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Abstract: An new example of a unital simple special Jordan superalgebra over the
field of real numbers was constructed in [10]. It turned out to be a subsuperalgebra of the
Jordan superalgebra of vector type J(Γ, D), but not isomorphic to a superalgebra of this
type. Moreover, its superalgebra of fractions is isomorphic to a Jordan superalgebra of
vector type. A similar example of a Jordan superalgebra over a field of characteristic 0 in
which the equation t2 + 1 = 0 has no solutions was constructed in [12]. In this article we
present an example of a Jordan superalgebra with the same properties over an arbitrary
field of characteristic 0. A similar example of a superalgebra is found in the Cheng–Kac
superalgebra.
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Jordan algebras and superalgebras constitute an important class of algebras in ring theory.
Simple Jordan superalgebras are studied in [1, 2, 3, 4, 5, 6, 7, 8].

The unital simple special Jordan superalgebras with the associative even part A and the odd
part M which is an associative A-module were described in [9, 10]. The study in [9] was con-
siderably influenced by [11], which described the simple (−1, 1)-superalgebras of characteristic
6= 2, 3. In the Jordan case, if a superalgebra is not the superalgebra of a nondegenerate bilinear
superform, then its even part A is a differentially simple algebra with respect to some set of
derivations, and its odd part M is a finitely generated projective A-module of rank 1. Here, as
for (−1, 1)-superalgebras, we define multiplication in M using fixed finite sets of derivations and
elements of A. It turns out that every Jordan superalgebra of this type is a subsuperalgebra
of the superalgebra of vector type J(Γ, D). Under certain restrictions on A the odd part M
is a cyclic A-module, and consequently, the original Jordan superalgebra is isomorphic to the
superalgebra J(Γ, D). For instance, if A is a local algebra then by the well-known Kaplansky
theorem M is free, and consequently, it is a cyclic A-module. If the ground field is of charac-
teristic p > 2 then [13] implies that A is a local algebra; thus, M is a cyclic A-module. If A is
the ring of polynomials in finitely many variables then M is free by [14], and consequently, it
is a cyclic A-module.

A natural question arose: is the original superalgebra isomorphic to J(Γ, D)? Equivalently,
is the odd part M a cyclic A-module? Examples are constructed in [10, 12] of unital simple
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special Jordan superalgebras with certain associative even part and the odd part M which is
not free, i.e., not cyclic. In those examples the ground field is either the field of real numbers
or an arbitrary field of characteristic 0 in which the equation t2 + 1 = 0 has no solutions.

In this article we construct a similar example of a Jordan superalgebra over an arbitrary
field of characteristic 0, as well as an example of a simple Jordan superalgebra which is a sub-
superalgebra of the Cheng–Kac Jordan superalgebra. Examples of these superalgebras answer
a question of Cantarini and Kac [8].

Take a field F of characteristic not equal to 2. A superalgebra J = J0 + J1 is a Z2-graded
F -algebra:

J2
0 ⊆ J0, J

2
1 ⊆ J0, J1J0 ⊆ J1, J0J1 ⊆ J1.

Put A = J0 and M = J1. The spaces A and M are called the even and odd parts of J . The
elements of A ∪M are called homogeneous. The expression p(x) with x ∈ A ∪M means the
parity of x: p(x) = 0 for x ∈ A (x is even) and p(x) = 1 for x ∈ M (x is odd).

Given x in J denote by Rx the operator of right multiplication by x. A superalgebra J is
called a Jordan superalgebra if the homogeneous elements satisfy the operator identities

aRb = (−1)p(a)p(b)bRa, (1)

Ra2Ra = RaRa2 , (2)

RaRbRc + (−1)p(a)p(b)+p(a)p(c)+p(b)p(c)RcRbRa + (−1)p(b)p(c)R(ac)b =

RaRbc + (−1)p(a)p(b)RbRac + (−1)p(a)p(c)+p(b)p(c)RcRab. (3)

In every Jordan superalgebra, the homogeneous elements satisfy

(x, tz, y) = (−1)p(x)p(t)t(x, z, y) + (−1)p(y)p(z)(x, t, y)z, (4)

where (x, z, y) = (xz)y − x(zy) is the associator of x, z, and y.
Let us give some examples of Jordan superalgebras.
Take an associative Z2-graded algebra B = B0 + B1 with multiplication ∗. Defining on the

space B the supersymmetric product

a ◦s b =
1

2
(a ∗ b + (−1)p(a)p(b)b ∗ a), a, b ∈ B0 ∪B1,

we obtain the Jordan superalgebra B(+)s. A Jordan superalgebra J = A + M is called special
whenever it embeds (as a Z2-graded algebra) in the superalgebra B(+)s for a suitable Z2-graded
associative algebra B.

The superalgebra of vector type J(Γ, D). Take a commutative associative F -algebra Γ
equipped with a nonzero derivation D. Denote by Γ an isomorphic copy of the linear space Γ,
and a fixed isomorphism, by a 7→ a. On the direct sum J(Γ, D) = Γ + Γ of linear spaces define
a multiplication (·) as

a · b = ab, a · b = ab, a · b = ab, a · b = D(a)b− aD(b),

where a, b ∈ Γ and ab is the product in Γ. Then J(Γ, D) is a Jordan superalgebra with the
even part A = Γ and the odd part M = Γ. The superalgebra J(Γ, D) is simple if and only if Γ
is a D-simple algebra [15] (i.e., Γ contains no proper nonzero D-invariant ideals, and Γ2 = Γ).
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Consider the associative superalgebra B = M1,1
2 (End Γ) with the even part

B0 =
{ (

φ 0
0 ψ

)
, where φ, ψ ∈ End Γ

}

and the odd part

B1 =
{ (

0 φ
ψ 0

)
where φ, ψ ∈ End Γ

}
.

It is shown in [16] that the mapping

a + b 7→
(

Ra 4RbD + 2RD(b)

−Rb Ra

)

is an embedding of J(Γ, D) into B(+)s. Consequently, the Jordan superalgebra J(Γ, D) is
special.

The Kantor double J(Γ, { , }). Take an associative supercommutative superalgebra Γ =
Γ0+Γ1 with unit 1 equipped with a super-skew-symmetric bilinear mapping { , } : Γ 7→ Γ, which
we call the bracket. From Γ and { , } we can construct a superalgebra J(Γ, { , }) as follows.
Consider the direct sum J(Γ, { , }) = Γ ⊕ Γx of linear spaces, where Γx is an isomorphic copy
of Γ. Take two homogeneous elements a and b of Γ. The multiplication (·) on J(Γ, { , }) is
defined as

a · b = ab, a · bx = (ab)x, ax · b = (−1)p(b)(ab)x, ax · bx = (−1)p(b){a, b}.
Put A = Γ0 + Γ1x and M = Γ1 + Γ0x. Then J(Γ, { , }) = A + M is a Z2-graded algebra.

Refer to { , } as a Jordan bracket if J(Γ, { , }) is a Jordan superalgebra. It is known (see
[17]) that { , } is a Jordan bracket if and only if it satisfies

{a, bc} = {a, b}c + (−1)p(a)p(b)b{a, c} − {a, 1}bc, (5)

{a, {b, c}} = {{a, b}, c}+ (−1)p(a)p(b){b, {a, c}}+ {a, 1}{b, c}+

(−1)p(a)(p(b)+p(c)){b, 1}{c, a}+ (−1)p(c)(p(a)+p(b)){c, 1}{a, b}, (6)

{d, {d, d}} = {d, d}{d, 1}, (7)

where a, b, c ∈ Γ0 ∪ Γ1, and d ∈ Γ1.
In particular, J(Γ, D) is the algebra J(Γ, { , }) if

{a, b} = D(a)b− aD(b).

The next theorem is proved in [10].

Theorem. Take a simple special unital Jordan superalgebra J = A+M whose even part A
is an associative algebra, and whose odd part M is an associative A-module. If J is not the
superalgebra of a nondegenerate bilinear superform then there exist x1, . . . , xn ∈ M such that

M = x1A + . . . + xnA,

and the product in M satisfies

axi · bxj = γijab + Dij(a)b− aDji(b), i, j = 1, . . . , n, (8)
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where γij ∈ A, and Dij is a derivation of A. The algebra A is differentially simple with respect
to the set of derivations ∆{Dij|i, j = 1, . . . , n}. The module M is a projective A-module of
rank 1. Moreover, J is a subalgebra of the superalgebra J(Γ, D).

In addition, [10] includes an example of a Jordan superalgebra over the field of real numbers
satisfying the hypotheses of the theorem which is not isomorphic to J(Γ, D). A similar example
of a Jordan superalgebra over a field of characteristic zero in which the equation t2 + 1 = 0 has
no solutions is constructed in [12]. Let us give another example of this kind of superalgebra
over an arbitrary field of characteristic zero.

Fix an arbitrary field F of characteristic 0. Consider the polynomial algebra F [x, y] in two
variables x and y. Denote by ∂

∂x
and ∂

∂y
the operators of differentiation with respect to x and y

on F [x, y]. Put D = 2y3 ∂
∂x
− x ∂

∂y
and f(x, y) = x2 + y4 − 1. Then D is a derivation of F [x, y],

and D(f(x, y)) = 0. Take the quotient algebra Γ = F [x, y]/f(x, y)F [x, y] of F [x, y] by the
ideal f(x, y)F [x, y]. It is clear that D induces a derivation of Γ, which we denote by D as
well. Identify the images of x and y under the canonical homomorphism F [x, y] 7→ Γ with the
elements x and y. Then Γ = F [y] + xF [y], where F [y] is the polynomial ring in y.

Proposition 1. The algebra Γ is differentially simple with respect to D.
Proof. Suppose that I is a nonzero D-invariant ideal of Γ. If f(y) ∈ F [y] and f(y) ∈ I

then D(f(y)) = −xf ′(y) ∈ I, where f ′(y) is the derivative of f(y) with respect to y. Then
(1− y4)f ′(y) ∈ I and D((1− y4)f ′(y)) ∈ I. Thus,

−x(−4y3f ′(y) + (1− y4)f ′′(y)) ∈ I.

This implies that (1−y4)2f ′′(y) ∈ I. Continuing this process, we deduce that (1−y4)kf (k)(y) ∈ I
for all k, where f (k)(y) is the order k derivative of f(y). Consequently, (1−y4)k ∈ I for some k.
Take the smallest k with zk = (1− y4)k ∈ I. Then

D(zk) = 4kxy3(1− y4)k−1 ∈ I.

Thus,

x(1− y4)k−1 = xzk +
1

4k
yD(zk) ∈ I.

Consequently,

D(x(1− y4)k−1) = 2y3(1− y4)k−1 + (k − 1)4y3(1− y4)k−12(2k − 1)y3(1− y4)k−1 ∈ I.

This implies that y3(1− y4)k−1 ∈ I and y4(1− y4)k−1 ∈ I. Then,

zk−1 = (1− y4)k + y4(1− y4)k−1 ∈ I.

Therefore, we may assume that F [y] ∩ I = 0.
Suppose that f(y) + xg(y) ∈ I. Then

(f(y) + xg(y))(f(y)− xg(y)) = f(y)2 − (1− y4)g(y)2 ∈ I.

By the argument above, f(y)2 = (1− y4)g(y)2. Then, 1− y4 = h(y)2 for some h(y) ∈ F [y], and
we arrive at a contradiction.

Consequently, Γ is a differentially simple algebra with respect to D. 2

Consider in Γ the subalgebra A generated by 1, y2, and xy. Then,

D(y2) = −2xy ∈ A and D(xy) = 3y4 − 1 ∈ A.
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Consequently, D(A) ⊆ A. Observe that 1, y2i, xy2i−1, where i = 1, 2, . . . , constitute a linear
basis for A. We can express every element of A as f(y) + xyg(y) with f(y), g(y) ∈ F [y2].

Proposition 2. The algebra A is differentially simple with respect to D.
Proof. Suppose that I is a nonzero D-invariant ideal of A. If f(y) ∈ F [y2] and f(y) ∈ I

then xf ′(y) = −D(f(y)) ∈ I. Thus, (1− y4)yf ′(y) = (xy)(xf ′(y)) ∈ I. Since

D(xf ′(y)) = 2y3f ′(y)− (1− y4)f ′′(y) ∈ I,

it follows that (1− y4)2f ′′(y) ∈ I. An easy induction implies that

(1− y4)2k−1yf (2k−1)(y) ∈ I and (1− y4)2kf (2k)(y) ∈ I.

This yields (1− y4)2k ∈ I.
Take the smallest k with (1− y4)k ∈ I. Then,

D((1− y4)k) = −4kxy3(1− y4)k−1 ∈ I.

Consequently,
xy(1− y4)k−1 = xy(1− y4)k + y2(xy3(1− y4)k−1) ∈ I.

Thus,

D(xy(1− y4)k−1) = (3y4− 1)(1− y4)k−1 + (k− 1)4y4(1− y4)k−1((4k− 1)y4− 1)(1− y4)k−1 ∈ I.

Then,

(4k − 2)(1− y4)k−1 = (4k − 1)(1− y4)k + ((4k − 1)y4 − 1)(1− y4)k−1 ∈ I.

Therefore, we may assume that F [y2] ∩ I = 0.
Suppose that f(y) + xyg(y) ∈ I. Then,

f(y)2 − (1− y4)y2g(y)2 = (f(y) + xyg(y))(f(y)− xyg(y)) ∈ I.

By the argument above, f(y)2 − (1 − y4)y2g(y)2 = 0, and we arrive at a contradiction since
deg f(y)2 = 4n but deg(1− y4)y2g(y)2 = 4m + 6.

Therefore, A is a differentially simple algebra with respect to D. 2

The subspace M = xA + yA of Γ is an associative A-module.

Proposition 3. The module M is not a cyclic A-module.
Proof. Assuming the contrary, denote the generator of M by z. Then z = xa + yb with

a, b ∈ A, x = zc, and y = zd for some c, d ∈ A. This implies that

xd = yc, (9)

x = x(ac + bd), y = y(ac + bd). (10)

We can write
a = f0 + xyf1, b = g0 + xyg1, c = e0 + xye1, d = h0 + xyh1,

where f0, f1, g0, g1, e0, e1, h0, h1 are polynomials in F [y2].
From (9) we deduce that

h0 = y2e1 and e0 = (1− y4)h1.
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From (10) we deduce that

f0e0 + (1− y4)y2f1e1 + g0h0 + (1− y4)y2g1h1 = 1, (11)

f0e1 + f1e0 + g0h1 + g1h0 = 0. (12)

Denote by (e1, h1) the greatest common divisor of e1 and h1. Since h0 = y2e1 and e0 =
(1− y4)h1, by (11) we have

1 = (1− y4)f0h1 + (1− y4)y2f1e1 + y2g0e1 + (1− y4)y2g1h1 =

(1− y4)(f0 + y2g1)h1 + y2((1− y4)f1 + g0)e1.

Consequently, (e1, h1) = 1. By (12),

(f0 + y2g1)e1 + ((1− y4)f1 + g0)h1 = 0.

This and (e1, h1) = 1 imply that f0 + y2g1 = h1u, where u ∈ F [y]. Then,

h1ue1 + ((1− y4)f1 + g0)h1 = 0.

Thus,
ue1 + ((1− y4)f1 + g0) = 0.

By the argument above,

1 = (1− y4)(f0 + y2g1)h1 + y2((1− y4)f1 + g0)e1 = (1− y4)h2
1u− y2e2

1u.

Then, u ∈ F . Consequently,
(1− y4)h2

1u = 1 + y2e2
1u,

which is impossible since on the left we have a polynomial of degree 4k + 4, while on the right,
of degree 4m + 2.

Therefore, M is not a cyclic A-module. 2

Put
D11 = (1− y4)D, D12 = xyD,D22 = y2D.

Then D11, D12, D22 are derivations of A.

Proposition 4. The algebra A is differentially simple with respect to the set of derivations
∆ = {D11, D12, D22}.

Proof. Suppose that I is an ideal of A closed under ∆. Then y2D22(I) ⊆ y2I ⊆ I. Since

D = D11 + y2D22,

it follows that D(I) ⊆ I. By Proposition 2, either I = 0 or I = A. Consequently, A is
a differentially simple algebra with respect to ∆ = {D11, D12, D22}. 2

Consider now the superalgebra J(Γ, D). Proposition 1 implies that J(Γ, D) is a simple
superalgebra. Consider its subspace

J(A, ∆) = A + M.

Recall that A is the subalgebra of Γ generated by 1, y2, and xy, while M = xA + yA.
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Given a, b ∈ A, in J(Γ, D) we have

xa · xb = D(xa)xb−D(xb)xa =

D(x)axb + D(a)x2b−D(x)xab−D(b)x2a = D11(a)b− aD11(b) ∈ A.

Similarly,

ya · yb = D(y)ayb + D(a)y2b−D(y)yab−D(b)y2a = D22(a)b− aD22(b) ∈ A,

xa · yb = D(x)ayb + D(a)xyb−D(y)xab−D(b)yxa = (1 + y4)ab + D12(a)b− aD12(b) ∈ A.

Consequently, J(A, ∆) is a subsuperalgebra of J(Γ, D). Thus, J(A, ∆) is a Jordan superalgebra.
Moreover, the odd elements in J(Γ, D) multiply according to (8), where ∆ = {D11, D12, D22},
and γ12 = 1 + y4. By Proposition 3, J(A, ∆) is not isomorphic to a superalgebra of type
J(Γ0, D0).

Verify that J(A, ∆) is a simple superalgebra. Suppose that I is a nonzero Z2-graded ideal
of J(A, ∆). Then I = I0 + I1, where I0 is an ideal of A. Given r ∈ I0, we have

D11(r) = (xr) · x = (r · x) · x ∈ I0.

Similarly, D12(r), D22(r) ∈ I0. Consequently, I0 is invariant under the set of derivations ∆. By
Proposition 4, either I0 = A or I0 = 0. If I0 = A then 1 ∈ I0 ⊆ I and I = J(A, ∆). If I0 = 0
then I ⊆ M and I ·M ⊆ I0 = 0. It is clear that

A = AD11(A) + AD12(A) + AD22(A).

Thus,

1 =
∑

i

(a1i, x, x)b1i +
∑

i

(a2i, x, y)b2i +
∑

i

(a3i, y, y)b3i

for some elements a1i, a2i, a3i, b1i, b2i, and b3i of A. By (4) we deduce that 1 ∈ (A, M, M) and

I · (A, M, M) ⊆ (A, I ·M, M) + (A, I, M) ·M = 0.

Then, I = 0. Consequently, J(A, ∆) is a simple superalgebra.
Let us summarize the argument as

Theorem 1. Take an arbitrary field F of characteristic 0. Consider the polynomial algebra
F [x, y] in two variables x and y. Put f(x, y) = x2 + y4 − 1 and D = 2y3 ∂

∂x
− x ∂

∂y
. Put

Γ = F [x, y]/f(x, y)F [x, y]. Then the derivation D induces a derivation of the algebra Γ, which
we denote by D as well. Identify the images of x and y under the canonical homomorphism
F [x, y] 7→ Γ with the elements x and y. Suppose that A is a subalgebra of Γ generated by 1, y2,
and xy, while M = xA + yA. Put

∆ = {D11, D12, D22}, where D11 = (1− y4)D, D12 = xyD,D22 = y2D.

Then the subspace J(A, ∆) = A + M is a subsuperalgebra of J(Γ, D), and the multiplication of
odd elements in J(A, ∆) is defined as

xa · xb = D11(a)b− aD11(b), ya · yb = D22(a)b− aD22(b),

xa · yb = (1 + y4)ab + D12(a)b− aD12(b).
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Moreover, J(A, ∆) is a simple superalgebra, and M is not a cyclic A-module; i.e., J(A, ∆) is
not isomorphic to a superalgebra of vector type J(Γ0, D0).

The Superalgebra of Type JS(Γ, D). Take an associative supercommutative superalge-
bra Γ = Γ0 + Γ1 equipped with a nonzero odd derivation D; i.e., D(Γi) ⊆ Γ(i+1)mod 2 and

D(ab) = D(a)b + (−1)p(a)aD(b)

for a, b ∈ Γ0 ∪ Γ1.
Put A = Γ1, M = Γ0, and JS(Γ, D) = A + M . Define on the space JS(Γ, D) the multipli-

cation
a ◦ b = aD(b) + (−1)p(a)D(a)b.

Then JS(Γ, D) is a Jordan superalgebra. If JS(Γ, D) is a simple superalgebra then Γ is
a differentially simple superalgebra (see [8]).

Proposition 5. The superalgebra JS(Γ, D) is not unital.
Proof. Suppose that e is the unit of JS(Γ, D). Then e ∈ A ⊆ Γ1. Given a ∈ JS(Γ, D),

we have
a = e ◦ a = eD(a) + D(e)a.

Since Γ is supercommutative and e ∈ Γ1, it follows that e = 2eD(e) and e2 = 0 in Γ. Conse-
quently, ea = eD(e)a = 1

2
ea. This implies that eΓ = 0. Then, e = 2eD(e) = 0. 2

Corollary 1. The superalgebra J(A, ∆) is not isomorphic to the superalgebra JS(Γ, D).

The Cheng–Kac superalgebra. Take an associative commutative F -algebra Γ equipped
with a nonzero derivation D. Consider two direct sums

J0 = Γ + w1Γ + w2Γ + w3Γ

and
J1 = Γ + x1Γ + x2Γ + x3Γ

of linear spaces, where Γ is an isomorphic copy of Γ.
For a, b ∈ Γ define a multiplication on the space J0 by putting

a · b = ab, a · wib = wiab, w1a · w1b = w2a · w2b = ab, w3a · w3b = −ab,

wia · wjb = 0 for i 6= j.

Put xi×i = 0, x1×2 = −x2×1 = x3, x1×3 = −x3×1 = x2, and x2×3 = −x3×2 = −x1. Define
a bimodule action J0 × J1 7→ J1 by putting

a · b = ab, a · xib = xiab, wia · b = xiD(a)b, wia · xjb = xi×jab.

The bracket on J1 is defined as

a · b = D(a)b− aD(b), a · xib = −wi(ab), xia · b = wi(ab), xia · xjb = 0.

Then the space J = J0 + J1 with the multiplication

(a0 + a1) · (b0 + b1) = (a0 · b0 + a1 · b1) + (a0 · b1 + a1 · b0)

for a0, b0 ∈ J0 and a1, b1 ∈ J1 is an algebra, which is denoted by CK(Γ, D). It is known (see
[5, 8]) that CK(Γ, D) is a Jordan superalgebra, which is simple if and only if Γ is D-simple.
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Suppose now that Γ = F [x, y]/f(x, y)F [x, y], where f(x, y) = x2 + y4− 1 and D = 2y3 ∂
∂x
−

x ∂
∂y

. Consider the Jordan superalgebra J(A, ∆) = A + M constructed above. In CK(Γ, D)
consider the subspace

GCK(A, ∆) = A + w1A + w2A + w3A + M + x1M + x2M + x3M.

In Γ we have M2 ⊆ A. Thus, GCK(A, ∆) is a subsuperalgebra of CK(Γ, D). Consequently,
GCK(A, ∆) is a Jordan superalgebra with the even part GCK(A, ∆)0 = A+w1A+w2A+w3A
and the odd part GCK(A, ∆)1 = M + x1M + x2M + x3M .

Theorem 2. For an arbitrary field F of characteristic zero GCK(A, ∆) is a simple unital
Jordan superalgebra.

Proof. Suppose that I = I0 + I1 is a nonzero ideal of GCK(A, ∆). Then K = A ∩ I0 is
an ideal of A, and (K, M, M) ⊆ K. Thus, K + K ·M is an ideal of J(A, ∆). If K 6= 0 then
since J(A, ∆) is a simple superalgebra, we have 1 ∈ K. Consequently, I = GCK(A, ∆).

Suppose that A ∩ I0 = 0 and take r = a + w1a1 + w2a2 + w3a3 ∈ I0. Then w2(w2(w1r)) =
a1 ∈ A ∩ I0. Consequently, a1 = 0. Similarly, a2 = a3 = 0. Thus, I0 = 0. This implies that
I ⊆ GCK(A, ∆)1 and I ·GCK(A, ∆)1 ⊆ I0 = 0. Since 1 ∈ (A, M, M), by (4) we deduce that

I · (A, M, M) ⊆ (A, I ·M, M) + (A, I, M) ·M = 0.

Then, I = 0. Consequently, GCK(A, ∆) is a simple superalgebra. 2

I would like to take this chance to express by special gratitude to A. P. Pozhidaev, whose
comments helped to improve this article.

References

[1] V. G. Kac, Classification of simple Z-graded Lie superalgebras and simple Jordan super-
algebras // Comm. in Algebra 5, 1375-1400, (1977).

[2] I. L. Kantor, Jordan and Lie superalgebras determined by a Poisson algebra // The 2nd
Siberian school ”Algebra and Analysis”, Tomsk (1989), 55-80.

[3] I. P. Shestakov, Prime alternative superalgebras of arbitrary characteristic // Algebra and
Logic, 36, N 6 (1997), 701-731.

[4] E. Zelmanov, Semisimple finite dimensional Jordan superalgebras // in: Y. Fong, A.A. Mi-
halev, E. Zelmanov (Eds.), Lie Algebras and Related Topics, Springer, New York, (2000),
227-243.

[5] C. Martinez and E. Zelmanov, Simple finite dimesional Jordan superalgebras of Prime
Characteristic // Journal of Algebra v. 236, N 2, (2001), 575-629.

[6] V. G. Kac, C. Martinez, E. Zelmanov, Graded simple Jordan superalgebras of growth one
// Mem. Amer. Math. Soc. 711 (2001).

[7] M. Racine and E. Zelmanov, Simple Jordan superalgebras with semisimple even part //
Journal of Algebra v. 270, N 2, ( 2003), 374-444.

[8] N. Cantarini, V. G.Kac, Classification of linearly compact simple Jordan and generalized
Poisson superalgebras // Journal of Algebra v. 313, N 2, (2007), 100-124.

9



[9] V. N. Zhelyabin, Simple special Jordan superalgebras with associative nil-semisimple even
part // Algebra and Logic 41, 3 (2002), 276-310.

[10] V. N. Zhelyabin, I. P. Shestakov, Simple special superalgebras with associative even part
// Sib. Math. J., 45(5)(2004), 1046-1072.

[11] I. P. Shestakov, Simple superalgebras of type (−1, 1) // Algebra and Logic 37, 6 (1998),
721-739.

[12] V. N. Zhelyabin, Differential algebras and simple Jordan superalgebras // Matem. Tr.
2009. .12, N2. pp. 41–51.

[13] Shuen Yuan, Differentiable simple rings of prime characteristic // Duke Math. J.,V.31, N
4 (1964), 623-630.

[14] A. A. Suslin, On the structure of the special linear group over polynomial rings // USSR
Acad. Sci. Izvestiya, ser. Math. . 41, N 2, (1977), 235-252.

[15] D. King and K. McCrimmon, The Kantor construction of Jordan superalgebras // Comm.
in Algebra 20(1)(1992), 109-126.

[16] K. McCrimmon, Speciality and nonspeciality of two Jordan superalgebras, // J. of Algebra
149(1992), 326-351.

[17] D. King and K. McCrimmon, The Kantor doubling process revisited // Comm. in Algebra
23(1)(1995), 357-372.

ZHELYABIN Viktor Nikolaevich,
Sobolev Institute of Mathematics, RAS
4 Acad. Koptyug prospekt
Novosibirsk 630090
RUSSIA
phone +7(383)(363-45-57)

email: vicnic@math.nsc.ru
and

Novosibirsk State University
2 Pirogova str.

10


