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Abstract. We obtain a family of non-unital eight-dimensional division algebras over a

field F out of a separable quadratic field extension S of F , a three-dimensional anisotropic

hermitian form over S of determinant one and three invertible elements c, d, e ∈ S.

The algebras always contain a four-dimensional subalgebra which can be viewed as a

generalization of a (nonassociative) quaternion algebra and are studied independently.

Over R, this construction can be used to yield division algebras with derivation algebra

isomorphic to su(3), which are the direct sum of two one-dimensional modules and a six-

dimensional irreducible su(3)-module. Albert isotopes with derivation algebra isomorphic

to su(3) are considered briefly.

Introduction

In Benkart’s and Osborn’s classification of real division algebras according to the iso-
morphism type of their derivation algebra [B-O1], one possible case which appears is that
the Lie algebra of derivations of an eight-dimensional real division algebra A is isomorphic
to su(3). A is either an eight-dimensional irreducible su(3)-module or the direct sum of
two one-dimensional modules and a six-dimensional irreducible su(3)-module [B-O2]. If A
is an eight-dimensional irreducible su(3)-module, A was shown to be a flexible generalized
pseudo-octonion algebra.

For an eight-dimensional real division algebra A with Der(A) ∼= su(3) which is reducible
as su(3)-module, a multiplication table with 16 different scalars was given [B-O2, (4.2)].
Every real algebra defined by this table admits su(3) as derivation algebra [B-O2, Theorem
4.1]. One family of division algebras which fit into the table was presented as an example [B-
O1, Theorem 20, Corollary 21]. Another family was discussed in [J-P], Section 4.3. Dokovich
and Zhao [Do-Z2] investigated when an algebra with such a multiplication table is a real
division algebra. Some conditions were obtained for enlargements of what the authors call
the truncated algebra of strictly pure octonions [Do-Z1]. In [P-I], Pérez-Izquierdo exhibited
families of composition division algebras with derivation algebras isomorphic to su(3) over
a field of characteristic not 2 or 3. Unital real division algebra with derivation algebras
isomorphic to su(3) were constructed in [Pu3].

In this paper, we generalize the method developed in [Pu3] to construct non-unital real
eight-dimensional division algebras with derivation algebras isomorphic to su(3). This is
done in Section 3.
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These algebras contain four-dimensional subalgebras which can be viewed as generaliza-
tions of quaternion or nonassociative quaternion algebras. After the preliminaries in Section
1 we start by studying these four-dimensional algebras in Section 2. The description of all
algebras is straightforward and base free and given over an arbitrary base field. In Section 4,
we obtain some results on the automorphisms of our algebras. Over the reals, we thus obtain
new eight-dimensional division algebras with derivation algebra isomorphic to su(3), whose
multiplication fits into table [B-O2, (4.2)], see Section 5. All our real eight-dimensional
division algebras contain C and a four-dimensional subalgebra which corresponds to the
subalgebra mentioned in [Do-Z2, Proposition 4.1]. By a procedure which is called ’strictly
truncating’ in [Do-Z1, 2], we obtain the real algebra (C3,×) with × a vector product. Our
algebras are enlargements of (C3,×) in the sense of [Do-Z1, Definition 4.1] if and only if the
elements c, d, e used in their constructions all lie in R.

We then use our family of division algebras to construct Albert isotopes in Section 6,
which over F = R also satisfy the multiplication table [B-O2, (4.2)], hence have a derivation
algebra again isomorphic to su(3). We conclude with an outlook how to construct more
eight-dimensional division algebras in Section 7.

1. Preliminaries

1.1. Nonassociative algebras. Let F be a field. By “F -algebra” we mean a finite dimen-
sional unital nonassociative algebra over F .

A nonassociative algebra A 6= 0 is called a division algebra if for any a ∈ A, a 6= 0, the
left multiplication with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are
bijective. A is a division algebra if and only if A has no zero divisors [Sch, pp. 15, 16].

An anti-automorphism σ : A→ A of period 2 is called an involution on A. An involution
is called scalar if all norms σ(x)x are elements of F1. For every scalar involution σ, NA(x) =
σ(x)x (resp. the trace TA(x) = σ(x)+x) is a quadratic (resp. a linear) form on A. A is called
quadratic, if there exists a quadratic form N : A→ F such that x2−N(1A, x)x+N(x)1A = 0
for all x ∈ A, where N(x, y) = N(x + y) − N(x) − N(y) denotes the symmetric bilinear
form induced by N . This automatically implies that N(1A) = 1. The form N is uniquely
determined and called the norm N = NA of the quadratic algebra A [Pu2]. The existence
of a scalar involution on an algebra A implies that A is quadratic [M].

A quadratic étale algebra S over F is a separable quadratic F -algebra in the sense of [Knu,
p. 4] with canonical involution : S → S and with nondegenerate norm NS/F : S → F ,
NS/F (s) = ss = ss. That means S is a two-dimensional unital commutative associative
algebra over F . With the diagonal action of F , F × F is a quadratic étale algebra with
canonical involution (x, y) 7→ (y, x).

An F -algebra C is called a unital composition algebra or a Hurwitz algebra if it has a unit
element and carries a quadratic form N : C → F whose induced symmetric bilinear form
is nondegenerate and which permits composition in the sense that N(xy) = N(x)N(y) for
all x, y ∈ C. Hurwitz algebras are quadratic alternative; the norm of a Hurwitz algebra
C is the unique nondegenerate quadratic form on C that permits composition A quadratic
alternative algebra is a Hurwitz algebra if and only if its norm is nondegenerate [M, 4.6].
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Hurwitz algebras exist only in dimensions 1, 2, 4 or 8. Those of dimension 2 are exactly the
quadratic étale F -algebras, those of dimension 4 exactly the well-known quaternion algebras.
The ones of dimension 8 are called octonion algebras. The conjugation x = TC/F (x)1C − x
of a Hurwitz algebra C is a scalar involution, called the canonical involution of C, where
TC : C → F , TC/F (x) = NC/F (1C , x), is the trace of C.

1.2. Nonassociative quaternion algebras. A nonassociative quaternion algebra is a four-
dimensional unital F -algebra A whose nucleus is a quadratic étale algebra over F . Let S be
a quadratic étale algebra over F with canonical involution . For every invertible b ∈ S \F ,
the vector space

Cay(S, b) = S ⊕ S

becomes a nonassociative quaternion algebra over F with unit element (1, 0) and nucleus S
under the multiplication

(u, v)(u′, v′) = (uu′ + bv′v, v′u+ vu′)

for u, u′, v, v′ ∈ S. Given any nonassociative quaternion algebra A over F with nucleus S,
there exists an invertible element b ∈ S \ F such that A ∼= Cay(S, b) [As-Pu, Lemma 1].
Cay(S, b) is a division algebra if and only if S is a separable quadratic field extension of F
[W, p. 369]. Two nonassociative quaternion division algebras Cay(K, b) and Cay(L, c) can
only be isomorphic if L ∼= K. Moreover,

Cay(K, b) ∼= Cay(K, c) if and only if g(b) = NK/F (d)c

for some automorphism g ∈ Aut(K) and some non-zero d ∈ K [W, Theorem 2].

1.3. A construction method for octonion algebras. (cf. Petersson-Racine [P-R, 3.8]
or Thakur [T])

Let S be a quadratic étale F -algebra with canonical involution . Let (P, h) be a ternary
nondegenerate -hermitian space (P a free projective S-module) such that

∧3(P, h) ∼= 〈1〉.
Choose an isomorphism α :

∧3(P, h)→ 〈1〉 and define a cross product ×α : P × P → P via

h(u×α v, w) = α(u ∧ v ∧ w).

The F -vector space Cay(S, P, h,×α) = S ⊕ P becomes an octonion algebra under the mul-
tiplication

(a, u)(b, v) = (ab− h(v, u), va+ ub̄+ u×α v)

for all u, v ∈ P and a, b ∈ S, with norm

N((a, u)) = nS(a) + h(u, u).

This construction is independent of the choice of the isomorphism α and we may simply write
Cay(S, P, h). Any octonion algebra over F can be constructed like this. For h = 〈e〉 ⊥ h2

and D = Cay(S,−e),
Cay(S, P, 〈e〉 ⊥ h2) ∼= Cay(D,−qh2)

with qh2(x) = h2(x, x) for all x ∈ P2.
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2. Generalizations of (nonassociative) quaternion algebras

From now on let S be a quadratic étale algebra over F with canonical involution .
For every c, d, e ∈ S×, the vector space

Cay(S, (c, d, e)) = S ⊕ S

becomes an algebra over F via the multiplication

(u, v)(u′, v′) = (uu′ + cv′v, v′ud+ vu′e)

for u, u′, v, v′ ∈ S. S is a subalgebra of Cay(S, (c, d, e)) via the embedding u → (u, 0). We
identify S = (S, 0).

Lemma 1. Let A = Cay(S, (c, d, e)).
(i) If cd 6= c̄e then A is not third power-associative and thus in particular not quadratic.
(ii) A has (1, 0) as a left-unit element if and only if d = 1, as a right-unit element if and
only if e = 1 and as unit element if and only if d = e = 1.
(iii) For l = (0, 1) we have lx = x̄l for all x = (u, 0) ∈ S if and only if e = d.

Proof. (i) For l = (0, 1) we have l2 = (c, 0) and ll2 = (0, σ(c)e) while l2l = (0, cd), so ll2 = l2l

if and only if cd = c̄e. Thus A is not third power-associative if cd 6= c̄e. Every quadratic
unital algebra is clearly power-associative, so A is not quadratic in that case.
(ii), (iii) are trivial. �

Note that Cay(S, (c, d, e)) is a (perhaps nonassociative) quaternion algebra if and only if
c ∈ S and e = d = 1.

Theorem 2. Cay(S, (c, d, e)) is a division algebra if and only if
c̄e

d
6∈ NS/F (S×).

Proof. Suppose
(0, 0) = (u, v)(u′, v′) = (uu′ + cv′v, v′ud+ vu′e)

for u, u′, v, v′ ∈ S. This is equivalent to

uu′ + cv′v = 0, v′ud+ vu′e = 0.

If v = 0 it immediately follows that either (u, v) = (0, 0) or (u′, v′) = (0, 0). So let v 6= 0.
The second equation yields ū′ = −v−1v′ude−1, therefore

u′ = −ē−1d̄ūv̄′
1

NS/F (v)
v.

This together with the first equation implies

−uē−1d̄ūv̄′
1

NS/F (v)
v + cv̄′v = 0,

so
(−uē−1d̄ū

1
NS/F (v)

+ c)v̄′v = 0.

If v′ = 0 then vū′e = 0 yields u′ = 0. So suppose v′ 6= 0. Then

c = uē−1d̄ū
1

NS/F (v)
=
NS/F (u)
NS/F (v)

ē−1d̄.
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If u = 0 then c = 0, a contradiction, so we need u 6= 0 and get ēc/d̄ ∈ NS/F (S×). This
implies the assertion. �

Corollary 3. Let F = R. Then Cay(C, (c, d, e)) is a division algebra if and only if

c̄e

d
∈ R<0 or

c̄e

d
∈ C \ R.

Remark 4. Let us denote the multiplication in S by ·. Then the algebra Cay(S, (c, 1,−c))
is a fused algebra in the sense of [A-H-K], obtained out of the two algebras (S, ·) and (S, ?)
with u ? v = −cuv̄. It is also a ϕ-algebra Sϕ in the sense of [A-H-K] with ϕ(u) = −cū. By
[A-H-K, Corollary 4] this means that for F = R, it is a division algebra for all c ∈ C× which
also follows from the statement in Corollary 3.

Lemma 5. Let F be a field of characteristic not 2 and A = Cay(S, (c, d, e)). The F -linear
map

D0((u, v)) = (0, sv)

with s ∈ S is a derivation of A if and only if σ(s) = −s. In particular, then F ↪→ Der(A).

The proof is a straightforward calculation.
The well-known cases here are d = e = 1 and c ∈ F× in which case Der(A) ∼= su(2), and

d = e = 1 and c ∈ S \ F in which case Der(A) ∼= F . For F = R, Lemma 5 implies that
Der(A) ∼= R or Der(A) ∼= su(2) using the classification [B-O1], depending on the choice of
c, d, e ∈ C. It is easy to see that A is an enlargement of (H1, ηR) in the sense of [Do-Z1, 4.1]
if and only if A = H.

Theorem 6. Let A = Cay(S, (c, d, e)) with S a separable quadratic field extension. Suppose
that K is a separable quadratic field extension of F contained in A.
(i) Let F have characteristic not 2 and K = F (

√
α). Then K = S or there are u ∈ S,

v ∈ S×, such that

α = − e
d
NS/F (u) + cNS/F (v).

(ii) Let F have characteristic 2 and K = F (x) with x2 + x = α ∈ F . Then K = S or there
are u, v ∈ S× such that

NS/F (u)e− cdNS/F (v) + u+ ūe+ 1 = αd.

Proof. (i) Let F have characteristic not 2 and suppose that K = F (
√
α) in A. Then there

is an element X ∈ A, X = (u, v) with u, v ∈ S, such that X2 = α ∈ F× which implies

u2 + cNS/F (v) = α and v(ud+ ūe) = 0.

If v = 0, then u2 = α and X = (u, 0) ∈ S, thus K = S.
If v 6= 0 then v is invertible and u = − e

d ū. This implies − e
dNS/F (u) + cNS/F (v) = α.

(ii) Let F have characteristic 2. Suppose there is a separable quadratic field extension K in
A. Then there is an element X ∈ A, X = (u, v) with u, v ∈ S such that X2 + X = α ∈ F .
This implies

u2 + cNS/F (v) + u = α and v(ud+ ūe+ 1) = 0.
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If v = 0, then u2 + u = α and X = (u, 0) ∈ S, thus K = S.
If v 6= 0 then v is invertible and ud + ūe + 1 = 0, so in particular also u 6= 0. This implies
u = − 1

d (ūe+ 1), thus − 1
d (NS/F (u)e+ u) + cNS/F (v)− 1

d (ūe+ 1) = α i.e.

NS/F (u)e+ u− cdNS/F (v) + ūe+ 1 = αd.

�

Corollary 7. Let F have characteristic not 2 and A = Cay(S, (c, d, e)) with S a separable
quadratic field extension.
(i) If e

d ∈ F× and c ∈ S \ F , then S = (S, 0) is the only separable quadratic subfield of
Cay(S, (c, d, e)).
(ii) Let e

d ∈ S \ F and c ∈ F×, let c, e ∈ F× and d ∈ S \ F , or let c, d ∈ F× and e ∈ S \ F .
If K is a separable quadratic field extension in A, then K = S or K = F (

√
cNS/F (v)) for

some v ∈ S×.
(iii) If e ∈ F×, c, d ∈ S \ F and K a separable quadratic field extension in Cay(S, (c, d, e)),
then K = S or K = F (

√
cdNS/F (v)) for some v ∈ S×.

Proof. Suppose K = F (
√
α).

(i) If e
d ∈ F

× and c ∈ S \ F , then α + e
dNS/F (u) 6= cNS/F (v) for all α ∈ F× and u, v ∈ S,

v 6= 0, since the left-hand side lies in F and the right-hand side in S \ F .
If e

d ∈ S \ F , c ∈ F× then K = S or there are u, v ∈ S, v 6= 0, such that α − cNS/F (v) =
− e
dNS/F (u). The left-hand side lies in F , the right-hand side in S, hence NS/F (u) = 0

which means u = 0 and so α = cNS/F (v) and X = (0, v) ∈ (0, S) ⊂ Cay(S, (c, d, e)).
(ii) If c, e ∈ F×, d ∈ S \ F then K = S or there are u, v ∈ S, v 6= 0, such that 1

e (α −
cNS/F (v)) = − 1

dNS/F (u). The left-hand side lies in F , the right-hand side in S, hence
NS/F (u) = 0 which means u = 0 and so again α = cNS/F (v) and X = (0, v) ∈ (0, S) ⊂
Cay(S, (c, d, e)).
The last assertion is proved analogously.
(iii) If e ∈ F×, c, d ∈ S \F then K = S or there are u, v ∈ S, v 6= 0, such that cdNS/F (v))−
αd = −eNS/F (u). The left-hand side lies in F , the right-hand side in S, hence NS/F (u) = 0
which means u = 0 and so α = cdNS/F (v) and X = (0, v) ∈ (0, S) ⊂ Cay(S, (c, d, e)). �

Lemma 8. (a) Let s ∈ S×.
(i) Cay(S, (c, d, e)) ∼= Cay(S, (NS/F (s−1)c, d, e)) via (u, v)→ (u, sv).
(ii) Cay(S, (c, d, e)) ∼= Cay(S, (NS/F (s−1)c̄, d̄, ē)) via (u, v)→ (ū, sv̄).
(b) Let S, S′ be two separable quadratic field extensions. Let G : Cay(S, (c, d, e))→ Cay(S′, (c′, d′, e′))
be an isomorphism. Suppose that S = (S, 0) and S′ = (S′, 0) are the only separable quadratic
field extensions contained in Cay(S, (c, d, e)), respectively Cay(S′, (c′, d′, e′)). Then S ∼= S′.

The proof of (a) is a straightforward calculation, the one of (b) obvious.

Theorem 9. Let S be a separable quadratic field extension. Let G : Cay(S, (c, d, e)) →
Cay(S, (c′, d′, e′)) be an isomorphism. Suppose that G((S, 0)) = (S, 0). Then either d = d′,
e = e′ and there is y ∈ S× such that c′ = NS/F (y−1)c and

G = idS ⊕ y · idS ,
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or d̄ = d′ and ē = e′ and there is y ∈ S× such that c̄′ = NS/F (y−1)c and

G = ⊕ y · .

Proof. By assumption, G((S, 0)) = (S, 0) and so G((u, 0)) = (u, 0) or G((u, 0)) = (ū, 0). Let
G((0, 1)) = (x, y) with x, y ∈ S. Then G((c, 0)) = G((0, 1))G((0, 1)) = (x2+c′ȳy, yxd′+yx̄e′)
implies that

c = x2 + c′ȳy and yxd′ + yx̄e′ = 0

in case G((u, 0)) = (u, 0) and

c̄ = x2 + c′ȳy and yxd′ + yx̄e′ = 0

in case G((u, 0)) = (ū, 0). In both cases this means either y = 0 or xd′ + x̄e′ = 0. However,
if y = 0 then x 6= 0 and G is not injective since G((0, 1)) = (x, 0) = G((x, 0)) (resp.,
G((0, 1)) = (x, 0) = G((x̄, 0))), so y 6= 0 and xd′ + x̄e′ = 0.
Assume first that G((u, 0)) = (u, 0) for all u ∈ S. Since G is multiplicative, we have

G((0, v)) = G((v
1
d
, 0)(0, 1)) = G((v

1
d
, 0))G((0, 1)) = (v

1
d
, 0)(x, y) = (

1
d
vx, yv

d′

d
),

therefore

(x, y) = G((0, 1)) = (
1
d
x, y

d′

d
)

means d′ = d and x = 1
dx, so that either d = 1 or x = 0. Moreover, using d′ = d we get

(
1
d
x, ye′) = (

1
d
x, y)(1, 0) = G((0, 1))G((1, 0)) = G((0, 1)(1, 0)) = G((0, e)) = (

1
d
ex, ye)

hence e′ = e and 1
dx = 1

dex, so that either e = 1 or x = 0. A straightforward calculation
now shows that the fact that xd+ x̄e = 0 from above, together with the second entry of the
equation G((u, dv)(u′, dv′)) = G((u, dv))G((u′, dv′)) for v′ = −1 = −v, which gives xd−x̄e =
0, implies that x = 0. Moreover, c′ = N(y−1)c. Thus G((0, v)) = G((v 1

d , 0))G((0, 1)) =
(v 1
d , 0)(0, y) = (0, yv) and so

G((u, v)) = G((u, 0)) +G((0, v)) = (u, yv).

Assume next that G((u, 0)) = (ū, 0) for all u ∈ S. The multiplicativity of G yields

G((0, v)) = G((v
1
d
, 0)(0, 1)) = G((v

1
d
, 0))G((0, 1)) = (v̄

1
d̄
, 0)(x, y) = (

1
d̄
v̄x, yv̄

d′

d̄
),

therefore

(x, y) = G((0, 1)) = (
1
d̄
x, y

d′

d̄
)

means d′ = d̄ and x = 1
d̄
x, so that either d = 1 or x = 0. Moreover, using d′ = d̄ we get

(
1
d̄
x, ye′) = (

1
d̄
x, y)(1, 0) = G((0, 1))G((1, 0)) = G((0, 1)(1, 0)) = G((0, e)) = (

1
d̄
ēx, yē)

hence e′ = ē and 1
d̄
x = 1

d̄
ēx, so that either e = 1 or x = 0. A straightforward calculation

now shows that the fact that xd′ + x̄e′ = 0 from above, together with the second entry
of the equation G((u, v)(u′, v′)) = G((u, v))G((u′, v′)) again implies that x = 0. Moreover,
c̄′ = N(y−1)c. Thus

G((u, v)) = G((u, 0)) +G((0, v)) = (ū, yv̄).



8 S. PUMPLÜN

�

Corollary 10. Let S be a separable quadratic field extension. Suppose that S = (S, 0) is the
only separable quadratic field extensions contained in Cay(S, (c, d, e)) and Cay(S, (c′, d′, e′)).
(i) Cay(S, (c, d, e)) ∼= Cay(S, (c′, d′, e′)) if and only if d = d′, e = e′ and there is y ∈ S× such
that c′ = NS/F (y−1)c or d̄ = d′ and ē = e′ and there is y ∈ S× such that c̄′ = NS/F (y−1)c.
Every y ∈ S× yields a unique isomorphism G = idS ⊕ y · idS or G = ⊕ y · , respectively.
(ii) The maps G = idS ⊕ y · idS for y ∈ S× with NS/F (y) = 1 are automorphisms of
Cay(S, (c, d, e)). They are the only ones except for the case where c̄ = −c, −1 = NS/F (y)
for some y ∈ S× and d, e ∈ F×. In that case also the maps G = ⊕y · are automorphisms
of Aut(Cay(S, (c, d, e))).

Proof. Since S = (S, 0) is the only separable quadratic field extensions contained in Cay(S, (c, d, e)),
respectively Cay(S, (c′, d′, e′)), we haveG((S, 0)) = (S, 0) for every isomorphismG : Cay(S, (c, d, e))
→ Cay(S, (c′, d′, e′)). The rest of the assertion is clear now by Theorem 9. �

Example 11. Suppose F = R and (C, 0) is the only quadratic field extension contained in
the algebra Cay(C, (c, d, e)). Then Aut(Cay(C, (c, d, e))) ∼= R and Der(Cay(C, (c, d, e))) ∼= R.

3. Eight-dimensional algebras

From now on let S be a quadratic étale algebra over F with canonical involution and
(P, h) a ternary nondegenerate -hermitian space such that

∧3(P, h) ∼= 〈1〉 as in Section 1.3.
Choose an isomorphism α :

∧3(P, h)→ 〈1〉 and define a cross product ×α : P × P → P via

h(u×α v, w) = α(u ∧ v ∧ w).

For c, d, e ∈ S× consider the eight-dimensional algebra

A = Cay(S, P, ch, d, e,×α) = S ⊕ P

with multiplication

(a, u)(b, v) = (ab− ch(v, u), vad+ ube+ u×α v)

for all a, b ∈ S, u, v ∈ P . S is a subalgebra of Cay(S, P, ch, d, e,×α) via the embedding
a→ (a, 0). We observe that

(1, 0)(b, v) = (b, vd) and (a, u)(1, 0) = (a, ue)

implying that A is unital if and only if d = e = 1. The unitary case was treated in [Pu3].
In the terminology of [Do-Z1, 2], (P,×α) is the strictly truncated (anticommutative)

algebra (P, µS) obtained from Cay(S, P, ch, d, e,×α). Moreover, SP ⊂ P and PS ⊂ P .
Let A = Cay(S, P, ch, d, e,×).

Lemma 12. (i) Let h(u, u) 6= 0 and uc̄e 6= ucd for some u ∈ P , then A is not third power-
associative. In particular, if S is a separable quadratic field extension, h(u, u) 6= 0 for some
u ∈ P and c̄e 6= cd, then A is not third power-associative.
(ii) If h = 〈f〉 ⊥ b then Cay(D, (−cf, d, e)) is a subalgebra of A.
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Proof. (i) For all u ∈ P we have (0, u)2 = (−ch(u, u), 0) and so (0, u)(0, u)2 = (0,−uh(u, u)c̄e)
while (0, u)2(0, u) = (0,−uch(u, u)d). Thus (0, u)2(0, u) = (0, u)(0, u)2 if and only if
uh(u, u)c̄e = uch(u, u)d and assuming h(u, u) 6= 0 this is equivalent to uc̄e = ucd. If P
is torsion free, this is the same as c̄e = cd. Hence A is not third power-associative. Every
quadratic unital algebra is clearly power-associative.
(ii) is trivial. �

That means Cay(S, (−cf, d, e)),Cay(S, (−cg, d, e)) and Cay(S, (−cfg, d, e)) are subalge-
bras of Cay(S, S3, c〈f, g, fg〉,×).

Theorem 13. (i) Let F have characteristic not 2, S be a separable quadratic field extension
and h an anisotropic hermitian form. Suppose that

−N(a)e 6= (ch(u, u) + α)d

for all α ∈ F× which are no square in F , all a ∈ S× and all u ∈ P , u 6= 0. Then S is the
only separable quadratic field extension contained in A.
(ii) Let F have characteristic 2. If

āe+ ad 6= −1

for all a ∈ S×, then S = (S, 0) is the only separable quadratic subfield contained in A.

Proof. (i) Let F have characteristic not 2 and let K = F (
√
α) be a quadratic field extension

contained in A. Then there is an element X ∈ A, X = (a, u) with a ∈ S, u ∈ P such that
X2 = α ∈ F×, i.e.,

a2 − ch(u, u) = α and u(ad+ āe) = 0.

If a = 0 then also u = 0, a contradiction, thus always a 6= 0.
If u 6= 0 then ad + āe = 0 hence ad = −āe. From the first equation we obtain a2d −

ch(u, u)d = αd and so −aāe−ch(u, u)d = αd which means −N(a)e−ch(u, u)d = αd. Hence
−N(a)e = (ch(u, u) + α)d contradicting our assumption. Therefore u = 0, a2 = α and
X = (a, 0) ∈ S implies K = S.
Next let F have characteristic 2 and suppose K is a separable quadratic field extension of
F contained in A. Hence there is an element X = (a, u) ∈ A, a ∈ S, u ∈ P such that
X2 +X = α ∈ F×. This implies

a2 − ch(u, u) + a = α and u(ad+ āe+ 1) = 0.

If u 6= 0 then āe+ad+1 = 0. This implies ad = −(āe+1) and so, using a2d−ch(u, u)d+ad =
αd we obtain −a(āe+ 1)− ch(u, u)d+ ad = αd, i.e. −N(a)e− a− ch(u, u)d+ ad = αd and
thus −N(a)e−a−ch(u, u)d+ad = a2d−ch(u, u)d+ad. This leads to −N(a)e−a = a2d, i.e.
−āe−1 = ad, which implies −(āe+ad) = 1, so āe+ad = −1, contradicting our assumption.
Hence u = 0 which implies a2 + a = e and X = (a, 0) ∈ D. Thus the basis 1, X = a for K
lies in S and we obtain S = K. �

Corollary 14. Let F have characteristic not 2, S be a separable quadratic field extension and
h an anisotropic hermitian form. Let K be a separable quadratic field extension contained
in A = Cay(S, P, ch, d, e,×). If c ∈ F× and ed−1 ∈ S \ F , then K = S.
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Suppose that −N(a)e 6= (ch(u, u)+α)d for all u ∈ P . Then S is the only separable quadratic
field extension contained in A.

Proof. Consider the equation −N(a)e = (ch(u, u) + α)d for a ∈ S, u ∈ P , u 6= 0 and
α ∈ F× which are no square in F . If c ∈ F× and ed−1 ∈ S \ F , rewrite it as −N(a)ed−1 =
(ch(u, u) + α), then the right-hand side lies in F and the left-hand side lies in S, so either
N(a) = 0 and ch(u, u) + α = 0 or we get a contradiction. So a = 0 and −ch(u, u) = α.
However, this means there is an element X ∈ A, X = (0, u) with u ∈ P , u 6= 0 such that
X2 = α ∈ F×, a contradiction since this means −ch(u, u) = α and u = 0. �

Example 15. Let F = R. For c, d, e ∈ R× such that c < 0, d < 0 and e > 0 or such
that c < 0, d > 0 and e < 0, C = (C, 0) is the only quadratic field extension contained in
Cay(C,C3, c〈1, 1, 1〉, d, e,×): Consider the equation −N(a)e = (ch(u, u) + α)d for u ∈ C3,
u 6= 0, α ∈ R<0. This is equivalent to βe = (cλ + α)d for some β ∈ R≤0, λ ∈ R>0 and
α ∈ R<0. If c < 0, d < 0 and e > 0 or such that c < 0, d > 0 and e < 0, then β = 0, thus
a = 0, a contradiction as in Corollary 14.

Lemma 16. Let S and S′ be two separable quadratic field extensions of F and A =
Cay(S, P, ch, d, e,×), A′ = Cay(S′, P ′, c′h′, d′, e′,×′). Suppose S = (S, 0) and S′ = (S′, 0)
are the only separable quadratic field extensions contained in A, respectively A′ and A ∼= A′.
Then S ∼= S′.

Theorem 17. Let S be a separable quadratic field extension and h an anisotropic hermitian
form. For all c, d, e ∈ S× such that for all a ∈ S×, u ∈ P with u 6= 0,

NS/F (a)d̄ 6= −cēh(u, u),

Cay(S, P, ch, d, e,×) is a division algebra over F .

Proof. We show that A = Cay(S, P, ch, d, e,×) has no zero divisors: suppose

(0, 0) = (a, u)(b, v) = (ab− ch(v, u), vad+ ube+ u×α v)

for a, b ∈ S, u, v ∈ P . This is equivalent to

ab− ch(v, u) = 0 and vad+ ube+ u×α v = 0.

If v = 0 then b = 0 or a = 0. So either (b, v) = (0, 0) or b 6= 0, but then a = 0 hence
(a, u) = (0, 0) using the second equation.
If v 6= 0 then vad = −u× v − ub̄e plugged into the first equation yields

abād̄ = −ch(u× v, u)− ch(ub̄e, u) = −ch(ub̄e, u)

since h(u× v, u) = 0. (C = Cay(S, P, h) is alternative, so h(v×u, u) = 0 for all u, v ∈ P , cf.
[Pu1].) Hence either (a, u) = (0, 0) or we have (a, u) 6= (0, 0) and NS/F (a)bd̄ = −cbēh(u, u),
i.e. NS/F (a)d̄ = −cēh(u, u), contradicting the assumption. �

Corollary 18. Let S be a separable quadratic field extension and h an anisotropic hermitian
form. Suppose one of the following holds:
(i) c, d, e ∈ F× and NS/F (a)d 6= −ceh(u, u) for all a ∈ S×, u ∈ P with u 6= 0,
(ii) c ∈ S \ F and d = fe for some f ∈ F× (e.g., d, e ∈ F×),
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(iii) d ∈ S \ F and c = fe for some f ∈ F× (e.g., c, e ∈ F×),
(iv) e ∈ S \ F and c = fd for some f ∈ F× (e.g., c, d ∈ F×),
(v) e ∈ F× and d̄

c ∈ S \ F (e.g., c, d ∈ S \ F and d 6= fc for all f ∈ F×).
(vi) d ∈ F× and cē ∈ S \ F (e.g., c, e ∈ S \ F and cē 6∈ F×).
(vi) c ∈ F× and d

e ∈ S \ F (e.g., d, e ∈ S \ F and d 6= fe for all f ∈ F×).
Then Cay(S, P, ch, d, e,×) is a division algebra.

Proof. Assume there is a ∈ S×, u ∈ P with u 6= 0, such that NS/F (a)d̄ = −cēh(u, u). This
implies a contradiction in all cases considered. �

Example 19. Let F = R and A = Cay(C,C3, c〈1, 1, 1〉, d, e,×). A has zero divisors if and
only if there is a ∈ C×, u ∈ C3 with u 6= 0, such that NC/R(a)d̄ = −cēh(u, u). This is
equivalent to the existence of λ ∈ R<0 such that d̄ = cēλ, i.e.

cē

d̄
∈ R>0 or

cē

d̄
∈ C \ R.

Thus A is a division algebra for c, d, e ∈ C× such that

d̄ 6= −cēλ for all λ ∈ R>0.

This holds in the following cases:
(i) c, d, e ∈ R× and cde > 0,
(ii) c ∈ C \ R and d = fe for some f ∈ R× (e.g., d, e ∈ R×),
(iii) d ∈ C \ R and c = fe for some f ∈ R× (e.g., c, e ∈ R×),
(iv) e ∈ C \ R and c = fd for some f ∈ R× (e.g., c, d ∈ R×),
(v) e ∈ R× and d̄

c ∈ C \ R (e.g., c, d ∈ C \ R and d 6= fc for all f ∈ R×), or
e ∈ R>0 and d̄

c ∈ R>0 or e ∈ R<0 and d̄
c ∈ R<0.

(vi) d ∈ R× and cē ∈ C \ R (e.g., c, e ∈ C \ R and cē 6∈ R×),
or d ∈ R>0 and cē ∈ R>0 or d ∈ R<0 and cē ∈ R<0.
(vii) c ∈ R× and d

e ∈ C \ R (e.g., d, e ∈ C \ R and d 6= fe for all f ∈ R×),
or c ∈ R>0 and d

e ∈ R>0 or c ∈ R<0 and d
e ∈ R<0.

4. The automorphism group

For a ternary nondegenerate -hermitian space (P, h) such that
∧3(P, h) ∼= 〈1〉 and an

isomorphism α :
∧3(P, h)→ 〈1〉, every isometry f : (P, h)→ (P, h) yields an automorphism

of (P,×α), thus

SU(3) ⊂ Aut(P,×α).

For A = Cay(S, S3, c〈e1, e2, e1e2〉, d, e,×) define : S3 → S3 via

u = (u1, u2, u3)→ u = (u1, u2, u3) = (u1, u2, u3).

Clearly, ∈ Aut(S3,×). However, our algebras are not always enlargements of (S3,×α) in
the sense of [Do-Z1, 4.1], because (making free use of their terminology here) as we will see
in the next Proposition for F = R, the restriction homomorphism ZG(π) → Aut(P, µS) is
onto (which is equivalent to saying that can be extended to ∈ Aut(A), (a, u) = (ā, ū)),
if and only if c ∈ F×.
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Proposition 20. Let Cay(S, P, h,×) and Cay(S, P ′, h′,×′) be two octonion division alge-
bras and c, c′, d, d′, e, e′ ∈ S. Let G : Cay(S, P, ch, d, e,×) −→ Cay(S, P ′, c′h′, d′, e′,×′) be
an algebra isomorphism with G = f ⊕ g where f ∈ Aut(S) and g : P → P ′ is an F -linear
bijection.
(i) If G = idS ⊕ g then g(v × u) = g(u)×′ g(v) for all u, v ∈ P .
If d = d′ and e = e′ and c, c′ ∈ S \F , then c̄/c = c̄′/c′ and (P, ch) ∼= (P ′, c′h′) as ε-hermitian
forms with isometry g, where ε = c̄/c.
If d = d′, e = e′ and c, c′ ∈ F×, then (P, ch) ∼= (P ′, c′h′) as hermitian forms with isometry
g.
If G = ⊕ g, then g(v × u) = g(u) ×′ g(v) for all u, v ∈ P , g(vad) = g(v)ād̄′ and
g(ube) = g(u)bē′ for all a, b ∈ S, u, v ∈ P and c′ = αc̄ for some α ∈ F×.
(ii) Suppose (P, h) ∼= (P ′, h′). Then Cay(S, P, ch, d, e,×) ∼= Cay(S, P, ch′, d, e,×). In par-
ticular,

Cay(S, S3, c〈e1, e2, e1e2〉, d, e,×) ∼= Cay(S, S3, cd2〈e1, e2, e1e2〉, d, e,×)

for all ei, d ∈ F×.
(iii) If (P, ch) ∼= (P ′, c′h′) as ε-hermitian spaces with isometry g, ε = c̄/c, and if g(v× u) =
g(v)×′ g(u) for all u, v ∈ P , then Cay(S, P, ch,×α, d, e,×) ∼= Cay(S, P, c′h′,×α, d, e,×).
(iv) Cay(S, S3, c〈e1, e2, e1e2〉, d, e,×) ∼= Cay(S, S3, c̄〈e1, e2, e1e2〉, d̄, ē,×) for all ei ∈ F×.

Proof. (i) Suppose first that G = idS ⊕ g, then G((a, u)(b, v)) = G(a, u)G(b, v) is equivalent
to

G(ab− ch(v, u), vad+ ube+ u× v) = (ab− ch(v, u), g(vad) + g(ube) + g(u× v))

= (ab− c′h′(g(v), g(u)), g(v)ad′ + g(u)be′ + g(u)×′ g(v)),

i.e. equivalent to ch(v, u) = c′h(g(v), g(u)) and

g(vad) + g(ube) + g(v × u) = g(v)ad′ + g(u)be′ + g(u)×′ g(v)

for all u, v ∈ P , a, b ∈ S. For a = b = 0 we obtain g(v × u) = g(u) ×′ g(v) for all u, v ∈ P .
For u = 0 this implies g(vad) = g(v)ad′ for all v ∈ P , a ∈ S, hence g(vd) = g(v)d′ for all
v ∈ P , for v = 0 we get g(ube) = g(u)be′ for all u ∈ P , b ∈ S, hence g(ue) = g(u)e′ for
all u ∈ P . Hence if d = d′ and e = e′ then (P, ch) ∼= (P ′, c′h′) as ε-hermitian forms with
isometry g, where ε = c̄/c = c̄′/c′ in case c, c′ ∈ S \ F .

Suppose next that G = ⊕ g. Then G((a, u)(b, v)) = G(a, u)G(b, v) is equivalent to

G(ab− ch(v, u), vad+ ube+ v × u) = (āb̄− c̄h(v, u), g(vad) + g(ube) + g(u× v))

= (āb̄− c′h′(g(v), g(u)), g(v)ād̄′ + g(u)bē′ + g(u)×′ g(v))

for all a, b ∈ S, u, v ∈ P which implies that c̄h(v, u) = c′h′(g(v), g(u)) and g(v × u) =
g(u) ×′ g(v) for all u, v ∈ P . Moreover, g(vad) = g(v)ād̄′ and g(ube) = g(u)bē′ for all
a, b ∈ S, u, v ∈ P . Now c̄h(u, u) = c′h′(g(u), g(u)) implies that c′−1c̄ ∈ F×, i.e. c′ = αc̄ for
some α ∈ F× and so h(v, u) = αh′(g(v), g(u)) for all u, v ∈ P .
(ii) This follows directly from the proof of (i) employing [T, Section 2] which implies that
g(v ×α u) = g(v)×α′ g(u) if (P, h) ∼= (P ′, h′) with isometry g. The isomorphism is given by
G = idS ⊕ g. Use that for all d ∈ F×, 〈e1, e2, e1e2〉 ∼= d2〈e1, e2, e1e2〉 for the second part of
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the assertion.
(iii) is trivial.
(iv) A straightforward calculation as in (i) using that h(v̄, ū) = h(v, u) shows that F = ⊕
is an isomorphism. �

Theorem 21. (i) Let A = Cay(S, P, ch, d, e,×α). Then SU(3) ⊂ Aut(A).
(ii) Let A = Cay(S, S3, ch,×, d, e) with h diagonal. Then ∈ Aut(S3,×) extends to ∈
Aut(A), (a, u) = (ā, ū) if and only if c, d, e ∈ F×. In this case, SU(3)Z2 ⊂ Aut(A) the
semidirect product SU(3)Z2 of SU(3) and Z2, with Z2 the cyclic group of order 2 acting on
SU(3), is contained in Aut(A).
In particular, if Aut(S3,×) = SU(3)Z2 and A is a division algebra then A is an enlargement
of the algebra (S3,×) as defined in [Do-Z1, 4.1] if and only if c, d, e ∈ F×.

Proof. (i) Every isometry g : (P, h)→ (P, h) yields an F -linear bijection F = idS ⊕ g on A.
F is multiplicative if and only if F ((a, u)(b, v)) = F (a, u)F (b, v) which is equivalent to

(ab− ch(v, u), g(v)ad+ g(u)be+ g(u×α v))

= (ab− ch(g(v), g(u)), g(v)ad+ g(u)be+ g(u)×α g(v)),

i.e. to h(v, u) = h(g(v), g(u)) and f(u ×α v) = g(u) ×α g(v) for all u, v ∈ P . Hence F is
multiplicative if and only if g(u×α v) = g(u)×α g(v) which is satisfied for every isometry g,
cf. [T, Section 2].
(ii) A straightforward calculation shows that (a, u) = (ā, ū) yields an automorphism of A if
and only if

(ab− ch(v, u), vad+ ube+ v × u) = (āb̄− c̄h(v, u), v̄ād̄+ ūbē+ u× v)

= (āb̄− c̄h(v̄, ū), v̄ād+ ūbe+ ū× v̄)

for all a, b ∈ S, u, v ∈ P . Now ch(v̄, ū) = c̄h(v, u) is equivalent to c ∈ F× using that
h(v̄, ū) = h(v, u). Since ∈ Aut(S3,×) we know ū× v̄ = u× v. Thus the second condition
we need to satisfy is v̄ād̄ + ūbē = v̄ād + ūbe for all a, b ∈ S, u, v ∈ P . This is clear for
c, d ∈ F×. Conversely, for u = 0, a = 1 we get v̄d̄ = v̄d for all v ∈ P and for v = 0, b = 1 we
get ūē = ūe for all u ∈ P . This implies d, e ∈ F×. �

We observe that our previous results easily carry over to the opposite algebra. In partic-
ular, Aop has the same derivation algebra as A.

5. The case F = R

For F = R, O = Cay(H,−1) = Cay(C,C3, 〈1, 1, 1〉) is up to isomorphism the only octo-
nion division algebra over R. Its well-known standard basis is given by {1, i, j, k, l, il, jl, kl}
with i2 = j2 = k2 = l2 = −1, jk = i and ki = j. Using this choice of basis, O fits into
multiplication table (4.2) in [B-O2] which is our Table 2. We will choose the basis u = 1,
v = i and

z1 = (0, (1, 0, 0)), z2 = (0, (0, 1, 0)), z3 = (0, (i, 0, 0)), z4 = (0, (0, 0, 1)),

z5 = (0, (0, 0, i)), z6 = (0, (0, i, 0))
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for O. Using this basis, the argument in [B-O2, p. 278] yields Table 1 (see p. 15) instead of
(4.2) in [B-O2]. I.e., by choosing this basis, we have to slightly adjust the 6 × 6-matrix in
the lower right hand corner of multiplication table [B-O2, (4.2)], the rest of the table and
the parameters stays the same. An algebra fits into multiplication table (4.2) in [B-O2], i.e.
Table 2, if and only if it fits into Table 1: Changing the basis via

j → z1, k → z3, l→ z2, il→ z6, jl→ z4 kl→ −z5

gives table [B-O2, (4.2)], see the argument in [Do-Z1].
This table contains 16 parameters which we also call the structure constants of A. For

O, the parameters satisfy

(∗) η2 = η3 = θ1 = θ4 = σ2 = σ3 = τ2 = τ3 = 0

and
(∗∗) θ2 = σ1, θ3 = τ1, σ4 = 1, η4 = τ4 = −1.

Let A = Cay(C,C3, ch, d, e,×) with c, d, e ∈ C× and h = 〈1, 1, 1〉. A fits into Table 1 as
follows: Choose z1, . . . , z6 as above. Let c = x+ iy with x, y ∈ R. The multiplication table
now forces the choice of u = c and v = ic. Since

(0, zi)(0, zj) = (0, zi × zj) = (0, zi) ·O (0, zj)

unless zi = szj for some s ∈ C, the 6 × 6-matrix in the lower right hand corner of the
multiplication table remains the same as for O, with the exception of its diagonal entries
being −u because of

(0, zi)(0, zi) = (−ch(zi, zi), 0) = (−c, 0)

and the entries of the form

(0, z1)(0, z3) = (−ch(z1, z3), 0) = (ic, 0) = −(0, z3)(0, z1),

(0, z2)(0, z6) = (−ch(z1, z3), 0) = (ic, 0) = −(0, z6)(0, z2),

(0, z4)(0, z5) = (−ch(z1, z3), 0) = (ic, 0) = −(0, z5)(0, z4).

The choice of u = c, v = ic gives the following structure constants in Table 1 or [B-O2,
(4.2)]:

η1 = x, η2 = −y = η3, η4 = −x, θ1 = y, θ2 = x = θ3, θ4 = −y,

σ1 = Re(cd), σ2 = Im(cd), σ3 = Re(icd), σ4 = Im(icd),

τ1 = Re(c̄e), τ2 = Im(c̄e), τ3 = Re(−ice), τ4 = Im(−ice).
The algebra generated by u, v, z1, z3 is the subalgebra Cay(C, (−c, d, e)).
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+
σ

4
z 5
−
σ

4
z 4

+
σ

3
z 5
−
σ

4
z 2

+
σ

3
z 6

z 1
τ 1
z 1

+
τ 2
z 3

τ 3
z 1

+
τ 4
z 3

−
u

z 4
v

−
z 2

z 6
−
z 5

z 2
τ 1
z 2

+
τ 2
z 6

τ 3
z 2

+
τ 4
z 6

−
z 4

−
u

z 5
z 1

−
z 3

v

z 3
−
τ 2
z 1

+
τ 1
z 3
−
τ 4
z 1

+
τ 3
z 3

−
v

−
z 5

−
u

z 6
z 2

−
z 4

z 4
τ 1
z 4

+
τ 2
z 5

τ 3
z 4

+
τ 4
z 5

z 2
−
z 1

−
z 6

−
u

v
z 3

z 5
−
τ 2
z 4

+
τ 1
z 5
−
τ 4
z 4

+
τ 3
z 5

−
z 6

z 3
−
z 2

−
v

−
u

z 1

z 6
−
τ 2
z 2

+
τ 1
z 6
−
τ 4
z 2

+
τ 3
z 6

z 5
−
v

z 4
−
z 3

−
z 1

−
u
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Remark 22. The algebra generated by u, v, z1, z3, 〈u, v, z1, z3〉 ∼= Cay(C, (−c, d, e))) is a
division algebra if and only if

− c̄e
d
6∈ NC/R(C×)

(Theorem 2). We also know that A = Cay(C, c〈1, 1, 1〉, d, e,×) is a division algebra if and
only if for all a ∈ C×, u ∈ C3 with u 6= 0,

NC/R(a) 6= −cē
d̄
h(u, u)

(Theorem 17). Since these two conditions both are equivalent to the statement
c̄e

d
6∈ R<0,

this confirms [Do-Z2, Proposition 4.1] for our family of algebras.

Our division algebras fit into the multiplication table (4.2) in [B-O2]. Therefore we obtain
for A = Cay(C,C3, c〈1, 1, 1〉, d, e,×):

Theorem 23. For c, d, e ∈ C×,

Der(A) ∼= su(3)

and A is the direct sum of two irreducible 1-dimensional modules and the irreducible 6-
dimensional module P = C3. SU(3) is the identity component of Aut(A).

Proof. The first statement is [B-O2], Proposition 4.1. A is not irreducible as su(3)-module,
or else our algebras would be generalized pseudo-octonion algebras, which they are not.
SU(3) is the identity component of Aut(A) [Do-Z2, Proof of Proposition 4.3., p. 768]. �

Furthermore, for every G ∈ Aut(A), G = idC ⊕ g with g : C3 → C3, cf. [Do-Z2,
Proposition 4.3., p. 768].

Equation (∗) holds if and only if c, d, e ∈ R×. For c, d, e ∈ R× we obtain the simplified
multiplication table

· u v z1 z2 z3 z4 z5 z6

u η1u θ2v σ1z1 σ1z2 σ1z3 σ1z4 σ1z5 σ1z6

v θ3v η4u σ4z3 σ4z6 −σ4z1 σ4z5 −σ4z4 −σ4z2

z1 τ1z1 τ4z3 −u z4 v −z2 −βz6 −z5

z2 τ1z2 τ4z6 −z4 −u z5 z1 −z3 v

z3 τ1z3 −τ4z1 −v −z5 −u z6 z2 −z4

z4 τ1z4 τ4z5 z2 −z1 −z6 −u v z3

z5 τ1z5 −τ4z4 −z6 z3 −z2 −v −u z1

z6 τ1z6 −τ4z2 z5 −v z4 −z3 −z1 −u

also given in [Do-Z1] (which is satisfied for every enlargement of (C3,×)), with the spe-
cial structure constants

η1 = θ2 = θ3 = c = −η4, σ1 = cd = σ4, τ1 = ce = −τ4.

For c, d, e ∈ R×, A is a division algebra if and only if cde > 0 (Example 19). This can be
also shown using [Do-Z1, Proposition 4.7].
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Let d = d0+id1 and e = e0+ie1. The equations (∗∗) hold if and only if c = 1+iy, 1−d0 =
−yd1 and e0 = 1− ye1, e. g., if A is the octonion division algebra O = Cay(C,C3, 〈1, 1, 1〉).

Theorem 24. (i) For all c, d, e ∈ R× such that cde > 0, A is an enlargement of the real
algebra (C3,×) and

Aut(A) ∼= SU(3)Z2

unless (c, d, e) = (1, 1, 1), in which case

Aut(A) ∼= G2.

Two algebras Cay(C,C3, c〈1, 1, 1〉, d, e,×) and Cay(C,C3, c′〈1, 1, 1〉, d′, e′) with c, d, e, c′, d′, e′ ∈
R× are isomorphic if and only if they have the same structure constants.
(ii) Suppose that c, d, e ∈ C× are not all real and A is a division algebra, then

Aut(A) ∼= SU(3).

Proof. (i) For all c, d, e ∈ R× such that cde > 0, A is a division algebra. [Do-Z2, Propo-
sition 4.3.] implies that Aut(A) ∼= SU(3)Z2. The remaining assertion is proved in [Do-Z2,
Proposition 4.4.]
(ii) again follows from [Do-Z2, Proposition 4.3.] since in this case the equations (∗∗) fail.

�

Corollary 25. (i) If c, d, e ∈ C are not all real and A is a division algebra, then all auto-
morphisms of A are given by G = idS ⊕ g where g is an isometry of h = 〈1, 1, 1〉.
(ii) If c, d, e ∈ R such that cde > 0 then the automorphisms of A are given by G = idS ⊕ g
where g is an isometry of h = 〈1, 1, 1〉 and by F ((a, u)) = ⊕ . A is an enlargement of
(C3,×)

We conclude from [Do-Z2, Proposition 4.4]:

Proposition 26. Let A = Cay(C,C3, c〈1, 1, 1〉, d, e,×) and A′ = Cay(C,C3, c′〈1, 1, 1〉, d′, e′,×)
be division algebras. Then A ∼= A′ if and only if d = d′, e = e′ and c = c′, or if c = −c′,
Im(cd) = Im(cd′) and Re(ic̄e) = Re(ic̄e′).

6. Some more families of non-unital division algebras

Following the notation introduced in [P, Section 1], denote the set of possibly non-unital
algebra structures on an F -vector space by Alg(V ). Given A ∈ Alg(V ), we write xAy for
the product of x, y ∈ V in the algebra, if it is not clear from the context which multiplication
is used. Let G = Gl(V )×Gl(V ) be the direct product of two copies of the full linear group
of V . It acts on Alg(V ) by means of principal Albert isotopes: For f, g ∈ Gl(V ) define the
algebra A(f,g) as V together with the new multiplication

xA(f,g)y = f(x)g(y) x, y ∈ V.

This defines a right action of G on Alg(V ) which is compatible with passing to the opposite
algebra, i.e., (A(f,g))op = (Aop)(f,g). If A is a division algebra, so is A(f,g). Regular, thus in
particular division algebras, are principal Albert isotopes of unital algebras [P, 1.5].
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Given a Hurwitz algebra C over F of dimension ≥ 2 with canonical involution , the
multiplications

x ? y = x̄ȳ, x ? y = x̄y, x ? y = xȳ

for all x, y ∈ C define the para-Hurwitz algebra, resp. the left- and right composition algebra
associated to C. Together with C these are called the standard composition algebras.

Standard composition algebras of dimension eight satisfy table (4.2) and have deriva-
tion algebra isomorphic to G2. The automorphism group of the para-octonion algebra is
isomorphic to G2 [P-I].

We briefly look at some principal Albert isotopes of our algebrasA = Cay(S, P, ch, d, e,×α)
with c, d, e ∈ S×. Denote the multiplication in A by · or just juxtaposition as before.

If V = U⊕W with U the underlying two-dimensional vector space of S, W the underlying
six-dimensional vector space of P , for f = (f1, f2), g = (g1, g2) ∈ Gl(V ) with f1, g1 ∈ Gl(U),
f2, g2 ∈ Gl(W ), the algebra A(f,g) contains the two-dimensional subalgebra S(f,g) = S(f1,g1).
If f1, g1 ∈ Gl(U) are isometries of the norm NS/F then A(f,g) contains the two-dimensional
composition subalgebra S(f1,g1).

Let ε ∈ {1,−1} and h ∈ Gl(U). Define hε : A→ A by

hε((a, u)) = (h(a), εu)

and a new multiplication ? via

xA(hε,hε)y = hε(x)hε(y), xA(hε,id)y = hε(x)y, resp. xA(id,hε)y = xhε(y),

for all x, y ∈ A. In particular, we look at the special case σε : A→ A defined by

σε((a, u)) = (ā, εu).

Moreover, let h̄ε(a, u) = (h(a), εū). We will also investigate the algebras A(h̄ε,h̄ε), A(h̄ε,id)

and A(id,h̄ε). From now on let

F = R and A = Cay(C,C3, c〈1, 1, 1〉, d, e,×)

with c, d, e ∈ C×, i.e. h = 〈1, 1, 1〉.

Lemma 27. For the algebras A(hε,hε), A(hε,id) and A(id,hε), SU(3) is contained in their
automorphism group.

Proof. Let G ∈ Aut(A, ·) such that G = idS⊕g, g an isometry of h (cf. Corollary 25). Then
G((h(a), εu)) = (h(a), εg(u)) = hε(G((a, u))). Therefore

G((a, u)A(hε,hε)(b, v)) = G((h(a), εu)(h(b), εv)) = G((h(a), εu))G((h(b), εv))

= G((a, u))A(hε,hε)G((b, v))

and so G ∈ Aut(A(hε,hε)). The argument is analogous for the other cases. �

In the following, we will show that the division algebras A(hε,hε), A(h̄ε,h̄ε), A(h1,id) and
A(id,h1) fit into multiplication table 1, respectively table (4.2) in [B-O2]. This implies by
[B-O2] and [Do-Z2, Proposition 4.3]:
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Theorem 28. Suppose A = (Cay(C,C3, c〈1, 1, 1〉, d, e,×) is a division algebra. Then the
algebras A(hε,hε), A(h̄ε,h̄ε), A(h1,id) and A(id,h1) all have a derivation algebra isomorphic to
su(3). They are the direct sum of two irreducible 1-dimensional modules and an irreducible
6-dimensional module.

Unless stated otherwise, define the vectors u = c, v = ic, z1, . . . , z6 as above. We fix the
following notation: Let c = x + iy with x, y ∈ R. Let h ∈ Gl(U) such that h(u) = α + iβ

and h(v) = δ + iγ, α, β, δ, γ ∈ R. Let c′ = x′ + iy′ with x′, y′ ∈ R. Let h′ ∈ Gl(U) such that
h′(c′) = α′ + iβ′ and h′(v) = δ′ + iγ′, α′, β′, δ′, γ′ ∈ R.

6.1. The algebra multiplication of A(hε,hε) fits into Table 1: the 6 × 6-matrix in the lower
right hand corner of the multiplication table remains the same as for (A, ·). We obtain the
following structure constants:

η1 =
2αβy + (α2 − β2)x

x2 + y2
, η2 = η3 =

(αγ + βδ)y + (αδ − βγ)x
x2 + y2

, η4 =
2δγy + (δ2 − γ2)x

x2 + y2

θ1 = − (α2 − β2)y − 2αβx
x2 + y2

, θ2 = θ3 = − (βγ − αδ)y + (αγ + βδ)x
x2 + y2

, θ4 =
(γ2 − δ2)y + 2δγx

x2 + y2
,

σ1 = εRe((α+ iβ)d), σ2 = εIm((α+ iβ)d), σ3 = εRe((δ + iγ)d), σ4 = εIm((δ + iγ)d),

τ1 = εRe((α− iβ)e), τ2 = εIm((α− iβ)e), τ3 = εRe((δ − iγ)e), τ4 = εIm((δ − iγ)e).

The vectors u, v span the subalgebra C(h,h). The algebra generated by u, v, z1, z3 is the
subalgebra Cay(C, (−c, d, e))(hε,hε).

Example 29. We obtain the following structure constants for the division algebra A(σε,σε) =
(Cay(C,C3, c〈1, 1, 1〉, d, e,×)(σε,σε):

η1 =
x(x2 − 3y2)
x2 + y2

= −η4, η2 = η3 =
y(y2 − 3x2)
x2 + y2

,

θ1 =
y(y2 − 3x2)
x2 + y2

= −θ4, θ2 = θ3 = −x(x2 − 3y2)
x2 + y2

,

σ1 = εRe((x−iy)d), σ2 = εIm((x−iy)d), σ3 = εRe((−y−ix)d), σ4 = εIm((−y−ix)d),

τ1 = εRe((x+ iy)e), τ2 = εIm((x+ iy)e), τ3 = εRe((−y+ ix)e), τ4 = εIm((−y+ ix)e).

The vectors u, v span the para-quadratic subalgebra C( , ). The algebra generated by
u, v, z1, z3 is the subalgebra Cay(C, (−c, d, e))(σε,σε).

6.2. The algebra A(h̄ε,h̄ε) fits into Table 1: We have

z1 = z1, z2 = z2, z3 = −z3, z4 = z4, z5 = −z5, z6 = −z6.

To assure that the 6 × 6-matrix in the lower right hand corner of the multiplication table
remains the same as for (A, ·), we change the basis as follows: u = c, v = −ic, z1, z2 and z4

as before and
z3 → −z3, z5 → −z5, z6 → −z6.

We obtain the structure constants

η1 =
2αβy + (α2 − β2)x

x2 + y2
, η2 = η3 = − (αγ + βδ)y + (αδ − βγ)x

x2 + y2
, η4 =

2δγy + (δ2 − γ2)x
x2 + y2

,
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θ1 = − (α2 − β2)y − 2αβx
x2 + y2

, θ2 = θ3 =
(βγ − αδ)y + (αγ + βδ)x

x2 + y2
, θ4 =

(γ2 − δ2)y + 2δγx
x2 + y2

,

σ1 = εRe((α+iβ)d), σ2 = −εIm((α+iβ)d), σ3 = εRe((δ+iγ)d), σ4 = −εIm((δ+iγ)d),

τ1 = εRe((α− iβ)e), τ2 = −εIm((α− iβ)e), τ3 = εRe((δ− iγ)e), τ4 = −εIm((δ− iγ)e).

Example 30. Let µ : A → A be defined by µδ((a, u)) = (ā, ū). This yields the following
structure constants:

η1 =
x(x2 − 3y2)
x2 + y2

= −η4, η2 = η3 = −y(y2 − 3x2)
x2 + y2

,

θ1 =
y(y2 − 3x2)
x2 + y2

= −θ4, θ2 = θ3 =
x(x2 − 3y2)
x2 + y2

,

σ1 = εRe((x−iy)d), σ2 = −εIm((x−iy)d), σ3 = εRe((−y−ix)d), σ4 = εIm((y+ix)d),

τ1 = εRe((x+iy)e), τ2 = −εIm((x+iy)e), τ3 = εRe((−y+ix)e), τ4 = −εIm((−y+ix)e).

The vectors u, v span the para-quadratic subalgebra C( , ).

Remark 31. It is likely that all Albert isotopes A(f,f), where f = (f1, f2) ∈ Gl(V ) with
f1 ∈ Gl(U), f2 ∈ Gl(W ), have a multiplicative structure which fits into multiplication table
(4.2) in [B-O2]. The subalgebra C(f1,f1) always fits into the upper left 2 × 2 matrix in the
table. Since

(0, zi)A(f,f)(0, zj) = (0, f(zi)× f(zj)) = (0, f(zi)) ·A (0, f(zj))

the 6 × 6-matrix in the lower right hand corner of the multiplication table remains the
same as for (A, ·), provided we change part of the basis of A from f(z1), . . . , f(z6) back to
z1, . . . , z6. However, we do not see at this point how to prove this.

Using [Do-Z2, Proposition 4.4] it is easy to check when two given algebras are isomorphic.

6.3. The multiplication of A(h1,id) fits into Table 1: Since

(0, zi)A(h1,id)(0, zj) = (0, (zi)× (zj)) = (0, zi) ·A (0, zj)

the 6× 6-matrix in the lower right hand corner of the multiplication table remains the same
as for (A, ·). We have the following structure constants:

η1 = α, η2 = −β, η3 = δ, η4 = −γ, θ1 = β, θ2 = α, θ3 = γ, θ4 = δ,

σ1 = Re((α+ iβ)d), σ2 = Im((α+ iβ)d), σ3 = Re((δ + iγ)d), σ4 = Im((δ + iγ)d),

τ1 = Re((x− iy)e), τ2 = Im((x− iy)e), τ3 = −Re((y + ix)e), τ4 = −Im((y + ix)e).

The vectors u, v span the subalgebra C(h,id). Using [Do-Z2, Proposition 4.4] we obtain: If

Cay(C,C3, c〈1, 1, 1〉, d, e,×)(h1,id) ∼= Cay(C,C3, c′〈1, 1, 1〉, d′, e′)(h′1,id)

then all the corresponding structure constants are equal, or (α, β, γ, δ) = (α′,−β′, γ′,−δ′).
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6.4. The algebra A(id,h1) fits into Table 1:

η1 = α, η2 = δ, η3 = −β, η4 = −γ, θ1 = β, θ2 = γ, θ3 = α, θ4 = δ,

σ1 = Re((x+ iy)d), σ2 = Im((x+ iy)d), σ3 = Re((ix− y)d), σ4 = Im((ix− y)d),

τ1 = Re((α− iβ)e), τ2 = Im((α− iβ)e), τ3 = −Re((δ − iγ)e), τ4 = −Im((δ − iγ)e).

The vectors u, v span the subalgebra C(id,h). We note that A(h1,id) = A(id,(h−1)1).

Remark 32. (i) The algebra A(h−1,id) does not seem to fit into Table 1 since

(0, zi) ? (0, zj) = (0, (−zi)× (zj)) = −(0, zi) ·A (0, zj).

Therefore the 6 × 6-matrix in the lower right hand corner of the multiplication table does
not remain the same as for (A, ·). It is not clear if a change of basis might change this.
The same observation applies to the algebra A(id,h−1) = A((h−1)−1,id) and to the algebras
A(h̄−1,id) and A(id,h̄−1).
(ii) The multiplications of the algebras A(h̄1,id) and A(id,h̄1) fit into Table 1 by changing the
basis as in 6.2. We leave it to the reader to compute their structure constants if desired.

7. Another construction method

We conclude the paper with the observation that the construction method used for the
four-dimensional algebras treated in Section 2 can be generalized in a straightforward way
to define eight-dimensional algebras out of a quaternion algebra D with canonical involution

and elements c, d, e ∈ D×: again the vector space D⊕D can be made into an algebra over
F via the multiplication

(u, v)(u′, v′) = (uu′ + bv′v, v′ud+ vu′e)

for u, u′, v, v′ ∈ D. Since D is no longer commutative, we now have more options how
to place the elements c, d, e ∈ D× inside the multiplication. Depending on their places,
the new algebra is denoted by Cay(D, (c, d, e)xyz) with x, y, z ∈ {l,m, r} depending on
whether the element c is placed to the left, in the middle, or on the right-hand side of the
corresponding factors inside the product. The algebra defined above will thus be denoted
Cay(D, (c, d, e)lrr). Using the multiplication

(u, v)(u′, v′) = (uu′ + bv′v, dv′u+ evu′)

for u, u′, v, v′ ∈ D instead gives the algebra Cay(D, (c, d, e)lll), for instance. D is a subalgebra
of Cay(D, (c, d, e)xyz) for all x, y, z ∈ {l,m, r} via the embedding u → (u, 0). Note that
A = Cay(D, (c, d, e)xyz) is an octonion algebra if and only if c ∈ F× and e = d = 1 and a
Dickson algebra (see [Pu2] for the definition) if and only if c ∈ S \F and e = d = 1. Similar
observations as before hold:

Lemma 33. Let A = Cay(D, (c, d, e)lrr).
(i) If cd 6= c̄e then A is not third power-associative.
(ii) A has (1, 0) as a left-unit element if and only if d = 1, as a right-unit element if and
only if e = 1 and as unit element if and only if d = e = 1.
(iii) For l = (0, 1) we have lx = x̄l for all x = (u, 0) ∈ S if and only if e = d.
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Proof. (i) For l = (0, 1) we have l2 = (c, 0) and ll2 = (0, σ(c)e) while l2l = (0, cd), so ll2 = l2l

if and only if cd = c̄e. Thus A is not third power-associative if cd 6= c̄e.
(ii), (iii) are trivial. �

The new algebras are division algebras under certain conditions on the three elements
involved in their construction:

Theorem 34. Let D be a quaternion division algebra and de−1 ∈ F×.
(i) Cay(D, (c, d, e)lrr) is a division algebra if and only if

cēd̄−1 6∈ NS/F (D×).

(ii) Cay(D, (c, d, e)lll) is a division algebra if and only if

d̄−1ēc 6∈ NS/F (D×).

Proof. Suppose (0, 0) = (u, v)(u′, v′) for u, u′, v, v′ ∈ S. This is equivalent to

uu′ + cv′v = 0, v′ud+ vu′e = 0

in (i) and to

uu′ + cv′v = 0, dv′u+ evu′ = 0

in (ii). If v = 0 then either (u, v) = (0, 0) or (u′, v′) = (0, 0). So let v 6= 0.
(i) The second equation yields ū′ = −v−1v′ude−1, therefore

u′ = −ē−1d̄ūv̄′
1

NS/F (v)
v.

This together with the first equation implies

−uē−1d̄ūv̄′
1

NS/F (v)
v + cv̄′v = 0,

so

(−uē−1d̄ū
1

NS/F (v)
+ c)v̄′v = 0.

If v′ = 0 then vū′e = 0 yields u′ = 0. So suppose v′ 6= 0. Then

c = uē−1d̄ū
1

NS/F (v)
=
NS/F (u)
NS/F (v)

ē−1d̄.

If u = 0 then c = 0, a contradiction, so we need u 6= 0. Suppose ē−1d̄ ∈ F×, i.e. de−1 ∈ F×

then we get cēd̄−1 ∈ NS/F (S×). This implies the assertion.
(ii) The second equation yields ū′ = −v−1e−1dv′u, therefore

u′ = −ūv̄′d̄ē−1 1
NS/F (v)

v.

This together with the first equation implies

−uūv̄′d̄ē−1 1
NS/F (v)

v + cv̄′v = 0,

so

−v̄′d̄ē−1NS/F (u)
NS/F (v)

+ cv̄′ = 0 hence cv̄′ = v̄′d̄ē−1NS/F (u)
NS/F (v)

.
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If v′ = 0 then vū′e = 0 yields u′ = 0. So suppose v′ 6= 0. Then

cv̄′ = v̄′d̄ē−1NS/F (u)
NS/F (v)

.

If u = 0 then c = 0, a contradiction, so we need u 6= 0. Suppose d̄ē−1 ∈ F×, i.e. e−1d ∈ F×

then we get

c = d̄ē−1NS/F (u)
NS/F (v)

.

Thus d̄−1ēc ∈ NS/F (S×). This implies the assertion. �
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