New Examples of Simple Jordan Superalgebras over an Arbitrary Field of Characteristic Zero

V. N. Zhelyabin

Abstract: An new example of a unital simple special Jordan superalgebra over the field of real numbers was constructed in [10]. It turned out to be a subsuperalgebra of the Jordan superalgebra of vector type $J(\Gamma, D)$, but not isomorphic to a superalgebra of this type. Moreover, its superalgebra of fractions is isomorphic to a Jordan superalgebra of vector type. A similar example of a Jordan superalgebra over a field of characteristic 0 in which the equation $t^2 + 1 = 0$ has no solutions was constructed in [12]. In this article we present an example of a Jordan superalgebra with the same properties over an arbitrary field of characteristic 0. A similar example of a superalgebra is found in the Cheng-Kac superalgebra.

Keywords: Jordan superalgebra, (-1, 1)-superalgebra, superalgebra of vector type, differentially simple algebra, polynomial algebra, projective module

Jordan algebras and superalgebras constitute an important class of algebras in ring theory. Simple Jordan superalgebras are studied in [1, 2, 3, 4, 5, 6, 7, 8].

The unital simple special Jordan superalgebras with the associative even part A and the odd part M which is an associative A-module were described in [9, 10]. The study in [9] was considerably influenced by [11], which described the simple (-1, 1)-superalgebras of characteristic $\neq 2, 3$. In the Jordan case, if a superalgebra is not the superalgebra of a nondegenerate bilinear superform, then its even part A is a differentially simple algebra with respect to some set of derivations, and its odd part M is a finitely generated projective A-module of rank 1. Here, as for (-1, 1)-superalgebras, we define multiplication in M using fixed finite sets of derivations and elements of A. It turns out that every Jordan superalgebra of this type is a subsuperalgebra of the superalgebra of vector type $J(\Gamma, D)$. Under certain restrictions on A the odd part Mis a cyclic A-module, and consequently, the original Jordan superalgebra is isomorphic to the superalgebra $J(\Gamma, D)$. For instance, if A is a local algebra then by the well-known Kaplansky theorem M is free, and consequently, it is a cyclic A-module. If the ground field is of characteristic p > 2 then [13] implies that A is a local algebra; thus, M is a cyclic A-module. If A is the ring of polynomials in finitely many variables then M is free by [14], and consequently, it is a cyclic A-module.

A natural question arose: is the original superalgebra isomorphic to $J(\Gamma, D)$? Equivalently, is the odd part M a cyclic A-module? Examples are constructed in [10, 12] of unital simple

⁰RFBR 09-01-00157, SB RAS grant, Development of Scientific Potential of Higher School (Grant 2.1.1.419), Federal Program "Scientific and Pedagogical Staff of Innovative Russia" 2009-2013 (State Contract No. 02.740.11.0429).

special Jordan superalgebras with certain associative even part and the odd part M which is not free, i.e., not cyclic. In those examples the ground field is either the field of real numbers or an arbitrary field of characteristic 0 in which the equation $t^2 + 1 = 0$ has no solutions.

In this article we construct a similar example of a Jordan superalgebra over an arbitrary field of characteristic 0, as well as an example of a simple Jordan superalgebra which is a subsuperalgebra of the Cheng–Kac Jordan superalgebra. Examples of these superalgebras answer a question of Cantarini and Kac [8].

Take a field F of characteristic not equal to 2. A superalgebra $J = J_0 + J_1$ is a Z₂-graded F-algebra:

$$J_0^2 \subseteq J_0, J_1^2 \subseteq J_0, J_1 J_0 \subseteq J_1, J_0 J_1 \subseteq J_1.$$

Put $A = J_0$ and $M = J_1$. The spaces A and M are called the even and odd parts of J. The elements of $A \cup M$ are called homogeneous. The expression p(x) with $x \in A \cup M$ means the parity of x: p(x) = 0 for $x \in A$ (x is even) and p(x) = 1 for $x \in M$ (x is odd).

Given x in J denote by R_x the operator of right multiplication by x. A superalgebra J is called a Jordan superalgebra if the homogeneous elements satisfy the operator identities

$$aR_b = (-1)^{p(a)p(b)}bR_a,$$
(1)

$$R_{a^2}R_a = R_a R_{a^2},\tag{2}$$

$$R_{a}R_{b}R_{c} + (-1)^{p(a)p(b)+p(a)p(c)+p(b)p(c)}R_{c}R_{b}R_{a} + (-1)^{p(b)p(c)}R_{(ac)b} = R_{a}R_{bc} + (-1)^{p(a)p(b)}R_{b}R_{ac} + (-1)^{p(a)p(c)+p(b)p(c)}R_{c}R_{ab}.$$
(3)

In every Jordan superalgebra, the homogeneous elements satisfy

$$(x, tz, y) = (-1)^{p(x)p(t)} t(x, z, y) + (-1)^{p(y)p(z)} (x, t, y)z,$$
(4)

where (x, z, y) = (xz)y - x(zy) is the associator of x, z, and y.

Let us give some examples of Jordan superalgebras.

Take an associative Z_2 -graded algebra $B = B_0 + B_1$ with multiplication *. Defining on the space B the supersymmetric product

$$a \circ_s b = \frac{1}{2}(a * b + (-1)^{p(a)p(b)}b * a), \quad a, b \in B_0 \cup B_1,$$

we obtain the Jordan superalgebra $B^{(+)s}$. A Jordan superalgebra J = A + M is called *special* whenever it embeds (as a Z_2 -graded algebra) in the superalgebra $B^{(+)s}$ for a suitable Z_2 -graded associative algebra B.

The superalgebra of vector type $J(\Gamma, D)$. Take a commutative associative F-algebra Γ equipped with a nonzero derivation D. Denote by $\overline{\Gamma}$ an isomorphic copy of the linear space Γ , and a fixed isomorphism, by $a \mapsto \overline{a}$. On the direct sum $J(\Gamma, D) = \Gamma + \overline{\Gamma}$ of linear spaces define a multiplication (\cdot) as

$$a \cdot b = ab, \quad a \cdot \overline{b} = \overline{ab}, \quad \overline{a} \cdot b = \overline{ab}, \quad \overline{a} \cdot \overline{b} = D(a)b - aD(b),$$

where $a, b \in \Gamma$ and ab is the product in Γ . Then $J(\Gamma, D)$ is a Jordan superalgebra with the even part $A = \Gamma$ and the odd part $M = \overline{\Gamma}$. The superalgebra $J(\Gamma, D)$ is simple if and only if Γ is a *D*-simple algebra [15] (i.e., Γ contains no proper nonzero *D*-invariant ideals, and $\Gamma^2 = \Gamma$).

Consider the associative superalgebra $B = M_2^{1,1}(\operatorname{End} \Gamma)$ with the even part

$$B_0 = \left\{ \left(\begin{array}{cc} \phi & 0\\ 0 & \psi \end{array} \right), \text{ where } \phi, \psi \in \operatorname{End} \Gamma \right\}$$

and the odd part

$$B_1 = \left\{ \left(\begin{array}{cc} 0 & \phi \\ \psi & 0 \end{array} \right) \text{ where } \phi, \psi \in \operatorname{End} \Gamma \right\}.$$

It is shown in [16] that the mapping

$$a + \overline{b} \mapsto \left(\begin{array}{cc} R_a & 4R_bD + 2R_{D(b)} \\ -R_b & R_a \end{array}\right)$$

is an embedding of $J(\Gamma, D)$ into $B^{(+)s}$. Consequently, the Jordan superalgebra $J(\Gamma, D)$ is special.

The Kantor double $J(\Gamma, \{,\})$. Take an associative supercommutative superalgebra $\Gamma = \Gamma_0 + \Gamma_1$ with unit 1 equipped with a super-skew-symmetric bilinear mapping $\{,\} : \Gamma \mapsto \Gamma$, which we call the bracket. From Γ and $\{,\}$ we can construct a superalgebra $J(\Gamma, \{,\})$ as follows. Consider the direct sum $J(\Gamma, \{,\}) = \Gamma \oplus \Gamma x$ of linear spaces, where Γx is an isomorphic copy of Γ . Take two homogeneous elements a and b of Γ . The multiplication (\cdot) on $J(\Gamma, \{,\})$ is defined as

$$a \cdot b = ab$$
, $a \cdot bx = (ab)x$, $ax \cdot b = (-1)^{p(b)}(ab)x$, $ax \cdot bx = (-1)^{p(b)}\{a, b\}$.

Put $A = \Gamma_0 + \Gamma_1 x$ and $M = \Gamma_1 + \Gamma_0 x$. Then $J(\Gamma, \{,\}) = A + M$ is a Z₂-graded algebra.

Refer to $\{,\}$ as a Jordan bracket if $J(\Gamma, \{,\})$ is a Jordan superalgebra. It is known (see [17]) that $\{,\}$ is a Jordan bracket if and only if it satisfies

$$\{a, bc\} = \{a, b\}c + (-1)^{p(a)p(b)}b\{a, c\} - \{a, 1\}bc,$$
(5)

$$\{a, \{b, c\}\} = \{\{a, b\}, c\} + (-1)^{p(a)p(b)} \{b, \{a, c\}\} + \{a, 1\} \{b, c\} + (-1)^{p(a)(p(b)+p(c))} \{b, 1\} \{c, a\} + (-1)^{p(c)(p(a)+p(b))} \{c, 1\} \{a, b\},$$

$$(6)$$

$$\{d, \{d, d\}\} = \{d, d\}\{d, 1\},\tag{7}$$

where $a, b, c \in \Gamma_0 \cup \Gamma_1$, and $d \in \Gamma_1$.

In particular, $J(\Gamma, D)$ is the algebra $J(\Gamma, \{,\})$ if

$$\{a,b\} = D(a)b - aD(b).$$

The next theorem is proved in [10].

Theorem. Take a simple special unital Jordan superalgebra J = A + M whose even part A is an associative algebra, and whose odd part M is an associative A-module. If J is not the superalgebra of a nondegenerate bilinear superform then there exist $x_1, \ldots, x_n \in M$ such that

$$M = x_1 A + \ldots + x_n A,$$

and the product in M satisfies

$$ax_i \cdot bx_j = \gamma_{ij}ab + D_{ij}(a)b - aD_{ji}(b), \quad i, j = 1, \dots, n,$$
(8)

where $\gamma_{ij} \in A$, and D_{ij} is a derivation of A. The algebra A is differentially simple with respect to the set of derivations $\Delta\{D_{ij}|i, j = 1, ..., n\}$. The module M is a projective A-module of rank 1. Moreover, J is a subalgebra of the superalgebra $J(\Gamma, D)$.

In addition, [10] includes an example of a Jordan superalgebra over the field of real numbers satisfying the hypotheses of the theorem which is not isomorphic to $J(\Gamma, D)$. A similar example of a Jordan superalgebra over a field of characteristic zero in which the equation $t^2 + 1 = 0$ has no solutions is constructed in [12]. Let us give another example of this kind of superalgebra over an arbitrary field of characteristic zero.

Fix an arbitrary field F of characteristic 0. Consider the polynomial algebra F[x, y] in two variables x and y. Denote by $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ the operators of differentiation with respect to x and yon F[x, y]. Put $D = 2y^3 \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$ and $f(x, y) = x^2 + y^4 - 1$. Then D is a derivation of F[x, y], and D(f(x, y)) = 0. Take the quotient algebra $\Gamma = F[x, y]/f(x, y)F[x, y]$ of F[x, y] by the ideal f(x, y)F[x, y]. It is clear that D induces a derivation of Γ , which we denote by D as well. Identify the images of x and y under the canonical homomorphism $F[x, y] \mapsto \Gamma$ with the elements x and y. Then $\Gamma = F[y] + xF[y]$, where F[y] is the polynomial ring in y.

Proposition 1. The algebra Γ is differentially simple with respect to D.

PROOF. Suppose that I is a nonzero D-invariant ideal of Γ . If $f(y) \in F[y]$ and $f(y) \in I$ then $D(f(y)) = -xf'(y) \in I$, where f'(y) is the derivative of f(y) with respect to y. Then $(1-y^4)f'(y) \in I$ and $D((1-y^4)f'(y)) \in I$. Thus,

$$-x(-4y^3f'(y) + (1-y^4)f''(y)) \in I.$$

This implies that $(1-y^4)^2 f''(y) \in I$. Continuing this process, we deduce that $(1-y^4)^k f^{(k)}(y) \in I$ for all k, where $f^{(k)}(y)$ is the order k derivative of f(y). Consequently, $(1-y^4)^k \in I$ for some k. Take the smallest k with $z_k = (1-y^4)^k \in I$. Then

$$D(z_k) = 4kxy^3(1-y^4)^{k-1} \in I.$$

Thus,

$$x(1-y^4)^{k-1} = xz_k + \frac{1}{4k}yD(z_k) \in I.$$

Consequently,

$$D(x(1-y^4)^{k-1}) = 2y^3(1-y^4)^{k-1} + (k-1)4y^3(1-y^4)^{k-1}2(2k-1)y^3(1-y^4)^{k-1} \in I.$$

This implies that $y^3(1-y^4)^{k-1} \in I$ and $y^4(1-y^4)^{k-1} \in I$. Then,

$$z_{k-1} = (1 - y^4)^k + y^4 (1 - y^4)^{k-1} \in I.$$

Therefore, we may assume that $F[y] \cap I = 0$.

Suppose that $f(y) + xg(y) \in I$. Then

$$(f(y) + xg(y))(f(y) - xg(y)) = f(y)^{2} - (1 - y^{4})g(y)^{2} \in I.$$

By the argument above, $f(y)^2 = (1 - y^4)g(y)^2$. Then, $1 - y^4 = h(y)^2$ for some $h(y) \in F[y]$, and we arrive at a contradiction.

Consequently, Γ is a differentially simple algebra with respect to D. Consider in Γ the subalgebra A generated by 1, y^2 , and xy. Then,

$$D(y^2) = -2xy \in A$$
 and $D(xy) = 3y^4 - 1 \in A$.

Consequently, $D(A) \subseteq A$. Observe that $1, y^{2i}, xy^{2i-1}$, where $i = 1, 2, \ldots$, constitute a linear basis for A. We can express every element of A as f(y) + xyg(y) with $f(y), g(y) \in F[y^2]$.

Proposition 2. The algebra A is differentially simple with respect to D.

PROOF. Suppose that I is a nonzero D-invariant ideal of A. If $f(y) \in F[y^2]$ and $f(y) \in I$ then $xf'(y) = -D(f(y)) \in I$. Thus, $(1 - y^4)yf'(y) = (xy)(xf'(y)) \in I$. Since

$$D(xf'(y)) = 2y^3f'(y) - (1 - y^4)f''(y) \in I,$$

it follows that $(1 - y^4)^2 f''(y) \in I$. An easy induction implies that

$$(1-y^4)^{2k-1}yf^{(2k-1)}(y) \in I$$
 and $(1-y^4)^{2k}f^{(2k)}(y) \in I$.

This yields $(1 - y^4)^{2k} \in I$.

Take the smallest k with $(1 - y^4)^k \in I$. Then,

$$D((1-y^4)^k) = -4kxy^3(1-y^4)^{k-1} \in I.$$

Consequently,

$$xy(1-y^4)^{k-1} = xy(1-y^4)^k + y^2(xy^3(1-y^4)^{k-1}) \in I$$

Thus,

 $D(xy(1-y^4)^{k-1}) = (3y^4-1)(1-y^4)^{k-1} + (k-1)4y^4(1-y^4)^{k-1}((4k-1)y^4-1)(1-y^4)^{k-1} \in I.$

Then,

$$(4k-2)(1-y^4)^{k-1} = (4k-1)(1-y^4)^k + ((4k-1)y^4 - 1)(1-y^4)^{k-1} \in I.$$

Therefore, we may assume that $F[y^2] \cap I = 0$.

Suppose that $f(y) + xyg(y) \in I$. Then,

$$f(y)^{2} - (1 - y^{4})y^{2}g(y)^{2} = (f(y) + xyg(y))(f(y) - xyg(y)) \in I.$$

By the argument above, $f(y)^2 - (1 - y^4)y^2g(y)^2 = 0$, and we arrive at a contradiction since $\deg f(y)^2 = 4n$ but $\deg(1 - y^4)y^2g(y)^2 = 4m + 6$.

Therefore, A is a differentially simple algebra with respect to D.

The subspace M = xA + yA of Γ is an associative A-module.

Proposition 3. The module M is not a cyclic A-module.

PROOF. Assuming the contrary, denote the generator of M by z. Then z = xa + yb with $a, b \in A, x = zc$, and y = zd for some $c, d \in A$. This implies that

$$xd = yc, (9)$$

$$x = x(ac+bd), y = y(ac+bd).$$
(10)

We can write

$$a = f_0 + xyf_1, b = g_0 + xyg_1, c = e_0 + xye_1, d = h_0 + xyh_1,$$

where $f_0, f_1, g_0, g_1, e_0, e_1, h_0, h_1$ are polynomials in $F[y^2]$.

From (9) we deduce that

$$h_0 = y^2 e_1$$
 and $e_0 = (1 - y^4) h_1$.

From (10) we deduce that

$$f_0 e_0 + (1 - y^4) y^2 f_1 e_1 + g_0 h_0 + (1 - y^4) y^2 g_1 h_1 = 1,$$
(11)

$$f_0 e_1 + f_1 e_0 + g_0 h_1 + g_1 h_0 = 0. (12)$$

Denote by (e_1, h_1) the greatest common divisor of e_1 and h_1 . Since $h_0 = y^2 e_1$ and $e_0 = (1 - y^4)h_1$, by (11) we have

$$1 = (1 - y^4)f_0h_1 + (1 - y^4)y^2f_1e_1 + y^2g_0e_1 + (1 - y^4)y^2g_1h_1 = (1 - y^4)(f_0 + y^2g_1)h_1 + y^2((1 - y^4)f_1 + g_0)e_1.$$

Consequently, $(e_1, h_1) = 1$. By (12),

$$(f_0 + y^2 g_1)e_1 + ((1 - y^4)f_1 + g_0)h_1 = 0.$$

This and $(e_1, h_1) = 1$ imply that $f_0 + y^2 g_1 = h_1 u$, where $u \in F[y]$. Then,

$$h_1 u e_1 + ((1 - y^4)f_1 + g_0)h_1 = 0.$$

Thus,

$$ue_1 + ((1 - y^4)f_1 + g_0) = 0.$$

By the argument above,

$$1 = (1 - y^4)(f_0 + y^2g_1)h_1 + y^2((1 - y^4)f_1 + g_0)e_1 = (1 - y^4)h_1^2u - y^2e_1^2u.$$

Then, $u \in F$. Consequently,

$$(1 - y^4)h_1^2 u = 1 + y^2 e_1^2 u,$$

which is impossible since on the left we have a polynomial of degree 4k + 4, while on the right, of degree 4m + 2.

Therefore, M is not a cyclic A-module.

Put

$$D_{11} = (1 - y^4)D, D_{12} = xyD, D_{22} = y^2D.$$

Then D_{11}, D_{12}, D_{22} are derivations of A.

Proposition 4. The algebra A is differentially simple with respect to the set of derivations $\Delta = \{D_{11}, D_{12}, D_{22}\}.$

PROOF. Suppose that I is an ideal of A closed under Δ . Then $y^2 D_{22}(I) \subseteq y^2 I \subseteq I$. Since

$$D = D_{11} + y^2 D_{22},$$

it follows that $D(I) \subseteq I$. By Proposition 2, either I = 0 or I = A. Consequently, A is a differentially simple algebra with respect to $\Delta = \{D_{11}, D_{12}, D_{22}\}$. \Box

Consider now the superalgebra $J(\Gamma, D)$. Proposition 1 implies that $J(\Gamma, D)$ is a simple superalgebra. Consider its subspace

$$J(A,\Delta) = A + \overline{M}$$

Recall that A is the subalgebra of Γ generated by 1, y^2 , and xy, while M = xA + yA.

Given $a, b \in A$, in $J(\Gamma, D)$ we have

$$\overline{xa} \cdot \overline{xb} = D(xa)xb - D(xb)xa =$$

$$D(x)axb + D(a)x^{2}b - D(x)xab - D(b)x^{2}a = D_{11}(a)b - aD_{11}(b) \in A.$$

Similarly,

$$\overline{ya} \cdot \overline{yb} = D(y)ayb + D(a)y^2b - D(y)yab - D(b)y^2a = D_{22}(a)b - aD_{22}(b) \in A,$$

$$\overline{xa} \cdot \overline{yb} = D(x)ayb + D(a)xyb - D(y)xab - D(b)yxa = (1 + y^4)ab + D_{12}(a)b - aD_{12}(b) \in A.$$

Consequently, $J(A, \Delta)$ is a subsuperalgebra of $J(\Gamma, D)$. Thus, $J(A, \Delta)$ is a Jordan superalgebra. Moreover, the odd elements in $J(\Gamma, D)$ multiply according to (8), where $\Delta = \{D_{11}, D_{12}, D_{22}\}$, and $\gamma_{12} = 1 + y^4$. By Proposition 3, $J(A, \Delta)$ is not isomorphic to a superalgebra of type $J(\Gamma_0, D_0)$.

Verify that $J(A, \Delta)$ is a simple superalgebra. Suppose that I is a nonzero Z₂-graded ideal of $J(A, \Delta)$. Then $I = I_0 + I_1$, where I_0 is an ideal of A. Given $r \in I_0$, we have

$$D_{11}(r) = \overline{(xr)} \cdot \overline{x} = (r \cdot \overline{x}) \cdot \overline{x} \in I_0.$$

Similarly, $D_{12}(r), D_{22}(r) \in I_0$. Consequently, I_0 is invariant under the set of derivations Δ . By Proposition 4, either $I_0 = A$ or $I_0 = 0$. If $I_0 = A$ then $1 \in I_0 \subseteq I$ and $I = J(A, \Delta)$. If $I_0 = 0$ then $I \subseteq \overline{M}$ and $I \cdot \overline{M} \subseteq I_0 = 0$. It is clear that

$$A = AD_{11}(A) + AD_{12}(A) + AD_{22}(A).$$

Thus,

$$1 = \sum_{i} (a_{1i}, \overline{x}, \overline{x}) b_{1i} + \sum_{i} (a_{2i}, \overline{x}, \overline{y}) b_{2i} + \sum_{i} (a_{3i}, \overline{y}, \overline{y}) b_{3i}$$

for some elements a_{1i} , a_{2i} , a_{3i} , b_{1i} , b_{2i} , and b_{3i} of A. By (4) we deduce that $1 \in (A, \overline{M}, \overline{M})$ and

$$I \cdot (A, \overline{M}, \overline{M}) \subseteq (A, I \cdot \overline{M}, \overline{M}) + (A, I, \overline{M}) \cdot \overline{M} = 0.$$

Then, I = 0. Consequently, $J(A, \Delta)$ is a simple superalgebra.

Let us summarize the argument as

Theorem 1. Take an arbitrary field F of characteristic 0. Consider the polynomial algebra F[x,y] in two variables x and y. Put $f(x,y) = x^2 + y^4 - 1$ and $D = 2y^3 \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$. Put $\Gamma = F[x,y]/f(x,y)F[x,y]$. Then the derivation D induces a derivation of the algebra Γ , which we denote by D as well. Identify the images of x and y under the canonical homomorphism $F[x,y] \mapsto \Gamma$ with the elements x and y. Suppose that A is a subalgebra of Γ generated by $1, y^2$, and xy, while M = xA + yA. Put

$$\Delta = \{D_{11}, D_{12}, D_{22}\}, \text{ where } D_{11} = (1 - y^4)D, D_{12} = xyD, D_{22} = y^2D.$$

Then the subspace $J(A, \Delta) = A + \overline{M}$ is a subsuperalgebra of $J(\Gamma, D)$, and the multiplication of odd elements in $J(A, \Delta)$ is defined as

$$\overline{xa} \cdot \overline{xb} = D_{11}(a)b - aD_{11}(b), \quad \overline{ya} \cdot \overline{yb} = D_{22}(a)b - aD_{22}(b)$$
$$\overline{xa} \cdot \overline{yb} = (1+y^4)ab + D_{12}(a)b - aD_{12}(b).$$

Moreover, $J(A, \Delta)$ is a simple superalgebra, and \overline{M} is not a cyclic A-module; i.e., $J(A, \Delta)$ is not isomorphic to a superalgebra of vector type $J(\Gamma_0, D_0)$.

The Superalgebra of Type $JS(\Gamma, D)$. Take an associative supercommutative superalgebra $\Gamma = \Gamma_0 + \Gamma_1$ equipped with a nonzero odd derivation D; i.e., $D(\Gamma_i) \subseteq \Gamma_{(i+1)mod 2}$ and

$$D(ab) = D(a)b + (-1)^{p(a)}aD(b)$$

for $a, b \in \Gamma_0 \cup \Gamma_1$.

Put $A = \Gamma_1$, $M = \Gamma_0$, and $JS(\Gamma, D) = A + M$. Define on the space $JS(\Gamma, D)$ the multiplication

$$a \circ b = aD(b) + (-1)^{p(a)}D(a)b.$$

Then $JS(\Gamma, D)$ is a Jordan superalgebra. If $JS(\Gamma, D)$ is a simple superalgebra then Γ is a differentially simple superalgebra (see [8]).

Proposition 5. The superalgebra $JS(\Gamma, D)$ is not unital.

PROOF. Suppose that e is the unit of $JS(\Gamma, D)$. Then $e \in A \subseteq \Gamma_1$. Given $a \in JS(\Gamma, D)$, we have

$$a = e \circ a = eD(a) + D(e)a$$

Since Γ is supercommutative and $e \in \Gamma_1$, it follows that e = 2eD(e) and $e^2 = 0$ in Γ . Consequently, $ea = eD(e)a = \frac{1}{2}ea$. This implies that $e\Gamma = 0$. Then, e = 2eD(e) = 0.

Corollary 1. The superalgebra $J(A, \Delta)$ is not isomorphic to the superalgebra $JS(\Gamma, D)$.

The Cheng–Kac superalgebra. Take an associative commutative F-algebra Γ equipped with a nonzero derivation D. Consider two direct sums

$$J_0 = \Gamma + w_1 \Gamma + w_2 \Gamma + w_3 \Gamma$$

and

$$J_1 = \overline{\Gamma} + x_1\overline{\Gamma} + x_2\overline{\Gamma} + x_3\overline{\Gamma}$$

of linear spaces, where $\overline{\Gamma}$ is an isomorphic copy of Γ .

For $a, b \in \Gamma$ define a multiplication on the space J_0 by putting

$$a \cdot b = ab, a \cdot w_i b = w_i ab, w_1 a \cdot w_1 b = w_2 a \cdot w_2 b = ab, w_3 a \cdot w_3 b = -ab,$$

 $w_i a \cdot w_i b = 0 \text{ for } i \neq j.$

Put $x_{i \times i} = 0$, $x_{1 \times 2} = -x_{2 \times 1} = x_3$, $x_{1 \times 3} = -x_{3 \times 1} = x_2$, and $x_{2 \times 3} = -x_{3 \times 2} = -x_1$. Define a bimodule action $J_0 \times J_1 \mapsto J_1$ by putting

$$a \cdot \overline{b} = \overline{ab}, \ a \cdot x_i \overline{b} = x_i \overline{ab}, \ w_i a \cdot \overline{b} = x_i \overline{D(a)b}, \ w_i a \cdot x_j \overline{b} = x_{i \times j} \overline{ab}$$

The bracket on J_1 is defined as

$$\overline{a} \cdot \overline{b} = D(a)b - aD(b), \ \overline{a} \cdot x_i \overline{b} = -w_i(ab), \ x_i \overline{a} \cdot \overline{b} = w_i(ab), \ x_i \overline{a} \cdot x_j \overline{b} = 0.$$

Then the space $J = J_0 + J_1$ with the multiplication

$$(a_0 + a_1) \cdot (b_0 + b_1) = (a_0 \cdot b_0 + a_1 \cdot b_1) + (a_0 \cdot b_1 + a_1 \cdot b_0)$$

for $a_0, b_0 \in J_0$ and $a_1, b_1 \in J_1$ is an algebra, which is denoted by $CK(\Gamma, D)$. It is known (see [5, 8]) that $CK(\Gamma, D)$ is a Jordan superalgebra, which is simple if and only if Γ is *D*-simple.

Suppose now that $\Gamma = F[x, y]/f(x, y)F[x, y]$, where $f(x, y) = x^2 + y^4 - 1$ and $D = 2y^3 \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$. Consider the Jordan superalgebra $J(A, \Delta) = A + \overline{M}$ constructed above. In $CK(\Gamma, D)$ consider the subspace

 $GCK(A,\Delta) = A + w_1A + w_2A + w_3A + \overline{M} + x_1\overline{M} + x_2\overline{M} + x_3\overline{M}.$

In Γ we have $M^2 \subseteq A$. Thus, $GCK(A, \Delta)$ is a subsuperalgebra of $CK(\Gamma, D)$. Consequently, $GCK(A, \Delta)$ is a Jordan superalgebra with the even part $GCK(A, \Delta)_0 = A + w_1A + w_2A + w_3A$ and the odd part $GCK(A, \Delta)_1 = \overline{M} + x_1\overline{M} + x_2\overline{M} + x_3\overline{M}$.

Theorem 2. For an arbitrary field F of characteristic zero $GCK(A, \Delta)$ is a simple unital Jordan superalgebra.

PROOF. Suppose that $I = I_0 + I_1$ is a nonzero ideal of $GCK(A, \Delta)$. Then $K = A \cap I_0$ is an ideal of A, and $(K, \overline{M}, \overline{M}) \subseteq K$. Thus, $K + K \cdot \overline{M}$ is an ideal of $J(A, \Delta)$. If $K \neq 0$ then since $J(A, \Delta)$ is a simple superalgebra, we have $1 \in K$. Consequently, $I = GCK(A, \Delta)$.

Suppose that $A \cap I_0 = 0$ and take $r = a + w_1 a_1 + w_2 a_2 + w_3 a_3 \in I_0$. Then $w_2(w_2(w_1 r)) = a_1 \in A \cap I_0$. Consequently, $a_1 = 0$. Similarly, $a_2 = a_3 = 0$. Thus, $I_0 = 0$. This implies that $I \subseteq GCK(A, \Delta)_1$ and $I \cdot GCK(A, \Delta)_1 \subseteq I_0 = 0$. Since $1 \in (A, \overline{M}, \overline{M})$, by (4) we deduce that

$$I \cdot (A, \overline{M}, \overline{M}) \subseteq (A, I \cdot \overline{M}, \overline{M}) + (A, I, \overline{M}) \cdot \overline{M} = 0.$$

Then, I = 0. Consequently, $GCK(A, \Delta)$ is a simple superalgebra.

I would like to take this chance to express by special gratitude to A. P. Pozhidaev, whose comments helped to improve this article.

References

- V. G. Kac, Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras // Comm. in Algebra 5, 1375-1400, (1977).
- [2] I. L. Kantor, Jordan and Lie superalgebras determined by a Poisson algebra // The 2nd Siberian school "Algebra and Analysis", Tomsk (1989), 55-80.
- [3] I. P. Shestakov, Prime alternative superalgebras of arbitrary characteristic // Algebra and Logic, 36, N 6 (1997), 701-731.
- [4] E. Zelmanov, Semisimple finite dimensional Jordan superalgebras // in: Y. Fong, A.A. Mihalev, E. Zelmanov (Eds.), Lie Algebras and Related Topics, Springer, New York, (2000), 227-243.
- [5] C. Martinez and E. Zelmanov, Simple finite dimesional Jordan superalgebras of Prime Characteristic // Journal of Algebra v. 236, N 2, (2001), 575-629.
- [6] V. G. Kac, C. Martinez, E. Zelmanov, Graded simple Jordan superalgebras of growth one // Mem. Amer. Math. Soc. 711 (2001).
- M. Racine and E. Zelmanov, Simple Jordan superalgebras with semisimple even part // Journal of Algebra v. 270, N 2, (2003), 374-444.
- [8] N. Cantarini, V. G.Kac, Classification of linearly compact simple Jordan and generalized Poisson superalgebras // Journal of Algebra v. 313, N 2, (2007), 100-124.

- [9] V. N. Zhelyabin, Simple special Jordan superalgebras with associative nil-semisimple even part // Algebra and Logic 41, 3 (2002), 276-310.
- [10] V. N. Zhelyabin, I. P. Shestakov, Simple special superalgebras with associative even part // Sib. Math. J., 45(5)(2004), 1046-1072.
- [11] I. P. Shestakov, Simple superalgebras of type (-1,1) // Algebra and Logic 37, 6 (1998), 721-739.
- [12] V. N. Zhelyabin, Differential algebras and simple Jordan superalgebras // Matem. Tr. 2009. 12, N2. pp. 41–51.
- [13] Shuen Yuan, Differentiable simple rings of prime characteristic // Duke Math. J.,V.31, N 4 (1964), 623-630.
- [14] A. A. Suslin, On the structure of the special linear group over polynomial rings // USSR Acad. Sci. Izvestiya, ser. Math. . 41, N 2, (1977), 235-252.
- [15] D. King and K. McCrimmon, The Kantor construction of Jordan superalgebras // Comm. in Algebra 20(1)(1992), 109-126.
- [16] K. McCrimmon, Speciality and nonspeciality of two Jordan superalgebras, // J. of Algebra 149(1992), 326-351.
- [17] D. King and K. McCrimmon, The Kantor doubling process revisited // Comm. in Algebra 23(1)(1995), 357-372.

ZHELYABIN Viktor Nikolaevich, Sobolev Institute of Mathematics, RAS 4 Acad. Koptyug prospekt Novosibirsk 630090 RUSSIA phone +7(383)(363-45-57) email: vicnic@math.nsc.ru and Novosibirsk State University 2 Pirogova str.