if f ∈ K[t; δ] is

irreducible. If it is not associative, then (K, δ, d) has nucleus K [24].

If f ∈ F [t] then (K, δ, d) is an associative central simple algebra over F , and K is a

maximal subfield of (K, δ, d) of dimension p [12, p. 23]. If f ∈ F [t] is irreducible, then

(K, δ, d) contains the cyclic separable field extension F [t]/(tp − t− d) of degree p, so can be

seen as a canonical generalization of a cyclic p-algebra.
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However, for d ∈ K \ F , (K, δ, d) is not semiassociative as its nucleus is the purely

inseparable field extension K/F of degree p.

The simple K-algebra (K, δ, d) ⊗F K contains the simple truncated polynomial algebra

K ⊗F K in its nucleus, and is called a split differential extension.

—-

A semiassociative algebra of degree n is split if and only if Fn is a unital subalgebra of

the nucleus . If K is a field that splits an étale subalgebra in the nucleus of an n-dimensional

semiassociative algebra A of degree n, and F is an infinite field, then K splits A [4, Theorem

7.1].

5.2. Nonassociative differential extensions of a division algebra. There are classes

of algebras over F that have a central simple algebra D over a field C as their nucleus, but

the field extension C/F is purely inseparable of degree p, so the center C of D is purely

inseparable over F [24]:

Let C be a field of characteristic p and D be a central simple algebra over C of degree

n (D = C is allowed and brings us back to the setup of the previous section). Let δ be

a derivation of D, such that δ|C is algebraic with minimum polynomial g(t) = tp − t, and

let F = Const(δ). Assume that g(δ) = idd0 is an inner derivation of D and that there

exists d0 ∈ F so that δ(d0) = 0 (this is always possible if D is a division algebra [12,

Lemma 1.5.3]). The center of R = D[t; δ] is F [z] with z = g(t) − d0. For all a ∈ C, define

V (a) = Vg(a) = Vp(a) − a. Then V : C → F is a homomorphism of the additive groups C

and F [13].

For all f(t) = tp − t− d ∈ D[t; δ], the nonassociative unital F -algebra defined as

(D, δ, d) = Sf = D[t; δ]/D[t; δ]f(t)

has dimension p2n2 over F and is called a nonassociative generalized differential algebra.

For d ∈ F , (D, δ, d) = D[t; δ]/D[t; δ]f(t) is a central simple algebra over F (cf. [12, p. 23] if

D is a division algebra, Amitsur’s associative differential extensions of division rings D were

generalized to simple rings D already in [14]).

Indeed, (D, δ, d) is an associative algebra if and only if d ∈ F [24, Theorem 20].

For d ∈ C \ F we have D = Nuc((D, δ, d)) (this follows from the corrected version of [24,

Lemma 19], which implies that D ⊂ Nuc((D, δ, d))). Thus every maximal étale subalgebra

N of D/C also lies in the nucleus and has dimension pn as algebra over F . As an algebra

over F , N is the product of finite dimensional field extensions that are each of the type

Ni/F , where we have a tower of field extensions F ⊂ C ⊂ Ni, such that Ni/C is separable

of degree n and C/F purely inseparable of exponent one. This means we can write every Ni

as a tensor product Ni = Si⊗F C, where Si is the maximal separable subfield of Ni/F [12, p.

32], and obtain that N = N1×· · ·×Nr = (S1⊗F C)×· · ·×(Sr⊗F C) = (S1×· · ·×Sr)⊗F C
is an étale algebra S1 × · · · × Sr over F tensored over F with the purely inseparable field

extension C/F of exponent one.

When D is a division algebra then (D, δ, d) is a division algebra if and only if f is

irreducible, if and only if d 6= Vp(z)− z for all z ∈ D, if and only if d 6= (t− z)p − tp − z for

all z ∈ D.
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If d ∈ C\F , then the differential algebra (C, δ|C , d) is a subalgebra of (D, δ, d) of dimension

p2.

If f(t) = tp − t− d ∈ F [t] is irreducible, then (D, δ, d) contains the cyclic field extension

F [t]/(tp − t− d) of dimension p over F as a subfield.

Let F be a field of characteristic p and D be a central simple algebra over F of degree n.

Let K/F be a purely inseparable extension of exponent one such that [K : F ] = p. Let δ be

a derivation on K such that F = Const(δ), such that δ is an algebraic derivation of degree

p with minimum polynomial g(t) = tp − t ∈ F [t] of degree p. Let δ be the extension of δ to

DK such that δ|D = 0. Then (K, δ, d) ⊗F D ∼= (DK , δ, d) is an algebra of dimension n2p2

over F .

In particular, if DK = D ⊗F K is a division algebra and (K, δ, d) is a division algebra

over F , then (K, δ, d)⊗F D ∼= (DK , δ, d) is a division algebra if and only if f(t) = tp − t− d
is irreducible in DK [t; δ], if and only if d 6= Vp(z) − z for all z ∈ DK , if and only if d 6=
(t− z)p − tp − z for all z ∈ DK [24].

Remark 19. [24, Theorem 23] Let F have characteristic 3, and δ have minimum polynomial

g(t) = t3−ct ∈ F [t]. Then for f(t) = t3−ct−d ∈ C[t; δ], (D, δ, d) is a unital algebra over F of

dimension 9, and a division algebra if and only if V3(z)−cz 6= d and V3(z)−zc−d+δ(c) 6= 0

for all z ∈ D. (D, δ, d) is associative if and only if d ∈ F .

6. Outlook

While there are good reasons to use the existing definition of Brsa(F ) (it is the broadest

possible one if we want to use Brauer factor sets), we believe it makes sense to discuss (i)

a possible refinement of the semiassociative Brauer monoid to include only simple semias-

sociative algebras in any characteristic, and (ii) a possible generalization of Brsa(F ) that

allows up to include nonassociative differential algebras, if the base field F is not perfect

and has characteristic p:

(i) If we only consider the simple semiassociative algebras we exclude pathological cases like

the associative algebras (K/F, σ, 0). The simple semiassociative algebras form a submonoid

of Brsa(F ) that still contains Br(F ) as unique maximal subgroup.

(ii) Suppose we want include generalized differential extensions in the definition of the Brauer

monoid. Let A be an F -central nonassociative algebra over F of dimension l2, char(F ) = p.

We call A a generalized semisassociative algebra, if its nucleus contains a tensor product

N = N1 ⊗F · · · ⊗F Ns of finite field extensions Ni/F such that dimFN = l, with Ni either

separable or purely inseparable of exponent one and Ni/F primitive of the kind Ni = F [x] for

xpi = a ∈ F . If all Ni/F are separable then N is an étale algebra over F and we additionally

require that A is cyclic and faithful as N ⊗N -module, so that A is semiassociative.

The root of the dimension of A is again called the degree of A.

Two generalized semiassociative algebras A and B over F are called Brauer equivalent,

if there exist skew matrix algebras Mn(F ; c) and Mm(F ; c′) such that A ⊗F Mn(F ; c) ∼=
B ⊗F Mm(F ; c′). This is an equivalence relation, as [4, Remark 6.9] still holds. We denote

the equivalence class of a generalized semiassociative algebra A by [A]gsa and the monoid of

equivalence classes by Brgsa(F ).
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Note that every finite purely inseparable field extension of exponent one is a tensor

product of primitive extensions F [x1]⊗ · · · ⊗ F [xr], where xpi − ai = 0. Also note that if N

is purely inseparable of exponent one, then N ⊗N is a truncated polynomial algebra that

is isomorphic to F [G] for a finite abelian p-group G [8]. This means that our N is always

the tensor product of an étale algebra over F (the “separable part”) and another algebra

(the “inseparable part”). This inseparable part is either a purely inseparable field extension

of F of exponent one, an F -algebras F [G], or a tensor product of an F -algebra F [G] and a

purely inseparable field extension of F of exponent one.

Let A be a generalized semiassociative algebra of degree n with N ⊂ Nuc(A), N =

N1 ⊗F · · · ⊗F Ns of dimension n over F , with finite field extensions Ni/F where Ni either

separable or purely inseparable and primitive of exponent one. Then A is called split,

if N ∼= E ⊗F F [G], where E/F is a split étale algebra, and F [G] is a simple truncated

polynomial algebra (G an abelian p-group). We allow here that E = F or F [G] = F . A

finite-dimensional field extension E/F splits A, if N⊗F E ∼= S⊗EE[G] for a suitable abelian

p group G, and an étale algebra S over E. We also note that if N = N1⊗F N2 is the tensor

product of a separable and a purely inseparable extension of exponent one, then N is a finite

field extension, as these are linearly disjoint over F .

Let A be a generalized semiassociative algebra with K = Nuc(A) a purely inseparable

field extension of exponent one. Then a finite-dimensional field extension E/F splits A, if

K⊗F E is a simple truncated polynomial algebra, which is the case if and only if F ⊂ K ⊂ E
is an intermediate field. In particular, K splits (K, δ, d). For the nonassociative generalized

differential algebra (D, δ, d) we know that if K is a purely inseparable splitting field of the C-

central simple algebra D, then (D, δ, d)⊗FK ∼= (Mn(K), δ, d) is a generalized semiassociative

algebra over K whose nucleus contains the K-algebra K ⊗F K ∼= F [G], but the algebra is

not split, as the dimension of F [G] is too small.

Moreover, for every central simple algebra D over F , we have D⊗F (K, δ, d) ∼= (DK , δ, d),

so if K is a purely inseparable splitting field of D, then D ⊗F (K, δ, d) ∼= (Mn(K), δ, d),

which is, however, not a split algebra over F .

Let D be a p-algebra of degree ps with maximal separable splitting field E and purely

inseparable simple splitting field L of degree pf ≤ pe or degree ps (so D is cyclic). Then

D ⊗F (K, δ, d) ∼= (D ⊗F K, δ, d) contains the field extension E ⊗F K ⊂ D ⊗F K of degree

psp = pe+1 and the algebra L ⊗F K ⊂ D ⊗F K in its nucleus. Here, L ⊗F K is either a

finite purely inseparable field extension of exponent one, or - if L = K - an algebra F (G).

In the later case, we get D ⊗F (K, δ, d) ∼= (Mps(K), δ, d).

Alternatively, we could define Brgsa(F ) as the submonoid of the above generalized one

that is generated by Brsa(F ) and the algebras (D, δ, d) and (K, δ, d), and call the resulting

algebras generalized semiassociative algebras.

In either case, we obtain that

[(K, δ, d)]gsa[D]gsa = [(DK , δ, d)]gsa,

in particular [(K, δ, d)]gsa = [(K, δ, d)]gsa[Mn(F )]gsa = [(Mn(K), δ, d)]gsa. Furthermore, if

D is a p-algebra of degree ps and K is a finite-dimensional purely inseparable splitting field
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of D then

[(K, δ, d)]gsa[D]gsa = [(Mps(K), δ, d)]gsa.

It would be interesting to explore other relations.
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