New Examples of Simple Jordan Superalgebras over an Arbitrary Field of Characteristic Zero

V. N. Zhelyabin

Abstract

An new example of a unital simple special Jordan superalgebra over the field of real numbers was constructed in [10]. It turned out to be a subsuperalgebra of the Jordan superalgebra of vector type $J(\Gamma, D)$, but not isomorphic to a superalgebra of this type. Moreover, its superalgebra of fractions is isomorphic to a Jordan superalgebra of vector type. A similar example of a Jordan superalgebra over a field of characteristic 0 in which the equation $t^{2}+1=0$ has no solutions was constructed in [12]. In this article we present an example of a Jordan superalgebra with the same properties over an arbitrary field of characteristic 0. A similar example of a superalgebra is found in the Cheng-Kac superalgebra.

Keywords: Jordan superalgebra, ($-1,1$)-superalgebra, superalgebra of vector type, differentially simple algebra, polynomial algebra, projective module

Jordan algebras and superalgebras constitute an important class of algebras in ring theory. Simple Jordan superalgebras are studied in $[1,2,3,4,5,6,7,8]$.

The unital simple special Jordan superalgebras with the associative even part A and the odd part M which is an associative A-module were described in $[9,10]$. The study in [9] was considerably influenced by [11], which described the simple ($-1,1$)-superalgebras of characteristic $\neq 2,3$. In the Jordan case, if a superalgebra is not the superalgebra of a nondegenerate bilinear superform, then its even part A is a differentially simple algebra with respect to some set of derivations, and its odd part M is a finitely generated projective A-module of rank 1 . Here, as for ($-1,1$)-superalgebras, we define multiplication in M using fixed finite sets of derivations and elements of A. It turns out that every Jordan superalgebra of this type is a subsuperalgebra of the superalgebra of vector type $J(\Gamma, D)$. Under certain restrictions on A the odd part M is a cyclic A-module, and consequently, the original Jordan superalgebra is isomorphic to the superalgebra $J(\Gamma, D)$. For instance, if A is a local algebra then by the well-known Kaplansky theorem M is free, and consequently, it is a cyclic A-module. If the ground field is of characteristic $p>2$ then [13] implies that A is a local algebra; thus, M is a cyclic A-module. If A is the ring of polynomials in finitely many variables then M is free by [14], and consequently, it is a cyclic A-module.

A natural question arose: is the original superalgebra isomorphic to $J(\Gamma, D)$? Equivalently, is the odd part M a cyclic A-module? Examples are constructed in [10,12] of unital simple

[^0]special Jordan superalgebras with certain associative even part and the odd part M which is not free, i.e., not cyclic. In those examples the ground field is either the field of real numbers or an arbitrary field of characteristic 0 in which the equation $t^{2}+1=0$ has no solutions.

In this article we construct a similar example of a Jordan superalgebra over an arbitrary field of characteristic 0 , as well as an example of a simple Jordan superalgebra which is a subsuperalgebra of the Cheng-Kac Jordan superalgebra. Examples of these superalgebras answer a question of Cantarini and Kac [8].

Take a field F of characteristic not equal to 2. A superalgebra $J=J_{0}+J_{1}$ is a Z_{2}-graded F-algebra:

$$
J_{0}^{2} \subseteq J_{0}, J_{1}^{2} \subseteq J_{0}, J_{1} J_{0} \subseteq J_{1}, J_{0} J_{1} \subseteq J_{1}
$$

Put $A=J_{0}$ and $M=J_{1}$. The spaces A and M are called the even and odd parts of J. The elements of $A \cup M$ are called homogeneous. The expression $p(x)$ with $x \in A \cup M$ means the parity of $x: p(x)=0$ for $x \in A(x$ is even) and $p(x)=1$ for $x \in M(x$ is odd).

Given x in J denote by R_{x} the operator of right multiplication by x. A superalgebra J is called a Jordan superalgebra if the homogeneous elements satisfy the operator identities

$$
\begin{gather*}
a R_{b}=(-1)^{p(a) p(b)} b R_{a}, \tag{1}\\
R_{a^{2}} R_{a}=R_{a} R_{a^{2}}, \tag{2}\\
R_{a} R_{b} R_{c}+(-1)^{p(a) p(b)+p(a) p(c)+p(b) p(c)} R_{c} R_{b} R_{a}+(-1)^{p(b) p(c)} R_{(a c) b}= \\
R_{a} R_{b c}+(-1)^{p(a) p(b)} R_{b} R_{a c}+(-1)^{p(a) p(c)+p(b) p(c)} R_{c} R_{a b} . \tag{3}
\end{gather*}
$$

In every Jordan superalgebra, the homogeneous elements satisfy

$$
\begin{equation*}
(x, t z, y)=(-1)^{p(x) p(t)} t(x, z, y)+(-1)^{p(y) p(z)}(x, t, y) z \tag{4}
\end{equation*}
$$

where $(x, z, y)=(x z) y-x(z y)$ is the associator of x, z, and y.
Let us give some examples of Jordan superalgebras.
Take an associative Z_{2}-graded algebra $B=B_{0}+B_{1}$ with multiplication $*$. Defining on the space B the supersymmetric product

$$
a \circ_{s} b=\frac{1}{2}\left(a * b+(-1)^{p(a) p(b)} b * a\right), \quad a, b \in B_{0} \cup B_{1},
$$

we obtain the Jordan superalgebra $B^{(+) s}$. A Jordan superalgebra $J=A+M$ is called special whenever it embeds (as a Z_{2}-graded algebra) in the superalgebra $B^{(+) s}$ for a suitable Z_{2}-graded associative algebra B.

The superalgebra of vector type $J(\Gamma, D)$. Take a commutative associative F-algebra Γ equipped with a nonzero derivation D. Denote by $\bar{\Gamma}$ an isomorphic copy of the linear space Γ, and a fixed isomorphism, by $a \mapsto \bar{a}$. On the direct sum $J(\Gamma, D)=\Gamma+\bar{\Gamma}$ of linear spaces define a multiplication (\cdot) as

$$
a \cdot b=a b, \quad a \cdot \bar{b}=\overline{a b}, \quad \bar{a} \cdot b=\overline{a b}, \quad \bar{a} \cdot \bar{b}=D(a) b-a D(b),
$$

where $a, b \in \Gamma$ and $a b$ is the product in Γ. Then $J(\Gamma, D)$ is a Jordan superalgebra with the even part $A=\Gamma$ and the odd part $M=\bar{\Gamma}$. The superalgebra $J(\Gamma, D)$ is simple if and only if Γ is a D-simple algebra [15] (i.e., Γ contains no proper nonzero D-invariant ideals, and $\Gamma^{2}=\Gamma$).

Consider the associative superalgebra $B=M_{2}^{1,1}(\operatorname{End} \Gamma)$ with the even part

$$
B_{0}=\left\{\left(\begin{array}{cc}
\phi & 0 \\
0 & \psi
\end{array}\right), \text { where } \phi, \psi \in \operatorname{End} \Gamma\right\}
$$

and the odd part

$$
B_{1}=\left\{\left(\begin{array}{ll}
0 & \phi \\
\psi & 0
\end{array}\right) \text { where } \phi, \psi \in \operatorname{End} \Gamma\right\} .
$$

It is shown in [16] that the mapping

$$
a+\bar{b} \mapsto\left(\begin{array}{cc}
R_{a} & 4 R_{b} D+2 R_{D(b)} \\
-R_{b} & R_{a}
\end{array}\right)
$$

is an embedding of $J(\Gamma, D)$ into $B^{(+) s}$. Consequently, the Jordan superalgebra $J(\Gamma, D)$ is special.

The Kantor double $J(\Gamma,\{\}$,$) . Take an associative supercommutative superalgebra \Gamma=$ $\Gamma_{0}+\Gamma_{1}$ with unit 1 equipped with a super-skew-symmetric bilinear mapping $\{\}:, \Gamma \mapsto \Gamma$, which we call the bracket. From Γ and $\{$,$\} we can construct a superalgebra J(\Gamma,\{\}$,$) as follows.$ Consider the direct sum $J(\Gamma,\{\})=,\Gamma \oplus \Gamma x$ of linear spaces, where Γx is an isomorphic copy of Γ. Take two homogeneous elements a and b of Γ. The multiplication (\cdot) on $J(\Gamma,\{\}$,$) is$ defined as

$$
a \cdot b=a b, \quad a \cdot b x=(a b) x, \quad a x \cdot b=(-1)^{p(b)}(a b) x, \quad a x \cdot b x=(-1)^{p(b)}\{a, b\} .
$$

Put $A=\Gamma_{0}+\Gamma_{1} x$ and $M=\Gamma_{1}+\Gamma_{0} x$. Then $J(\Gamma,\{\})=,A+M$ is a Z_{2}-graded algebra.
Refer to $\{$,$\} as a Jordan bracket if J(\Gamma,\{\}$,$) is a Jordan superalgebra. It is known (see$ [17]) that $\{$,$\} is a Jordan bracket if and only if it satisfies$

$$
\begin{gather*}
\{a, b c\}=\{a, b\} c+(-1)^{p(a) p(b)} b\{a, c\}-\{a, 1\} b c, \tag{5}\\
\{a,\{b, c\}\}=\{\{a, b\}, c\}+(-1)^{p(a) p(b)}\{b,\{a, c\}\}+\{a, 1\}\{b, c\}+ \\
(-1)^{p(a)(p(b)+p(c))}\{b, 1\}\{c, a\}+(-1)^{p(c)(p(a)+p(b))}\{c, 1\}\{a, b\}, \tag{6}\\
\{d,\{d, d\}\}=\{d, d\}\{d, 1\}, \tag{7}
\end{gather*}
$$

where $a, b, c \in \Gamma_{0} \cup \Gamma_{1}$, and $d \in \Gamma_{1}$.
In particular, $J(\Gamma, D)$ is the algebra $J(\Gamma,\{\}$,$) if$

$$
\{a, b\}=D(a) b-a D(b)
$$

The next theorem is proved in [10].
Theorem. Take a simple special unital Jordan superalgebra $J=A+M$ whose even part A is an associative algebra, and whose odd part M is an associative A-module. If J is not the superalgebra of a nondegenerate bilinear superform then there exist $x_{1}, \ldots, x_{n} \in M$ such that

$$
M=x_{1} A+\ldots+x_{n} A
$$

and the product in M satisfies

$$
\begin{equation*}
a x_{i} \cdot b x_{j}=\gamma_{i j} a b+D_{i j}(a) b-a D_{j i}(b), \quad i, j=1, \ldots, n, \tag{8}
\end{equation*}
$$

where $\gamma_{i j} \in A$, and $D_{i j}$ is a derivation of A. The algebra A is differentially simple with respect to the set of derivations $\Delta\left\{D_{i j} \mid i, j=1, \ldots, n\right\}$. The module M is a projective A-module of rank 1. Moreover, J is a subalgebra of the superalgebra $J(\Gamma, D)$.

In addition, [10] includes an example of a Jordan superalgebra over the field of real numbers satisfying the hypotheses of the theorem which is not isomorphic to $J(\Gamma, D)$. A similar example of a Jordan superalgebra over a field of characteristic zero in which the equation $t^{2}+1=0$ has no solutions is constructed in [12]. Let us give another example of this kind of superalgebra over an arbitrary field of characteristic zero.

Fix an arbitrary field F of characteristic 0 . Consider the polynomial algebra $F[x, y]$ in two variables x and y. Denote by $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ the operators of differentiation with respect to x and y on $F[x, y]$. Put $D=2 y^{3} \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}$ and $f(x, y)=x^{2}+y^{4}-1$. Then D is a derivation of $F[x, y]$, and $D(f(x, y))=0$. Take the quotient algebra $\Gamma=F[x, y] / f(x, y) F[x, y]$ of $F[x, y]$ by the ideal $f(x, y) F[x, y]$. It is clear that D induces a derivation of Γ, which we denote by D as well. Identify the images of x and y under the canonical homomorphism $F[x, y] \mapsto \Gamma$ with the elements x and y. Then $\Gamma=F[y]+x F[y]$, where $F[y]$ is the polynomial ring in y.

Proposition 1. The algebra Γ is differentially simple with respect to D.
Proof. Suppose that I is a nonzero D-invariant ideal of Γ. If $f(y) \in F[y]$ and $f(y) \in I$ then $D(f(y))=-x f^{\prime}(y) \in I$, where $f^{\prime}(y)$ is the derivative of $f(y)$ with respect to y. Then $\left(1-y^{4}\right) f^{\prime}(y) \in I$ and $D\left(\left(1-y^{4}\right) f^{\prime}(y)\right) \in I$. Thus,

$$
-x\left(-4 y^{3} f^{\prime}(y)+\left(1-y^{4}\right) f^{\prime \prime}(y)\right) \in I
$$

This implies that $\left(1-y^{4}\right)^{2} f^{\prime \prime}(y) \in I$. Continuing this process, we deduce that $\left(1-y^{4}\right)^{k} f^{(k)}(y) \in I$ for all k, where $f^{(k)}(y)$ is the order k derivative of $f(y)$. Consequently, $\left(1-y^{4}\right)^{k} \in I$ for some k. Take the smallest k with $z_{k}=\left(1-y^{4}\right)^{k} \in I$. Then

$$
D\left(z_{k}\right)=4 k x y^{3}\left(1-y^{4}\right)^{k-1} \in I .
$$

Thus,

$$
x\left(1-y^{4}\right)^{k-1}=x z_{k}+\frac{1}{4 k} y D\left(z_{k}\right) \in I .
$$

Consequently,

$$
D\left(x\left(1-y^{4}\right)^{k-1}\right)=2 y^{3}\left(1-y^{4}\right)^{k-1}+(k-1) 4 y^{3}\left(1-y^{4}\right)^{k-1} 2(2 k-1) y^{3}\left(1-y^{4}\right)^{k-1} \in I .
$$

This implies that $y^{3}\left(1-y^{4}\right)^{k-1} \in I$ and $y^{4}\left(1-y^{4}\right)^{k-1} \in I$. Then,

$$
z_{k-1}=\left(1-y^{4}\right)^{k}+y^{4}\left(1-y^{4}\right)^{k-1} \in I .
$$

Therefore, we may assume that $F[y] \cap I=0$.
Suppose that $f(y)+x g(y) \in I$. Then

$$
(f(y)+x g(y))(f(y)-x g(y))=f(y)^{2}-\left(1-y^{4}\right) g(y)^{2} \in I .
$$

By the argument above, $f(y)^{2}=\left(1-y^{4}\right) g(y)^{2}$. Then, $1-y^{4}=h(y)^{2}$ for some $h(y) \in F[y]$, and we arrive at a contradiction.

Consequently, Γ is a differentially simple algebra with respect to D.
Consider in Γ the subalgebra A generated by $1, y^{2}$, and $x y$. Then,

$$
D\left(y^{2}\right)=-2 x y \in A \text { and } D(x y)=3 y^{4}-1 \in A .
$$

Consequently, $D(A) \subseteq A$. Observe that $1, y^{2 i}, x y^{2 i-1}$, where $i=1,2, \ldots$, constitute a linear basis for A. We can express every element of A as $f(y)+x y g(y)$ with $f(y), g(y) \in F\left[y^{2}\right]$.

Proposition 2. The algebra A is differentially simple with respect to D.
Proof. Suppose that I is a nonzero D-invariant ideal of A. If $f(y) \in F\left[y^{2}\right]$ and $f(y) \in I$ then $x f^{\prime}(y)=-D(f(y)) \in I$. Thus, $\left(1-y^{4}\right) y f^{\prime}(y)=(x y)\left(x f^{\prime}(y)\right) \in I$. Since

$$
D\left(x f^{\prime}(y)\right)=2 y^{3} f^{\prime}(y)-\left(1-y^{4}\right) f^{\prime \prime}(y) \in I,
$$

it follows that $\left(1-y^{4}\right)^{2} f^{\prime \prime}(y) \in I$. An easy induction implies that

$$
\left(1-y^{4}\right)^{2 k-1} y f^{(2 k-1)}(y) \in I \quad \text { and } \quad\left(1-y^{4}\right)^{2 k} f^{(2 k)}(y) \in I .
$$

This yields $\left(1-y^{4}\right)^{2 k} \in I$.
Take the smallest k with $\left(1-y^{4}\right)^{k} \in I$. Then,

$$
D\left(\left(1-y^{4}\right)^{k}\right)=-4 k x y^{3}\left(1-y^{4}\right)^{k-1} \in I .
$$

Consequently,

$$
x y\left(1-y^{4}\right)^{k-1}=x y\left(1-y^{4}\right)^{k}+y^{2}\left(x y^{3}\left(1-y^{4}\right)^{k-1}\right) \in I .
$$

Thus,
$D\left(x y\left(1-y^{4}\right)^{k-1}\right)=\left(3 y^{4}-1\right)\left(1-y^{4}\right)^{k-1}+(k-1) 4 y^{4}\left(1-y^{4}\right)^{k-1}\left((4 k-1) y^{4}-1\right)\left(1-y^{4}\right)^{k-1} \in I$.
Then,

$$
(4 k-2)\left(1-y^{4}\right)^{k-1}=(4 k-1)\left(1-y^{4}\right)^{k}+\left((4 k-1) y^{4}-1\right)\left(1-y^{4}\right)^{k-1} \in I
$$

Therefore, we may assume that $F\left[y^{2}\right] \cap I=0$.
Suppose that $f(y)+x y g(y) \in I$. Then,

$$
f(y)^{2}-\left(1-y^{4}\right) y^{2} g(y)^{2}=(f(y)+x y g(y))(f(y)-x y g(y)) \in I .
$$

By the argument above, $f(y)^{2}-\left(1-y^{4}\right) y^{2} g(y)^{2}=0$, and we arrive at a contradiction since $\operatorname{deg} f(y)^{2}=4 n$ but $\operatorname{deg}\left(1-y^{4}\right) y^{2} g(y)^{2}=4 m+6$.

Therefore, A is a differentially simple algebra with respect to D.
The subspace $M=x A+y A$ of Γ is an associative A-module.
Proposition 3. The module M is not a cyclic A-module.
Proof. Assuming the contrary, denote the generator of M by z. Then $z=x a+y b$ with $a, b \in A, x=z c$, and $y=z d$ for some $c, d \in A$. This implies that

$$
\begin{gather*}
x d=y c \tag{9}\\
x=x(a c+b d), y=y(a c+b d) . \tag{10}
\end{gather*}
$$

We can write

$$
a=f_{0}+x y f_{1}, b=g_{0}+x y g_{1}, c=e_{0}+x y e_{1}, d=h_{0}+x y h_{1},
$$

where $f_{0}, f_{1}, g_{0}, g_{1}, e_{0}, e_{1}, h_{0}, h_{1}$ are polynomials in $F\left[y^{2}\right]$.
From (9) we deduce that

$$
h_{0}=y^{2} e_{1} \quad \text { and } \quad e_{0}=\left(1-y^{4}\right) h_{1} .
$$

From (10) we deduce that

$$
\begin{gather*}
f_{0} e_{0}+\left(1-y^{4}\right) y^{2} f_{1} e_{1}+g_{0} h_{0}+\left(1-y^{4}\right) y^{2} g_{1} h_{1}=1, \tag{11}\\
f_{0} e_{1}+f_{1} e_{0}+g_{0} h_{1}+g_{1} h_{0}=0 . \tag{12}
\end{gather*}
$$

Denote by $\left(e_{1}, h_{1}\right)$ the greatest common divisor of e_{1} and h_{1}. Since $h_{0}=y^{2} e_{1}$ and $e_{0}=$ $\left(1-y^{4}\right) h_{1}$, by (11) we have

$$
\begin{gathered}
1=\left(1-y^{4}\right) f_{0} h_{1}+\left(1-y^{4}\right) y^{2} f_{1} e_{1}+y^{2} g_{0} e_{1}+\left(1-y^{4}\right) y^{2} g_{1} h_{1}= \\
\left(1-y^{4}\right)\left(f_{0}+y^{2} g_{1}\right) h_{1}+y^{2}\left(\left(1-y^{4}\right) f_{1}+g_{0}\right) e_{1} .
\end{gathered}
$$

Consequently, $\left(e_{1}, h_{1}\right)=1$. By (12),

$$
\left(f_{0}+y^{2} g_{1}\right) e_{1}+\left(\left(1-y^{4}\right) f_{1}+g_{0}\right) h_{1}=0
$$

This and $\left(e_{1}, h_{1}\right)=1$ imply that $f_{0}+y^{2} g_{1}=h_{1} u$, where $u \in F[y]$. Then,

$$
h_{1} u e_{1}+\left(\left(1-y^{4}\right) f_{1}+g_{0}\right) h_{1}=0 .
$$

Thus,

$$
u e_{1}+\left(\left(1-y^{4}\right) f_{1}+g_{0}\right)=0
$$

By the argument above,

$$
1=\left(1-y^{4}\right)\left(f_{0}+y^{2} g_{1}\right) h_{1}+y^{2}\left(\left(1-y^{4}\right) f_{1}+g_{0}\right) e_{1}=\left(1-y^{4}\right) h_{1}^{2} u-y^{2} e_{1}^{2} u
$$

Then, $u \in F$. Consequently,

$$
\left(1-y^{4}\right) h_{1}^{2} u=1+y^{2} e_{1}^{2} u
$$

which is impossible since on the left we have a polynomial of degree $4 k+4$, while on the right, of degree $4 m+2$.

Therefore, M is not a cyclic A-module.
Put

$$
D_{11}=\left(1-y^{4}\right) D, D_{12}=x y D, D_{22}=y^{2} D .
$$

Then D_{11}, D_{12}, D_{22} are derivations of A.
Proposition 4. The algebra A is differentially simple with respect to the set of derivations $\Delta=\left\{D_{11}, D_{12}, D_{22}\right\}$.

Proof. Suppose that I is an ideal of A closed under Δ. Then $y^{2} D_{22}(I) \subseteq y^{2} I \subseteq I$. Since

$$
D=D_{11}+y^{2} D_{22}
$$

it follows that $D(I) \subseteq I$. By Proposition 2, either $I=0$ or $I=A$. Consequently, A is a differentially simple algebra with respect to $\Delta=\left\{D_{11}, D_{12}, D_{22}\right\}$.

Consider now the superalgebra $J(\Gamma, D)$. Proposition 1 implies that $J(\Gamma, D)$ is a simple superalgebra. Consider its subspace

$$
J(A, \Delta)=A+\bar{M}
$$

Recall that A is the subalgebra of Γ generated by $1, y^{2}$, and $x y$, while $M=x A+y A$.

Given $a, b \in A$, in $J(\Gamma, D)$ we have

$$
\begin{gathered}
\overline{x a} \cdot \overline{x b}=D(x a) x b-D(x b) x a= \\
D(x) a x b+D(a) x^{2} b-D(x) x a b-D(b) x^{2} a=D_{11}(a) b-a D_{11}(b) \in A .
\end{gathered}
$$

Similarly,

$$
\overline{y a} \cdot \overline{y b}=D(y) a y b+D(a) y^{2} b-D(y) y a b-D(b) y^{2} a=D_{22}(a) b-a D_{22}(b) \in A,
$$

$$
\overline{x a} \cdot \overline{y b}=D(x) a y b+D(a) x y b-D(y) x a b-D(b) y x a=\left(1+y^{4}\right) a b+D_{12}(a) b-a D_{12}(b) \in A .
$$

Consequently, $J(A, \Delta)$ is a subsuperalgebra of $J(\Gamma, D)$. Thus, $J(A, \Delta)$ is a Jordan superalgebra. Moreover, the odd elements in $J(\Gamma, D)$ multiply according to (8), where $\Delta=\left\{D_{11}, D_{12}, D_{22}\right\}$, and $\gamma_{12}=1+y^{4}$. By Proposition 3, $J(A, \Delta)$ is not isomorphic to a superalgebra of type $J\left(\Gamma_{0}, D_{0}\right)$.

Verify that $J(A, \Delta)$ is a simple superalgebra. Suppose that I is a nonzero Z_{2}-graded ideal of $J(A, \Delta)$. Then $I=I_{0}+I_{1}$, where I_{0} is an ideal of A. Given $r \in I_{0}$, we have

$$
D_{11}(r)=\overline{(x r)} \cdot \bar{x}=(r \cdot \bar{x}) \cdot \bar{x} \in I_{0} .
$$

Similarly, $D_{12}(r), D_{22}(r) \in I_{0}$. Consequently, I_{0} is invariant under the set of derivations Δ. By Proposition 4, either $I_{0}=A$ or $I_{0}=0$. If $I_{0}=A$ then $1 \in I_{0} \subseteq I$ and $I=J(A, \Delta)$. If $I_{0}=0$ then $I \subseteq \bar{M}$ and $I \cdot \bar{M} \subseteq I_{0}=0$. It is clear that

$$
A=A D_{11}(A)+A D_{12}(A)+A D_{22}(A) .
$$

Thus,

$$
1=\sum_{i}\left(a_{1 i}, \bar{x}, \bar{x}\right) b_{1 i}+\sum_{i}\left(a_{2 i}, \bar{x}, \bar{y}\right) b_{2 i}+\sum_{i}\left(a_{3 i}, \bar{y}, \bar{y}\right) b_{3 i}
$$

for some elements $a_{1 i}, a_{2 i}, a_{3 i}, b_{1 i}, b_{2 i}$, and $b_{3 i}$ of A. By (4) we deduce that $1 \in(A, \bar{M}, \bar{M})$ and

$$
I \cdot(A, \bar{M}, \bar{M}) \subseteq(A, I \cdot \bar{M}, \bar{M})+(A, I, \bar{M}) \cdot \bar{M}=0
$$

Then, $I=0$. Consequently, $J(A, \Delta)$ is a simple superalgebra.
Let us summarize the argument as
Theorem 1. Take an arbitrary field F of characteristic 0. Consider the polynomial algebra $F[x, y]$ in two variables x and y. Put $f(x, y)=x^{2}+y^{4}-1$ and $D=2 y^{3} \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}$. Put $\Gamma=F[x, y] / f(x, y) F[x, y]$. Then the derivation D induces a derivation of the algebra Γ, which we denote by D as well. Identify the images of x and y under the canonical homomorphism $F[x, y] \mapsto \Gamma$ with the elements x and y. Suppose that A is a subalgebra of Γ generated by $1, y^{2}$, and $x y$, while $M=x A+y A$. Put

$$
\Delta=\left\{D_{11}, D_{12}, D_{22}\right\}, \text { where } D_{11}=\left(1-y^{4}\right) D, D_{12}=x y D, D_{22}=y^{2} D
$$

Then the subspace $J(A, \Delta)=A+\bar{M}$ is a subsuperalgebra of $J(\Gamma, D)$, and the multiplication of odd elements in $J(A, \Delta)$ is defined as

$$
\begin{gathered}
\overline{x a} \cdot \overline{x b}=D_{11}(a) b-a D_{11}(b), \quad \overline{y a} \cdot \overline{y b}=D_{22}(a) b-a D_{22}(b), \\
\overline{x a} \cdot \overline{y b}=\left(1+y^{4}\right) a b+D_{12}(a) b-a D_{12}(b) .
\end{gathered}
$$

Moreover, $J(A, \Delta)$ is a simple superalgebra, and \bar{M} is not a cyclic A-module; i.e., $J(A, \Delta)$ is not isomorphic to a superalgebra of vector type $J\left(\Gamma_{0}, D_{0}\right)$.

The Superalgebra of Type $J S(\Gamma, D)$. Take an associative supercommutative superalgebra $\Gamma=\Gamma_{0}+\Gamma_{1}$ equipped with a nonzero odd derivation D; i.e., $D\left(\Gamma_{i}\right) \subseteq \Gamma_{(i+1) \bmod 2}$ and

$$
D(a b)=D(a) b+(-1)^{p(a)} a D(b)
$$

for $a, b \in \Gamma_{0} \cup \Gamma_{1}$.
Put $A=\Gamma_{1}, M=\Gamma_{0}$, and $J S(\Gamma, D)=A+M$. Define on the space $J S(\Gamma, D)$ the multiplication

$$
a \circ b=a D(b)+(-1)^{p(a)} D(a) b .
$$

Then $J S(\Gamma, D)$ is a Jordan superalgebra. If $J S(\Gamma, D)$ is a simple superalgebra then Γ is a differentially simple superalgebra (see [8]).

Proposition 5. The superalgebra $J S(\Gamma, D)$ is not unital.
Proof. Suppose that e is the unit of $J S(\Gamma, D)$. Then $e \in A \subseteq \Gamma_{1}$. Given $a \in J S(\Gamma, D)$, we have

$$
a=e \circ a=e D(a)+D(e) a .
$$

Since Γ is supercommutative and $e \in \Gamma_{1}$, it follows that $e=2 e D(e)$ and $e^{2}=0$ in Γ. Consequently, $e a=e D(e) a=\frac{1}{2} e a$. This implies that $e \Gamma=0$. Then, $e=2 e D(e)=0$.

Corollary 1. The superalgebra $J(A, \Delta)$ is not isomorphic to the superalgebra $J S(\Gamma, D)$.
The Cheng-Kac superalgebra. Take an associative commutative F-algebra Γ equipped with a nonzero derivation D. Consider two direct sums

$$
J_{0}=\Gamma+w_{1} \Gamma+w_{2} \Gamma+w_{3} \Gamma
$$

and

$$
J_{1}=\bar{\Gamma}+x_{1} \bar{\Gamma}+x_{2} \bar{\Gamma}+x_{3} \bar{\Gamma}
$$

of linear spaces, where $\bar{\Gamma}$ is an isomorphic copy of Γ.
For $a, b \in \Gamma$ define a multiplication on the space J_{0} by putting

$$
\begin{gathered}
a \cdot b=a b, a \cdot w_{i} b=w_{i} a b, w_{1} a \cdot w_{1} b=w_{2} a \cdot w_{2} b=a b, w_{3} a \cdot w_{3} b=-a b, \\
w_{i} a \cdot w_{j} b=0 \text { for } i \neq j .
\end{gathered}
$$

Put $x_{i \times i}=0, x_{1 \times 2}=-x_{2 \times 1}=x_{3}, x_{1 \times 3}=-x_{3 \times 1}=x_{2}$, and $x_{2 \times 3}=-x_{3 \times 2}=-x_{1}$. Define a bimodule action $J_{0} \times J_{1} \mapsto J_{1}$ by putting

$$
a \cdot \bar{b}=\overline{a b}, a \cdot x_{i} \bar{b}=x_{i} \overline{a b}, w_{i} a \cdot \bar{b}=x_{i} \overline{D(a) b}, w_{i} a \cdot x_{j} \bar{b}=x_{i \times j} \overline{a b} .
$$

The bracket on J_{1} is defined as

$$
\bar{a} \cdot \bar{b}=D(a) b-a D(b), \bar{a} \cdot x_{i} \bar{b}=-w_{i}(a b), x_{i} \bar{a} \cdot \bar{b}=w_{i}(a b), x_{i} \bar{a} \cdot x_{j} \bar{b}=0 .
$$

Then the space $J=J_{0}+J_{1}$ with the multiplication

$$
\left(a_{0}+a_{1}\right) \cdot\left(b_{0}+b_{1}\right)=\left(a_{0} \cdot b_{0}+a_{1} \cdot b_{1}\right)+\left(a_{0} \cdot b_{1}+a_{1} \cdot b_{0}\right)
$$

for $a_{0}, b_{0} \in J_{0}$ and $a_{1}, b_{1} \in J_{1}$ is an algebra, which is denoted by $C K(\Gamma, D)$. It is known (see $[5,8])$ that $C K(\Gamma, D)$ is a Jordan superalgebra, which is simple if and only if Γ is D-simple.

Suppose now that $\Gamma=F[x, y] / f(x, y) F[x, y]$, where $f(x, y)=x^{2}+y^{4}-1$ and $D=2 y^{3} \frac{\partial}{\partial x}-$ $x \frac{\partial}{\partial y}$. Consider the Jordan superalgebra $J(A, \Delta)=A+\bar{M}$ constructed above. In $C K(\Gamma, D)$ consider the subspace

$$
G C K(A, \Delta)=A+w_{1} A+w_{2} A+w_{3} A+\bar{M}+x_{1} \bar{M}+x_{2} \bar{M}+x_{3} \bar{M}
$$

In Γ we have $M^{2} \subseteq A$. Thus, $G C K(A, \Delta)$ is a subsuperalgebra of $C K(\Gamma, D)$. Consequently, $G C K(A, \Delta)$ is a Jordan superalgebra with the even part $G C K(A, \Delta)_{0}=A+w_{1} A+w_{2} A+w_{3} A$ and the odd part $\operatorname{GCK}(A, \Delta)_{1}=\bar{M}+x_{1} \bar{M}+x_{2} \bar{M}+x_{3} \bar{M}$.

Theorem 2. For an arbitrary field F of characteristic zero $G C K(A, \Delta)$ is a simple unital Jordan superalgebra.

Proof. Suppose that $I=I_{0}+I_{1}$ is a nonzero ideal of $G C K(A, \Delta)$. Then $K=A \cap I_{0}$ is an ideal of A, and $(K, \bar{M}, \bar{M}) \subseteq K$. Thus, $K+K \cdot \bar{M}$ is an ideal of $J(A, \Delta)$. If $K \neq 0$ then since $J(A, \Delta)$ is a simple superalgebra, we have $1 \in K$. Consequently, $I=G C K(A, \Delta)$.

Suppose that $A \cap I_{0}=0$ and take $r=a+w_{1} a_{1}+w_{2} a_{2}+w_{3} a_{3} \in I_{0}$. Then $w_{2}\left(w_{2}\left(w_{1} r\right)\right)=$ $a_{1} \in A \cap I_{0}$. Consequently, $a_{1}=0$. Similarly, $a_{2}=a_{3}=0$. Thus, $I_{0}=0$. This implies that $I \subseteq G C K(A, \Delta)_{1}$ and $I \cdot G C K(A, \Delta)_{1} \subseteq I_{0}=0$. Since $1 \in(A, \bar{M}, \bar{M})$, by (4) we deduce that

$$
I \cdot(A, \bar{M}, \bar{M}) \subseteq(A, I \cdot \bar{M}, \bar{M})+(A, I, \bar{M}) \cdot \bar{M}=0
$$

Then, $I=0$. Consequently, $\operatorname{GCK}(A, \Delta)$ is a simple superalgebra.
I would like to take this chance to express by special gratitude to A. P. Pozhidaev, whose comments helped to improve this article.

References

[1] V. G. Kac, Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras // Comm. in Algebra 5, 1375-1400, (1977).
[2] I. L. Kantor, Jordan and Lie superalgebras determined by a Poisson algebra // The 2nd Siberian school "Algebra and Analysis", Tomsk (1989), 55-80.
[3] I. P. Shestakov, Prime alternative superalgebras of arbitrary characteristic // Algebra and Logic, 36, N 6 (1997), 701-731.
[4] E. Zelmanov, Semisimple finite dimensional Jordan superalgebras // in: Y. Fong, A.A. Mihalev, E. Zelmanov (Eds.), Lie Algebras and Related Topics, Springer, New York, (2000), 227-243.
[5] C. Martinez and E. Zelmanov, Simple finite dimesional Jordan superalgebras of Prime Characteristic // Journal of Algebra v. 236, N 2, (2001), 575-629.
[6] V. G. Kac, C. Martinez, E. Zelmanov, Graded simple Jordan superalgebras of growth one // Mem. Amer. Math. Soc. 711 (2001).
[7] M. Racine and E. Zelmanov, Simple Jordan superalgebras with semisimple even part // Journal of Algebra v. 270, N 2, (2003), 374-444.
[8] N. Cantarini, V. G.Kac, Classification of linearly compact simple Jordan and generalized Poisson superalgebras // Journal of Algebra v. 313, N 2, (2007), 100-124.
[9] V. N. Zhelyabin, Simple special Jordan superalgebras with associative nil-semisimple even part // Algebra and Logic 41, 3 (2002), 276-310.
[10] V. N. Zhelyabin, I. P. Shestakov, Simple special superalgebras with associative even part // Sib. Math. J., 45(5)(2004), 1046-1072.
[11] I. P. Shestakov, Simple superalgebras of type $(-1,1) / /$ Algebra and Logic 37, 6 (1998), 721-739.
[12] V. N. Zhelyabin, Differential algebras and simple Jordan superalgebras // Matem. Tr. 2009. .12, N2. pp. 41-51.
[13] Shuen Yuan, Differentiable simple rings of prime characteristic // Duke Math. J.,V.31, N 4 (1964), 623-630.
[14] A. A. Suslin, On the structure of the special linear group over polynomial rings // USSR Acad. Sci. Izvestiya, ser. Math. . 41, N 2, (1977), 235-252.
[15] D. King and K. McCrimmon, The Kantor construction of Jordan superalgebras // Comm. in Algebra 20(1)(1992), 109-126.
[16] K. McCrimmon, Speciality and nonspeciality of two Jordan superalgebras, // J. of Algebra 149(1992), 326-351.
[17] D. King and K. McCrimmon, The Kantor doubling process revisited // Comm. in Algebra 23(1)(1995), 357-372.

ZHELYABIN Viktor Nikolaevich,
Sobolev Institute of Mathematics, RAS
4 Acad. Koptyug prospekt
Novosibirsk 630090
RUSSIA
phone +7 (383)(363-45-57)
email: vicnic@math.nsc.ru
and
Novosibirsk State University
2 Pirogova str.

[^0]: ${ }^{0}$ RFBR 09-01-00157, SB RAS grant, Development of Scientific Potential of Higher School (Grant 2.1.1.419), Federal Program "Scientific and Pedagogical Staff of Innovative Russia" 2009-2013 (State Contract No. 02.740.11.0429).

