
Values for the levels and sublevels of algebras obtained
by the Cayley-Dickson process

Cristina Flaut
”Ovidius” University of Constanta, Romania

e-mail: cflaut@univ-ovidius.ro;cristina flaut@yahoo.com

Abstract. In this paper we will prove that any number n ∈ N− {0} could be

realised as level of an algebra obtained by the Cayley-Dickson process over a suitable

field.

Key Words: Cayley-Dickson process; Division algebra; Level and sublevel of an

algebra.

AMS Classification: 17A35, 17A20, 17A75, 17A45.

0. Introduction

A. Pfister, in [Pf; 65], showed that if a field has a finite level this level is
a power of 2 and any power of 2 could be realised as the level of a field. For
the quaternion and octonion division algebras, was found 2k and 2k + 1 for
all k ∈ N−{0} like values for the level of these algebras( see [Lew; 87], [La,Ma;
01], [Pu; 05]) and 6 and 7 for the level of the octonion division algebras(see
[O’ Sh; 10]). These values, 6 and 7, remained the only known exact values
for the level of quaternion and octonion division algebras, other than 2k or
2k + 1, k ∈ N − {0}. It is still unknown what exact numbers can be realized
as levels and sublevels of quaternion and octonion division algebras. The level
problem for the integral domains was solved in [Da, La, Pe; 80] when Z.D. Dai,
T. Y. Lam, C. K. Peng proved that any positive integer could be realised as the
level of an integral domain.

In this paper, we will show that in the case of level for algebras obtained
by the Cayley-Dickson process the situation is the same like for the integral
domains, proving that for any positive integer n, there is an algebra A, obtained
by the Cayley-Dickson process with the norm form anisotropic over a suitable
field, which has level n.

1. Preliminaries

In this paper, we assume that K is a field, charK 6= 2 and all the quadratic
forms are nondegenerate. For the basic terminology of quadratic and symmetric
bilinear spaces, the reader is referred to [Sch; 85] .

Let ϕ be a n−dimensional quadratic irreducible form over K, n ∈ N,n >
1, which is not isometric to the hyperbolic plane. We may consider ϕ as a
homogeneous polynomial of degree 2, ϕ (X) = ϕ (X1, ...Xn) =

∑

aijXiXj , aij ∈
K∗. The functions field of ϕ, denoted K(ϕ), is the quotient field of the integral
domain K[X1, ..., Xn] / (ϕ (X1, ..., Xn)) .

A subset P of K is called an ordering of K if P + P ⊂ P, P · P ⊂ P,−1 /∈
P, {x ∈ K /x is a sum of squares in K} ⊂ P, P ∪ −P = K,P ∩ −P = 0.

1



A field K with an ordering is called an ordered field. For x, y ∈ K, K an
ordered field, we define x > y if (x− y) ∈ P.

A quadratic semi-ordering (or q-ordering) of a field K is a subset P with the
following properties: P + P ⊂ P,K2 · P ⊂ P, 1 ∈ P, P ∪ −P = K,P ∩ −P = 0.

Obviously, every ordering is a q-ordering [Sch; 85]. Let P0 be a q-preordering,
i.e. P0 + P0 ⊂ P0,K

2 · P0 ⊂ P0, P0 ∩ −P0 = 0. Then there is a q-ordering P
such that P0 ⊂ P or −P0 ⊂ P. ([Sch; 85], p.133)

If ϕ ∼=< a1, ..., an > is a quadratic form over a formally real field K and P
is an ordering on K, the signature of ϕ at P is

sgn (ϕ) = |{i | ai >P 0}| − |{{i | ai <P 0}}| .

The quadratic form q is indefinite at ordering P if dimϕ > |sgnϕ| .
The Witt index of a quadratic form ϕ, denoted by iW (ϕ) , is the dimension

of a maximal totally isotropic subform of ϕ. Indeed, if ϕ ∼= ϕan⊥ϕh, with
ϕan anisotropic and ϕh hiperbolic, the Witt index of ϕ is 1

2 dimϕh. The first
Witt index of a quadratic form ϕ is the Witt index of ϕ over its function
field and is denoted by i1 (ϕ) . The essential dimension of ϕ is dimes (ϕ) =
dim (ϕ)− i1 (ϕ) + 1.

The sublevel of the algebra A, denoted by s(A) , is the least integer n such
that 0 is a sum of n + 1 nonzero squares of elements in A. The level of the
algebra A, denoted by s (A) , is the least integer n such that −1 is a sum of
n squares in A. If these numbers do not exist, then the level and sublevel are
infinite. Obviously, s(A) ≤ s (A).

In the following, we recall shortly the Cayley-Dickson process and the prop-
erties of the obtained algebras.

Let A be a finite dimensional unitary algebra over a field K, with a scalar
involution : A → A, a → a, i.e. a liniar map satisfying the following
relations: ab = ba, a = a, and a+ a, aa ∈ K · 1 for all a, b ∈ A. The element a
is called the conjugate of the element a, the linear form t : A→ K , t (a) = a+a
and the quadratic form n : A → K, n (a) = aa are called the trace and the
norm of the element a. It results that an algebra A with a scalar involution is
quadratic.

Let γ ∈ K be a fixed non-zero element. We define the following algebra
multiplication on the vector space A⊕A.

(a1, a2) (b1, b2) =
(

a1b1 + γb2a2, a2b1 + b2a1
)

. (1.1.)

We obtain an algebra structure over A ⊕ A, denoted by (A, γ) and called the
algebra obtained from A by the Cayley-Dickson process. We have dim (A, γ) =
2 dimA.

Let x ∈ (A, γ) , x = (a1, a2) . The map : (A, γ) → (A, γ) , x → x̄ =
(a1,−a2) , is a scalar involution of the algebra (A, γ), extending the involution

of the algebra A, therefore the algebra (A, γ) is quadratic, with t (x) = t(a1)
and n (x) = n (a1) − γn(a2) the trace, respectively, the norm of the element
x ∈ (A, γ) .
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If we take A = K and apply this process t times, t ≥ 1, we obtain an
algebra overK, At = K{α1, ..., αt}. By induction, in this algebra we find a basis
{1, f2, ..., fq}, q = 2t, satisfying the properties: f2i = αi1, αi ∈ K,αi 6= 0, i =
2, ..., q and fifj = −fjfi = βijfk, βij ∈ K, βij 6= 0, i 6= j, i, j = 2, ...q, βij
and fk being uniquely determined by fi and fj . We denote (At)0 = {x ∈ At |
t (x) = 0}.

If x ∈ At, x = x11 +
q
∑

i=2

xifi, the quadratic form TC : At → K,

TC =< 1, α1, α2,−α1α2, α3, ..., (−1)
t
(
t
∏

i=1

αi) >=< 1, β2, ..., βq > is called the

trace form and the quadratic form TP = TC |(At)0 : (At)0 → K,

TP =< α1, α2,−α1α2, α3, ..., (−1)
t
(
t
∏

i=1

αi) >=< β2, ..., βq > is called the pure

trace form of the algebra At. We remark that TC =< 1 >⊥ TP (the ortho-
gonal sum of two quadratic forms) and the norm n = nC =< 1 >⊥ −TP ,

therefore nC=< 1,-α1,-α2, α1α2, α3, ..., (-1)
t+1

(
t
∏

i=1

αi) >=< 1,-β2, ...,-βq > .

In general, algebras At of dimension 2t obtained by the Cayley-Dickson
process are not division algebras for all t ≥ 1. But, there are at least two
example of fields on which if we apply the Cayley-Dickson process, the obtained
algebras At are division algebras for all t ≥ 1. These fields are power-series
fieldK{X1, X2, ..., Xt} and the rational functions field K(X1, X2, ..., Xt), where
X1, X2, ..., Xt are t algebraically independent indeterminates over the field K.
First construction was given by R. B. Brown in [Br; 67] in which he built,
for every t, a division algebra At of dimension 2t over the power-series field
K{X1, X2, ..., Xt}. The second construction are done by C. Flaut in [Fl; 11(2)]
over the rational functions field K(X1, X2, ..., Xt).

In the folllowing, we briefly present this construction. For every t we con-
struct a division algebra At over a field Ft. Let X1, X2, ..., Xt be t algebraically
independent indeterminates over the field K and Ft = K (X1, X2, ..., Xt) be
the rational functions field. For i = 1, ..., t, we construct the algebra Ai over
the rational functions field K (X1, X2, ..., Xi) by setting αj = Xj for j =
1, 2, ..., i. Let A0 = K. By induction over i, assuming that Ai−1 is a divi-
sion algebra over the field Fi−1 = K (X1, X2, ..., Xi−1), then the algebra Ai is
a division algebra over the field Fi = K (X1, X2, ..., Xi).

Indeed, let Ai−1
Fi

= Fi⊗Fi−1
Ai−1. For αi = Xi we apply the Cayley-Dickson

process to algebra Ai−1
Fi

. The obtained algebra, denoted Ai, is an algebra over

the field Fi and has dimension 2i.

Proposition 1.1. [Fl; 11(1)] Let A be an algebra obtained by the Cayley-
Dickson process. The following statements are true:

a) If n ∈ N − {0}, such that n = 2k − 1, for k > 1, then s(A) ≤ n if and
only if < 1 >⊥ n× TP is isotropic.

b) If −1 is a square in K, then s(A) = s (A) = 1.
c) If−1 /∈ K∗2, then s (A) = 1 if and only if TC is isotropic.

Remark 1.2. Using the above proposition, if the algebra A is an algebra
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obtained by the Cayley-Dickson process, of dimension greater than 2 and if nC
is isotropic, then s (A) = s (A) = 1. Indeed, if −1 is a square in K, the statement
results from above. If −1 /∈ K∗2, since nC =< 1 >⊥ −TP and nC is a Pfister
form, we obtain that −TP is isotropic, therefore TC is isotropic and, from above
proposition, we have that s (A) = s (A) = 1.

Proposition 1.3. [Fl; 11(1)] Let A be an algebra obtained by the Cayley-
Dickson process. With above notations, we have:

i) If s (A) ≤ n then −1 is represented by the quadratic form n× TC .
ii) −1 is a sum of n squares of pure elements in A if and only if the

quadratic form n× TP represents −1.
iii) For n ∈ N−{0}, if the quadratic form < 1 >⊥ n×TP is isotropic over

K, then s(A) ≤ n.

Proposition 1.4. [Hoff; 08, Lemma 2.5.] Let ϕ be a quadratic form over
a formally real field K0, dimϕ ≥ 2, and let P be an ordering on K0. Then P
extends to K0 (ϕ) if and only if ϕ is indefinite at P. In this situation, if ψ is
another form over K0, then dim

(

ψK0(ϕ)

)

an
≥ |sgnP (ψ) | .

Proposition 1.5. [Hoff; 08, Theorem 2.2.] Let ϕ and ψ be anisotropic
forms over an arbitary field K. If ϕK(ψ) is isotropic, then dimϕ − i1 (ϕ) ≥
dimψ − i1 (ψ) and equality holds if and only if ψF (ϕ) is isotropic.

2. Main results

Let At be a division algebra over a field K = K0(X1, ..., Xt) obtained by
the Cayley-Dickson process, of dimension q = 2t, where K0 is a formally real
field, X1, ..., Xt algebraically independent indeterminates over the field K0,
TC and TP are its trace and pure trace forms. Let

ϕn =< 1 > ⊥n× TP , ψm =< 1 > ⊥m× TC ,

At (n) = At ⊗K K (< 1 > ⊥n× TP ) , n ∈ N− {0}. (2.1.)

Remark 2.1. i)We denote Kn = K (< 1 > ⊥n× TP ) , and let nAt

C be the

norm form of the algebra At. Since At is a division algebra, it results that nAt

C

is anisotropic over K and n
At(n)
C is anisotropic over Kn. Indeed, let x ∈ At (n) ,

x = y ⊗ 1, y ∈ At. If 0 = n
At(n)
C (x) = xx = (y ⊗ 1) (y ⊗ 1) = yy ⊗ 1 =

nAC (y) (1 ⊗ 1), it results that nAt

C = 0 or 1 ⊗ 1 = 0, false. The algebra At (n)
has dimension 2t and is not necessarily division algebra, but, using Remark 1.2.,
this algebra has level greater than 1.

ii) From Proposition 1.3. i) and iii), if ψm is anisotropic and if ϕn is isotropic
over Kn, then s (At (n)) ∈ [m+ 1, n].

Proposition 2.2. i1 (< 1 > ⊥n× TP ) = 1 for all n ∈ N − {0}, where TP
is the pure trace form for the algebra At.

Proof. Consider P an arbitrary ordering over K such that β2, ..., βq <P 0.
We remark that such an ordering always exists. Indeed, since ϕn is anisotropic
over K, from Springer’s Theorem, we have that P0 = {a | a = 0 or a is repre-
sented by ϕn } is a q−preordering, therefore there is a q−ordering P containing
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P0 or −P0. We have |sgnϕn| = |sgn (< 1 > ⊥n× TP )| = (2t − 1)n − 1 <
(2t − 1)n + 1 = dimϕn. It results that ϕn is indefinite at P over K, then
P extends to Kn. Therefore (2t − 1)n − 1 ≥ dim((ϕn)Kn

)an, since we have
only one positive coefficient with respect to P. From Proposition 1.4., it results
(2t − 1)n−1 ≥ dim((ϕn)Kn

)an ≥ |sgnϕn| = (2t − 1)n−1, so dim((ϕn)Kn
)an =

(2t − 1)n− 1 = dimϕn −2 and thus i1 (ϕn) =
1
22 = 1.�

Theorem 2.3. With the above notations, we have s (At (n)) ∈ [n− [ n2t ], n].

Proof. From Proposition 2.2., we have that dimϕn − i1 (ϕn) = (2t −
1)n + 1 − i1 (ϕn) = (2t − 1)n. For the quadratic form ψm, relation dimψm −
i1 (ψm) = 2tn + 1 − i1 (ψm) holds. The form ϕn and ψm are anisotropic over
K = K0(X1, ..., Xt), by Springer’s Theorem. Supposing that ψm are isotropic
over Kn, from Proposition 1.5., we have dimψm − i1 (ψm) ≥ dimϕn − i1 (ϕn) .
It results 2tm+ 1− i1 (ψm) ≥ (2t − 1)n. Therefore, if

2tm+ 1− i1 (ψm) < (2t − 1)n, (2.2.)

we have ψm is anisotropic overKn, so, from Remark 2.1. i), it results s (At (n)) ∈
[m+1, n].We note that i1 (ψm) ≥ 1 and, from relation (2.2.) , the highest value
of m such that ψm is isotropic over Kn is n − [ n2t ] − 1. Indeed, relation (2.2.)
implies 2tm < (2t−1)n, therefore m < n− n

2t and we obtain m ≤ n− [ n2t ]−1.�

Theorem 2.4. With the above notations, we have s(At (n)) ∈ [n −

[n+2t−1
2t ], n], n ∈ N− {0}.

Proof. Using Proposition 1.3. i), if the quadratic form φm = (m+1)×TC
is anisotropic, then s(At (n)) ≥ m+1 and if ϕn is isotropic, then s(At (n)) ≤ n.
Using the same arguments like in the proof of Theorem 2.3., if

2t (m+ 1)− i1 (φm) < (2t − 1)n, (2.3.)

we have φm is anisotropic over Kn, therefore s(At (n)) ∈ [m + 1, n]. We
note that i1 (φm) ≥ 1 and, from relation (2.3.) , the highest value of m such

that φm is isotropic over Kn is n− [n+2t−1
2t ]− 1. Indeed, relation (2.3.) implies

2t (m+ 1)− 1 < (2t − 1)n, therefore m < n 2t−1
2t + 1

2t − 1 = n− n+2t−1
2t and we

obtain m ≤ n− [n+2t−1
2t ]− 1.�

Theorem 2.5. With the above notation, for each n ∈ N − {0} there is an
algebra At (n) such that s (At (n)) = n and s(At (n)) ∈ {n− 1, n}.

Proof. Let n ∈ N−{0} and m be the least positive integer such that n ≤
2m. For n = 2m, there are quaternion (A2 (n)) and octonion (A3 (n)) division
algebras of level n = 2m, (see [La,Ma; 01] and [Pu; 05]). We suppose that n <
2m. For t = m, let At (n) be algebra of dimension q = 2t given by the relation
(2.1.). From Theorem 2.3., this algebra has level s (At (n)) ∈ [n − [ n2t ], n] and

sublevel s(At (n)) ∈ [n− [n+2t−1
2t ], n], n ∈ N− {0}. Since n < 2t, it results that

[ n2t ] = 0 and [n+2t−1
2t ] = 1, therefore s (At (n)) = n and s(At (n)) ∈ {n−1, n}.�

Remark. 2.6. Theorem 2.5. gives a positive partial answer to the question
that any number n ∈ N−{0} can be realised as a level of composition algebras.
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The answer becomes positive if we replace ”composition algebras” with ”alge-
bras obtained by the Cayley-Dickson process”, therefore, we can say that any
number n ∈ N − {0} can be realised as a level of an algebra obtained by the
Cayley-Dickson process over a suitable field.
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