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Abstract. Using a conic (= degree-2) algebra B over an arbitrary commutative

ring, a scalar µ and a linear form s on B as input, the non-orthogonal Cayley-Dickson

construction produces a conic algebra C := Cay(B;µ, s) and collapses to the standard
(orthogonal) Cayley-Dickson construction for s = 0. Conditions on B,µ, s that are

necessary and sufficient for C to satisfy various algebraic properties (like associativity

or alternativity) are derived. Sufficient conditions guaranteeing non-singularity of C
even if B is singular are also given. As an application we show how the algebras of

Hurwitz quaternions and of Dickson or Coxeter octonions over the rational integers

can be obtained from the non-orthogonal Cayley-Dickson construction.
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1. Introduction

The arithmetic background of the present paper is dominated by the E8-lattice, the
unique indecomposable unimodular positive definite quadratic lattice of rank 8 over the
integers that has recently come to the fore again when Viazovska [19] proved that the
densest sphere packing of eight-dimensional euclidean space is the E8-lattice sphere pack-
ing, having density π4/384. Our aim here is much more modest, focusing instead on a
discovery attributed to Coxeter [2] (see also Pumplün [17]), but originally due to Dickson
[3], to the effect that the E8-lattice carries the structure of an octonion algebra over the
integers whose generic fiber is the unique octonion division algebra over the rationals.

Working over an arbitrary commutative associative ring of scalars, our principal ob-
jective in this paper will be to describe an elementary, purely algebraic formalism, called
the non-orthogonal Cayley-Dickson construction, that, among other things, provides an
intrinisc approach to the Dickson and Coxeter octonions once the appropriate specifica-
tions have been made, see §9 below for details. This formalism, generalizing the classical
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Cayley-Dickson construction, one of the most versatile tools in all of non-associative alge-
bra, has been investigated before by Garibaldi-Petersson [5, §4] under the more restrictive
condition of a base field having characteristic 2.

The classical Cayley-Dickson construction starts from what we call a conic algebra B
(see 2.1 for the precise definition) and a scalar µ in the base ring as input to produce
a new conic algebra as output, which we denote by C := Cay(B,µ). One of the many
interesting features of this construction is that, by passing from B to C we are bound
to lose a considerable amount of algebraic information, but we will do so in a controlled
manner. The usefulness of its non-orthogonal counterpart hinges on the question of
whether the same amount of control can be guaranteed also under these more general
circumstances. The bulk of the present work is devoted to answering this question in
the affirmative. Unfortunately, we are able to achieve this objective only by an excessive
amount of horrendous computations.

More specifically, the input of the non-orthogonal Cayley-Dickson construction, beside
the data B,µ as above, consists of a linear form s acting on B, while the output is again
a conic algebra, denoted by C := Cay(B;µ, s). The main task we address ourselves
to will then be to find conditions in terms of B,µ, s that are necessary and sufficient
for the algebra C to be respectively commutative, associative or alternative. While the
restrictions on B and µ are to be expected from the orthogonal case, it is the ones on s
that make our investigation delicate and cumbersome. We refer to §§4–7 for details.

Throughout this paper, we fix an arbitrary commutative ring denoted by k. All k-
algebras are assumed to be non-associative; their module structure is arbitrary

2. Conic algebras

In this section, we define the notion of a conic algebra and recall some of its most
useful properties. Our main reference is [16].

2.1. The concept of a conic algebra. Adopting the terminology of Loos [10], we
define a conic algebra over k, more commonly known under the name algebra of degree 2
(McCrimmon [12]) or quadratic algebra (Osborn [15]), as a unital k-algebra C together
with a quadratic form nC : C → k, by abuse of language called the norm of C, such that
nC(1C) = 1 and

x2 − tC(x)x+ nC(x)1C = 0

for all x ∈ C. Here tC : C → k is the trace of C defined as the linear form x 7→ nC(1C , x),
where

(x, y) 7→ nC(x, y) := nC(x+ y)− nC(x)− nC(y)

stands for the bilinearization of nC . We then define the conjugation of C as the map

ιC : C −→ C, x 7−→ x̄ := tC(x)1C − x,

which is linear of period 2 but will fail in general to be an (algebra) involution.
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2.2. Basic identities. The following identities by [16, 18.5] hold in arbitrary conic al-
gebras .

x2 = tC(x)x− nC(x)1C ,(1)

tC(x) = nC(1C , x),(2)

nC(1C) = 1, tC(1C) = 2,(3)

x̄ = tC(x)1C − x, 1̄C = 1C , x = x,(4)

x ◦ y : = xy + yx = tC(x)y + tC(y)x− nC(x, y)1C ,(5)

xx̄ = nC(x)1C = x̄x, x+ x̄ = tC(x)1C ,(6)

nC(x̄) = nC(x), tC(x̄) = tC(x),(7)

tC(x2) = tC(x)2 − 2nC(x),(8)

tC(x ◦ y) = tC(xy) + tC(yx) = 2[tC(x)tC(y)− nC(x, y)],(9)

nC(x, ȳ) = tC(x)tC(y)− nC(x, y),(10)

xy − ȳx̄ =
(
tC(x, y)− nC(x, ȳ)

)
1C .(11)

2.3. Norm-associative conic algebras. Let C be a conic algebra over k as in 2.1. By
[16, Prop. 18.10, (18.11.1)], the following (collections of) identities are all equivalent in
C.

nC(x, yx) = tC(y)nC(x),(1)

nC(x, xy) = tC(y)nC(x),(2)

nC(xy, z) = nC(x, zy),(3)

nC(xy, z) = nC(y, xz),(4)

tC(xy) = nC(x, y) = tC(x)tC(y)− nC(x, y) = tC(yx), tC
(
(xy)z

)
= tC

(
x(yz)

)
.(5)

If they are fulfilled, C is said to be norm-associative. By [16, Prop. 18.12], norm-
associative conic algebras are flexible, and their conjugations are (algebra) involutions.

2.4. Multiplicative conic algebras. Following [16, 19.1], a conic algebra C over k is
said to be multiplicative if its norm permits composition: nC(xy) = nC(x)nC(y) for all
x, y ∈ C. By [16, 19.2 (a)], multiplicative conic algebras are norm-associative.

2.5. Conic alternative algebras. Let C be a conic alternative k-algebra, so C is a
conic algebra satisfying the alternative laws. By [16, (19.3.2)], the U -operator of C
satisfies the identity

Uxy = xyx = nC(x, ȳ)x− nC(x)ȳ.(1)

Note by [16, Exc. 68] that conic alternative algebras will in general not be multiplicative,
though they are if the underlying module is projective [16, Prop. 19.5].

2.6. The classical Cayley-Dickson construction. Let B be any conic algebra over
k and µ ∈ k an arbitrary scalar. We define a k-algebra C on the direct sum B ⊕ Bj of
two copies of B as a k-module by the multiplication

(u1 + v1j)(u2 + v2j) := (u1u2 + µv̄2v1) + (v2u1 + v1ū2)j,

for ui, vi ∈ B, i = 1, 2, and a quadratic form nC : C → k by

nC(u+ vj) := nB(u)− µnB(v) (u, v ∈ B).

C together with nC is a conic k-algebra and is said to arise from B,µ by means of the
Cayley-Dickson construction, written as Cay(B,µ) in order to indicate dependence on
the parameters involved. Note that 1C = 1B + 0 · j is an identity element for C and
that the assignment u 7→ u + 0 · j gives an embedding, i.e., an injective homomorphism,
B ↪→ C of conic k-algebras, allowing us to identify B ⊆ C as a conic subalgebra.
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3. Elementary properties of the non-orthogonal Cayley-Dickson
construction

To the best of our knowledge, the first examples of a non-orthogonal Cayley-Dickson
construction are due to Pumplün [17] and work over an integral domain whose quotient
field has characteristic not 2 by using bases and structure constants closely modeled
after the Coxeter octonions [2]. Roughly speaking, the non-orthogonal Cayley-Dickson
construction proposed in the present paper formalizes the most general way in which a
given conic algebra sits in a multiplicative alternative one as a unital subalgebra. The
details of this formalization may be read off from the following observation.

3.1. Proposition. (The internal construction) Let C be a multiplicative conic alternative
k-algebra, B a unital subalgebra of C and l ∈ C. Then the subalgebra C ′ of C generated
by B and l agrees with B + Bl as a k-submodule. More precisely, writing s : B → k for
the linear form defined by

s(u) := nC(u, l) (u ∈ B)(1)

and setting

λ := s(1C) = tC(l) ∈ k, µ := −nC(l) ∈ k,(2)

the relations

(vl)u = − s(u)v + λvu+ (vū)l,(3)

u(vl) = − s(v̄u)1B + s(u)v + s(v̄)u− λvu+ (vu)l,(4)

u ◦ (vl) = − s(v̄u)1B + s(v̄)u+ tB(u)vl,(5)

(v1l)(v2l) =
(
− λs(v̄2v1)1B + λs(v1)v2 + λs(v̄2)v1 − λ2v2v1 + µv̄2v1

)
(6)

+
(
s(v̄2v1)1B − s(v1)v2 + λv2v1

)
l,

nC(u+ vl) = nB(u) + s(v̄u)− µnB(v)(7)

hold for all u, u1, u2, v, v1, v2 ∈ B.

Proof. Firstly, we simplify notation by writing n := nC (resp. t := tC) for the norm
(resp. trace) of C. Secondly, we note that the first assertion will follow once we have
established the identities (3)−(7). In order to do so, we begin with (5) and, applying
(2.2.5), (2.2.7), (2.3.4), (2.3.5), (1), obtain u ◦ (vl) = t(u)(vl) + t(vl)u − n(u, vl)1B =
t(u)(vl) + n(v̄, l)u − n(v̄u, l)1B = t(u)(vl) + s(v̄)u − s(v̄u)1B , giving (5). Next we use
right alternativity linearized to compute (vl)u+(vu)l = v(l◦u) = t(l)vu+t(u)vl−n(u, l)v,
which implies

(vl)u = t(l)vu+
(
v
[
t(u)1B − u

])
l − n(u, l)v = −s(u)v + λvu+ (vū)l,

hence (3). Subtracting (3) from (5) gives (4). Now we proceed to derive (6). Combining
(5) with the middle Moufang identity and (2.5.1), we obtain

(v1l)(v2l) = (v1 ◦ l)(v2l)− (lv1)(v2l) =
(
− s(v1)1B + λv1 + t(v1)l

)
(v2l)− l(v1v2)l

= t(v1)lv2l + λv1(v2l)− s(v1)(v2l)− l(v1v2)l

= l(v̄1v2)l + λv1(v2l)− s(v1)(v2l)

= n(l, v̄2v1)l − n(l)v̄2v1

+ λ
(
− s(v̄2v1)1B + s(v1)v2 + s(v̄2)v1 − λv2v1 + (v2v1)l

)
− s(v1)(v2l)

= s(v̄2v1)l − s(v1)(v2l) + µv̄2v1

− λs(v̄2v1)1B + λs(v1)v2 + λs(v̄2)v1 − λ2v2v1 + λ(v2v1)l,

and this is (6). It remains to establish (7). This follows immediately from multiplicativity,
(2.3.4), (1), (2) and the expansion n(u+vl) = n(u)+n(u, vl)+n(v)n(l) = n(u)+s(v̄u)−
µn(v). �
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3.2. The external construction. Let B be a conic k-algebra, s : B → k an arbitrary
linear form and µ ∈ k an arbitrary scalar. Motivated by the formulas derived in Prop. 3.1,
we put

λ := s(1B)(1)

and write

C := Cay(B;µ, s) := B ⊕Bj(2)

for the non-associative k-algebra living on the direct sum of two copies of B as a k-module
under a bilinear multiplication uniquely determined by the condition that the k-module
B, identified in C through the initial summand, is a subalgebra and the equations

u(vj) =
(
− s(v̄u)1B + s(u)v + s(v̄)u− λvu

)
+ (vu)j,(3)

(vj)u =
(
− s(u)v + λvu

)
+ (vū)j,(4)

(v1j)(v2j) =
(
− λs(v̄2v1)1B + λs(v1)v2 + λs(v̄2)v1 − λ2v2v1 + µv̄2v1

)
(5)

+
(
s(v̄2v1)1B − s(v1)v2 + λv2v1

)
j

hold for all u, v, v1, v2 ∈ B. One checks immediately that the k-algebra C is unital, with
unit element 1C := 1B , so the subalgebra B ⊆ C is, in fact, unital.

3.3. Proposition. Under the assumptions and notation of 3.2, C = Cay(B;µ, s) is a
conic k-algebra with unit element, norm, bilinearized norm, trace, conjugation respectively
given by

1C = 1B ,(1)

nC(u+ vj) = nB(u) + s(v̄u)− µnB(v),(2)

nC(u1 + v1j, u2 + v2j) = nB(u1, u2) + s(v̄2u1) + s(v̄1u2)− µnB(v1, v2),(3)

tC(u+ vj) = tB(u) + s(v̄),(4)

u+ vj = ū+ s(v̄)1B − vj(5)

for all u, u1, u2, v, v1, v2 ∈ B. We also have

u ◦ (vj) =
(
− s(v̄u)1B + s(v̄)u

)
+
(
tB(u)v

)
j(6)

for all u, v ∈ B.

Proof. We have seen already in 3.2 that C is unital and (1) holds. Moreover, (2) defines
a quadratic form nC on C whose bilinearization is given by (3), and tC := nC(1C ,−)
satisfies (4). Adding (3.2.3) to (3.2.4), we arrive at (6). Hence, using (3.2.5), we may
compute

(u+ vj)2 = u2 + u ◦ (vj) + (vj)2

= tB(u)u− nB(u)1B − s(v̄u)1B + s(v̄)u+
(
tB(u)v

)
j − λ2nB(v)1B

+ λ2tB(v)v − λ2v2 + µnB(v)1B +
(
λnB(v)1B − s(v)v + λv2

)
j

= tB(u)(u+ vj) + s(v̄)u+
(
λtB(v)− s(v)

)
(vj)

−
(
nB(u) + s(v̄u)− µnB(v)

)
1B

=
(
tB(u) + s(v̄)

)
(u+ vj)− nC(u+ vj)1C

= tC(u+ vj)(u+ vj)− nC(u+ vj)1C .

Thus C is a conic k-algebra with norm, bilinearized norm and trace as indicated. Finally,
the formula for the conjugation of C is now obvious. �
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3.4. Examples. In the situation of 3.2, 3.3, the conic algebra Cay(B;µ, s) over k
is said to arise from B,µ, s by the non-orthogonal Cayley-Dickson construction. If
s = 0 is the zero linear form, formulas (3.2.3)−(3.2.5) combined with (3.3.2) show that
the general non-orthogonal Cayley-Dickson construction collapses to the ordinary one:
Cay(B;µ, 0) = Cay(B,µ).

On the other hand, suppose K/k is a purely inseparable field extension of characteristic
2 and exponent at most 1, and suppose further s : K → k is a linear form which is unital
in the sense that s(1K) = 1. Since K as a conic k-algebra has trivial conjugation, a
comparison of (3.2.3)−(3.2.5) and (3.3.2) with [5, (4.3.1)−(4.3.3), (4.4.1)] shows that our
general non-orthogonal Cayley-Dickson construction collapses to the one investigated in
[5, §§4,5].

3.5. Proposition. Let C be a multiplicative alternative conic k-algebra, B a conic k-
algebra and ϕ : B → C a homomorphism of conic algebras. Given an element l ∈ C, put
µ := −nC(l) ∈ k and define a linear form s : B → k by

s(u) := nC
(
ϕ(u), l

)
(u ∈ B).(1)

Then there is a unique extension of ϕ to a homomorphism ϕ′ : Cay(B;µ, s) = B⊕Bj →
C of conic k-algebras such that ϕ′(j) = l.

Proof. Uniqueness follows from the obvious fact that the conic k-algebra C ′ :=
Cay(B;µ, s) is generated by B and j. To prove existence, we define ϕ′ : C ′ → C by
ϕ′(u + vj) = ϕ(u) + ϕ(v)l for all u, v ∈ B. Then ϕ′ is a k-linear map extending ϕ, and
we must show

ϕ′(u(vj)) = ϕ(u)(ϕ(v)l),

ϕ′((vj)u) = (ϕ(v)l)ϕ(u),

ϕ′((v1j)(v2j)) = (ϕ(v1)l)(ϕ(v2)l),

and, finally,

nC(ϕ(u) + ϕ(v)l) = nC′(u+ vj)

for all u, v, v1, v2 ∈ B. But setting λ := s(1B) = tC(l), these formulas follow immediately
by comparing (3.2.3)−(3.2.5) and (3.3.2) with the relations (3.1.3)−(3.1.7). �

3.6. Corollary. Let B be a conic k-algebra, µ ∈ k an arbitrary scalar and s : B → k an
arbitrary linear form. Put λ := s(1B), C := Cay(B;µ, s) = B ⊕Bj as in 3.2 and, given
elements a, b ∈ B, define a scalar

µ′ := −nB(a)− s(b̄a) + µnB(b) ∈ k(1)

as well as a linear form s′ : B → k by

s′(u) := nB(u, a) + s(b̄u) (u ∈ B).(2)

If C is multiplicative alternative, then the linear map ϕ : C ′ := Cay(B;µ′, s′) = B ⊕
Bj′ → C defined by

ϕ(u+ vj′) :=
(
u+ va− s(b̄v)1B + s(v)b+ s(b̄)v − λbv

)
+ (bv)j(3)

is a homomorphism of conic algebras; moreover, for b ∈ B×, ϕ is an isomorphism of
conic algebras.

Proof. ϕ extends the identity of B and satisfies the relation ϕ(j′) = l := a + bj. By
(3.3.2), (1), (3.3.3), (2) we have −nC(l) = −nC(a+ bj) = −nB(a)− s(b̄a) +µnB(b) = µ′,
nC(u, l) = nC(u, a+ bj) = nB(u, a) + s(b̄u) = s′(u) for all u ∈ B. Hence Prop. 3.5 yields
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a unique homomorphism ψ : C ′ → C extending the identity of B and sending j′ to l.
For all u, v ∈ B we may apply (3.2.3) and (3) to obtain

ψ(u+ vj′) = u+ vl = u+ va+ v(bj)

=
(
u+ va− s(b̄v)1B + s(v)b+ s(b̄)v − λbv

)
+ (bv)j

= ϕ(u+ vj′).

Hence ϕ = ψ is a homomorphism of conic algebras. Now assume b ∈ B×. Then (3)
shows that ϕ is injective. Its image contains B and l, hence also j = b−1(−a + l). But
the algebra C is generated by B and j, forcing ϕ to be surjective as well. �

4. The conjugation, norm-associativity and flexibility

In the first part of this section we generalize [16, Prop. 20.10] by showing that the
property of the conjugation of a conic algebra to be an involution is preserved by the
non-orthogonal Cayley-Dickson construction. Our approach is based on the following
concept.

4.1. A peculiar linear form. Let C be a conic algebra over k. We define a linear form
mC : C ⊗ C → k by

mC(x⊗ y) := tC(xy)− nC(x, ȳ) (x, y ∈ C).(1)

By [16, Prop. 18.8], the conjugation of C is an involution if and only if Im(mC) ⊆ Ann(C).

4.2. Linear forms on conic algebras. Let B be a conic algebra over k and s : B → k
any linear form. If we put λ := s(1B), then (2.2.1), (2.2.5), (2.2.4) imply

s(u2) = tB(u)s(u)− λnB(u),(1)

s(uv) + s(vu) = tB(u)s(v) + tB(v)s(u)− λnB(u, v),(2)

s(ū) = λtB(u)− s(u)(3)

for all u, v ∈ B.

4.3. Proposition. Let B be a conic k-algebra, µ ∈ k and s : B → k a linear form.
Setting C := Cay(B;µ, s) = B ⊕Bj as in 3.2, we have

tC
(
(vj)u

)
= nC(vj, ū),(1)

tC
(
u(vj)

)
= nC(u, vj),(2)

tC
(
(v1j)(v2j)

)
= nC(v1j, v2j) + µ

(
tB(v̄2v1)− nB(v̄2, v̄1)

)
(3)

for all u, v, v1, v2 ∈ B.

Proof. Beginning with (1), we apply (3.2.4), (3.3.4), (4.2.3), (2.2.6), (3.3.3) to obtain

tC
(
(vj)u

)
= tC

(
−
(
s(u)v + λvu

)
+ (vū)j

)
= − s(u)tB(v) + λtB(vu) + s(vū)

= − s(u)tB(v) + λtB(vu) + λtB(vū)− s(vū)

= − s(u)tB(v) + λtB(u)tB(v)− tB(u)s(v) + s(vu)

= s
((
tB(v)1B − v

)(
tB(u)1B − u

))
= s(v̄ ū) = nC(vj, ū),

as desired. Next we reduce (2) to (1) by setting x = u, y = vj and applying (2.2.9), (1),
(2.2.10), (2.2.7). Then

tC(xy) = tC(x ◦ y)− tC(yx) = 2
(
tC(x)tC(y)− nC(x, y)

)
− nC(y, x̄)

= 2nC(x, ȳ)− nC(x, ȳ) = nC(x, ȳ),
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and we have (2). Finally, turning to (3) and applying (3.2.5), (2.2.3), (3.3.4), (4.2.3),
(2.2.10), we obtain

tC
(
(v1j)(v2j)

)
= tC

((
− λs(v̄2v1)1B + λs(v1)v2 + λs(v̄2)v1 − λ2v2v1 + µv̄2v1

)
+
(
s(v̄2v1)1B − s(v1)v2 + λv2v1

)
j
)

= − 2λs(v̄2v1) + λs(v1)tB(v2) + λs(v̄2)tB(v1)− λ2tB(v2v1)

+ µtB(v̄2v1) + λs(v̄2v1)− s(v1)s(v̄2) + λs(v2v1)

= − λtB(v2)s(v1) + λs(v2v1) + λtB(v2)s(v1) + λ2tB(v1)tB(v2)

− λtB(v1)s(v2)− λ2tB(v2v1) + µtB(v̄2v1)− λtB(v2)s(v1)

+ s(v1)s(v2) + λ2tB(v2v1)− λs(v2v1)

= − λtB(v2)s(v1) + λ2tB(v1)tB(v2)− λtB(v1)s(v2) + µtB(v̄2v1)

+ s(v1)s(v2).

On the other hand, by (3.3.5), (3.3.3), (4.2.3),

nC(v1j, v2j) = nC
(
v1j, s(v̄2)1B − v2j

)
= s
(
v̄1s(v̄2)1B

)
+ µnB(v1, v2)

= s(v̄1)s(v̄2) + µnB(v1, v2)

=
(
λtB(v1)− s(v1)

)(
λtB(v2)− s(v2)

)
+ µnB(v1, v2)

= λ2tB(v1)tB(v2)− λtB(v1)s(v2)− λtB(v2)s(v1) + s(v1)s(v2)

+ µnB(v1, v2),

and a comparison with the preceding equation yields (3). �

4.4. Corollary. Im(mB) = Im(mC).

Proof. Since B is a direct summand of C as a k-module, B⊗B may be viewed canonically
as a submodule of C ⊗ C, and mB is the restriction of mC to B ⊗ B. Now, by 4.1 and
Prop. 4.3, the ideal Im(mC) ⊆ k is generated by the expressions

mB(u⊗ v), mC

(
(vj)⊗ u

)
= 0, mC

(
u⊗ (vj)

)
= 0,

mC

(
(v1j)⊗ (v2j)

)
= µmB

(
v̄2 ⊗ v1)

for all u, v, v1, v2 ∈ B. The assertion follows. �

4.5. Corollary. If the conjugation of B is an involution, then so is the conjugation of
C.

Proof. Since B and C have the same annihilator, this follows immediately from 4.1 and
Cor. 4.4. �

Next we wish to describe conditions under which the property of a conic algebra to be
norm-associative is preserved by the non-orthogonal Cayley-Dickson construction. To
this end, we need a conceptual preparation.

4.6. Reminder: associative linear forms. Let A be a non-associative k-algebra. A
linear form t : A → k is said to be associative if t((xy)z) = t(x(yz)) for all x, y, z ∈ A,
equivalently, if t vanishes on all associators of A: t([A,A,A]) = {0}. Clearly, a linear
form on an associative algebra is automatically associative. On the other hand, if A
is arbitrary but k is a field, non-zero associative linear forms on A exist if and only if
[A,A,A] ⊂ A is a proper subspace.
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4.7. Alternative linear forms. We continue to consider an arbitrary non-associative
k-algebra A. A linear form s : A→ k is called alternative if the trilinear map

A×A×A −→ k, (x, y, z) 7−→ s([x, y, z])

is alternating, equivalently, if two of the following relations

s
(
x(xy)

)
= s(x2y), s

(
(yx)x

)
= s(yx2), s

(
(xy)x

)
= s
(
x(yx)

)
(1)

hold for all x, y ∈ A, in which case the third one follows automatically. Clearly, a linear
form on an alternative algebra is always alternative. On the other hand, if A is arbitrary
but k is a field, non-zero alternative linear forms on A exist if and only if the expressions
[x, x, y], [y, x, x] for x, y ∈ A span a proper subspace of A.

4.8. Proposition. For a norm-associative conic algebra B over k and a linear form
s : B → k, the following conditions are equivalent.

(i) s is alternative.
(ii) s(u(uv)) = tB(u)s(uv)− nB(u)s(v) for all u, v ∈ B.

(iii) s((vu)u) = tB(u)s(vu)− nB(u)s(v) for all u, v ∈ B.
(iv) s(uvu) = nB(u, v̄)s(u)− nB(u)s(v̄) for all u, v ∈ B.

Proof. Since B is flexible by [16, Prop. 18.12], the third equation of (4.7.1) holds. Hence
either one of the first two is equivalent to s being alternative. Combined with (2.2.1), this
shows that conditions (i), (ii), (iii) are equivalent. It remains to establish the implications
(ii)⇒(iv)⇒(iii).

(ii) ⇒ (iv). Setting λ := s(1B) and combining (ii) with (4.2.2), (2.3.5), (2.3.2), we
obtain

s(uvu) = s
(
(uv)u

)
= tB(uv)s(u) + tB(u)s(uv)− λnB(uv, u)− s

(
u(uv)

)
= tB(uv)s(u) + nB(u)s(v)− λtB(v)nB(u)

= nB(u, v̄)s(u) + nB(u)
(
s(v)− λtB(v)

)
,

and (4.2.3) yields (iv).
(iv) ⇒ (iii). Using (iv) and (2.2.5), (4.2.1), (4.2.3), we compute

s
(
(vu)u

)
= s
(
(u ◦ v)u

)
− s(uvu)

= tB(u)s(vu) + tB(v)s(u2)− nB(u, v)s(u)− nB(u, v̄)s(u) + nB(u)s(v̄)

= tB(u)s(vu) + tB(u)tB(v)s(u)− λnB(u)tB(v)− tB(u)tB(v)s(u) + nB(u)s(v̄)

= tB(u)s(vu)− nB(u)s(v),

and this is (iii). �

4.9. Lemma. Let B be a norm-associative conic k-algebra, s : B → k an alternative
linear form and λ := s(1B). Then

s
(
u(vw)

)
+ s
(
(wu)v

)
= s(w)tB(uv) + tB(w)s(uv)− λnB(uv,w),(1)

s
(
(uv)w

)
+ s
(
u(vw)

)
= tB(u)s(vw)− tB(v)s(wu) + tB(w)s(uv)(2)

+ tB(vw)s(u)− tB(wu)s(v) + tB(uv)s(w)

+ λ
(
nB(uw, v)− tB(v)nB(u,w)

)
for all u, v, w ∈ B.
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Proof. Applying (4.2.2), (2.3.5) and Prop. 4.8, we obtain

s
(
u(vw)

)
+ s
(
(wu)v

)
= s
(
u(vw)

)
+ s
(
(wu)v

)
+ s
(
v(wu)

)
− s
(
v(wu)

)
= s
(
u(vw)

)
+ tB(wu)s(v) + tB(v)s(wu)− λnB(wu, v)

− s
(
v(w ◦ u)

)
+ s
(
v(uw)

)
= tB(wu)s(v) + tB(v)s(wu)− λnB(wu, v)− tB(w)s(vu)

− tB(u)s(vw) + nB(w, u)s(v) + s
(
u(vw) + v(uw)

)
=
(
tB(wu) + nB(w, u)

)
s(v) + tB(v)s(wu)− λnB(wu, v)

− tB(w)s(vu)− tB(u)s(vw) + tB(u)s(vw)

+ tB(v)s(uw)− nB(u, v)s(w)

= tB(w)tB(u)s(v) + tB(v)s(uw + wu)− λnB(wu, v)

− tB(w)s(uv + vu) + tB(w)s(uv)− nB(u, v)s(w)

= tB(w)tB(u)s(v) + tB(v)tB(u)s(w) + tB(v)tB(w)s(u)

− λtB(v)nB(u,w)− λnB(wu, v)− tB(w)tB(u)s(v)

− tB(w)tB(v)s(u) + λtB(w)nB(u, v) + tB(w)s(uv)

− nB(u, v)s(w)

= tB(uv)s(w) + tB(w)s(uv)

− λ
(
nB(wu, v) + tB(v)nB(u,w)− tB(w)nB(u, v)

)
.

Using (2.3.3), (2.3.4), (2.2.4), we can now compute

nB(wu, v) = nB(u, w̄v) = nB(uv̄, w̄) = nB

(
u
(
tB(v)1B − v

)
, tB(w)1B − w

)
= tB(u)tB(v)tB(w)− tB(w)tB(uv)− tB(v)nB(u,w) + nB(uv,w)

= tB(w)nB(u, v)− tB(v)nB(u,w) + nB(uv,w).

Inserting this into the factor of λ in the final expression of the preceding equation, we
end up with (1). Turning to (2) and combining Prop. 4.8 with (4.2.2), we obtain

s
(
(uv)w

)
= s
(
(uv)w + (uw)v

)
− s
(
(uw)v

)
= tB(v)s(uw) + tB(w)s(uv)− nB(v, w)s(u)− s

(
(uw) ◦ v

)
+ s
(
v(uw)

)
= tB(v)s(uw) + tB(w)s(uv)− nB(v, w)s(u)− tB(uw)s(v)− tB(v)s(uw)

+ λnB(uw, v) + s
(
v(uw) + u(vw)

)
− s
(
u(vw)

)
= tB(w)s(uv)− nB(v, w)s(u)− tB(uw)s(v) + λnB(uw, v) + tB(u)s(vw)

+ tB(v)s(uw)− nB(u, v)s(w)− s
(
u(vw)

)
.

By (4.2.2) again, the sixth summand on the right agrees with

tB(v)s(uw) = tB(v)s(uw + wu)− tB(v)s(wu)

= tB(u)tB(v)s(w) + tB(v)tB(w)s(u)− λtB(v)nB(w, u)− tB(v)s(wu).

Returning with this to the preceding equation, we conclude

s
(
(uv)w

)
= tB(w)s(uv)− nB(v, w)s(u)− tB(uw)s(v) + λnB(uw, v) + tB(u)s(vw)

+ tB(u)tB(v)s(w) + tB(v)tB(w)s(u)− λtB(v)nB(w, u)

− tB(v)s(wu)− nB(u, v)s(w)− s
(
u(vw)

)
= tB(u)s(vw)− tB(v)s(wu) + tB(w)s(uv)

+ tB(vw)s(u)− tB(wu)s(v) + tB(uv)s(w)

+ λ
(
nB(uw, v)− tB(v)nB(u,w)

)
− s
(
u(vw)

)
,

and (2) follows. �
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4.10. Theorem. Let B be a conic k-algebra, µ ∈ k a scalar and s : B → k a linear form.
Then the conic algebra Cay(B;µ, s) = B ⊕ Bj is norm-associative if and only if B is
norm-associative and s is alternative.

Proof. If C := Cay(B;µ, s) is norm-associative, so is B ⊆ C (as a unital subalgebra).
Moreover, given u, v ∈ B, we apply (3.3.3), (2.3.4), (3.2.3), (2.2.1) and compute

s
(
u(uv)

)
= nC

(
u(uv), j

)
= nC

(
v, ū(ūj)

)
= nC

(
v,−s(uū)1B + s(ū)ū+ s(u)ū− λū2 + ū2j

)
= nC

(
v,−λnB(ū)1B + λtB(ū)ū− λū2 + ū2j

)
= nC(v, ū2j) = nC(u2v, j) = s(u2v) = tB(u)s(uv)− nB(u)s(v).

Thus condition (ii) of Prop. 4.8 holds, forcing s to be alternative.
Conversely, suppose B is norm-associative and s is alternative. Then B is flexible, the

conjugation of B is an involution [16, Prop. 18.12], equations (2.3.1)−(2.3.5) hold in B,
and by 2.3 it will be enough to show that (2.3.2) holds in C. Actually, by linearity, it
suffices to establish the relations

nC
(
(u+ vj)w, u+ vj

)
= nC(u+ vj)tB(w),(1)

nC
(
(u+ vj)(wj), u+ vj) = nC(u+ vj)tC(wj)(2)

for all u, v, w ∈ B. Linearizing we see that (2) is equivalent to the following three
identities.

nC
(
u(wj), u

)
= nB(u)tC(wj),(3)

nC
(
u(wj), vj

)
+ nC

(
(vj)(wj), u

)
= nC(u, vj)tC(wj),(4)

nC
(
(vj)(wj), vj

)
= nC(vj)tC(wj),(5)

again for all u, v, w ∈ B.
We begin with the verification of (1). Applying (3.2.4), (3.3.2), (3.3.3), we obtain

nC
(
(u+vj)w, u+ vj

)
− nC(u+ vj)tB(w)

= nC
(
[uw − s(w)v + λvw] + (vw̄)j, u+ vj

)
−
[
nB(u) + s(v̄u)− µnB(v)

]
tB(w)

= nB(uw, u)− s(w)nB(v, u) + λnB(vw, u) + s
(
v̄(uw)

)
− s(w)s(v̄v)

+ λs
(
v̄(vw)

)
+ s
(
(wv̄)u

)
− µnB(vw̄, v)− nB(u)tB(w)

− s(v̄u)tB(w) + µnB(v)tB(w)

Here norm-associativity of B by (2.3.2) implies

nB(uw, u) = nB(u)tB(w), nB(vw̄, v) = nB(v)tB(w̄) = nB(v)tB(w).

On the other hand, we trivially have s(w)s(v̄v) = λnB(v)s(w), while Prop. 4.8 yields
s(v̄(vw)) = tB(v)s(vw)−s(v(vw)) = nB(v)s(w) since s is alternative. Finally, we deduce
from (4.9.1), (2.3.4)

s
(
v̄(uw)

)
+ s
(
(wv̄)u

)
= s(w)tB(v̄u) + tB(w)s(v̄u)− λnB(v̄u, w)

= s(w)nB(v, u) + tB(w)s(v̄u)− λnB(u, vw).

Inserting all this into the final expression of the displayed chain of equations above, it
follows that this expression is zero, hence that (1) holds.
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We now proceed to deduce (3) by using (3.2.3), (3.3.4), (2.2.4) and Prop. 4.8 (iv)
combined with (2.3.2), which imply

nC
(
u(wj), u

)
− nB(u)tC(wj)

= nC

([
− s(w̄u)1B + s(u)w + s(w̄)u− λwu

]
+ (wu)j, u

)
− nB(u)s(w̄)

= − s(w̄u)tB(u) + s(u)nB(w, u) + 2s(w̄)nB(u)− λnB(wu, u)

+ s
(
(ūw̄)u

)
− nB(u)s(w̄)

= − s(w̄u)tB(u) + s(u)nB(w, u) + s(w̄)nB(u)− λnB(wu, u)

+ tB(u)s(w̄u)− nB(u,w)s(u) + nB(u)s(w)

= λtB(w)nB(u)− λnB(wu, u) = 0,

and the proof of (3) is complete.
We now come to the verification of (4), which is the most involved one of all. We

begin by using (3.2.3), (3.2.5), (3.3.3) to manipulate the left-hand side as follows:

nC
(
u(wj), vj

)
+ nC

(
(vj)(wj), u

)
= nC

([
− s(w̄u)1B + s(u)w + s(w̄)u− λwu

]
+ (wu)j, vj

)
+ nC

([
− λs(w̄v)1B + λs(v)w + λs(w̄)v − λ2wv + µw̄v

]
+
[
s(w̄v)1B − s(v)w + λwv

]
j, u
)

= − s(w̄u)s(v̄) + s(u)s(v̄w) + s(w̄)s(v̄u)− λs
(
v̄(wu)

)
− µnB(wu, v)

− λs(w̄v)tB(u) + λs(v)nB(w, u) + λs(w̄)nB(v, u)− λ2nB(wv, u) + µnB(w̄v, u)

+ s(w̄v)s(u)− s(v)s(w̄u) + λs
(
(v̄w̄)u

)
.

Here µnB(w̄v, u) = µnB(v, wu) cancels against the fifth summand on the very right of the
preceding expression. Moreover, −s(w̄u)s(v̄)− s(v)s(w̄u) = −λs(w̄u)tB(v), s(u)s(v̄w) +
s(w̄v)s(u) = λs(u)tB(v̄w) = λs(u)nB(v, w), while s(w̄)s(v̄u) = nC(u, vj)tC(wj). Hence

nC
(
u(wj), vj

)
+ nC

(
(vj)(wj), u

)
= nC(u, vj)tC(wj) + λα,

where

α := − s(w̄u)tB(v) + s(u)nB(v, w)− s(w̄v)tB(u) + s(v)nB(w, u) + s(w̄)nB(v, u)

− λnB(wv, u) + s(v̄u)tB(w)−
(
s
(
(v̄w)u

)
+ s
(
v̄(wu)

))
It suffices to show α = 0. To this end, we apply (4.9.2), (2.2.4), (2.3.2), (2.3.4) and
obtain

s
(
(v̄w)u

)
+ s
(
v̄(wu)

)
= tB(v̄)s(wu)− tB(w)s(uv̄) + tB(u)s(v̄w)

+ tB(wu)s(v̄)− tB(uv̄)s(w) + tB(v̄w)s(u)

+ λ
(
nB(v̄u, w)− tB(w)nB(v̄, u)

)
= s(wu)tB(v)− s(uv̄)tB(w) + s(v̄w)tB(u)

+ s(v̄)tB(wu)− s(w)nB(u, v) + s(u)nB(v, w)

+ λ
(
nB(u, vw)− tB(w)nB(v̄, u)

)
.



NON-ORTHOGONAL CAYLEY-DICKSON CONSTRUCTION 13

Returning to the definition of α, we conclude

α = − s(w̄u)tB(v) + s(u)nB(v, w)− s(w̄v)tB(u) + s(v)nB(w, u) + s(w̄)nB(v, u)

− λnB(wv, u) + s(v̄u)tB(w)− s(wu)tB(v) + s(uv̄)tB(w)− s(v̄w)tB(u)

− s(v̄)tB(wu) + s(w)nB(u, v)− s(u)nB(v, w)

− λnB(u, vw) + λtB(w)nB(v̄, u)

= −
(
s(w̄u)tB(v) + s(wu)tB(v) + λtB(v)tB(wu)

)
+ s(v)

(
tB(wu) + nB(w, u)

)
+
(
s(u)nB(v, w)− s(u)nB(v, w)

)
−
(
s(w̄v) + s(v̄w)

)
tB(u)

+
(
s(w̄) + s(w)

)
nB(u, v)− λnB(u, vw + wv)

+
(
s(v̄u) + s(uv̄) + λnB(u, v̄)

)
tB(w)

= − s(u)tB(v)tB(w)− λtB(v)tB(wu) + s(v)tB(w)tB(u)− λtB(u)nB(v, w)

+ λtB(w)nB(u, v)− λtB(v)nB(w, u)− λtB(w)nB(u, v) + λtB(u)nB(v, w)

+ s(u)tB(v)tB(w) + s(v̄)tB(w)tB(u)− λnB(u, v̄)tB(w) + λnB(u, v̄)tB(w)

= − λtB(v)
(
tB(wu) + nB(w, u)

)
+
(
s(v) + s(v̄)

)
tB(w)tB(u)

= − λtB(v)tB(w)tB(u) + λtB(v)tB(w)tB(u) = 0,

and the proof of (4) is complete.
It remains to deal with (5): by (3.2.5), (3.3.3), we have

nC
(
(vj)(wj), vj

)
= nC

([
− λs(w̄v)1B + λs(v)w + λs(w̄)v − λ2wv + µw̄v

]
+
[
s(w̄v)1B − s(v)w + λwv

]
j, vj

)
= − λs(w̄v)s(v̄) + λs(v)s(v̄w) + λs(w̄)s(v̄v)− λ2s

(
v̄(wv)

)
+ µs

(
v̄(w̄v)

)
− µs(w̄v)tB(v) + µs(v)nB(w, v)− λµnB(wv, v)

Here λs(w̄v)s(v̄) = λ2s(w̄v)tB(v) − λs(w̄v)s(v), λs(w̄)s(v̄v) = λ2s(w̄)nB(v). Moreover,
since s is alternative, Prop. 4.8 implies

s
(
v̄(wv)

)
= tB(v)s(wv)− s(vwv) = s(wv)tB(v)− nB(v, w̄)s(v) + nB(v)s(w̄)

and, similarly,

s
(
v̄(w̄v)

)
= s(w̄v)tB(v)− nB(v, w)s(v) + nB(v)s(w).

Therefore

nC
(
(vj)(wj), vj

)
= − λ2s(w̄v)tB(v) + λs(w̄v)s(v) + λs(v̄w)s(v) + λ2s(w̄)nB(v)

− λ2s(wv)tB(v) + λ2nB(v, w̄)s(v)− λ2nB(v)s(w̄) + µs(w̄v)tB(v)

− µnB(v, w)s(v) + µnB(v)s(w)− µs(w̄v)tB(v) + µs(v)nB(v, w)

− λµnB(wv, v)

= − λ2s(v)tB(v)tB(w) + λ2s(v)nB(v, w) + λ2s(v)nB(v, w̄)+

+ µ
(
s(w)− λtB(w)

)
nB(v)

= − µs(w̄)nB(v) = nC(vj)tC(wj).

Thus (5) holds and the theorem is proved. �

4.11. Killing the annihilator. Let B be a conic k-algebra and a := Ann(B). We put
k† := k/a, write

π : k −→ k†, α 7−→ α†,

for the natural projection and, following [14, 2.9], have the canonical identification

B† := Bk† = B/aB = B
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as conic k†-algebras such that

u⊗ α† = αu, u = u⊗ 1k† (α ∈ k, u ∈ B).

More specifically, the k†-module structure of B is given by

α†u = αu (α ∈ k, u ∈ B)

and norm, bilinearized norm, trace of B† act on B according to the rules

nB†(u) = nB(u)† ,

nB†(u, v) = nB(u, v)† ,

tB†(u) = tB(u)†

for all u, v ∈ B. In particular, B = B† as Z-algebras and ιB† = ιB as Z-linear maps
since, for example,

ιB†(u) = tB†(u)1B† − u = tB(u)†1B − u = tB(u)1B − u = ιB(u)

for all u ∈ B.
Now fix a scalar µ ∈ k and a linear form s : B → k. Then s† := π ◦ s : B† = B → k†

is the scalar extension of s from k to k†, and since the non-orthogonal Cayley-Dickson
construction obviously is compatible with base change, we conclude

Cay(B;µ, s) = Cay(B;µ, s)† = Cay(B†;µ†, s†) = Cay(B;µ†, s†)

as conic k†-algebras. With an eye on Thm. 4.10 we note that s† is alternative if and only
if, for u, v, w ∈ B, the expression s([u, v, w]) belongs to Ann(B) as soon as two of the
three arguments u, v, w coincide.

4.12. Theorem. Let B be a conic k-algebra, µ ∈ k and s : B → k a linear form. With
the notation and conventions of 4.11, the following conditions are equivalent.

(i) Cay(B;µ, s) is flexible.
(ii) B is flexible, the conjugation of B is an involution and s† is alternative.

Proof. Put C := Cay(B;µ, s)
(i) ⇒ (ii). Since C is flexible, so is B and(

tC(xy)− nC(x, ȳ)
)
x =

(
nC(x, xy)− tC(y)nC(x)

)
1C

for all x, y ∈ C [16, Prop. 18.8 (b)]. In particular, for u1, u2, v1 ∈ B and x := u1 + v1j,
y := u2, we may apply (4.3.1) to conclude that(

tC(xy)− nC(x, ȳ)
)
x =

(
tB(u1u2)− nB(u1, ū2)

+ tC
(
(v1j)u2

)
− nB(v1j, ū2)

)
(u1 + v1j)

=
(
tB(u1u2)− nB(u1, ū2)

)
(u1 + v1j)

belongs to k1B . Comparing Bj-components, we deduce tB(u1u2)−nB(u1, ū2) ∈ Ann(B).
Hence the conjugation of B is an involution [16, Prop. 18.8 (a)], and it remains to show
that s† is alternative. Combining Cor. 4.5 with what has been said in 4.11, we first note
that C† is flexible and its conjugation is an involution, forcing C† to be norm associative
by [16, Cor. 18.13] since Ann(C†) = Ann(B†) = {0}. Now Thm. 4.10 shows that s† is
alternative.

(ii) ⇒ (i). By hypothesis and 4.11, the k†-algebra B† is flexible and its conjugation
is an involution. Since, therefore, B† is norm-associative [16, Cor. 18.13], so is C† by
Thm. 4.10 since s† is alternative by hypothesis. Thus C is flexible. �
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5. Commutativity

In this section, we wish to find out under what circumstances the non-orthogonal
Cayley-Dickson construction leads to commutative algebras. In the classical orthogonal
case, this is known to happen if and only if the conic algebra entering into the construction
is commutative itself and has trivial conjugation [16, Thm. 20.13 (a)]. Extending this to
the general non-orthogonal case turns out to be easy.

5.1. Commutator relations. Let B be a conic k-algebra, µ ∈ k a scalar, s : B → k a
linear form and C := Cay(B;µ, s) = B ⊕ Bj the corresponding non-orthogonal Cayley-
Dickson construction as in 3.2. With λ := s(1B), we claim

[u, vj] =
(
− s(v̄u)1B + 2s(u)v + s(v̄)u− 2λvu

)
+
(
v(u− ū)

)
j,(1)

[v1j, v2j] =
(
λs(v̄1v2 − v̄2v1)1B + λs(v1 − v̄1)v2 − λs(v2 − v̄2)v1(2)

+ λ2[v1, v2] + µ(v̄2v1 − v̄1v2)
)

+
(
s(v̄2v1 − v̄1v2)1B

+ s(v2)v1 − s(v1)v2 − λ[v1, v2]
)
j

for all u, v, v1, v2 ∈ B. Indeed, a straightforward verification based on (3.2.4), (3.2.3)
implies

[u, vj] = u(vj)− (vj)u

= − s(v̄u)1B + s(u)v + s(v̄)u− λvu+ (vu)j + s(u)v − λvu− (vū)j

= − s(v̄u)1B + 2s(u)v + s(v̄)u− 2λvu+
(
v(u− ū)

)
j,

hence (1), while (3.2.5) yields

[v1j, v2j] = (v1j)(v2j)− (v2j)(v1j)

= − λs(v̄2v1)1B + λs(v1)v2 + λs(v̄2)v1 − λ2v2v1 + µv̄2v1

+
(
s(v̄2v1)1B − s(v1)v2 + λv2v1

)
j + λs(v̄1v2)1B − λs(v2)v1

− λs(v̄1)v2 + λ2v1v2 − µv̄1v2 −
(
s(v̄1v2)1B − s(v2)v1 + λv1v2

)
j

= λs(v̄1v2 − v̄2v1)1B + λs(v1 − v̄1)v2 − λs(v2 − v̄2)v1

+ λ2[v1, v2] + µ(v̄2v1 − v̄1v2)

+
(
s(v̄2v1 − v̄1v2)1B + s(v2)v1 − s(v1)v2 − λ[v1, v2]

)
j,

hence (2).

5.2. Lemma. With the notation and assumptions of 5.1, assume that B is commutative.
Then the following conditions are equivalent.

(i) s(u)v = s(v)u for all u, v ∈ B.
(ii) s(u)1B = λu for all u ∈ B.
(iii) s(u)v = λuv for all u, v ∈ B.

Proof. (i) ⇒ (ii). Setting v = 1B in (i) gives (ii).
(ii) ⇒ (iii). If (ii) holds, then s(u)v = (s(u)1B)v = λuv for all u, v ∈ B, giving (iii).
(iii) ⇒ (i). Since the right-hand side of (iii) is symmetric in u, v, so is the left, whence

(i) holds. �

5.3. Reduction modulo one. Let B be a conic algebra over k. Following Loos [10,

1.2] with a slightly different notation, we put Ḃ := B/k1B as a k-module and denote by

u 7→ u̇ the natural map from B to Ḃ. Note that, if B is a finitely generated projective
k-module of rank n+ 1, then Ḃ is is one of rank n since 1B ∈ B is unimodular [16, 18.6].
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5.4. Proposition. Let B be a faithful and commutative conic k-algebra. Then the as-
signment s 7→ λ := s(1B) defines a linear isomorphism from the k-module of linear forms
on B satisfying the equivalent conditions (i)−(iii) of Lemma 5.2 onto the annihilator of

Ḃ.

Proof. If s : B → k is a linear form satisfying the equivalent conditions of Lemma 5.2 and
λ := s(1B), then condition (ii) of the lemma implies λu̇ = s(u)1̇B = 0, so λ annihilates

Ḃ. The assignment s 7→ λ clearly defines a linear map, which by (ii) and faithfulness is

injective. Conversely, suppose λ ∈ k annihilates Ḃ. Then λB ⊆ k1B , and by faithfulness
again, there is a unique map s : B → k satisfying condition (ii) of Lemma 5.2. Clearly,
s is linear and s(1B) = λ. �

5.5. Proposition. Let B be a conic k-algebra, µ ∈ k a scalar and s : B → k a linear
form. Then the following conditions are equivalent.

(i) The non-orthogonal Cayley-Dickson construction Cay(B;µ, s) is commutative.
(ii) B is commutative with trivial conjugation and s(u)v = s(v)u for all u, v ∈ B.

Proof. We put C := Cay(B;µ, s) = B ⊕Bj as in 3.2.
(ii) ⇒ (i). If (ii) holds, then an inspection of (5.1.2) shows [v1j, v2j] = 0 for all

v1, v2 ∈ B. Moreover, given u, v ∈ B, not only v(u− ū) = 0 but also, by Lemma 5.2,

−s(v̄u)1B + 2s(u)v + s(v̄)u− 2λvu = −λuv + 2λuv + λuv − 2λuv = 0,

hence [u, vj] = 0 by (5.1.1). Hence C is commutative.
(i) ⇒ (ii). Since C is commutative, so is B (as unital subalgebra). Moreover, (5.1.1)

for v = 1B shows u = ū for all u ∈ B, so the conjugation ιB is the identity. Combining
all this with (5.1.2), we conclude 0 = [v1j, v2j] = (s(v2)v1 − s(v1)v2)j for all v1, v2 ∈ B,
and also the final assertion of (ii) follows. �

6. Associativity

In this section, we wish to find necessary and sufficient conditions for the output of a
non-orthogonal Cayley-Dickson construction to be an associative algebra. In the classical
orthogonal case, this is known to happen if and only if the conic algebra entering into
the construction is commutative associative and its conjugation is an involution [16,
Thm. 20.13 (b)]. In the general case we will see that a simple additional property of the
linear form involved will be enough to guarantee the same conclusion.

6.1. Nuclei. Let A be a non-associative k-algebra. Beside the ordinary nucleus [16,
6.6.6] it is sometimes useful to consider one-sided nuclei that are respectively defined by

Nucl(A) :=
{
x ∈ A | [x,A,A] = {0}

}
(left nucleus),(1)

Nucm(A) :=
{
x ∈ A | [A, x,A] = {0}

}
(middle nucleus),(2)

Nucr(A) :=
{
x ∈ A | [A,A, x] = {0}

}
(right nucleus).(3)

They are obviously k-submodules of A. But using the associator identity

[xy, z, w]− [x, yz, w] + [x, y, zw] = x[y, z, w] + [x, y, z]w,(4)

valid in arbitrary non-associative algebras [16, (8.5.2)], it follows immediately that they
are, in fact, subalgebras of A.

There are slight modifications of the preceding concepts depending on the choice of a
subalgebra B ⊆ A. We define

(Nucl)B(A) :=
{
x ∈ A | [x,B,B] = {0}

}
,(5)

(Nucm)B(A) :=
{
x ∈ A | [B, x,B] = {0}

}
,(6)

(Nucr)B(A) :=
{
x ∈ A | [B,B, x] = {0}

}
,(7)

which are submodules, but, in general, no longer subalgebras, of A. On the other hand,
we have
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6.2. Lemma. Let A be a non-associative k-algebra and B ⊆ A an associative subalgebra.
Then (Nucl)B(A)B ⊆ (Nucl)B(A).

Proof. Let x ∈ (Nucl)B(A) and y, z, w ∈ B. In the associator identity (6.1.4), the second
(resp. third) summand on the left vanishes because B ⊆ A is a subalgebra and so yz
(resp. zw) belongs to B. On the other hand, the first summand on the right of (6.1.4)
vanishes because B is an associative algebra, while the second summand does because x
belongs to (Nucl)B(A). Thus [xy, z, w] = 0, forcing xy ∈ (Nucl)B(A). �

6.3. Returning to the non-orthogonal Cayley-Dickson construction. We now
return to our conic k-algebra B, a scalar µ ∈ k and a linear form s : B → k to form the
non-orthogonal Cayley-Dickson construction C := Cay(B;µ, s) = B ⊕ Bj as in 3.2; in
particular, we put λ := s(1B).

While the algebra C will in general not be alternative, there are certain “nice” elements
that behave as if it were.

6.4. Lemma. With the assumptions and notation of 6.3, the relations

ju =
(
− s(u)1B + λu

)
+ ūj,(1)

j(vj) = µv̄ + s(v̄)j,(2)

(vj)j = µv + (λv)j(3)

hold for all u, v ∈ B.

Proof. All three equations follow from (3.2.4)−(3.2.5) by a straightforward computation:

ju = (1Bj)u = −s(u)1B + λu+ ūj,

j(vj) = (1Bj)(vj) =
(
− λs(v̄)1B + λ2v + λs(v̄)1B − λ2v + µv̄

)
+
(
s(v̄)1B − λv + λv

)
j

= µv̄ +
(
s(v̄)1B

)
j,

(vj)j = (vj)(1Bj) =
(
− λs(v)1B) + λs(v)1B + λ2v − λ2v + µv

)
+
(
s(v)1B − s(v)1B + λv

)
j

= µv + (λv)j,

as claimed. �

6.5. Remark. By (3.3.2)−(3.3.4) we have nB(j) = −µ, nB(j, v̄) = s(v̄), tB(j) = λ.
Hence (6.4.2) (resp. (6.4.3)) amounts to j(vj) = nB(j, v̄)j − nB(j)v̄ (resp. (vj)j =
−nB(j)v+tB(j)vj = v(tB(j)j−nB(j)1B) = vj2), in agreement with (2.5.1), the formula
for the U -operator in conic alternative algebras (resp. the right alternative law).

6.6. Theorem. With the assumptions and notation of 6.3, the following conditions are
equivalent.

(i) The conic algebra C = Cay(B;µ, s) is associative.
(ii) The conic algebra B is commutative associative, its conjugation is an involution

and the linear form s satisfies the relation

s(uv)1B = s(u)v + s(v)ū− λūv(1)

for all u, v ∈ B.

Proof. We may assume that B is associative and, by Thm. 4.12, that its conjugation is
an involution, which by Thm. 4.12 again implies that C is flexible since s† is trivially
alternative, so we have

[x, y, x] = 0, [x, y, z] = −[z, y, x](2)

for all x, y, z ∈ C
In order to prove the theorem, we will investigate the conditions that are necessary

and sufficient for the associators [a, b, c] to vanish identically in a, b, c ∈ C. By trilinearity,
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we may assume a, b, c ∈ B ∪Bj and thus are left with the following cases.

Case 1. a, b, c ∈ B. Then [a, b, c] = 0 since we have assumed that B is associative.

Case 2. |{a, b, c} ∩Bj| = 1.

Case 2.1. a ∈ Bj, b, c ∈ B. Then

a = vj, b = u1, c = u2 for some u1, u2, v ∈ B.

Since vj ≡ jv̄ mod B by (6.4.1), we have [a, b, c] = [vj, u1, u2] = [jv̄, u1, u2] in view
of Case 1, so we have to find necessary and sufficient conditions for jv̄ to belong to
(Nucl)B(A). By Lemma 6.2, we may assume v = 1B . Using (6.4.1), (3.2.4), we now
compute

[a, b, c] = [j, u1, u2] = (ju1)u2 − j(u1u2),

(ju1)u2 =
([
− s(u1)1B + λu1

]
+ ū1j

)
u2 =

[
− s(u1)u2 + λu1u2

]
+ (ū1j)u2

=
[
− s(u1)u2 + λu1u2 − s(u2)ū1 + λū1u2

]
+ [ū1ū2]j,

j(u1u2) =
[
− s(u1u2)1B + λu1u2

]
+ u1u2 j =

[
− s(u1u2)1B + λu1u2

]
+ [ū2ū1]j.

Comparing we see that [a, b, c] = 0 for all possible choices of Case 2.1 if and only if B is
commutative and s(u1u2)1B = s(u1)u2 +s(u2)ū1−λū1u2 for all u1, u2 ∈ B, equivalently,
B is commutative associative and (1) holds.

In particular, we have established the implication (i) ⇒ (ii) of the theorem, and it
remains to establish the implication (ii) ⇒ (i). For the remainder of the proof, we
therefore assume that B is commutative associative and (1) holds. We must show that
C is associative, i.e., [a, b, c] = 0 for all a, b, c ∈ B ∪Bj.

By flexibility (2), the discussion of Case 2 will be complete once we have dealt with

Case 2.2. b ∈ Bj, a, c ∈ B. Then

a = u1, b = vj, c = u2 for some u1, u2, v ∈ B.

We now combine the associator identity (6.1.4) with (6.4.1) and (2) to conclude that
[a, b, c] = [u1, vj, u2] = [x, yz, w] with x = u1, y = v, z = j, w = u2 is a Z-linear
combination of

[xy, z, w] = [u1v, j, u2] (Case 2.2 with v = 1B),

[x, y, zw] = [u1, v, ju2] = −[ū2j, v, u1] (Case 2.1),

x[y, z, w] = u1[v, j, u2] (Case 2.2 with v = 1B),

[x, y, z]w = [u1, v, j]u2 = −[j, v, u1]u2 (Case 1).

Hence we may assume v = 1B . After this reduction we use (3.2.4), (6.4.1) to compute

[a, b, c] = [u1, j, u2] = (u1j)u2 − u1(ju2),

(u1j)u2 =
[
− s(u2)u1 + λu1u2

]
+ [u1ū2]j,

u1(ju2) = u1
([
− s(u2)1B + λu2

]
+ ū2j

)
=
[
− s(u2)u1 + λu1u2

]
+ u1(ū2j)

=
[
− s(u2)u1 + λu1u2

]
+
[
− s(u2u1)1B + s(u1)ū2

+ s(u2)u1 − λū2u1
]

+ [ū2u1]j

=
[
− s(u2u1)1B + s(u1)ū2 − λū2u1 + λu1u2

]
+ [u1ū2]j.

Comparing the final expressions of the last two equations by means of (1), we see that
they are the same, forcing [a, b, c] = 0, as desired.

Case 3. |{a, b, c} ∩Bj| = 2.

Case 3.1. a, b ∈ Bj, c ∈ B. Then

a = v1j, b = v2j, c = u for some u, v1, v2 ∈ B.
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This time combining the associator identity (6.1.4) with (2), (6.4.2) we conclude that
[a, b, c] = [v1j, v2j, u] = [xy, z, w] with x = v1, y = j, z = v2j, w = u is a Z-linear
combination of

x[y, z, w] = v1[j, v2j, u] (Case 3.1 with v1 = 1B),

[x, y, z]w = [v1, j, v2j]u = −[v2j, j, v1]u (Case 3.1 with v2 = 1B),

[x, yz, w] = [v1, jv2j, u] = s(v̄2)[v1, j, u] (Case 2.2),

[x, y, zw] = [v1, j, zw] = −[zw, j, v1] (Case 2.2, and Case 3.1 with v2 = 1B).

Hence we may assume v1 = 1B or v2 = 1B .

Case 3.1.1. v1 = 1B . Then

a = j, b = vj, c = u for some u, v ∈ B.

Using (6.4.2), (6.4.1), (3.2.4) we compute

[a, b, c] = [j, vj, u] = (jvj)u− j
(
(vj)u

)
,

(jvj)u =
(
µv̄ + s(v̄)j

)
u = µv̄u+ s(v̄)(ju)

= µv̄u+ s(v̄)
([
− s(u)1B + λu

]
+ ūj

)
=
[
− s(u)s(v̄)1B + λs(v̄)u+ µuv̄

]
+
[
s(v̄)ū

]
j,

j
(
(vj)u

)
= j
([
− s(u)v + λvu

]
+ [vū]j

)
= − s(u)jv + λj(vu) + j(vū)j

=
[
s(u)s(v)1B − λs(u)v

]
−
[
s(u)v̄

]
j

+
[
− λs(vu)1B + λ2vu

]
+ [λūv̄]j + µuv̄ + s(uv̄)j

= [
(
s(u)s(v)− λs(uv)

)
1B − λs(u)v + λ2uv + µuv̄

]
+
[
s(uv̄)1B − s(u)v̄ + λūv̄

]
j.

Comparing by means of (1), we obtain

[a, b, c] =
[
λs(uv)1B − s(u)s(v)1B − s(u)s(v̄)1B + λs(u)v + λs(v̄)u− λ2uv

]
−
[
s(uv̄)1B − s(u)v̄ − s(v̄)ū+ λūv̄

]
j

= λs(uv)1B − λtB(v)s(u)1B + λs(u)v + λs(v̄)u− λ2uv
= λs(uv)1B − λs(u)v̄ + λ2tB(v)u− λs(v)u− λ2uv
= λ

(
s(vu)1B − s(v)u− s(u)v̄ + λv̄u

)
= 0,

as desired.

Case 3.1.2. v2 = 1B . Then

a = vj, b = j, c = u for some u, v ∈ B.
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Using (6.4.3), (3.2.4), (6.4.1), we compute

[a, b, c] =
(
(vj)j

)
u− (vj)(ju),(

(vj)j
)
u =

(
µv + (λv)j

)
u = µvu+ λ(vj)u

= µuv +
[
− λs(u)v + λ2vu

]
+ λ(vū)j

=
[
− λs(u)v + (λ2 + µ)uv

]
+ [λūv]j,

(vj)(ju) = (vj)
([
− s(u)1B + λu

]
+ ūj

)
= − s(u)vj + λ(vj)u+ (vj)(ūj)

=
[
− s(u)v

]
j +

[
− λs(u)v + λ2vu

]
+ [λvū]j

+
[
− λs(uv)1B + λs(v)ū+ λs(u)v − λ2ūv + µuv

]
+
[
s(uv)1B − s(v)ū+ λūv

]
j

=
[
− λs(uv)1B + λs(v)ū+ λ2(u− ū)v + µuv

]
+
[
s(uv)1B − s(u)v − s(v)ū+ 2λūv

]
j

Comparing and using (1), we conclude

[a, b, c] =
[
λs(uv)1B − λs(u)v − λs(v)ū+ λ2uv − λ2(u− ū)v

]
+
[
λūv − s(uv)1B + s(u)v + s(v)ū− 2λūv

]
j

= λ
[
s(uv)1B − s(u)v − s(v)ū+ λūv

]
−
[
s(uv)1B − s(u)v − s(v)ū+ λūv

]
j = 0,

as desired.

Case 3.2. a, c ∈ Bj, b ∈ B. Then

a = v1j, b = u, c = v2j for some u, v1, v2 ∈ B.

Combining the associator identity (6.1.4) with (2), we conclude that

[a, b, c] = [v1j, u, v2j] = [xy, z, w]

with x = v1, y = j, z = u, w = v2j is a Z-linear combination of

x[y, z, w] = v1[j, u, v2j] = −v1[v2j, u, j] (Case 3.2 with v2 = 1B),

[x, y, z]w = [v1, j, u]w (Case 2.2),

[x, yz, w] = [v1, ju, v2j] (Cases 2.1, 3.1 because of (6.4.1) and (2)),

[x, y, zw] = [v1, j, zw] (Cases 2.2, 3.1 because of (2)).

We may thus assume v2 = 1B . Then

a = vj, b = u, c = j for some u, v ∈ B.

Using (3.2.4), (6.4.3), (3.2.5) we compute

[a, b, c] = [vj, u, j] =
(
(vj)u

)
j − (vj)(uj),(

(vj)u
)
j =

([
− s(u)v + λvu

]
+ [vū]j

)
j =

[
− s(u)v + λuv

]
j +

(
[vū]j

)
j

=
[
− s(u)v + λuv

]
j + µūv + [λūv]j

= µūv +
[
− s(u)v + λtB(u)v

]
j

= [µūv] + [s(ū)v]j,

(vj)(uj) =
[
− λs(ūv)1B + λs(v)u+ λs(ū)v − λ2uv + µūv

][
s(ūv)1B − s(v)u+ λuv

]
j,

which by (1) implies

[a, b, c] = λ
[
s(ūv)1B − s(ū)v − s(v)u+ λuv

]
−
[
s(ūv)1B − s(ū)v − s(v)u+ λuv

]
j

= 0,
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as desired.

Case 4. a, b, c ∈ Bj. Then

a = v1j, b = v2j, c = v3j for some v1, v2, v3 ∈ B.

Again we make use of the associator identity (6.1.4) combined with (2), (6.4.2) to conclude
that [a, b, c] = [v1j, v2j, v3j] = [x, yz, w] with x = v1j, y = v2, z = j, w = v3j is a Z-linear
combination of

x[y, z, w] = (v1j)[v2, j, v3j] = −(v1j)[v3j, j, v2] (Case 3.1),

[x, y, z]w = [v1j, v2, j]w (Case 3.2),

[xy, z, w] = [(v1j)v2, j, v3j] = −[v3j, j, (v1j)v2] (Case 3.1, Case 4 for v2 = 1B),

[x, y, zw] = [v1j, v2, jv3j] (Cases 2.1, 3.2).

We are thus reduced to the case v2 = 1B and then have

a = vj, b = j, c = wj for some v, w ∈ B.

Using (6.4.3), (3.2.3), (6.4.2), (3.2.4), we compute

[a, b, c] = [vj, j, wj] =
(
(vj)j

)
(wj)− (vj)(jwj),(

(vj)j
)
(wj) =

(
µv + [λv]j

)
(wj) = µv(wj) + λ(vj)(wj)

=
[
− µs(w̄v)1B + µs(v)w + µs(w̄)v − λµwv

]
+ [µwv]j

+
[
− λ2s(w̄v)1B + λ2s(v)w + λ2s(w̄)v − λ3wv + λµw̄v

]
+
[
λs(w̄v)1B − λs(v)w + λ2wv

]
j

=
[
− (λ2 + µ)

(
s(w̄v)1B − s(w̄)v − s(v)w + λwv

)
+ λµvw̄

]
+
[
µvw + λ

(
s(w̄v)1B − s(v)w + λwv

)]
j

= [λµvw̄] +
[
λs(w̄)v + µvw

]
j,

(vj)(jwj) = (vj)
(
µw̄ + s(w̄)j

)
= µ(vj)w̄ + s(w̄)(vj)j

=
[
− µs(w̄)v + λµvw̄

]
+ [µvw]j +

[
µs(w̄)v

]
+
[
λs(w̄)v

]
j

= [λµvw̄] +
[
λs(w̄)v + µvw

]
j

Comparing, we conclude [a, b, c] = 0, which completes the proof of the theorem. �

6.7. Reminder: quadratic algebras. Following Knus [7, (1.3.6)], a k-algebra R is said
to be quadratic if it contains a unit element and is finitely generated projective of rank
2 as a k-module. In this case, R is a conic algebra, with norm, trace respectively given
by nR(x) = det(Lx), tR(x) = tr(Lx) for all x ∈ R.

6.8. Corollary. Let R be a quadratic k-algebra, µ ∈ k a scalar and s : R → k a linear
form. Then the conic algebra Cay(R;µ, s) is associative.

Proof. Since R is commutative associative and its conjugation is an involution,, it will
be enough by Thm. 6.6 to show that s satisfies equation (6.6.1). Localizing if necessary,
we may assume that R is a free k-module of rank 2, with basis 1C , w, for some w ∈ R.
Thanks to bilinearity, it suffices to establish (6.6.1) for u = 1C , v = 1C and u = v = w.
Indeed,

s(1R)v + s(v)1̄R − λ1̄Rv = λv + s(v)1R − λv = s(1Rv)1R,

s(u)1R + s(1R)ū− λū1R = s(u)1R + λū− λū = s(u1R)1R,

s(w)w + s(w)w̄ − λw̄w = tR(w)s(w)1R − λnR(w)1R

= s
(
tR(w)w − nR(w)1R

)
1R = s(w2)1R,

as claimed. �
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6.9. Corollary. Let B be a commutative associative conic k-algebra whose conjugation
is an involution and µ ∈ k a scalar. Then the conic algebra Cay(B;µ, tB) is associative.

Proof. By Thm. 6.6, it suffices to show that s := tB satisfies equation (6.6.1). Since
λ = s(1B) = tB(1B) = 2, we have

tB(u)v + tB(v)ū− 2ūv = tB(u)v + tB(v)ū− ū ◦ v
= tB(u)v + tB(v)ū− tB(ū)v − tB(v)ū+ nB(ū, v)1B

= tB(u)v + tB(v)ū− tB(u)v − tB(v)ū+ tB(uv)1B

= tB(uv)1B ,

as claimed. �

6.10. Corollary. Let B be a commutative associative conic k-algebra that is projective
of rank at least 3. Suppose further µ ∈ k is a scalar and s : B → k is a linear form such
that the conic algebra Cay(B;µ, s) is associative. Then

s(u)tB(v) = s(v)tB(u)

for all u, v ∈ B. In particular, if (in addition to the above) tB is surjective, then s = αtB
for some α ∈ k.

Proof. By Thm. 6.6, the linear form s satisfies the equation

s(uv)1B = s(u)v + s(v)ū− λūv (λ := s(1B))(1)

for all u, v ∈ B. Since the left-hand side is symmetric in u, v, so is the right and we have

s(u)v + s(v)ū− λūv = s(v)u+ s(u)v̄ − λv̄u.

(This also follows from applying the conjugation to (1).) We now conclude

s(u)(v − v̄)− s(v)(u− ū)− λ(ūv − uv̄) = 0.

But since ūv−uv̄ = tB(u)v−uv−tB(v)u+uv = tB(u)v−tB(v)u, u−ū = u−tB(u)1B+u =
2u− tB(u)1B and, similarly, v − v̄ = 2v − tB(v)1B , we obtain

s(u)
(
2v − tB(v)1B

)
− s(v)

(
2u− tB(u)1B

)
− λ
(
tB(u)v − tB(v)u

)
= 0.

Writing the left-hand side as a linear combination of v, u, 1B , we finally end up with(
2s(u)− λtB(u)

)
v −

(
2s(v)− λtB(v)

)
u−

(
s(u)tB(v)− s(v)tB(u)

)
1B = 0.(2)

Since the linear form u 7→ 2s(u)−λtB(u) obviously kills 1B , the expression 2s(u̇)−λtB(u̇)
makes sense for u ∈ B (although the individual terms 2s(u̇) and λtB(u̇) do not). Thus,

reading (2) in Ḃ, we conclude(
2s(u̇)− λtB(u̇)

)
v̇ =

(
2s(v̇)− λtB(v̇)

)
u̇ (u̇, v̇ ∈ Ḃ).(3)

Localizing if necessary, we may assume that Ḃ is free of rank at least 2 as a k-module.
Picking a basis (ėi)i∈I , |I| ≥ 2, of Ḃ, equation (3) implies 2s(ėi) − λtB(ėi) = 0 =
2s(ėj)−λtB(ėj) for all i, j ∈ I, i 6= j. Hence 2s(u) = λtB(u) for all u ∈ B, and since 1B is
unimodular [16, 18.6], (2) yields the first assertion of the corollary: s(u)tB(v) = s(v)tB(u)
for all u, v ∈ B. If tB is surjective, some v ∈ B has tB(v) = 1, and the second assertion
follows as well. �

7. Alternativity

This section is devoted to the problem of finding conditions that are necessary and
sufficient for the output of the non-orthogonal Cayley-Dickson construction to be an
alternative conic algebra. In the classical orthogonal case, this is known to happen if and
only if the conic algebra entering into the construction is associative and its conjugation
is an involution [16, Thm. 20.13 (c)]. In the general case, a certain alternating trilinear
map will have to vanish identically in order to reach the same conclusion.
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Throughout this section, we fix a conic k-algebra B, a scalar µ ∈ k and a linear form
s : B → k in order to from the conic algebra C := Cay(B;µ, s) = B ⊕ Bj as in 3.2. As
usual, we put λ := s(1B).

7.1. Proposition. If B is multiplicative alternative, then HB,s : B3 → B defined by

HB,s(u, v, w) = − s
(
(uv)w

)
1B + s(uv)w̄ + s(vw)ū− s(uw̄)v(1)

+ s(u)vw − s(v)ūw̄ − s(w)ūv + λ(ūv)w̄

for all u, v, w ∈ B is an alternating trilinear map such that

HB,s(u, v, 1B) = HB,s(u, v, uv) = 0(2)

for all u, v ∈ B.

Proof. The map HB,s is clearly trilinear, so it remains to show that it is alternating and
satisfies (2). Noting that the conjugation of B by [16, Prop. 19.2] is an involution, we
begin with the former by abbreviating H := HB,s, using (2.2.1) and computing

H(u, u, w) = − tB(u)s(uw)1B + nB(u)s(w)1B + tB(u)s(u)w̄ − λnB(u)w̄ + s(uw)ū

− s(uw̄)u+ s(u)uw − s(u)ūw̄ − nB(u)s(w)1B + λnB(u)w̄.

By (2.2.4), we have

−tB(u)s(uw)1B + s(uw)ū = −s(uw)u, tB(u)s(u)w̄ − s(u)ūw̄ = s(u)uw̄.

Hence

H(u, u, w) = − s(uw)u+ s(u)uw̄ − s(uw̄)u+ s(u)uw

= − tB(w)s(u)u+ tB(w)s(u)u = 0.

Similarly,

H(u, v, v) = − tB(v)s(uv)1B + nB(v)s(u)1B + s(uv)v̄ + tB(v)s(v)ū− λnB(v)ū

− s(uv̄)v + tB(v)s(u)v − nB(v)s(u)1B − s(v)ūv̄ − s(v)ūv + λnB(v)ū.

Since −tB(v)s(uv)1B + s(uv)v̄ = −s(uv)v, −s(uv̄)v + tB(v)s(u)v = s(uv)v, −s(v)ūv̄ −
s(v)ūv = −tB(v)s(v)ū, we have H(u, v, v) = −s(uv)v + s(uv)v = 0, and summing up it
follows that H is alternating. We now verify (2). First of all,

H(u, v, 1B) = − s(uv)1B + s(uv)1B + s(v)ū− s(u)v + s(u)v − s(v)ū− λūv + λūv = 0.

Moreover,

H(u, v, uv) = − tB(uv)s(uv)1B + λnB(uv)1B + s(uv)uv + s(vuv)ū− s(uv̄ū)v

+ s(u)vuv − s(v)ūv̄ū− s(uv)ūv + λūvv̄ū.

Here we combine the relation −tB(uv)s(uv)1B + s(uv)uv = −s(uv)uv with (2.5.1) to
obtain

H(u, v, uv) = − s(uv)uv + λnB(uv)1B + nB(v, ū)s(v)ū− nB(v)s(ū)ū− tB(u)s(uv̄)v

+ nB(u, v)s(u)v − nB(u)s(v)v + nB(v, ū)s(u)v − nB(v)s(u)ū

− nB(u, v̄)s(v)ū+ nB(u)s(v)v − s(uv)ūv + λnB(v)tB(u)ū

− λnB(v)nB(u)1B .

Canceling out the second (resp. third, seventh) term against the last (resp. tenth,
eleventh) one on the right-hand side and regrouping, we obtain

H(u, v, uv) = − s(uv)uv − tB(u)s(uv̄)v − s(uv)ūv − nB(v)s(ū)ū− nB(v)s(u)ū

+ λnB(v)tB(u)ū+ nB(u, v)s(u)v + nB(ū, v)s(u)v

= − tB(u)tB(v)s(u)v − λnB(v)tB(u)ū+ λnB(v)tB(u)ū+ tB(u)tB(v)s(u)v,

and this is zero as claimed. �
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7.2. Local generation. Let r be a natural number. A unital non-associative algebra
A over k is said to be locally generated by r elements if, for every p ∈ Spec(k), the
kp-algebra Ap is unitally generated by r elements in the usual sense. For example, a
quadratic k-algebra (cf. 6.7) is locally generated by a single element. Now suppose B is
a quaternion algebra over k [16, 21.19]. Locally, B arises from a quadratic étale algebra
by means of the Cayley-Dickson construction [16, Cor. 21.16]. Hence quaternion algebras
are locally generated by two elements.

7.3. Corollary. If B as in 7.1 is locally generated by two elements, then HB,s = 0.

Proof. The assertion is local on k, so we may assume that k is a local ring. If B is
unitally generated by x, y ∈ B, then [16, Exc. 70] shows that it is spanned by 1B , x, y, xy
as a k-module. Since H := HB,s is alternating trilinear, the assertion will follow once we
have shown H(u, v, w) = 0 for distinct elements u, v, w ∈ {1B , x, y, xy}. But in view of
Prop. 7.1, this is obvious. �

7.4. Theorem. If B is associative and its conjugation is an involution, then

[u1 + v1j, u1 + v1j, u2 + v2j] = HB,s(u1, v̄1, u2) +HB,s(ū1, v̄1, v2)j(1)

for all u1, u2, v1, v2 ∈ B.

Proof. We proceed in several steps.

10. Since B is associative, every linear form on B as well B† (cf. 4.11) is trivially alter-
native (cf. 4.7), and as B is flexible, so is C, by Thm. 4.12. With H := HB,s we now
claim that it suffices to show

[u, u, w] = 0,(2)

[vj, u, u] = 0,(3)

[vj, vj, u] = 0,(4)

[wj, vj, vj] = 0,(5)

[u, vj, w] + [vj, u, w] = H(u, v̄, w),(6)

[wj, u, vj] + [wj, vj, u] = −H(ū, v̄, w)j(7)

for all u, v, w ∈ B. Indeed, if these relations are fulfilled, we expand the left hand side of
(1) by using flexibility of C to obtain

[u1 + v1j, u1 + v1j, u2 + v2j] = [u1, u1, u2] + [u1, u1, v2j] + [u1, v1j, u2] + [u1, v1j, v2j]

+ [v1j, u1, u2] + [v1j, u1, v2j] + [v1j, v1j, u2]

+ [v1j, v1j, v2j]

= [u1, u1, u2]− [v2j, u1, u1] +
(
[u1, v1j, u2] + [v1j, u1, u2]

)
−
(
[v2j, u1, v1j] + [v2j, v1j, u1]

)
+ [v1j, v1j, u2]

− [v2j, v1j, v1j],

which by (2)−(7) collapses to

[u1 + v1j, u1 + v1j, u2 + v2j] = H(u1, v̄1, u2) +H(ū1, v̄1, v2)j,

as claimed.

20. We now turn to (2), which is obvious since B is associative by hypothesis.

30. In order to prove (3), we start out from [vj, u, u] = ((vj)u)u− (vj)u2, where (3.2.3),
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(2.2.6) give(
(vj)u

)
u =

([
− s(u)v + λvu

]
+
[
vū
]
j
)
u =

[
− s(u)vu+ λvu2

]
+
(
[vū]j

)
u

=
[
− s(u)vu+ λvu2 − s(u)vū+ λvūu

]
+
[
vū2
]
j

=
[
− tB(u)s(u)v + λvu2 + λnB(u)v

]
+
[
vū2
]
j,

(vj)u2 =
[
− s(u2)v + λvu2

]
+
[
vū2
]
j

=
[
− tB(u)s(u)v + λnB(u)v + λvu2

]
+
[
vū2
]
j,

and subtracting the second expression from the first yields (3).

40. Equation (4) is a bit more troublesome. We have [vj, vj, u] = (vj)2u − (vj)((vj)u),
where we treat the terms on the right separately. First of all, since C is a conic algebra,
with norm and trace given as in Prop. 3.3, we obtain (vj)2 = tC(vj)(vj) − nC(vj)1C ,
hence

(vj)2 =
[
µnB(v)1B

]
+
[
s(v̄)v

]
j.(8)

This implies (vj)2u =
[
µnB(v)u

]
+
([
s(v̄)v

]
j
)
u, and from (3.2.3)we conclude

(vj)2u =
[
µnB(v)u− s(u)s(v̄)v + λs(v̄)vu

]
+
[
s(v̄)vū

]
j.(9)

On the other hand, by (3.2.3) again and (3.2.5),

(vj)
(
(vj)u

)
= (vj)

([
− s(u)v + λvu

]
+
[
vū
]
j
)

=
[
s(u)s(v)v − λs(vu)v − λs(u)v2 + λ2v2u

]
+
[
− s(u)vv̄ + λvūv̄

]
j

+
[
− λs(uv̄v)1B + λs(v)vū+ λs(uv̄)v − λ2vūv + µuv̄v

]
+
[
s(uv̄v)1B − s(v)vū+ λvūv

]
j

Here we observe λvūv̄ + λvūv = λtB(v)vū, which simplifies the coefficient of j and
together with (2.2.1), (2.2.6), (2.5.1) implies

(vj)
(
(vj)u

)
=
[
s(u)s(v)v − λs(vu)v − λtB(v)s(u)v

+ λnB(v)s(u)1B + λ2tB(v)vu− λ2nB(v)u
]

+
[
− nB(v)s(u)1B + λtB(v)vū

]
j

+
[
− λnB(v)s(u)1B + λs(v)vū+ λs(uv̄)v − λ2nB(v, u)v

+ λ2nB(v)u+ µnB(v)u
]

+
[
nB(v)s(u)1B − s(v)vū

]
j.

In the B-component (resp. the Bj-component), the term(s) λnB(v)s(u)1B and λ2nB(v)u
(resp. nB(v)s(u)1B) cancel, while we have λs(uv̄)v − λtB(v)s(u)v = −λs(uv)v and
λtB(v)vū− s(v)vū = s(v̄)vū. Combining this with (2.2.4), (2.2.5), we conclude

(vj)
(
(vj)u

)
=
[
s(u)s(v)v − λs(vu)v − λs(uv)v + λ2tB(v)vu+ λtB(u)s(v)v

− λs(v)vu− λ2nB(u, v)v + µnB(v)u
]

+
[
s(v̄)vū

]
j

=
[
s(u)s(v)v − λtB(u)s(v)v − λtB(v)s(u)v + λ2nB(u, v)v

+ λ2tB(v)vu+ λtB(u)s(v)v − λs(v)vu− λ2nB(u, v)v + µnB(v)u
]

+
[
s(v̄)vū

]
j

=
[
µnB(v)u− s(u)s(v̄)v + λs(v̄)vu

]
+
[
s(v̄)vū

]
j,

and by (9) this agrees with (vj)2u.

50. Passing to (5), we begin by noting that Lemma 6.4 implies wj ≡ jw̄ mod B.
Since [B, vj, vj] = [vj, vj, B] = {0} by (4) and flexibility, it therefore suffices to show
[jw, vj, vj] = 0, equivalently, after an obvious change of notation,(

(jv)(wj)
)
(wj) = (jv)(wj)2.(10)
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In order to prove this, we first show

(jv)(wj) =
[
µvw

]
+
[
s(vw)1B

]
j,(11)

which is just the middle Moufang identity in disguise (but still requires a proof since C
need not be alternative). Indeed, from (6.4.1), (3.2.4), (3.2.5) we deduce

(jv)(wj) =
([
− s(v)1B + λv

]
+ v̄j

)
(wj)

=
[
− s(v)w

]
j +

[
− λs(w̄v)1B + λs(v)w + λs(w̄)v − λ2wv

]
+
[
λwv

]
j

+
[
− λs(w̄v̄)1B + λs(v̄)w + λs(w̄)v̄ − λ2wv̄ + µw̄v̄

]
+
[
s(w̄v̄)1B − s(v̄)w + λwv̄

]
j

=
[
− λtB(v)s(w̄)1B + λ2tB(v)w + λtB(v)s(w̄)1B − λ2tB(v)w + µvw

]
+
[
− λtB(v)w + λtB(v)w + s(vw)1B

]
j,

and (11) follows. We are now ready to tackle (10) and first deal with the right-hand side.
Since C is a conic algebra with norm, trace given as in Prop. 3.3, we combine (6.4.1)
with (11) and obtain

(jv)(wj)2 = tB(wj)(jv)(wj)− nB(wj)(jv) = µnB(w)(jv) + s(w̄)(jv)(wj)

=
[
− µnB(w)s(v)1B + λµnB(w)v

]
+
[
µnB(w)v̄

]
j

+
[
µs(w̄)vw

]
+
[
s(w̄)s(vw)1B

]
j.

Summing up, we deduce

(jv)(wj)2 =
[
− µnB(w)s(v)1B + λµnB(w)v + µs(w̄)vw

]
(12)

+
[
s(w̄)s(vw)1B + µnB(w)v̄

]
j.

On the other hand, turning to the left-hand side of (10), we use (11), (3.2.4), (2.2.4),
(2.2.6) to compute(

(jv)(wj)
)
(wj) = µvw(wj) + s(vw)j(wj)

=
[
− µs(w̄vw)1B + µs(vw)w + µs(w̄)vw − λµwvw

]
+
[
µwvw

]
j

+
[
µs(vw)w̄

]
+
[
s(w̄)s(vw)1B

]
j

=
[
− µtB(w)s(vw)1B + µs(wvw)1B + µs(vw)w + µs(w̄)vw

− λµwvw + µs(vw)w̄
]

+
[
µwvw + s(w̄)s(vw)1B

]
j

=
[
− µtB(w)s(vw)1B + µtB(w)s(vw)1B + µnB(w)s(v̄)1B

+ µs(w̄)vw − λµnB(w)v̄
]

+
[
µnB(w)v̄ + s(w̄)s(vw)1B

]
j

=
[
λµtB(v)nB(w)1B − µnB(w)s(v)1B − λµtB(v)nB(w)1B

+ λµnB(w)v + µs(w̄)vw
]

+
[
s(w̄)s(vw)1B + µnB(w)v̄

]
j

=
[
− µnB(w)s(v)1B + λµnB(w)v + µs(w̄)vw

]
+
[
s(w̄)s(vw)1B + µnB(w)v̄

]
j.

Comparing with (12) gives (10).

60. We now proceed to verify (6) and first manipulate the left-hand side.

[u, vj, w] + [vj, u, w] =
(
u(vj)

)
w − u

(
(vj)w

)
+
(
(vj)u

)
w − (vj)(uw)

=
(
u ◦ (vj)

)
w − u

(
(vj)w

)
− (vj)(uw).

Thus (6) is equivalent to(
u ◦ (vj)

)
w − u

(
(vj)w

)
− (vj)(uw) = H(u, v̄, w).(13)
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We begin by using (3.3.6), (3.2.4) to compute the first summand on the left-hand side of
(13). (

u ◦ (vj)
)
w =

([
− s(v̄u)1B + s(v̄)u

]
+
[
tB(u)v

]
j
)
w

=
[
− s(v̄u)w + s(v̄)uw

]
+ tB(u)(vj)w

=
[
− s(v̄u)w + s(v̄)uw − tB(u)s(w)v + λtB(u)vw

]
+
[
tB(u)vw̄

]
j

Hence (
u ◦ (vj)

)
w =

[
− tB(u)s(w)v − s(v̄u)w + s(v̄)uw + λtB(u)vw

]
+
[
tB(u)vw̄

]
j(14)

Next we turn to the second summand on the left of (13) by using (3.2.4), (3.2.3) to
compute

u
(
(vj)w

)
= u

([
− s(w)v + λvw

]
+
[
vw̄
]
j
)

=
[
− s(w)uv + λuvw

]
+ u
(
(vw̄)j

)
=
[
− s(w)uv + λuvw − s(wv̄u)1B + s(u)vw̄ + s(wv̄)u− λvw̄u

]
+
[
vw̄u

]
j,

which amounts to

u
(
(vj)w

)
=
[
− s(wv̄u)1B + s(wv̄)u− s(w)uv + s(u)vw̄ + λ(uvw − vw̄u)

]
(15)

+
[
vw̄u

]
j.

Computing the third summand on the left of (13) is easy since (3.2.4) yields

(vj)(uw) =
[
− s(uw)v + λvuw

]
+
[
vw̄ū

]
j.(16)

Putting things together in (14)−(16), we are able to compute the left-hand side of (13)
as (

u ◦ (vj
)
w − u

(
(vj)w

)
− (vj)(uw) =

[
− tB(u)s(w)v − s(v̄u)w + s(v̄)uw

+ λtB(u)vw + s(wv̄u)1B − s(wv̄)u+ s(w)uv − s(u)vw̄ − λuvw
+ λvw̄u+ s(uw)v − λvuw

]
+
[
tB(u)vw̄ − vw̄u− vw̄ū

]
j.

Here the Bj-component vanishes because of (2.2.6), so the entire expression belongs to
B. Reordering we conclude(

u ◦ (vj
)
w − u

(
(vj)w

)
− (vj)(uw) = s(wv̄u)1B − s(wv̄)u−

[
tB(u)s(w)− s(uw)

]
v

− s(v̄u)w + s(w)uv + s(v̄)uw + λtB(u)vw − s(u)vw̄

− λ(uvw − vw̄u+ vuw).

Here tB(u)s(w)− s(uw) = s(ūw), while (2.2.4), (2.2.5) yield

uvw − vw̄u+ vuw = uvw − tB(w)vu+ v(wu+ uw)

= uvw − tB(w)vu+ tB(u)vw + tB(w)vu− nB(u,w)v

= uvw + tB(u)vw − tB(ūw)v.

since tB(ūw)− nB(u,w) = tB(ūw)− nB(ū, w̄) ∈ Ann(B) by [16, Prop. 18.8 (a)]. Hence
we obtain(

u ◦ (vj
)
w − u

(
(vj)w

)
− (vj)(uw) = s(wv̄u)1B − s(wv̄)u− s(ūw)v − s(v̄u)w

+ s(w)uv + s(v̄)uw + λtB(u)vw − s(u)vw̄

− λuvw − λtB(u)vw + λtB(ūw)v,

where the term λtB(u)vw cancels out and −s(ūw) + λtB(ūw) = s(ūw) = s(w̄u). Thus
the left-hand side of (13) attains the final form(

u ◦ (vj
)
w − u

(
(vj)w

)
− (vj)(uw) = s(wv̄u)1B − s(wv̄)u+ s(w̄u)v − s(v̄u)w(17)

+ s(w)uv + s(v̄)uw − s(u)vw̄ − λuvw
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Subtracting

H(u, v̄, w) = −H(w, v̄, u) = s(wv̄u)1B − s(wv̄)u− s(v̄u)w + s(wū)v

− s(w)ūv + s(v̄)uw + s(u)vw − λuvw,

from the right-hand side of (17), we obtain(
s(w̄u)− s(wū)

)
v+s(w)(u+ ū)v − s(u)v(w + w̄)

=
(
tB(w)s(u)− s(wu)− tB(u)s(w) + s(wu)

+ tB(u)s(w)− tB(w)s(u)
)
v = 0,

which completes the proof of (13).

70. Finally, we will deal with (7), whose left-hand side may be written as

[wj, u, vj] + [wj, vj, u] =
(
(wj)u

)
(vj)− (wj)

(
u(vj)

)
+
(
(wj)(vj)

)
u− (wj)

(
(vj)u

)
=
(
(wj)u

)
(vj) +

(
(wj)(vj)

)
u− (wj)

(
u ◦ (vj)

)
.

Hence (7) is equivalent to(
(wj)u

)
(vj) +

(
(wj)(vj)

)
u− (wj)

(
u ◦ (vj)

)
= −H(ū, v̄, w)j.(18)

In order to prove this, we begin with the last summand on the left, which by (3.3.6),
(3.2.4) may be written as

(wj)
(
u ◦ (vj)

)
= (wj)

([
− s(v̄u)1B + s(v̄)u

]
+
[
tB(u)v

]
j
)

=
[
− s(v̄u)w

]
j + s(v̄)(wj)u+ tB(u)(wj)(vj)

=
[
− s(v̄u)w

]
j +

[
− s(u)s(v̄)w + λs(v̄)wu

]
+
[
s(v̄)wū

]
j

+ tB(u)(wj)(vj),

which may be condensed to

(wj)
(
u ◦ (vj)

)
=
[
− s(u)s(v̄)w + λs(v̄)wu

]
+
[
− s(v̄u)w + s(v̄)wū

]
j

+ tB(u)(wj)(vj).

Hence (18) may be written in the form

−H(ū, v̄, w)j =
[
s(u)s(v̄)w − λs(v̄)wu

]
+
[
s(v̄u)w − s(v̄)wū

]
j(19)

+
(
(wj)u

)
(vj)−

(
(wj)(vj)

)
ū.

Our next aim will be to compute the final two terms on the right of (19). Using (3.2.4),
(3.2.3), (3.2.5), we first obtain(

(wj)u
)
(vj) =

([
− s(u)w + λwu

]
+
[
wū
]
j
)

(vj)

= − s(u)w(vj) + λ(wu)(vj) +
(
(wū)j

)
(vj)

=
[
s(u)s(v̄w)1B − s(u)s(w)v − s(u)s(v̄)w + λs(u)vw

]
+
[
− s(u)vw

]
j

+
[
− λs(v̄wu)1B + λs(wu)v + λs(v̄)wu− λ2vwu] +

[
λvwu

]
j

+
[
− λs(v̄wū)1B + λs(wū)v + λs(v̄)wū− λ2vwū+ µv̄wū

]
+
[
s(v̄wū)1B − s(wū)v + λvwū

]
j

=
[(
s(u)s(v̄w)− λtB(u)s(v̄w)

)
1B −

(
s(u)s(w)− λtB(u)s(w)

)
v

−
(
s(u)s(v̄)− λtB(u)s(v̄)

)
w + λ

(
s(u)− λtB(u)

)
vw + µv̄wū

]
+
[
s(v̄wū)1B − s(wū)v −

(
s(u)− λtB(u)

)
vw
]
j

Summing up, we therefore have(
(wj)u

)
(vj) =

[
− s(ū)s(v̄w)1B + s(ū)s(w)v + s(ū)s(v̄)w − λs(ū)vw + µv̄wū

]
(20)

+
[
s(v̄wū)1B − s(wū)v + s(ū)vw

]
j.
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Next we tackle the very last term of (19) by using (3.2.5), (3.2.4) to obtain(
(wj)(vj)

)
ū =

([
− λs(v̄w)1B + λs(w)v + λs(v̄)w − λ2vw + µv̄w

]
+
[
s(v̄w)1B − s(w)v + λvw

]
j
)
ū

=
[
− λs(v̄w)ū+ λs(w)vū+ λs(v̄)wū− λ2vwū+ µv̄wū

]
+
([
s(v̄w)1B − s(w)v + λvw

]
j
)
ū

=
[
− λs(v̄w)ū+ λs(w)vū+ λs(v̄)wū− λ2vwū+ µv̄wū

]
+
[
− s(ū)s(v̄w)1B + s(ū)s(w)v − λs(ū)vw + λs(v̄w)ū

− λs(w)vū+ λ2vwū
]

+
[
s(v̄w)u− s(w)vu+ λvwu

]
j.

In the B-component of this expression, the terms λs(v̄w)ū, λs(w)vū, λ2vwū cancel out,
and what remains is(

(wj)(vj)
)
ū =

[
− s(ū)s(v̄w)1B + s(ū)s(w)v + λs(v̄)wū− λs(ū)vw + µv̄wū

]
(21)

+
[
s(v̄w)u− s(w)vu+ λvwu

]
j.

With the aid of (20), (21), the right-hand side of (19) now attains the value

x :=
[
s(u)s(v̄)w − λs(v̄)wu− s(ū)s(v̄w)1B + s(ū)s(w)v + s(ū)s(v̄)w(22)

− λs(ū)vw + µv̄wū+ s(ū)s(v̄w)1B − s(ū)s(w)v − λs(v̄)wū

+ λs(ū)vw − µv̄wū
]

+
[
s(v̄u)w − s(v̄)wū+ s(v̄wū)1B

− s(wū)v + s(ū)vw − s(v̄w)u+ s(w)vu− λvwu
]
j.

In the B-component of x, the terms s(ū)s(v̄w)1B , s(ū)s(w)v, λs(ū)vw and µv̄wū cancel
out; hence it reduces to

s(u)s(v̄)w + s(ū)s(v̄)w − λs(v̄)w(u+ ū) = λtB(u)s(v̄)w − λtB(u)s(v̄)w = 0,

and we conclude that the B-component of x is zero. On the other hand, using (7.1.1)
and (22) to compare the Bj-component of x with

−H(v̄, w, ū) = s(v̄wū)1B − s(v̄w)u− s(wū)v + s(v̄u)w

− s(v̄)wū+ s(w)vu+ s(ū)vw − λvwu,

we see that they are the same. Moreover, since H is alternating, H(v̄, w, ū) = H(ū, v̄, w),
which completes the proof of (19), hence of (7) as well. This also completes the proof of
the theorem. �

7.5. Corollary. C is alternative if and only if B is associative, the conjugation of B is
an involution, and HB,s = 0.

Proof. If B is associative, its conjugation is an involution and HB,s = 0, then C is left
alternative by Thm. 7.4, hence also right alternative since its conjugation by Cor. 4.5 is
an involution. Thus C is alternative. Conversely, let this be so. Again by Thm. 7.4, it
suffices to show that B is associative and its conjugation is an involution. Since C is
flexible, the latter follows from Thm. 4.12. To prove the former, consider the equation(

u ◦ (vj)
)
w = u

(
(vj)w

)
+ (vj)(uw),(1)

valid for all u, v, w ∈ B by alternativity of C. More precisely, we compare the Bj-
components of both sides of (1) by computing modB. Indeed, applying (3.3.6), (3.2.4),
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(3.2.3), we obtain (
u ◦ (vj)

)
w =

([
− s(v̄u)1B + s(v̄)u

]
+
[
tB(u)v

]
j
)
w

≡ tB(u)(vj)w ≡ (tB(u)vw̄)j mod B,

u
(
(vj)w

)
= u

([
− s(w)v + λvw

]
+
[
vw̄
]
j
)

≡ u
(
(vw̄)j

)
≡
[
(vw̄)u

]
j mod B,

(vj)(uw) ≡
[
vuw

]
j ≡

[
v(w̄ū)

]
j mod B.

Comparing and applying (1), we conclude

tB(u)vw̄ = (vw̄)u+ v(w̄ū) = (vw̄)u+ tB(u)vw̄ − v(w̄u),

which amounts to [v, w̄, u] = 0 and hence shows that B is associative. �

7.6. Corollary. If B is associative, its conjugation is an involution and B is locally
generated by two elements (e.g., a quaternion algebra over k), then C is alternative.

Proof. This follows by simply combining Cor. 7.5 with Cor. 7.3. �

7.7. Concluding remarks. It would be nice to have a version of Thm. 7.4 and its
corollaries also in the commutative (resp. the associative) case. In other words, one
would like to have

(i) if B is commutative, a formula for the commutator [x, y], x, y ∈ C, in terms
of an appropriate alternating bilinear map, to be bult up along the lines of the
condition stated in Prop. 5.5 (ii),

(ii) if B is commutative associative, a formula for the associator [x, y, z], x, y, z ∈ B
in terms of an alternating trilinear map, to be built up along the lines of the
condition described in (6.6.1).

8. Non-singularity

In this section, we will be concerned with conditions under which the property of a
conic algebra to be (weakly) non-singular is preserved by the non-orthogonal Cayley-
Dickson construction. We also present a criterion that guarantees the output of a non-
orthogonal Cayley-Dickson construction to be non-singular even though the conic algebra
entering into the construction was only weakly non-singular to begin with. Using this
criterion, we recover the octonionic structure exhibited by Coxeter [2] on the E8-lattice.

Throughout we fix an arbitrary commutative ring k and a conic algebra B over k.

8.1. Non-singular and weakly non-singular conic algebras. (a) Our conic k-
algebra B is said to be non-singular if its norm, nB , is a non-singular quadratic form in
the sense of [16, 12.11]. This means that B is finitely generated projective as a k-module
and the bilinearization of the norm, more specifically written as

DnB : B ×B −→ k, (u, v) 7−→ (DnB)(u, v) := nB(u+ v)− nB(u)− nB(v),

induces a linear isomorphism from the k-module B onto its dual in the usual way. The
importance of this concept derives from the fact that it is invariant under base change.
By [16, Thm. 21.8], non-singular alternative conic algebras are the same as non-singular
composition algebras.

(b) In a more general vein, B is said to be weakly non-singular if it is finitely generated
projective as a k-module and nB is a weakly non-singular quadratic form in the sense
that the natural linear map from the k-module B to its dual induced by DnB is injective.
Following [16, 12.3] to define the radical of DnB by

Rad(DnB) :=
{
u ∈ B | nB(u,B) = {0}

}
⊆ B,(1)

we see that nB is weakly non-singular if and only if Rad(DnB) = {0}. Though no longer
invariant under base change, the notion of weak non-singularity for conic algebras turns
out to be quite useful in the present context.
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8.2. Lemma. Let M,M ′ be finitely generated projective k-modules and suppose we are
given quadratic forms q : M → k, q′ : M ′ → k over k. With α ∈ k, the following
conditions are equivalent.

(i) The quadratic form q ⊕ (αq′) : M ⊕M ′ → k is non-singular (resp. weakly non-
singular).

(ii) q and q′ are non-singular (resp. weakly non-singular) and α is invertible (resp.
not a zero divisor) in k.

Proof. Following [16, 10.4], we denote by (x∗, x) 7→ 〈x∗, x〉 the canonical pairing M∗ ×
M → k (ditto for M ′) and write ϕ : M → M∗ (resp. ϕ′ : M ′ → M ′∗) for the natural
map induced by Dq (resp. Dq′). Identifying (M ⊕M ′)∗ = M∗ ⊕M ′∗ canonically via

〈x∗ ⊕ x′∗, x⊕ x′〉 = 〈x∗, x〉+ 〈x′∗, x′〉 (x ∈M, x′ ∈M ′, x∗ ∈M∗, x′∗ ∈M ′∗),

it is then straightforward to check that the linear map M⊕M ′ → (M⊕M ′)∗ = M∗⊕M ′∗
corresponding to q ⊕ (αq′) agrees with ϕ⊕ αϕ′. In view of [16, 20.7], the equivalence of
(i), (ii) follows from this at once. �

8.3. Proposition. Assume that B is weakly non-singular. Let µ ∈ k, a ∈ B,

s := nB(a,−)

as a linear form on B and put C := Cay(B;µ, s). Then the following statements hold.

(a) If B is flexible, then

B⊥ = {−va+ vj | v ∈ B}.(1)

is its orthogonal complement in C relative to DnC . In particular, j0 := −a + j ∈ B⊥
and

µ′ := −nC(j0) = nB(a) + µ.(2)

(b) If B is alternative then

Rad(DnC) =
{
− va+ vj |

(
nB(a) + µ)v = 0

}
.(3)

Proof. By [16, Prop. 18.12], B is norm-associative and its conjugation is an involution.
(a) For u, u′, v ∈ B, we use (3.3.3), (2.3.4) to compute

nC(u+ vj, u′) = nB(u, u′) + s(v̄u′) = nB(u, u′) + nB(a, v̄u′)

= nB(u, u′) + nB(va, u′) = nB(u+ va, u′).

Hence, as B is weakly non-singular, u + vj belongs to B⊥ if and only if u + va = 0,
equivalently, u = −va. This proves (1) and then immediately implies j0 ∈ B⊥. Moreover,
by (3.3.2),

nC(j0) = nC(−a+ j) = nB(a) + s(−a)− µ = nB(a)− nB(a, a)− µ
= nB(a)− 2nB(a)− µ = −

(
nB(a) + µ

)
,

giving (2).
(b) Let us now assume that B is alternative. An element x = u + vj ∈ C, u, v ∈ B,

belongs to Rad(DnC) if and only if x ∈ B⊥ and nC(x,wj) = 0 for all w ∈ B, which by
(1) and (3.3.3) is equivalent to x = −va+ vj for some v ∈ B and

0 = nC(−va+ vj, wj) = − s
(
(w̄(va)

)
− µnB(v, w) = −nB(a, w̄(va))− µnB(v, w)

= − nB(ava, w̄)− µnB(v, w) = −nB
(
a(āv̄), w̄)− µnB(v, w)

= − nB(a)nB(v̄, w̄)− µnB(v, w) = −nB
((
nB(a) + µ

)
v, w

)
for all w ∈ B. Hence, again by weak non-singularity of B, equation (3) follows. �
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8.4. Corollary. With the notation of Prop. 8.3, let us assume that B is weakly non-
singular and alternative.

(a) C is weakly non-singular if and only if µ′ = nB(a) + µ is not a zero divisor in k. In
this case, there is a unique homomorphism

ϕ : C ′ := Cay(B,µ′) = B +Bj′ −→ C

of conic algebras extending the identity of B and sending j′ to j0. Moreover, ϕ is an
isomorphism.

(b) C is non-singular if and only if B is non-singular and µ′ = nB(a) + µ is invertible
in k.

Proof. (a) By [16, 20.7], µ0 is not a zero divisor in k if and only if it isn’t one in B.
Hence the first assertion follows immediately from (8.3.3). Existence and uniqueness of
the homomorphism ϕ may be read off directly from [16, Prop. 20.6], while [16, Cor. 20.8]
shows that ϕ is an isomorphism from C ′ onto the subalgebra of C generated by B and
j0. But this subalgebra contains j = a+ j0 and hence agrees with all of C, so ϕ must be
an isomorphism.

(b) If C is non-singular, then so is C ′ by (a), forcing B to be non-singular and µ′ to
be invertible in k since Lemma 8.2 applies to nC′ ∼= nB ⊕ (−µ′)nB . Conversely, suppose
B is non-singular and µ′ is invertible in k. Since, for the same reason as before, C ′ is
non-singular, so is C by (a), and (b) follows. �

8.5. Remark. The preceding results show that, under very peculiar circumstances, the
property of a conic algebra to be (weakly) non-singular is preserved by the non-orthogonal
Cayley-Dickson construction. But with an eye on Cor. 8.4 (a), one is tempted to ask:
what’s the point of the non-orthogonal Cayley-Dickson construction when restricting one-
self to situations where everything can be blamed on the orthogonal one? It is therefore
important to exhibit instances of the non-orthogonal Cayley-Dickson construction where
the reduction to the orthogonal case is no longer possible. Such instances may already
be found in [5, Prop. 4.4], where the non-orthogonal Cayley-Dickson construction leads
from a purely inseparable field extension of characteristic two and exponent one to a
weakly non-singular conic algebra. We will now proceed to exhibit instances of this kind
that are no longer restricted to base fields of characteristic two but, in fact, work over
arbitrary integral domains.

8.6. Lemma. Let k be an integral domain with quotient field K := Quot(k) and suppose
B is weakly non-singular. Then the following statements hold.

(a) BK is a non-singular conic algebra over K.

(b) The natural map B → BK is injective.

(c) Identifying B ⊆ BK by means of (b),

B] :=
{
w ∈ BK | nBK

(w,B) ⊆ k
}

is a finitely generated projective k-submodule of BK satisfying B ⊆ B].

(d) There exists a non-zero element δ ∈ k such that B] ⊆ δ−1B.

(e) If B is flexible, then BB] +B]B = B].

Proof. (a) The natural k-linear map ϕ : B → B∗ determined by DnB is injective by
hypothesis. Hence so is its K-linear extension ϕK : BK → (B∗)K = (BK)∗ [16, 10.6]
since K is a flat k-algebra [1, II, §2, Thm. 1]. Thus BK is weakly non-singular. But K
is a field and BK is a finite-dimensional over K, forcing it to be, in fact, a non-singular
conic K-algebra.

(b) Given u ∈ B such that u/1 ∈ BK is zero, then some non-zero δ ∈ k has δu = 0.
But δ, not being a zero divisor in k, neither is one in B [16, 20.7]. Hence u = 0.
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(c) B] ⊆ BK is clearly a k-submodule containing B, so it suffices to show that it
is finitely generated projective. Localizing if necessary, we may assume that B is free
as a k-module, of rank n, say. Accordingly, let (ei)1≤i≤n be a k-basis of B, which
is automatically a K-basis of BK . Since BK is non-singular over K by (a), we may
consider the corresponding dual basis (e∗i )1≤i≤n of BK over K relative to DnBK

, and it
is straightforward to check that B] is the free k-module generated by the e∗i , 1 ≤ i ≤ n.
This completes the proof of (c).

(d) This follows immediately from the fact that, by (c), B] is finitely generated as a
k-module.

(e) Let u, v ∈ B and w ∈ B]. By (2.3.4), (2.3.3) we have nBK
(vw, u) = nBK

(w, v̄u) ∈
k, forcing vw ∈ B], and nBK

(wv, u) = nBK
(w, uv̄) ∈ k, forcing wv ∈ B]. �.

8.7. Proposition. With the notation and assumptions of Lemma 8.6, B is non-singular
if and only if B = B].

Proof. Suppose first that B is non-singular. By Lemma 8.6 (c), we must show B] ⊆ B,
so let w ∈ B]. Then the map B → k, u 7→ nBK

(w, u) is a linear form, which by non-
singularity of B can be written as nB(a,−) for some a ∈ B. Since KB = BK , we
conclude w − a ∈ Rad(DnBK

) = {0}, hence w = a ∈ B. Conversely, suppose B = B]

and let s : B → k be a linear form. Since BK is non-singular by Lemma 8.6 (a), the
K-linear extension of s has the form sK = nBK

(w,−) for some w ∈ BK . In particular,
nBK

(w, u) = sK(u) = s(u) ∈ k for all u ∈ B, which implies w ∈ B] = B, hence
s = nB(w,−), and by weak non-singularity of B we are done. �

8.8. Lemma. With the notation and assumptions of Lemma 8.6, let µ ∈ k \ {0} and
C := Cay(B,µ) = B ⊕Bj. Then

C] = B] ⊕ (µ−1B])j.

Proof. Write x ∈ CK uniquely in the form x = a + bj for some a, b ∈ BK . In view of
Lemma 8.6 (c), we then obtain the following chain of equivalent conditions.

x ∈ C] ⇐⇒ ∀u, v ∈ B : nCK
(a+ bj, u) ∈ k, nCK

(a+ bj, vj) ∈ k
⇐⇒ ∀u, v ∈ B : nBK

(a, u) ∈ k, nBK
(µb, v) = µnBK

(b, v) ∈ k

⇐⇒ a ∈ B], µb ∈ B]

⇐⇒ a ∈ B], b ∈ µ−1B]

⇐⇒ x = a+ bj ∈ B] ⊕ (µ−1B])j.

The assertion follows. �

Trying to find an analogous description in the setting of the non-orthogonal Cayley-
Dickson construction, turns out to be a bit more troublesome.

8.9. Proposition. With the notation and assumptions of Lemma 8.6, let µ ∈ k and
s : B → k a linear form. Then there exists a unique element a ∈ BK such that sK =
nBK

(a,−). Moroever, if B is flexible, we put C := Cay(B;µ, s) = B ⊕Bj and have

C] = {u+ vj | u, v ∈ BK , u+ va, uā− µv ∈ B]}.

Proof. Existence and uniqueness of a follows from the fact that BK is non-singular over
K (Lemma 8.6 (a)). Now suppose B is flexible, hence norm-associative [16, Prop. 18.12].
For u, v, w ∈ BK , it suffices to show

nCK
(u+ vj, w) = nBK

(u+ va, w), nCK
(u+ vj, wj) = nBK

(uā− µv,w).(1)

Indeed, by (3.3.3), (2.3.4) and the definition of a, we have

nCK
(u+ vj, w) = nBK

(u,w) + sK(v̄w) = nBK
(u,w) + nBK

(a, v̄w)

= nBK
(u,w) + nBK

(va, w) = nBK
(u+ va, w),
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giving the first equation of (1), and

nCK
(u+ vj, wj) = sK(w̄u)− µnBK

(v, w) = nBK
(a, w̄u)− µnBK

(v, w)

= nBK
(aū, w̄)− µnBK

(v, w) = nBK
(uā, w)− µnBK

(v, w)

= nBK
(uā− µv,w),

giving the second equation of (1) as well. �

Remark. If C as in Prop. 8.9 is an orthogonal Cayley-Dickson construction, then a = 0,
and we recover Lemma 8.8 in the flexible case.

8.10. Theorem. Let k be an intergral domain with quotient field K := Quot(k), B a
weakly non-singular conic alternative k-algebra, µ ∈ k an arbitrary scalar, s : B → k an
arbitrary linear form and C := Cay(B;µ, s) = B ⊕ Bj as in 3.2. Choose an element
δ ∈ k \{0} satisfying B] ⊆ δ−1B (cf. Lemma 8.6 (d)) and write a for the unique element
in BK satisfying sK = nBK

(a,−) (cf. Prop. 8.9). Then the following statements hold.

(a) a ∈ B].

(b) There exists a unique element a0 ∈ B such that a = δ−1a0.

(c) ε := nB(a0) ∈ k.

(d) If ε+ δ2µ is invertible in k, then C is non-singular.

Proof. (a) We have nBK
(a, u) = sK(u) = s(u) ∈ k for all u ∈ B, hence a ∈ B]

(b) This follows from the choice of δ.
(c) This is clear.
(d) By Prop. 8.7, we must show C = C], so let u, v ∈ BK satisfy u + vj ∈ C]. By

Prop. 8.9 and the choice of δ, this implies

u+ va, uā− µv ∈ δ−1B.(1)

Now observe tBK
(a) = nBK

(a, 1B) ∈ k by (a), and Lemma 8.6 (c) yields ā = tBK
(a)1B−

a ∈ B + B] = B] ⊆ δ−1B by (1). Thus (1) again combines with alternativity of B to
imply

uā+ nBK
(a)v = (u+ va)ā ∈ δ−2B.

Since nBK
(a) = δ−2ε by (b), (c), we therefore conclude from (1) that

δ−2(ε+ δ2µ)v = (δ−2ε+ µ)v =
(
nBK

(a) + µ
)
v =

(
uā+ nBK

(a)v
)
− (uā− µv)

belongs to δ−2B as well. But this forces (ε+δ2µ)v ∈ B, hence v ∈ B by hypothesis. Now
the second equation of (1) implies uā ∈ δ−1B, forcing δ−2εu = nBK

(a)u = (uā)a ∈ δ−2B,
hence εu ∈ B. On the other hand, since va belongs to δ−1B by Lemma 8.6 (e), so does u
by the first equation of (1). Thus δ2µu ∈ δB ⊆ B, and we end up with (ε+ δ2µ)u ∈ B.
This gives u ∈ B by hypothesis, and summing up we have proved u+ vj ∈ B +Bj = C,
as desired. �

9. Examples: Hurwitz, Dickson and Coxeter

In this section we work over the ring Z of rational integers. Our aim is to describe
the Hurwitz quaternions as well as the Dickson and Coxeter octonions as explicitly as
possible by means of the non-orthogonal Cayley-Dickson construction. We will also show
that certain unimodular positive definite integral quadratic lattices of rank 16 carry the
structure of a sedenion algebra over the integers.

9.1. Gaussian integers. Let D be one of the four composition division algebras
R,C,H,O over the reals. It is well known that D admits an orthonormal basis
E = (ui)0≤i<n, n = dimR(D), relative to the scalar product 〈x, y〉 := 1

2nD(x, y) that
up to a sign is closed under multiplication. Then

GaE(D) :=
⊕

0≤i<n

Zui
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is a Z-structure of D, i.e., it is a subalgebra over Z such that the embedding GaE(D) ↪→ D
induces an isomorphism from GaE(D)⊗ZR onto D. We call GaE(D) the ring of Gaussian
integers of D with respect to E. Note that GaE(D) is a weakly non-singular conic
alternative algebra over Z satisfying

GaE(D)] =
1

2
GaE(D) =

1

2

⊕
0≤i<n

Zui(1)

in the sense of Lemma 8.6 (c).

9.2. Example: the classical Gaussian integers. The preceding considerations apply
to D := C and its real basis E := (1, i). Then Ga(C) := GaE(C) = Z[i] = Cay(Z,−1)
are the classical Gaussian integers, i.e., the ring of integers in the Gaussian number field
Q(i)/Q.

9.3. Example: the Hurwitz quaternions. Let H be the algebra of Hamiltonian
quaternions with its canonical basis E := (1, i, j,k). The Hurwitz quaternions are tradi-
tionally written as

Hur(H) = Z1⊕ Zi⊕ Zj⊕ Zh, h :=
1

2
(1 + i + j + k)(1)

as an algebra over Z [6, p. 319]. According to [16, Exc. 117], they cannot be realized
by the orthogonal Cayley-Dickson construction. In order to realize them by the non-
orthogonal one, we identify B := Ga(C) = Z[i] ⊆ C = R[i] ⊆ H and apply [16, Thm. 4.2]
to conclude

Hur(H) = Ga(C)⊕Ga(C)h = Z[i]⊕ Z[i]h.(2)

Consulting Prop. 3.5 and observing nH(h) = 1, we therefore obtain an identification

Hur(H) = Cay
(
Z[i]; s,−1),(3)

where s : Z[i]→ Z is the linear form that in view of (1) may be written as

s(v) = nH(h, v) = nBQ(a, v), a :=
1

2
a0 ∈ B], a0 := 1 + i ∈ B (v ∈ B)(4)

since j,k ∈ B⊥ ⊆ Hur(H); thus s(1) = s(i) = 1. Adopting the notation of Thm. 8.10 we
have µ = −1, δ = ε = 2, hence ε+δ2µ = −2 /∈ Z×, in agreement with Thm. 8.10 (d) since
the Hurwitz quaternions are known to be singular, with discriminant 4 [16, Thm. 4.2].

9.4. Cartan-Shouten bases. As usual, we denote by O the real algebra of Graves-
Cayley octonions [16, 1.4] and, following [16, 2.1], define a Cartan-Shouten basis of O as
a family (ui)0≤i≤7 of elements in O such that u0 = 1O, u2i = −u0 and ui+rui+3r = ui =
−ui+3rui+r for 1 ≤ i ≤ 7 and r = 1, 2, 4, where indices are to be reduced mod 7 whenever
necessary. Cartan-Shouten bases exist [16, Prop. 2.2] and are orthonormal bases of the
underlying vector space [16, Exc. 6] which fit into the pattern of 9.1. More precisely, the
multiplicative properties of Cartan-Shouten bases may be depicted conveniently in the

u3 u2 u5

u6

u4 u1

u7
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usual way by the visualization of the Fano plane, see [16, 2.5] for details.

9.5. Example: the Coxeter octonions. Let E = (ui)1≤i≤7 be a Cartan-Shouten basis
of O. A matching copy of H in O is obtained by identifying the canonical basis (1, i, j,k)
of H with E′ := (u0, u1, u2, u4), so we have

H = Ru0 ⊕ Ru1 ⊕ Ru2 ⊕ Ru4,(1)

and conclude from 9.1 that

B := GaE′(H) = Zu0 ⊕ Zu1 ⊕ Zu2 ⊕ Zu4(2)

is a weakly non-songular associative conic algebra over the integers satisfying B] = 1
2B,

hence δ = 2 in the sense of Thm. 8.10. Putting

p :=
1

2
(u0 + u1 + u2 + u3),(3)

we now deduce from [16, Thm. 4.5 ] that

Cox(O) := B ⊕Bp(4)

is a Z-structure of O, called the Coxter octonions, whose generic fibre is the unique
octonion division algebra over the rationals. From [16, Exc. 16] we deduce that (εi)1≤i≤8,
with

ε1 :=
1

2
(−u0 + u2), ε2 :=

1

2
(u0 + u2), ε3 := −1

2
(u1 + u3), ε4 :=

1

2
(u1 − u3),

ε5 :=
1

2
(−u4 + u5), ε6 :=

1

2
(u4 + u5), ε7 :=

1

2
(u6 − u7), ε8 :=

1

2
(u6 + u7)

is an orthonormal basis of O and

Cox(O) =
{ 8∑

i=1

ξiεi | ξi ∈ R, 2ξi, ξi − ξj ∈ Z (1 ≤ i, j ≤ 8),

8∑
i=1

ξi ∈ 2Z
}
.(5)

Since nO(p) = 1 by (3), we deduce from Prop. 3.5, (4) and (3) again that

Cox(O) = Cay(B; s,−1)(6)

where s : B → Z is the linear form given by

s(v) = nO(p, v) = nBQ(a, v), a :=
1

2
a0 ∈ B], a0 := u0 + u1 + u2 (v ∈ B)(7)

since u3 ∈ B⊥ ⊆ Cox(O); thus s is characterized by s(ui) = 1 for i = 0, 1, 2 and
s(u4) = 0. In the notation of Thm. 8.10, we have µ = −1, δ = 2 and ε = 3, hence
ε + δ2µ = −1 ∈ Z×, and we conclude from Thm. 8.10 (d) that Cox(O) is an octonion
algebra over the integers. Note that we have arrived at this conclusion without computing
any determinants; simply invoking the aforementioned general theorem was enough.

Alternatively, starting from B, the Gaussian integers of H relative to the canonical
basis (1, i, j,k) of 9.3, and the linear form s := nH(a,−) : B → Z with a := 1

2 (1 + i+ j) ∈
B] as in (7), we could have defined the Coxeter octonions by the right-hand side of
(6), which the arguments of the preceding § establish as an octonion algebra over the
integers whose generic fiber, by Cor. 8.4, is isomorphic to Cay(BQ,− 1

4 ), hence to the
unique octonion division algebra over the rationals.

9.6. Towards the Dickson octonions. The Dickson octonions as defined in [3] (see
also Mahler [11]), which form an octonion algebra without zero divisors over the integers
and hence, by a result of Van der Blij-Springer [18], are isomorphic to the Coxeter
octonions, will be shown in this section to arise from the Hurwitz quaternions by means
of the non-orthogonal Cayley-Dickson construction.

As a first step, the same objective will be achieved for the Coxeter octonions. In order
to do so, we pick a Cartan-Shouten basis E = (ui)0≤i≤7 of O as in 9.5. Identifying H in
O via (9.5.1) won’t do since (9.5.5) is easily seen to imply that h = 1

2 (u0 + u1 + u2 + u4)
does not belong to Cox(O); hence neither does Hur(H). Therefore we are looking for a
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different identification of H in O, namely the one matching the canonical basis (1, i, j,k)
of H with (u0, u3, u4, u6). Using (9.5.5) again, it follows that

D := Hur(H) = Zu0 ⊕ Zu3 ⊕ Zu4 ⊕ Zh, h =
1

2
(u0 + u3 + u4 + u6)(1)

belongs to Cox(O). Since also the element p of (9.5.3) belongs to Cox(O), so does D⊕Dp,
this obviously being a direct sum of abelian groups. We claim

Cox(O) = D ⊕Dp,(2)

where what we have just seen and Prop. 3.1 show that the right-hand side is a unital
subalgebra of the left. In order to prove equality, we apply (9.5.3) to obtain

u4p =
1

2
(−u1 + u2 + u4 − u6),

and (1) yields

u1 = u4 − h + p− u4p ∈ D ⊕Dp.

Hence u2 = u4u1 ∈ D ⊕ Dp as well, and with E′ as in 9.5 we have shown GaE′(H) ⊆
D ⊕Dp. In view of (9.5.4), this completes the proof of (2).

Now one checks easily that

D] =
{1

2

∑
γiui | γi ∈ Z (i = 0, 3, 4, 6),

∑
γi ≡ 0 mod 2

}
,(3)

where the summations on the right are to be extended over i = 0, 3, 4, 6. Combining (2)
with Prop. 3.5 and (3), we deduce

Cox(O) = Cay(D; t,−1),(4)

where t : D → Z is the linear form given by

t(w) = nO(p, w) = nDQ(b, w), b =
1

2
b0 ∈ D], b0 = u0 + u3 (w ∈ D)(5)

since u1, u2 ∈ D⊥ ⊆ Cox(O); thus t is characterized by t(u0) = t(u3) = t(h) = 1,
t(u4) = 0. In the notation of Thm. 8.10, we may choose δ = 2 by (3) and have µ = −1,
ε = 2, hence ε+ δ2µ = −2 /∈ Z×. In particular, the converse of the implication 8.10 (d)
does not hold. Hence, if we had started from D (resp. t) as given in (1) (resp. (5)) to
define a conic algebra over the integers by the right-hand side of (4), we could not at all
be sure to obtain an octonion algebra in this way, unless we were able to identify it with
the Coxeter octonions.

9.7. Example: the Dickson octonions. Keeping the notation of the previous subsec-
tion, Dickson [3, p. 319] defined what we call the Dickson octonions as

Dic(O) := D ⊕ Zv1 ⊕ Zv2 ⊕ Zv3 ⊕ Zv4 ⊆ O,(1)

where

v1 := u2,(2)

v2 :=
1

2
(u0 − u1 + u2 + u3),(3)

v3 :=
1

2
(u0 + u2 + u4 − u5),(4)

v4 :=
1

2
(u0 + u2 + u6 − u7).(5)

Dickson showed by direct computation that Dic(O) is an octonion algebra over the inte-
gers. Within the context of the present work, this can be accomplished much easier by
proving the following result.



38 HOLGER P. PETERSSON

9.8. Proposition. Dic(O) = Cox(O).

Proof. Since D ⊆ Cox(O) by (9.6.2), the left-hand side will be contained in the right once
we have shown vi ∈ Cox(O) for i = 1, 2, 3, 4. Using (9.5.5), this follows by straightforward
computations. It remains to show Cox(O) ⊆ Dic(O).

As a first step we prove GaE(O) ⊆ Dic(O). By (9.6.1) and (9.7.1), we clearly have
u0, u3, u4,h ∈ D ⊆ Dic(O), while (9.6.1) and (9.7.1)−(9.7.5) yield

u2 = v1 ∈ Dic(O),(1)

u1 = − 2v2 + u0 + u2 + u3 ∈ Dic(O),(2)

u5 = − 2v3 + u0 + u2 + u4 ∈ Dic(O),(3)

u6 = 2h− u0 − u3 − u4 ∈ Dic(O),(4)

u7 = − 2v4 + u0 + u2 + u6 ∈ Dic(O),(5)

hence proves our intermediate assertion.
Returning to the quantity p of (9.5.3), we not only have p = u1 + v2 ∈ Dic(O) by

(9.7.3) but also, using (1)−(5),

u1p =
1

2
(−u0 + u1 + u4 + u7) ≡ 1

2
(−u0 + u0 + u2 + u3 + u4 + u0 + u2 + u6)

≡ 1

2
(u0 + u3 + u4 + u6) ≡ h ≡ 0 mod Dic(O),

u2p =
1

2
(−u0 + u2 − u4 + u5) ≡ 1

2
(−u0 + u2 + u4 + u0 + u2 + u4)

≡ u2 ≡ 0 mod Dic(O)

and, finally,

u4p =
1

2
(−u1 + u2 + u4 − u6) ≡ 1

2
(−u0 − u2 − u3 + u2 + u4 − u6)

≡ 1

2
(−u0 − u3 + u4 − u6) ≡ −u0 − u3 − u6 + h ≡ 0 mod Dic(O).

Defining B ⊆ Dic(O) as in (9.5.2), we have thus shown Bp ⊆ Dic(O), which in view of
(9.5.4) proves Cox(O) ⊆ Dic(O) and completes the proof. �

Remark. Combining Prop. 9.8 with (9.6.4), we obtain an explicit realization of the
Dickson octonions out of the Hurwitz quaternions by means of the non-orthogonal Cayley-
Dickson construction.

9.9. The sedenions. Physicists love the sedenions (see, e.g., [4, 8, 9]), i.e., the flexible
conic algebra of dimension 16 over the reals defined by S := Cay(O,−1). Contrary to
what one would expect from the analogy to composition algebras, the sedenions have
a positive definite, hence anisotropic, norm and yet admit zero divisors; in fact, the
zero divisor pairs ((x, y) ∈ S2 satisfying ‖x‖ = ‖y‖ = 1 and xy = 0) form a principal
homogeneous space for the compact Lie group G2 [13], [16, Exc. 113].

9.10. Vista: integral sedenions. According to Witt [20], there are essentially two
unimodular positive definite integral quadratic lattices of rank 16 over the integers: the
direct sum of two copies of the E8-lattice, and a unique indecomposable one. Using the
non-orthogonal Cayley-Dickson construction, we will now show that at least one, and
possibly both, of these may be endowed with the structure of a sedenion algebra over Z.

As in 9.5, let (ui)0≤i≤7 be a Cartan-Shouten basis of O. Then A := GaE(O) ⊆ O is
a weakly non-singular alternative conic algebra over Z with positive definite norm such
that A] = 1

2A. Let (αi)0≤i≤7 be any family of elements in {0,±1}, precisely three of
which are assumed to be non-zero, and define a linear form s on A by

s = nAQ

(1

2

∑
αiui,−

)
|A : A −→ Z.
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Then Thm. 8.10 combined with Cor. 8.4 shows that

C := Cay(A;−1, s)

is a nonsingular conic algebra of rank 16 with positive definite norm form over Z. Hence
its underlying integral quadratic lattice must be one of the two mentioned above. For
example, if α0 = α1 = α2 = 1 and α4 = · · · = α7 = 0, a comparison with (9.5.6) and
(9.5.7) shows that C contains the Coxeter octonions as a unital subalgebra. Hence the
integral quadratic lattice underlying C splits into the direct sum of two copies of the
E8-lattice. Whether an analogous example can be found where the underlying integral
quadratic lattice is indecomposable remains an open question.
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