
A CONSTRUCTION METHOD FOR SOME REAL DIVISION
ALGEBRAS WITH su(3) AS DERIVATION ALGEBRA

S. PUMPLÜN

Abstract. We obtain a new family of eight-dimensional unital division algebras over a

field F out of a separable quadratic field extension S of F , a three-dimensional anisotropic

hermitian form h over S of determinant one and a scalar c ∈ S× not contained in F .

These algebras are not third-power associative.

Over R, this yields a family of unital division algebras with derivation algebra isomor-

phic to su(3) and automorphism group isomorphic to SU(3). The algebra is the direct

sum of two one-dimensional modules and a six-dimensional irreducible su(3)-module.

Mutually non-isomorphic families of Albert isotopes of these algebras with the same

properties are considered as well.

Introduction

In the early 1980s, real division algebras were roughly classified by Benkart and Osborn
according to the isomorphism type of their derivation algebra [B-O1]. In the special case that
the Lie algebra of derivations of an eight-dimensional real division algebra A is isomorphic
to su(3), they showed that A must be either an eight-dimensional irreducible su(3)-module
or the direct sum of two one-dimensional modules and a six-dimensional irreducible su(3)-
module [B-O2]. If A is an eight-dimensional irreducible su(3)-module, A was shown to be a
flexible generalized pseudo-octonion algebra.

For a real division algebra A with Der(A) ∼= su(3) which is reducible as su(3)-module, a
multiplication table was given [B-O2, (4.2)] and it was shown that every real algebra defined
by this table admits su(3) as derivation algebra [B-O2, Theorem 4.1]. The multiplication
table contains 16 different scalars, and the authors admitted that “the question of whether
a real algebra with multiplication given by (4.2) is a division algebra is a formidable one
because of the large number of scalars in the multiplication table.” They presented one
family of division algebras as an example [B-O1, Theorem 20, Corollary 21]. Another family
was discussed in [J-P], Section 4.3. In [Do-Z2], Dokovich and Zhao gave three necessary
conditions for an algebra with such a multiplication table to be a real division algebra and
achieved the partial result that A is division if and only if a certain subalgebra is [Do-Z2,
Proposition 4.1]. They also determined the possible automorphism groups of such a division
algebra and when two such algebras are isomorphic. In a list of still open questions, they
asked for necessary and sufficient conditions for the algebras with multiplication table [B-
O2, (4.2)] to be division algebras. Such conditions were obtained in [Do-Z1] in a special case
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where the equalities [Do-Z2, (4.1)] hold. The algebras were shown to be an enlargement
of the truncated algebra of strictly pure octonions and Aut(A) ∼= SU(3)Z2, apart from
one special case where Aut(A) ∼= G2 [Do-Z1]. In [P-I], Pérez-Izquierdo classified division
composition algebras via their derivation algebras and exhibited among others families of
composition division algebras with derivation algebras isomorphic to su(3) over a field of
characteristic not 2 or 3.

In this paper, we construct unital algebras over a field F by generalizing a known con-
struction method for octonion algebras using a hermitian form over a quadratic étale algebra.
This method is presented in Section 2. The description of the algebras is straightforward
and base free. They are not third-power associative (therefore not quadratic) and contain a
quadratic étale algebra as a subalgebra. Over the reals, we obtain a family of unital eight-
dimensional division algebras with automorphism group isomorphic to SU(3) and derivation
algebra isomorphic to su(3), whose multiplication fits into table [B-O2, (4.2)], see Section
3. This family is different from the ones given in [B-O2] and [Do-Z1]. All our real division
algebras contain C and a nonassociative quaternion subalgebra, which is unique up to isomor-
phism. The nonassociative quaternion subalgebra corresponds to the subalgebra mentioned
in [Do-Z2, Proposition 4.1]. By strictly truncating our algebras we obtain the real algebra
(C3,×), however our algebras are not enlargements of (P,×) = (C3,×) in the sense of [Do-
Z1, 4.1], because (making free use of their terminology here) the restriction homomorphism
ZG(π)→ Aut(P, µS) is only onto for the subgroup SU(3) of Aut(P, µS) ∼= SU(3)Z2.

We then use our family of unital division algebras to construct families of eight-dimensional
non-unital division algebras in Section 4, which over F = R again satisfy the multiplica-
tion table [B-O2, (4.2)]. Their automorphism group is again isomorphic to SU(3) and their
derivation algebra to su(3). As a byproduct, we obtain conditions for certain scalar con-
stants in the multiplication table [B-O2, (4.2)], where the equalities [Do-Z2, (4.1)] do not
hold, to be the scalar constants of a division algebra.

1. Preliminaries

1.1. Nonassociative algebras. Let F be a field. By “F -algebra” we mean a finite dimen-
sional unital nonassociative algebra over F .

A nonassociative algebra A is called a division algebra if for any a ∈ A, a 6= 0, the left
multiplication with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are
bijective. A is a division algebra if and only if A has no zero divisors [Sch, pp. 15, 16].

For an F -algebra A, associativity is measured by the associator [x, y, z] = (xy)z − x(yz).
A is called alternative if its associator [x, y, z] is alternating. An anti-automorphism σ :
A → A of period 2 is called an involution on A. If F has characteristic not 2, we have
A = Sym(A, σ) ⊕ Skew(A, σ) with Skew(A, σ) = {x ∈ A | σ(x) = −x} the set of skew-
symmetric elements and Sym(A, σ) = {x ∈ A | σ(x) = x} the set of symmetric elements
in A with respect to σ. An involution is called scalar if all norms σ(x)x are elements of
F1. For every scalar involution σ, NA(x) = σ(x)x (resp. the trace TA(x) = σ(x) + x) is a
quadratic (resp. a linear) form on A. A is called quadratic, if there exists a quadratic form
N : A → F such that N(1A) = 1 and x2 − N(1A, x)x + N(x)1A = 0 for all x ∈ A, where
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N(x, y) denotes the induced symmetric bilinear form N(x, y) = N(x + y) − N(x) − N(y).
The form N is uniquely determined and called the norm N = NA of the quadratic algebra
A [Pu2]. The existence of a scalar involution on an algebra A implies that A is quadratic
[M1].

Let S be a quadratic étale algebra over F (i.e., a separable quadratic F -algebra in the
sense of [Knu, p. 4]) with canonical involution σ : S → S, also written as σ =−, and with
nondegenerate norm NS/F : S → F , NS/F (s) = ss = ss. S is a two-dimensional unital
commutative associative algebra over F . With the diagonal action of F , F×F is a quadratic
étale algebra with canonical involution (x, y) 7→ (y, x).

An F -algebra C is called a unital composition algebra or a Hurwitz algebra if it has a
unit element and carries a quadratic form n : C → F whose induced symmetric bilinear
form N(x, y) is nondegenerate, i.e., determines an F -vector space isomorphism C → C∨ =
HomF (C,F ), and which satisfies N(xy) = N(x)N(y) for all x, y ∈ C. Hurwitz algebras are
quadratic alternative; any nondegenerate quadratic form N on the Hurwitz algebra which
permits composition is uniquely determined up to isometry. It is called the norm of C and
is denoted by NC/F . A quadratic alternative algebra is a Hurwitz algebra if and only if its
norm is nondegenerate [M, 4.6]. Hurwitz algebras only exist in ranks 1, 2, 4 or 8. Those
of dimension 2 are exactly the quadratic étale F -algebras, those of dimension 4 exactly
the well-known quaternion algebras. The ones of dimension 8 are called octonion algebras.
A Hurwitz algebra C has a canonical involution given by x = TC/F (x)1C − x, where
TC : C → F , TC/F (x) = NC/F (1C , x), is the trace of C. This involution is scalar.

1.2. The generalized Cayley-Dickson doubling process. (cf. [Pu2])
Let D be a unital algebra over F with an involution σ : D → D. Let c ∈ D be an invertible

element not contained in F such that σ(c) 6= c. Then the F -vector space A = D ⊕D can
be made into a unital algebra over F via the multiplications

(1) (u, v)(u′, v′) = (uu′ + c(σ(v′)v), v′u+ vσ(u′))
(2) (u, v)(u′, v′) = (uu′ + σ(v′)(cv), v′u+ vσ(u′))

or
(3) (u, v)(u′, v′) = (uu′ + (σ(v′)v)c, v′u+ vσ(u′))

for u, u′, v, v′ ∈ D. The unit element of the new algebra A is given by 1 = (1, 0) in each
case.
A is called the Cayley-Dickson doubling of D (with scalar c on the left hand side, in

the middle, or on the right hand side) and denoted by Cay(D, c) for multiplication (1), by
Caym(D, c) for multiplication (2) and by Cayr(D, c) for multiplication (3). We call every
such algebra obtained from a Cayley-Dickson doubling of D, with the scalar c in the middle,
resp. on the left or right hand side, a Dickson algebra over F .

1.3. Flexible quadratic algebras. (cf. [Pu1])
Let M be a finite dimensional F -vector space. An alternating F -bilinear map × : M ×

M → M is called a cross product on M . Let D be an associative F -algebra with a scalar
involution σ = . Let P be a locally free right D-module of constant finite rank s together
with a sesquilinear form h : P × P → D (i.e., h is a biadditive map such that h(ua, vb) =
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āh(u, v)b for all a, b ∈ D, u, v ∈ P ). Let × be a cross product on P , where now P is viewed
as an F -vector space. I.e., together with × : P ×P → P , P is an alternating F -algebra (and
anticommutative if charF 6= 2). The F -vector space A = D⊕P becomes a unital F -algebra
denoted by A = (D,P, h,×) via the multiplication

(a, u)(b, v) = (ab− h(v, u), va+ ub+ v × u),

for all a, b ∈ D, u, v ∈ P . D is a subalgebra of (D,F, h,×).
For all a ∈ D, u ∈ P , define

σA : A→ A, (a, u)→ (a,−u),
NA/F : A→ D, NA/F ((α, u)) = σA(a, u)(a, u),
TA/F : A→ R, TA/F ((a, u)) = σA(a, u) + (a, u) = (TD(a), 0).

Obviously, ker(TA/F ) = ker(TD/F ) ⊕ P and u × v = uv − 1
2NA/F (u, v). σA is a scalar

involution if and only if h is a hermitian form (i.e., h(u, v) = h(v, u) for all u, v ∈ F ). If
h is a (perhaps degenerate) hermitian form, then T : A × A → F, T (x, y) = TA/F (xy)
is a symmetric F -bilinear form and A = (D,F, h,×) is a quadratic F -algebra with scalar
involution σA and norm NA/F , where NA/F ((a, u)) = ND/F (a) + h(u, u). Moreover, in that
case NA/F is isotropic iff A has zero divisors.

If h : F × F → D is a hermitian form, then (D,P, h,×) is flexible if and only if

h(u× v, u) + h(u× v, u) = NA/F (u× v, u) = 0

and

(u× v)× u = u× (v × u)

for all u, v ∈ P . Moreover, then (D,P, h,×) is alternative if and only if h(u, u × v) = 0
and u × (u × v) = −h(u, u)v + h(v, u)u for all u, v ∈ P , if and only if h(u × v, v) = 0 and
(u× v)× v = h(v, v)u− h(u, v)v for all u, v ∈ P .

If (D,F, h,×) is flexible with a scalar involution, then it is a noncommutative Jordan
algebra, i.e. we have (xy)x2 = x(yx2) for all x, y [M1, (3.3)]. If × is the zero-map, then
(D,F, h, 0) is trivially flexible.

If D is a composition algebra of dimension ≤ 4 over F with canonical involution
and h : D × D → D a nondegenerate -hermitian form, then there is c ∈ F× such that
h(u, u) = cND/F (u) for all u ∈ D and

Cay(D,−c) = (D,D, h, 0).

1.4. A construction method for octonion algebras. (cf. Petersson-Racine [P-R, 3.8]
or Thakur [T])

Let S be a quadratic étale F -algebra with canonical involution . Let (P, h) be a ternary
nondegenerate -hermitian space (P a projective S-module) such that

∧3(P, h) ∼= 〈1〉.
Choose an isomorphism α :

∧3(P, h)→ 〈1〉 and define a cross product ×α : P × P → P via

h(u×α v, w) = α(u ∧ v ∧ w)
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as in [T, p. 5122]. The F -vector space Cay(S, P, h,×α) = S⊕P becomes an octonion algebra
under the multiplication

(a, u)(b, v) = (ab− h(v, u), va+ ub̄+ u×α v)

for all u, v ∈ P and a, b ∈ S, with norm

N((a, u)) = nS(a) + h(u, u).

So Cay(S, P, h,×α) = (S, P, h,−×α). If the ternary hermitian space (P, h) is orthogonally
decomposable (which is always the case if S is a separable quadratic field extension) this
construction is independent of the choice of the isomorphism α and we may simply write
Cay(S, P, h). Any octonion algebra over F can be constructed like this. For h = 〈e〉 ⊥ h2

and D = Cay(S,−e),
Cay(S, P, 〈e〉 ⊥ h2) ∼= Cay(D,−qh2)

with qh2(x) = h2(x, x) for all x ∈ P2.

1.5. Nonassociative quaternion algebras. A nonassociative quaternion algebra is a four-
dimensional unital F -algebra A whose nucleus is a quadratic étale algebra over F . Let S
be a quadratic étale algebra over F with canonical involution . For every b ∈ S \ F , the
vector space

Cay(S, b) = S ⊕ S

becomes a nonassociative quaternion algebra over F with unit element (1, 0) and nucleus S
under the multiplication

(u, v)(u′, v′) = (uu′ + bv′v, v′u+ vu′)

for u, u′, v, v′ ∈ S. This means that Cay(S, b) = (S, S,−bh, 0) with h(v′, v) = v′v. Given
any nonassociative quaternion algebra A over F with nucleus S, there exists an element
b ∈ S \ F such that A ∼= Cay(S, b) [As-Pu, Lemma 1]. Cay(S, b) is a division algebra if
and only if S is a separable quadratic field extension of F [W, p. 369]. Two nonassociative
quaternion algebras Cay(K, b) and Cay(L, c) can only be isomorphic if L ∼= K. Moreover,

Cay(K, b) ∼= Cay(K, c) iff g(b) = NK/F (d)c

for some automorphism g ∈ Aut(K) and some non-zero d ∈ K [W, Theorem 2] (see also
[Al-H-K, Thm. 14] for F = R).

2. The generalized construction

2.1. Let D be an associative F -algebra with a scalar involution . Let P be a locally free
right D-module of constant finite rank s together with a sesquilinear form h : P × P → D.
Let × be a cross product on P and let c ∈ D× and not in F . The F -vector space A = D⊕P
becomes a unital F -algebra denoted by (D,P, ch,×) via the multiplication

(a, u)(b, v) = (ab− ch(v, u), va+ ub+ v × u),

and if D is not commutative, also a unital F -algebra denoted by (D,P, hc,×) via

(a, u)(b, v) = (ab− h(v, u)c, va+ ub+ v × u),
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for all a, b ∈ D, u, v ∈ P .

Lemma 1. Let A = (D,P, ch,×) or A = (D,P, hc,×).
(i) D is a subalgebra of A.
(ii) Suppose that ker(TD/F ) = F . If P is torsion-free and h a hermitian form such that
h(u, u) 6= 0 for some u ∈ P then A is not third power-associative and not quadratic.
(iii) Let D be a composition algebra of dimension 2 or 4 and h = 〈e〉 ⊥ b a hermitian
form. Suppose that ×|D×D = 0, e.g. if already × = 0 or if D = S is quadratic étale,
Cay(S, P, h,×α) an octonion algebra (see 1.3.) and A = Cay(S, P, ch,×α). Then

Cay(D,−ce)

is a subalgebra of A = (D,P, c(〈e〉 ⊥ b),×) and

Cayr(D,−ce)

a subalgebra of A = (D,P, (〈e〉 ⊥ b)c,×).

Proof. (i) and (iii) are trivial.
(ii) Let u ∈ P such that h(u, u) 6= 0. For l = (0, u), we have l2 = (−ch(u, u), 0) and so
ll2 = (0,−uh(u, u)c̄) while l2l = (0,−uch(u, u)). Thus l2l = ll2 if and only if uh(u, u)c̄ =
uch(u, u). If P is torsion-free, this is equivalent to c̄ = c. Hence A is not third power-
associative. Every quadratic unital algebra is clearly power-associative, so A is not quadratic.

�

In particular, if S is a quadratic étale algebra, the nonassociative quaternion algebras

Cay(S,−ce),Cay(S,−cf) and Cay(S,−cef)

are subalgebras of A = Cay(S, S3, c〈e, f, ef〉).

Theorem 2. (i) Let D be a Hurwitz division algebra of dimension n = 2 or 4 and h an
anisotropic hermitian form. Then D is the only Hurwitz subalgebra of A = (D,P, ch,×),
resp. A = (D,P, hc,×), of dimension n.
(ii) Suppose that C = Cay(S, P, h) is an octonion algebra with S a separable field extension,
h anisotropic, and assume c ∈ S \F . If Cay(K, d) is a nonassociative quaternion subalgebra
of A = Cay(S, P, ch) then K = S and there is u ∈ P such that d = −ch(u, u).
For F = R, Cay(C,−c) is up to isomorphism the only nonassociative quaternion subalgebra
of Cay(C,C3, c〈1, 1, 1〉).

Proof. (i) Let n = 2 and D = S. Let F have characteristic not 2 and let K = F (
√
e) be a

quadratic field extension contained in A. Then there is an element X ∈ A, X = (a, u) with
a ∈ S, u ∈ P such that X2 = e ∈ F×, i.e.,

a2 − ch(u, u) = e and u(a+ ā) = 0.

If u 6= 0 then ā = −a hence a2 = −NS/F (a) ∈ F , thus c = −h(u, u)−1(NS/F (a) + e) ∈ F
which is a contradiction since the left hand side lies in S and not in F , while the right hand
side lies in F . Therefore u = 0, a2 = e and X = (a, 0) ∈ (S, 0) implies K = S.
Let F have characteristic 2 and suppose K is a separable quadratic field extension of F
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contained in A. Hence there is an element X = (a, u) ∈ A, a ∈ S, u ∈ P such that
X2 +X = e ∈ F×. This implies

a2 − ch(u, u) + a = e and u(a+ ā+ 1) = 0.

If u 6= 0 then ā + a + 1 = 0. This implies a = −(ā + 1), thus a2 + ā − ch(u, u) = e i.e. we
get a2 + a + ch(u, u) = a2 + a + ch(u, u) which yields a2 + a = a2 + a. Hence a2 + a ∈ F.
This implies that ch(u, u) = e − (a2 + a) ∈ F , a contradiction. Hence u = 0 which implies
a2 + a = e and X = (a, 0) ∈ D. Thus the basis 1, X = a for K lies in S and we obtain
S = K.
Suppose next that n = 4. Let F have characteristic not 2. Suppose there is a quaternion
subalgebra B = (e, f)F in A. Then there is an element X ∈ A, X = (a, u) with a ∈ D,
u ∈ P , such that X2 = e ∈ F× and an element Y ∈ A, Y = (b, v) with b ∈ D, v ∈ P , such
that Y 2 = f ∈ F× and XY + Y X = 0. The first equation implies X = (a, 0) with a2 = e,
the second that Y = (b, 0) with b2 = f as in (i). Hence (0, 0) = XY + Y X = (ab + bu, 0)
means ab + bu = 0 and so the standard basis 1, X = a, Y = b,XY = ab for the quaternion
algebra (e, f)F lies in D and we obtain D = (e, f)F .
Let F have characteristic 2. Suppose there is a quaternion subalgebra B = [e, f) in A. Then
there is an element X ∈ A, X = (a, u) with a ∈ D, u ∈ P , such that X2 +X = e ∈ F and an
element Y ∈ A, Y = (b, v) with b ∈ D, v ∈ P , such that Y 2 = f ∈ F× and XY = Y X + Y .
Analogously as before, Y 2 = f ∈ F× implies b2 = f and Y = (b, 0), b ∈ D. The first
equation implies X = (a, 0) ∈ D, a2 +a = e, as in (i) Now XY = Y X+Y means ab = ba+b

and the standard basis 1, X = a, Y = b for the quaternion algebra [e, f) lies in D. We obtain
D = [e, f).
(ii) Analogously as in the proof of (i) we obtain K = S with S = (S, 0) ⊂ A = S ⊕P , hence
d ∈ S \F . The fact that Cay(S, d) ⊂ A implies that there is an element Z = (a, u) ∈ A such
that Z2 = (d, 0) and (b, 0)(a, u) = (a, u)(b̄, 0) for all b ∈ S. This is equivalent to

a2 − ch(u, u) = d, u(a+ ā) = 0 and ab = ab̄

for all b ∈ S. If u = 0 then a2 = e means a 6= 0 and ab = ab̄ for all b ∈ S implies
a contradiction. Thus u 6= 0. Since ab = ab̄ for all b ∈ S implies a = 0 we obtain
d = −ch(u, u).
Suppose that F = R and A = Cay(C,C3, c〈1, 1, 1〉). Build a basis of C3 starting with u,
which is orthogonal with respect to the anisotropic form h = 〈1, 1, 1〉. Then h(u, u) = e ∈
R>0. Thus d = −ce = −cNC/R(x) for some x ∈ C and Cay(C, d) = Cay(C,−cNC/R(x)) ∼=
Cay(C,−c) (Section 1.5) is up to isomorphism the only nonassociative quaternion subalgebra
of A. �

Corollary 3. Let D and B be two Hurwitz algebras over F of dimension n, and let n = 2
or 4, (D,P, h,×) and (B,P ′, h′,×′) two division algebras over F and h, h′ hermitian forms.
Let c ∈ D× \ F and d ∈ B× \ F , and suppose

(D,P, ch,×) ∼= (B,P ′, c′h′,×′) or (D,P, hc,×) ∼= (B,P ′, h′c′,×′).

Then D ∼= B.
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Proof. By Theorem 2, any isomorphism maps the unique subalgebra D of (D,P, ch,×) to
the unique subalgebra B of (B,P ′, c′h′,×′), respectively of (B,P ′, h′c′,×′), hence D ∼= B.

�

Let D be a Hurwitz division algebra of dimension 2 or 4 and h an anisotropic her-
mitian form. Then there exists an orthogonal basis for the hermitian space h, so that
h ∼= 〈e1, . . . , en〉 [Knu, p. 30] and for n ≥ 2, (D,P, h, 0) is not a division algebra over F :
take z1, z2 orthogonal with respect to h, then

(0, z1)(0, z2) = (−h(z1, z2), 0) = (0, 0),

therefore the algebra has zero divisors.

Theorem 4. Let D be a Hurwitz algebra of dimension 2 or 4, h a hermitian form and
C = (D,P, h,×) a division algebra over F . Suppose that either × is the zero map or that
h(v × u, u) = 0 for all u, v ∈ P . Then A = (D,P, ch,×), resp. A = (D,P, hc,×), is a
division algebra over F , for any choice of c ∈ D× not in F .

Proof. (i) We show that A = (D,P, ch,×) has no zero divisors: suppose

(0, 0) = (a, u)(b, v) = (ab− ch(v, u), va+ ub̄+ v × u)

for a, b ∈ D, u, v ∈ P . This is equivalent to

ab− ch(v, u) = 0 and va+ ub̄+ v × u = 0.

If a = 0 then h(v, u) = 0, thus

(a, u)(b, v) = (ab− ch(v, u), va+ ub̄+ v × u) = (a, u) ·C (b, v)

in this case. Since C is a division algebra, this implies that (a, u) = (0, 0) or (b, v) = (0, 0).
If a 6= 0 then ab = ch(v, u) means b = a−1ch(v, u), b̄ = h(v, u)c̄ā−1, therefore va +
uh(v, u)c̄ā−1 + v × u = 0.

For × = 0 we get v = −ub̄a−1 and substituting this into the first equation gives ab +
ch(ub̄a−1, u) = ab + cā−1bh(u, u) = 0, i.e (a + cā−1bh(u, u))b = 0. Thus b = 0 or a +
cā−1bh(u, u) = 0. If b = 0 then h(v, u) = 0 and (b, v) = (0, 0), since by assumption
C is a division algebra and in this case the multiplications (a, u)(b, v) and (a, u) ·C (b, v)
are identical again. If a + cā−1bh(u, u) = 0 then ND/F (a) + h(u, u)c = 0 which means
h(u, u)c = −ND/F (a) ∈ F× and hence c ∈ F×, a contradiction.

If we have h(v × u, u) = 0 for all u, v ∈ P , then va = −ub̄− v × u, so v = −ub̄a−1 − (v ×
u)a−1. Substituting this into the first equation gives ab+ ch(ub̄a−1, u)+ ch((v×u)a−1, u) =
ab+ cā−1bh(u, u) + cā−1h((v×u), u) = ab+ cā−1bh(u, u) = 0 as above, and again we obtain
(b, v) = (0, 0).
(ii) A = (D,P, hc,×) has no zero divisors: suppose

(0, 0) = (a, u)(b, v) = (ab− h(v, u)c, va+ ub̄+ v × u)

for a, b ∈ D, u, v ∈ P . This is equivalent to

ab− h(v, u)c = 0 and va+ ub̄+ v × u = 0.
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If a = 0 then h(v, u)c = 0 and the same proof as in (i) shows that (a, u) = (0, 0) or
(b, v) = (0, 0).
If a 6= 0 and × = 0 we get v = −ub̄a−1 and substituting this into the first equation
gives ab + h(ub̄a−1, u)c = ab + ā−1bh(u, u)c = 0, multiply by ā from the left to obtain
ND/F (a)b + bh(u, u)c = b(ND/F (a)b + h(u, u)c). Thus b = 0 or ND/F (a)b + h(u, u)c = 0,
both cases leading to the same conclusions as in (i). �

Among others, this result contains [W, p. 369] and [Pu2, Theorem 11] as special cases:

Corollary 5. Let C = Cay(S, P, h) be an octonion division algebra, or C = Cay(D, e) a
Hurwitz division algebra with D a Hurwitz algebra of dimension 2 or 4. Then Cay(S, P, ch),
Cay(D, ce) and Cay(D, ec) are division algebras over F , for any choice of c ∈ D× not in F .

Proof. Since C is alternative, h(v × u, u) = 0 for all u, v ∈ P by 1.3. �

Example 6. Let F = Q and C = Cay(Q, a, b, e) = Cay(Q(
√
a), 〈−b,−e, be〉) an octonion

algebra. Suppose a, b, e < 0, then C is a division algebra and so is the unital algebra

Cay(Q(
√
a), c〈−b,−e, be〉)

for all c ∈ Q(
√
a) \Q.

Proposition 7. Let D be a Hurwitz algebra of dimension 2 or 4. Let (P, h) and (P ′, h′) be
two hermitian spaces over D and c, c′ ∈ D×. Let × be a cross product on P and ×′ be a
cross product on P ′.
(i) Suppose that there is a D-module isomorphism f : P → P ′ such that c′h′(f(v), f(u)) =
ch(v, u) (resp., h′(f(v), f(u))c′ = ch(v, u)c or c′h′(f(v), f(u)) = h(v, u)c) for all u, v ∈ P .
If f(v × u) = f(v)×′ f(u) for all u, v ∈ P , then

(D,P, ch,×) ∼= (D,P ′, c′h′,×′)

and resp.,

(D,P, hc,×) ∼= (D,P ′, h′c′,×′) or (D,P, hc,×) ∼= (D,P ′, c′h′,×′).

(ii) Suppose (P, h) ∼= (P ′, h′) with isometry f . If f(v × u) = f(v) ×′ f(u) for all u, v ∈ P ,
e.g. if × = ×′ = 0, then

(D,P, ch,×) ∼= (D,P ′, ch′,×′).

Proof. (i) We show the first case in (i): Let f : P → P ′ be a D-module isomorphism.
Take the F -linear map G(a, u) = (a, f(u)). Then

G((a, u)(b, v)) = G(ab− ch(v, u), va+ub+ v×u) = (ab− ch(v, u), f(v)a+ f(u)b+ f(v×u))

and

G(a, u)G(b, v) = (a, f(u))(b, f(v)) = (ab− ch′(f(v), f(u)), f(v)a+ f(u)b+ f(v)× f(u)),

hence G is multiplicative iff for all u, v ∈ P :

ch(v, u) = c′h′(f(v), f(u)) and f(v × u) = f(v)× f(u).
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The other two cases in (i) are shown analogously.
(ii) follows from (i). �

The case that D is a Hurwitz division algebra of dimension 2 or 4, h : D × D → D,
h(u, v) = v̄au the hermitian form and × = 0 has been dealt with already in [Pu2] and [W].

It remains to closer investigate the division algebras of the type Cay(S, S3, ch) with h an
anisotropic hermitian form.

2.2. Eight-dimensional division algebras and their automorphism group. From
now on let S be a quadratic étale algebra over F with canonical involution . For c ∈ S \F ,
we consider the eight-dimensional unital algebra

Cay(S, P, ch,×α) = S ⊕ P,

(a, u)(b, v) = (ab− ch(v, u), va+ ub+ u×α v)

for a, b ∈ S, u, v ∈ P . Note that (P,×α) is the strictly truncated (anticommutative) algebra
(P, µS) [Do-Z1, 2] obtained from Cay(S, P, ch,×α). Every isometry f : (P, h)→ (P, h) yields
an automorphism of (P,×α), thus SU(3) ⊂ Aut(P,×α).

For A = Cay(S, S3, c〈e1, e2, e1e2〉) define : S3 → S3 via

u = (u1, u2, u3)→ u = (u1, u2, u3) = (u1, u2, u3).

Clearly, ∈ Aut(S3,×α).
Let Cay(S, P, h) be an octonion division algebra andG : Cay(S, P, ch) −→ Cay(S, P ′, c′h′)

be an algebra isomorphism. We have G((S, 0)) ⊂ (S, 0) (this can be checked directly by a
similar calculation as in the proof of Theorem 2), thus G((S, 0)) = (S, 0).

Proposition 8. Let Cay(S, P, h) and Cay(S, P ′, h′) be two octonion division algebras and
c, c′ ∈ S \ F .
(i) Let G : Cay(S, P, ch) −→ Cay(S, P ′, c′h′) be an algebra isomorphism with G((0, P )) =
(0, P ′). If G((a, u)) = (a, g(u)) with g = G|P , then g(v × u) = g(u)×′ g(v) for all u, v ∈ P ,
c̄/c = c̄′/c′ and (P, ch) ∼= (P ′, c′h′) as ε-hermitian forms with isometry g, where ε = c̄/c.
If G((a, u)) = (ā, g(u)) with g = G|P , then g(v × u) = g(u) ×′ g(v) for all u, v ∈ P ,
g(va) = g(v)ā for all a ∈ S, v ∈ P and c′ = αc̄ for some α ∈ F×.
(ii) Suppose (P, h) ∼= (P ′, h′). Then Cay(S, P, ch) ∼= Cay(S, P, ch′). In particular,

Cay(S, S3, c〈e1, e2, e1e2〉) ∼= Cay(S, S3, cd2〈e1, e2, e1e2〉)

for all ei, d ∈ F×.
(iii) If (P, ch) ∼= (P ′, c′h′) as ε-hermitian spaces with isometry f , ε = c̄/c, and if f(v×u) =
f(v)×′ f(u) for all u, v ∈ P , then Cay(S, P, ch,×α) ∼= Cay(S, P, c′h′,×α).
(iv) Cay(S, S3, c〈e1, e2, e1e2〉) ∼= Cay(S, S3, c̄〈e1, e2, e1e2〉) for all ei ∈ F×.

Proof. (i) Suppose first that G|(S,0) = id, then G((a, u)) = (a, g(u)) with g = G|P and
G((a, u)(b, v)) = G(a, u)G(b, v) is equivalent to

G(ab− ch(v, u), va+ ub+ u× v) = (ab− ch(v, u), g(va) + g(ub) + g(u× v))

= (ab− c′h′(g(v), g(u)), g(v)a+ g(u)b+ g(u)×′ g(v))
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for all a, b ∈ S, u, v ∈ P which implies that ch(v, u) = c′h(g(v), g(u)) and g(v × u) =
g(u) ×′ g(v) for all u, v ∈ P (put a = b = 0). Moreover, g(va) = g(v)a for all a ∈ S,
v ∈ P (just put u = 0). This means that ch and c′h′ are isometric ε-hermitian forms with
ε = c̄/c = c̄′/c′.

Suppose now that G|(S,0) = and G((0, P )) = (0, P ′), so that G((a, u)) = (ā, g(u)) with
g = G|P . Then G((a, u)(b, v)) = G(a, u)G(b, v) is equivalent to

G(ab− ch(v, u), va+ ub+ v × u) = (āb̄− c̄h(v, u), g(va) + g(ub) + g(u× v))

= (āb̄− c′h′(g(v), g(u)), g(v)ā+ g(u)b+ g(u)×′ g(v))

for all a, b ∈ S, u, v ∈ P which implies that c̄h(v, u) = c′h′(g(v), g(u)) and g(v × u) =
g(u)×′ g(v) for all u, v ∈ P . Moreover, g(va) = g(v)ā for all a ∈ S, v ∈ P . Now c̄h(u, u) =
c′h′(g(u), g(u)) implies that c′−1c̄ ∈ F×, i.e. c′ = αc̄ for some α ∈ F× and so h(v, u) =
αh′(g(v), g(u)) for all u, v ∈ P .
(ii) This follows directly from the proof of (i) employing [T, Section 2] which implies that
f(v ×α u) = f(v) ×α′ f(u) if (P, h) ∼= (P ′, h′) with isometry f . Use that for all d ∈ F×,
〈e1, e2, e1e2〉 ∼= d2〈e1, e2, e1e2〉 for the second part of the assertion.
(iii) is trivial.
(iv) A straightforward calculation using that h(v̄, ū) = h(v, u) shows that F ((a, u)) = (ā, ū)
yields an isomorphism. �

Proposition 9. Let Cay(S, P, h,×α) be an octonion algebra and A = Cay(S, P, ch,×α).
Then SU(3) ⊂ Aut(A).

Proof. Every isometry f : (P, h) → (P, h) yields an F -linear bijection F ((a, u)) = (a, f(u))
on A. F is multiplicative if and only if F ((a, u)(b, v)) = F (a, u)F (b, v) which is equivalent
to

(ab− ch(v, u), f(v)a+ f(u)b+ f(u×α v))

= (ab− ch(f(v), f(u)), f(v)a+ f(u)b+ f(u)×α f(v)),

i.e. equivalent to h(v, u) = h(f(v), f(u)) and f(u ×α v) = f(u) ×α f(v) for all u, v ∈ P .
Hence F is multiplicative if and only if f(u×α v) = f(u)×α f(v) which is satisfied for every
isometry f , cf. [T, Section 2]. �

Remark 10. Let c ∈ S×. We observe that our previous results easily carry over to the
opposite algebra of A = Cay(S, P, ch,×α). If S is a separable quadratic field extension, then
S is the only field extension contained in Aop. In particular, Aop has the same derivation
algebra as A.

Let A = Cay(S, S3, c〈e1, e2, e1e2〉). Suppose that S is a separable quadratic field extension
and h = 〈e1, e2, e1e2〉 anisotropic, e1, e2 ∈ F×. Let u, v be an F -basis of S and z1, . . . , z6 an
orthogonal basis of P = S3 with respect to the nondegenerate quadratic form qh associated
to h. Let C = Cay(S, S3, h) be the octonion algebra associated to A = Cay(S, S3, ch). Then

(0, zi)(0, zj) = (0, zi × zj) hence (0, zi)(0, zj) = (0, zi) ·C (0, zj),

(a, zi)(0, zj) = (0, zja+ zi × zj) hence (a, zi)(0, zj) = (a, zi) ·C (0, zj),
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(0, zi)(b, zj) = (0, zib̄+ zi × zj) hence (0, zi)(b, zj) = (0, zi) ·C (b, zj),

for all i 6= j and

(0, zi)(0, zi) = (−ch(zi, zi), 0) = (c, 0)(−h(zi, zi), 0) hence (0, zi)(0, zi) = (c, 0)·C [(0, zi)·C(0, zj)]

for all zi, zj ∈ P , i 6= j. By strictly truncating our algebras we hence obtain the algebra
(P,×) = (S3,×). Moreover, SP ⊂ P and PS ⊂ P . However, our algebras are not enlarge-
ments of (P, µS) = (S3,×) in the sense of [Do-Z1, 4.1], because (making free use of their
terminology here) as we will see in the next section for F = R, the restriction homomorphism
ZG(π)→ Aut(P, µS) is only onto for the subgroup SU(3) of Aut(P, µS) ∼= SU(3)Z2.

3. The case F = R

For F = R, O = Cay(H,−1) = Cay(C,C3, 〈1, 1, 1〉) is up to isomorphism the only
octonion division algebra over R. With the choice of basis as given in [B-O2], O fits into
multiplication table (4.2) in [B-O2] which is our Table 2. We will choose the basis u = 1,
v = i and

z1 = (0, (1, 0, 0)), z2 = (0, (0, 1, 0)), z3 = (0, (i, 0, 0)), z4 = (0, (0, 0, 1)), z5 = (0, (0, 0, i)), z6 = (0, (0, i, 0))

for O. Using this basis, the argument in [B-O2, p. 278] yields Table 1 instead of (4.2) in [B-
O2]. I.e., by choosing this basis, we have to slightly adjust multiplication table [B-O2, (4.2)]:
instead of the 6×6-matrix in the lower right hand corner of the multiplication table given by

· z1 z2 z3 z4 z5 z6

z1 −u z4 v −z2 z6 −z5

z2 −z4 −u z5 z1 −z3 v

z3 −v −z5 −u z6 z2 −z4

z4 z2 −z1 −z6 −u v z3

z5 −z6 z3 −z2 −v −u z1

z6 z5 −v z4 −z3 −z1 −u

we have instead the multiplication table

· z1 z2 z3 z4 z5 z6

z1 −u z4 v −z2 −z6 −z5

z2 −z4 −u z5 z1 z3 v

z3 −v −z5 −u −z6 z2 −z4

z4 z2 −z1 z6 −u v −z3

z5 z6 −z3 −z2 −v −u z1

z6 z5 −v z4 z3 −z1 −u

The rest of the table stays the same. An algebra fits into multiplication table (4.2) in
[B-O2], i.e. Table 2, if and only if it fits into Table 1. We point out that our basis and the
equivalent Table 1 was already used in [Do-Z1].

This table contains 16 parameters. In this case, the parameters satisfy

(∗) η2 = η3 = θ1 = θ4 = σ2 = σ3 = τ2 = τ3 = 0
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and
(∗∗) θ2 = σ1, θ3 = τ1, σ4 = 1, η4 = τ4 = −1.

Note that (∗) is [Do-Z2, (4.1)], (∗∗) is [Do-Z2, (4.2)].
For every non-real c ∈ C,

A = Cay(C,C3, c〈1, 1, 1〉)
is a division algebra over R and Cay(C,−c) is up to isomorphism the only nonassociative
quaternion subalgebra of A (Theorem 2). A fits into multiplication table 1 as follows:
We need a real basis u, v, z1, . . . z6 of A such that the vectors u, v span the subalgebra S = C
and z1, . . . , z6 are an orthonormal basis of the quadratic form induced by h = 〈1, 1, 1〉. More
precisely, choose z1, . . . , z6 as above. Let c = x+ iy with x, y ∈ R, y 6= 0. The multiplication
table now forces the choice of u = c and v = ic. Since

(0, zi)(0, zj) = (0, zi × zj) = (0, zi) ·O (0, zj)

unless zi = szj for some s ∈ C, the 6 × 6-matrix in the lower right hand corner of the
multiplication table remains the same as for O, with the exception of its diagonal entries
being −u because of

(0, zi)(0, zi) = (−ch(zi, zi), 0) = (−c, 0)

and the entries of the form

(0, z1)(0, z3) = (−ch(z1, z3), 0) = (ic, 0) = −(0, z3)(0, z1),

(0, z2)(0, z6) = (−ch(z1, z3), 0) = (ic, 0) = −(0, z6)(0, z2),

(0, z4)(0, z5) = (−ch(z1, z3), 0) = (ic, 0) = −(0, z5)(0, z4).

The choice of u = c, v = ic gives the following structure constants in Table 1:

η1 = x, η2 = −y = η3, η4 = −x,

θ1 = y, θ2 = x = θ3, θ4 = −y,
σ1 = x, σ2 = y, σ3 = −y, σ4 = x,

τ1 = x, τ2 = −y, τ3 = −y, τ4 = −x.
The algebra generated by u, v, z1, z3 is the nonassociative quaternion subalgebra Cay(C,−c).

Remark 11. For all non-real c, both 〈u, v, z1, z3〉 ∼= Cay(C,−c) and A = Cay(C, c〈1, 1, 1〉)
are division algebras. Hence [Do-Z2, Proposition 4.1] is a trivial observation for our family
of algebras.

Since our division algebras fit into Table 1 we obtain:

Theorem 12. For all nonreal c and A = Cay(C,C3, c〈1, 1, 1〉),

Der(A) ∼= su(3)

and A is the direct sum of two irreducible 1-dimensional modules and the irreducible 6-
dimensional module P = C3. SU(3) is the identity component of Aut(A).
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T
ab

le
1

·
u

v
z 1

z 2
z 3

z 4
z 5

z 6

u
η 1
u

+
θ 1
v

η 2
u

+
θ 2
v

σ
1
z 1

+
σ

2
z 3

σ
1
z 2

+
σ

2
z 6
−
σ

2
z 1

+
σ

1
z 3

σ
1
z 4

+
σ

2
z 5
−
σ

2
z 4

+
σ

1
z 5
−
σ

1
z 2

+
σ

2
z 6

v
η 3
u

+
θ 3
v

η 4
u

+
θ 4
v

σ
3
z 1

+
σ

4
z 3

σ
3
z 2

+
σ

4
z 6
−
σ

4
z 1

+
σ

3
z 3

σ
3
z 4

+
σ

4
z 5
−
σ

4
z 4

+
σ

3
z 5
−
σ

4
z 2

+
σ

3
z 6

z 1
τ 1
z 1

+
τ 2
z 3

τ 3
z 1

+
τ 4
z 3

−
u

z 4
v

−
z 2

−
z 6

−
z 5

z 2
τ 1
z 2

+
τ 2
z 6

τ 3
z 2

+
τ 4
z 6

−
z 4

−
u

z 5
z 1

z 3
v

z 3
−
τ 2
z 1

+
τ 1
z 3
−
τ 4
z 1

+
τ 3
z 3

−
v

−
z 5

−
u

−
z 6

z 2
−
z 4

z 4
τ 1
z 4

+
τ 2
z 5

τ 3
z 4

+
τ 4
z 5

z 2
−
z 1

z 6
−
u

v
−
z 3

z 5
−
τ 2
z 4

+
τ 1
z 5
−
τ 4
z 4

+
τ 3
z 5

z 6
−
z 3

−
z 2

−
v

−
u

z 1

z 6
−
τ 2
z 2

+
τ 1
z 6
−
τ 4
z 2

+
τ 3
z 6

z 5
−
v

z 4
z 3

−
z 1

−
u

T
ab

le
2

·
u

v
z 1

z 2
z 3

z 4
z 5

z 6

u
η 1
u

+
θ 1
v

η 2
u

+
θ 2
v

σ
1
z 1

+
σ

2
z 3

σ
1
z 2

+
σ

2
z 6
−
σ

2
z 1

+
σ

1
z 3

σ
1
z 4

+
σ

2
z 5
−
σ

2
z 4

+
σ

1
z 5
−
σ

1
z 2

+
σ

2
z 6

v
η 3
u

+
θ 3
v

η 4
u

+
θ 4
v

σ
3
z 1

+
σ

4
z 3

σ
3
z 2

+
σ

4
z 6
−
σ

4
z 1

+
σ

3
z 3

σ
3
z 4

+
σ

4
z 5
−
σ

4
z 4

+
σ

3
z 5
−
σ

4
z 2

+
σ

3
z 6

z 1
τ 1
z 1

+
τ 2
z 3

τ 3
z 1

+
τ 4
z 3

−
u

z 4
v

−
z 2

z 6
−
z 5

z 2
τ 1
z 2

+
τ 2
z 6

τ 3
z 2

+
τ 4
z 6

−
z 4

−
u

z 5
z 1

−
z 3

v

z 3
−
τ 2
z 1

+
τ 1
z 3
−
τ 4
z 1

+
τ 3
z 3

−
v

−
z 5

−
u

z 6
z 2

−
z 4

z 4
τ 1
z 4

+
τ 2
z 5

τ 3
z 4

+
τ 4
z 5

z 2
−
z 1

−
z 6

−
u

v
z 3

z 5
−
τ 2
z 4

+
τ 1
z 5
−
τ 4
z 4

+
τ 3
z 5

−
z 6

z 3
−
z 2

−
v

−
u

z 1

z 6
−
τ 2
z 2

+
τ 1
z 6
−
τ 4
z 2

+
τ 3
z 6

z 5
−
v

z 4
−
z 3

−
z 1

−
u



A CONSTRUCTION METHOD FOR SOME REAL DIVISION ALGEBRAS 15

Proof. The first statement is [B-O2], Proposition 4.1. A is not irreducible as su(3)-module,
or else our algebras would be generalized pseudo-octonion algebras, which they are not.
SU(3) is the identity component of Aut(A) [Do-Z2, Proof of Proposition 4.3., p. 768]. �

Furthermore, for every G ∈ Aut(A), G((C, 0)) = (C, 0) and G((0,C3)) = (0,C3), cf.
[Do-Z2, Proposition 4.3., p. 768]. This however implies that G ∈ Aut(A) is of the type
G((a, u)) = (a, f(u)) with f an isometry of the hermitian form 〈1, 1, 1〉 by an argument as
in the proof of Proposition 8 (i).

Note that the structure constants of our algebras do not satisfy equation (∗) which is
[Do-Z2, (4.1)] and hence [Do-Z2, Proposition 4.3] yields that Aut(A) ∼= SU(3). We give a
more direct proof as well:

Corollary 13. For every non-real c, the automorphisms of Cay(C,C3, c〈1, 1, 1〉) are given
by G((a, u)) = (a, f(u)) where f is an isometry of h = 〈1, 1, 1〉 and Aut(A) = SU(3).

Proof. Let G : Cay(C,C3, ch) −→ Cay(C,C3, ch) be an algebra automorphism. Then
G((0,C3)) = (0,C3), cf. the proof of Proposition 4.3. in [Do-Z2], and G|P is an isom-
etry of 〈1, 1, 1〉. Conversely, every isometry f : (P, h) → (P, h) yields an automorphism
G((a, u)) = (a, f(u)). �

Proposition 14. Cay(C,C3, c〈1, 1, 1〉) ∼= Cay(C,C3, c′〈1, 1, 1〉) if and only if c′ = c or
c′ = c̄.

This follows from [Do-Z2, Proposition 4.4.], it is also straightforward to prove directly
applying Proposition 8.

4. Some families of non-unital division algebras

Following the notation introduced in [P, Section 1], denote the set of possibly non-unital
algebra structures on an F -vector space by Alg(V ). Given A ∈ Alg(V ), we write xAy for
the product of x, y ∈ V in the algebra, if it is not clear from the context which multiplication
is used. Let G = Gl(V )×Gl(V ) be the direct product of two copies of the full linear group
of V . It acts on Alg(V ) by means of principal Albert isotopes: For f, g ∈ Gl(V ) define the
algebra A(f,g) as V together with the new multiplication

xA(f,g)y = f(x)g(y) x, y ∈ V.

This defines a right action of G on Alg(V ) which is compatible with passing to the opposite
algebra, i.e., (A(f,g))op = (Aop)(f,g). If A is a division algebra, so is A(f,g). Regular, thus in
particular division algebras, are principal Albert isotopes of unital algebras [P, 1.5].

Every composition algebra is a principal Albert isotope of a Hurwitz algebra: There are
isometries ϕ1, ϕ2 of the norm NC for a suitable Hurwitz algebra C over F such that its
multiplication can be written as

x ? y = ϕ1(x)Cϕ2(y).

Given a Hurwitz algebra C over F of dimension ≥ 2 with canonical involution , the mul-
tiplications

x ? y = x̄ȳ, x ? y = x̄y, x ? y = xȳ
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for all x, y ∈ C define the para-Hurwitz algebra, resp. the left- and right composition algebra
associated to C. Together with C these are called the standard composition algebras.

Standard composition algebras of dimension eight satisfy Table 1 and have derivation al-
gebra isomorphic to G2. The automorphism group of the para-octonion algebra is isomorphic
to G2 [P-I].

In light of the above, we look at some principal Albert isotopes of our algebras A =
Cay(S, P, ch,×α) with c ∈ S×. Denote the multiplication in A by · or just juxtaposition as
before.

If V = U⊕W with U the underlying two-dimensional vector space of S, W the underlying
six-dimensional vector space of P , for f = (f1, f2), g = (g1, g2) ∈ Gl(V ) with f1, g1 ∈ Gl(U),
f2, g2 ∈ Gl(W ), the algebra A(f,g) contains the two-dimensional subalgebra S(f,g) = S(f1,g1).
If f1, g1 ∈ Gl(U) are isometries of the norm NS/F then A(f,g) contains the two-dimensional
composition subalgebra S(f1,g1). For c ∈ F×, the multiplication

(u, v)A(f,g)(u′, v′) = (f1(u), f2(v))(g1(u′), g2(v′))

yields a composition algebra. Our algebras A(f,g) could thus be considered as division
algebras which are generalizations of these ’associated’ composition algebras.

Let ε ∈ {1,−1} and h ∈ Gl(U). Define hε : A→ A by

hε((a, u)) = (h(a), εu)

and a new multiplication ? via

xA(hε,hε)y = hε(x)hε(y), xA(hε,id)y = hε(x)y, resp. xA(id,hε)y = xhε(y),

for all x, y ∈ A. In particular, we look at the special case σε : A→ A defined by

σε((a, u)) = (ā, εu).

Moreover, let h̄ε(a, u) = (h(a), εū). Then we will also investigate the algebras A(h̄ε,h̄ε),
A(h̄ε,id) and A(id,h̄ε).

Obviously, each of the above (A, ?) is a (non-unital) division algebra if and only if (A, ·)
is a division algebra.

For c ∈ F× and σ−1 this yields the para-octonion algebra (resp., the left or right octo-
nion algebra) associated to the octonion algebra A. For c ∈ S \ F , the algebras A(hε,hε),
A(hε,id) and A(id,hε) can hence be considered as generalized para-octonion algebras, resp.,
generalizations of left or right octonion algebras.

Lemma 15. For the algebras A(hε,hε), A(hε,id) and A(id,hε), SU(3) is contained in their
automorphism group.

Proof. Let G ∈ Aut(A, ·) such that G(a, u)) = (a, f(u)), f an isometry of h (cf. Proposition
10). Then G((h(a), εu)) = (h(a), εf(u)) = hε(G((a, u))). Therefore

G((a, u)A(hε,hε)(b, v)) = G((h(a), εu)(h(b), εv)) = G((h(a), εu))G((h(b), εv))

= G((a, u))A(hε,hε)G((b, v))

and so G ∈ Aut(A(hε,hε)). The argument is analogous for the other cases. �
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From now on let

F = R and (A, ·) = (Cay(C,C3, c〈1, 1, 1〉), ·)

with c ∈ C×. In the following, we will show that the non-unital algebras A, A(hε,hε), A(h̄ε,h̄ε),
A(h1,id) and A(id,h1) fit into multiplication Table 1 and that equation (∗) is not satisfied for
any of them. Therefore we know by [B-O2] and [Do-Z2, Proposition 4.3]:

Theorem 16. The algebras A = (Cay(C,C3, c〈1, 1, 1〉), A(hε,hε), A(h̄ε,h̄ε), A(h1,id) and
A(id,h1) all have derivation algebra isomorphic to su(3) and automorphism group isomor-
phic to SU(3). They are the direct sum of two irreducible 1-dimensional modules and an
irreducible 6-dimensional module.

Unless stated otherwise, define the vectors u = c, v = ic, z1, . . . , z6 as above. We fix
the following notation: Let c = x + iy with x, y ∈ R, y 6= 0. Let h ∈ Gl(U) such that
h(u) = α+ iβ and h(v) = δ+ iγ, α, β, δ, γ ∈ R. Let c′ = x′+ iy′ with x′, y′ ∈ R, y′ 6= 0. Let
h′ ∈ Gl(U) such that h′(c′) = α′ + iβ′ and h′(v) = δ′ + iγ′, α′, β′, δ′, γ′ ∈ R.

4.1. The algebra A(hε,hε) fits into Table 1

(0, zi)A(hε,hε)(0, zj) = (0, (εzi)× (εzi)) = (0, zi) · (0, zj)

the 6× 6-matrix in the lower right hand corner of the multiplication table remains the same
as for (A, ·). We obtain the following structure constants:

η1 =
2αβy + (α2 − β2)x

x2 + y2
, η2 = η3 =

(αγ + βδ)y + (αδ − βγ)x
x2 + y2

, η4 =
2δγy + (δ2 − γ2)x

x2 + y2

θ1 = − (α2 − β2)y − 2αβx
x2 + y2

, θ2 = θ3 = − (βγ − αδ)y + (αγ + βδ)x
x2 + y2

, θ4 =
(γ2 − δ2)y + 2δγx

x2 + y2
,

σ1 = εα, σ2 = εβ, σ3 = εδ, σ4 = εγ,

τ1 = εα, τ2 = −εβ, τ3 = εδ, τ4 = −εγ.
The vectors u, v span the subalgebra C(h,h). The algebra generated by u, v, z1, z3 is the
subalgebra Cay(C,−c)(hε,hε). Using [Do-Z2, Proposition 4.4] we conclude:

Cay(C,C3, c〈1, 1, 1〉)(hε,hε) ∼= Cay(C,C3, c′〈1, 1, 1〉)(h′ε,h
′
ε)

implies that (α, β, δ, γ) = (α′, β′, δ′, γ′) or (α, γ) = (α′, γ′), and (β, δ) = −(β′, δ′). More
precisely, we have

Cay(C,C3, c〈1, 1, 1〉)(hε,hε) ∼= Cay(C,C3, c′〈1, 1, 1〉)(h′ε,h
′
ε)

if and only if all the corresponding structure constants are equal, or (α, γ) = (α′, γ′), (β, δ) =
−(β′, δ′) and

2αβy + (α2 − β2)x
x2 + y2

=
−2αβy′ + (α2 − β2)x′

x′2 + y′2
,

(αγ + βδ)y + (αδ − βγ)x
x2 + y2

= − (αγ + βδ)y′ + (−αδ + βγ)x′

x′2 + y′2
,

2δγy + (δ2 − γ2)x
x2 + y2

=
−2δγy′ + (δ2 − γ2)x′

x′2 + y′2
,

− (α2 − β2)y − 2αβx
x2 + y2

=
(α2 − β2)y′ + 2αβx′

x′2 + y′2
,
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− (βγ − αδ)y + (αγ + βδ)x
x2 + y2

= − (−βγ + αδ)y′ + (αγ + βδ)x′

x′2 + y′2
,

− (δ2 − γ2)y − 2δγx
x2 + y2

=
(δ2 − γ2)y′ + 2δγx′

x′2 + y′2
.

We call this last set of equalities Property (A) for further reference.

Example 17. The vectors u, v span the para-quadratic subalgebra C( , ) of the division
algebra (Cay(C,C3, c〈1, 1, 1〉)(σε,σε). The algebra generated by u, v, z1, z3 is the subalgebra
Cay(C,−c)(σε,σε). For c = x+ iy, c′ = x′ + iy′,

Cay(C,C3, c〈1, 1, 1〉)(σε,σε) ∼= Cay(C,C3, c′〈1, 1, 1〉)(σε,σε)

if and only if c′ = c or c′ = c̄.

Moreover,

(Cay(C,C3, c〈1, 1, 1〉)(σ−1,σ−1)) 6∼= (Cay(C,C3, c〈1, 1, 1〉)(σ1,σ1))

for all x 6= 0 and

(Cay(C,C3, c〈1, 1, 1〉)(σ−1,σ−1)) 6∼= (Cay(C,C3, c′〈1, 1, 1〉)(σ1,σ1))

for all c, c′ with (x, x′) 6= (0, 0) [Do-Z2, Proposition 4.4]. For c = iy, however, all structure
constants are equal, thus

(Cay(C,C3, iy〈1, 1, 1〉)(σ−1,σ−1)) ∼= (Cay(C,C3, iy〈1, 1, 1〉)(σ1,σ1)).

By applying [Do-Z2, Proposition 4.4], it is straightforward to also investigate possible iso-
morphisms between the algebras constructed in the following.

4.2. The algebra A(h̄ε,h̄ε) fits into Table 1: We have

z1 = z1, z2 = z2, z3 = −z3, z4 = z4, z5 = −z5, z6 = −z6.

To assure that the 6 × 6-matrix in the lower right hand corner of the multiplication table
remains the same as for (A, ·), we change the basis as follows: u = c, v = −ic, z1, z2 and z4

as before and
z3 → −z3, z5 → −z5, z6 → −z6.

We then obtain the following structure constants:

η1 =
2αβy + (α2 − β2)x

x2 + y2
, η2 = η3 = − (αγ + βδ)y + (αδ − βγ)x

x2 + y2
, η4 =

2δγy + (δ2 − γ2)x
x2 + y2

,

θ1 = − (α2 − β2)y − 2αβx
x2 + y2

, θ2 = θ3 =
(βγ − αδ)y + (αγ + βδ)x

x2 + y2
, θ4 =

(γ2 − δ2)y + 2δγx
x2 + y2

,

σ1 = τ1 = εα, σ2 = −εβ, τ2 = εβ, σ3 = τ3 = εδ τ4 = −σ4 = εγ.

Using [Do-Z2, Proposition 4.4] we obtain:

Cay(C,C3, c〈1, 1, 1〉)(h̄ε,h̄ε) ∼= Cay(C,C3, c′〈1, 1, 1〉)(h̄′ε,h̄
′
ε)

implies that α = α′ and γ = γ′ and (β, δ) = (β′, δ′) or (β, δ) = (−β′,−δ′). More precisely,
we have

Cay(C,C3, c〈1, 1, 1〉)(h̄ε,h̄ε) ∼= Cay(C,C3, c′〈1, 1, 1〉)(h̄′ε,h̄
′
ε)

if and only if all the corresponding structure constants are equal, or Property (A) holds.
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Example 18. Let µ : A→ A be defined by

µδ((a, u)) = (ā, ū).

This yields the following structure constants:

η1 =
x(x2 − 3y2)
x2 + y2

= −η4, η2 = η3 = −y(y2 − 3x2)
x2 + y2

,

θ1 =
y(y2 − 3x2)
x2 + y2

= −θ4, θ2 = θ3 =
x(x2 − 3y2)
x2 + y2

,

σ1 = −σ4 = τ1 = τ4 = x, σ2 = −τ2 = σ3 = τ3 = y.

For c = x+ iy, c′ = x′ + iy′,

Cay(C,C3, c〈1, 1, 1〉)(µ,µ) ∼= Cay(C,C3, c′〈1, 1, 1〉)(µ,µ)

if and only if c′ = c or c′ = c̄. The vectors u, v span the para-quadratic subalgebra C( , ).

Remark 19. It is likely that indeed all Albert isotopes A(f,f), where f = (f1, f2) ∈ Gl(V )
with f1 ∈ Gl(U), f2 ∈ Gl(W ), have a multiplicative structure which fits into Table 1. The
subalgebra C(f1,f1) always fits into the upper left 2× 2 matrix in the table. Since

(0, zi)A(f,f)(0, zj) = (0, f(zi)× f(zj)) = (0, f(zi)) ·A (0, f(zj))

the 6 × 6-matrix in the lower right hand corner of the multiplication table remains the
same as for (A, ·), provided we change part of the basis of A from f(z1), . . . , f(z6) back to
z1, . . . , z6. However, we do not see at this point how to prove this.

4.3. The algebra A(h1,id) fits into multiplication table (4.2) in [B-O2]: Since

(0, zi)A(h1,id)(0, zj) = (0, (zi)× (zj)) = (0, zi) ·A (0, zj)

the 6× 6-matrix in the lower right hand corner of the multiplication table remains the same
as for (A, ·). We have the following structure constants:

η1 = α, η2 = −β, η3 = δ, η4 = −γ,

θ1 = β, θ2 = α, θ3 = γ, θ4 = δ,

σ1 = α, σ2 = β, σ3 = δ, σ4 = γ, τ1 = x = −τ4, τ2 = τ3 = −y.
The vectors u, v span the subalgebra C(h,id). Using [Do-Z2, Proposition 4.4] we obtain:

Cay(C,C3, c〈1, 1, 1〉)(h1,id) ∼= Cay(C,C3, c′〈1, 1, 1〉)(h′1,id)

if and only if all the corresponding structure constants are equal, or if (x, α, γ) = (x′, α′, γ′)
and (y, β, δ) = −(y′, β′, δ′).

Example 20. The algebra A(σ1,id) has the structure constants

η1 = x = η4, η2 = y = −η3, θ1 = −y = θ4, θ2 = x = −θ3,

σ1 = x = −σ4, σ2 = −y = σ3, τ1 = x = −τ4, τ2 = τ3 = −y.
The vectors u, v span the left quadratic subalgebra C( ,id). For c = x+ iy, c′ = x′ + iy′,

Cay(C,C3, c〈1, 1, 1〉)(σ1,id) ∼= Cay(C,C3, c′〈1, 1, 1〉)(σ1,id)

if and only if c′ = c or c′ = c̄.
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4.4. The algebra A(id,h1) fits into Table 1:

η1 = α, η2 = δ, η3 = −β, η4 = −γ, θ1 = β, θ2 = γ, θ3 = α, θ4 = δ,

σ1 = x, σ2 = y, σ3 = −y, σ4 = x, τ1 = α, τ2 = −β, τ3 = δ, τ4 = −γ.

The vectors u, v span the subalgebra C(id,h). Using [Do-Z2, Proposition 4.4] we obtain:

Cay(C,C3, c〈1, 1, 1〉)(id,h1) ∼= Cay(C,C3, c′〈1, 1, 1〉)(id,h′1)

if and only if all the corresponding structure constants are equal, or if (x, α, γ) = (x′, α′, γ′)
and (y, β, δ) = −(y′, β′, δ′). We note that A(h1,id) = A(id,(h−1)1).

Remark 21. (i) The algebra A(h−1,id) does not seem to fit into Table 1 since

(0, zi) ? (0, zj) = (0, (−zi)× (zj)) = −(0, zi) ·A (0, zj).

Therefore the 6 × 6-matrix in the lower right hand corner of the multiplication table does
not remain the same as for (A, ·). It is not clear if a change of basis might change this.
The same observation applies to the algebra A(id,h−1) = A((h−1)−1,id) and to the algebras
A(h̄−1,id) and A(id,h̄−1).
(ii) The algebras A(h̄1,id) and A(id,h̄1) fit into Table 1 by changing the basis as in 4.2. We
leave it to the reader to compute their structure constants if desired.
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