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Abstract. We classify two classes of B2-graded Lie algebras which
have a second compatible grading by an abelian group Λ: (a) Λ-graded-
simple, Λ torsion-free and (b) division-Λ-graded. Our results describe
the centreless cores of a class of affine reflection Lie algebras, hence
apply in particular to the centreless cores of extended affine Lie alge-
bras, the so-called Lie tori, for which we recover results of Allison-Gao
and Faulkner. Our classification (b) extends a recent result of Benkart-
Yoshii.

Both classifications are consequences of a new description of Jordan
algebras covered by a triangle, which correspond to these Lie algebras
via the Tits-Kantor-Koecher construction. The Jordan algebra classi-
fications follow from our results on graded-triangulated Jordan triple
systems. They generalize work of McCrimmon and the first author as
well as the Osborn-McCrimmon-Capacity-2-Theorem in the ungraded
case.

Introduction

This paper deals with two related algebraic objects, Lie algebras graded
by the root system B2 and Jordan structures (algebras, triple systems and
pairs), covered by a triangle of idempotents, respectively tripotents. Its aim
is to classify the graded-simple structures in these categories.

On the Lie algebra side, the motivation for this paper comes from the the-
ory of extended affine Lie algebras, which generalize affine Lie algebras and
toroidal Lie algebras ([AABGP]), and the even more general affine reflection
Lie algebras ([N5]):

affine LA ⊂ extended affine LA ⊂ affine reflection LA
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As explained in [N5, §6], an important ingredient in their structure theory
is the centreless core, whose structure is, respectively, as follows:

un/twisted loop algebra ⊂ centreless Lie torus
⊂ centreless predivision-root-graded Lie algebra

In fact, in the extended affine case one gets all algebras by a well-defined ex-
tension process from centreless Lie tori ([N4]). The predivision-root-graded
Lie algebras are naturally viewed as special types of Lie algebras graded
by a not necessarily reduced irreducible root system R. Their structure is
known in more or less precise terms with the precision increasing with the
rank of R, see [N5, 5.10] for a summary. One of the most complicated and
mysterious case is R = B2, studied in this paper.

Let ∆ be the root system B2 and put R = ∆∪ {0} (clarification: 0 /∈ ∆).
Also, let Λ be an abelian group. We consider Lie algebras defined over a
ring k with 1

2 and 1
3 ∈ k which have a decomposition

(RG1) L =
⊕

α∈R, λ∈Λ Lλ
α with [Lλ

α, Lµ
β] ⊂ Lλ+µ

α+β (= 0 if α + β 6∈ R), satis-
fying

(RG2) L0 =
∑

α∈∆[Lα, L−α].

We call 0 6= e ∈ Lλ
α, α ∈ ∆, invertible if there exists f ∈ L−λ

−α such that h =
[e, f ] acts on xβ ∈ Lµ

β, β ∈ R, as [h, xβ] = 〈β, α∨〉xβ for 〈β, α∨〉 the Cartan
integer of α, β ∈ R. This perhaps unusual definition is justified by examples,
in which invertible elements correspond to invertible elements in coordinate
algebras, and by the following definitions. A Lie algebra satisfying (RG1)
and (RG2) is called

- B2-graded with a compatible Λ-grading if every L0
α, α ∈ ∆, contains

an invertible element,
- B2-graded-simple if L is R-graded with a compatible Λ-grading and

if {0} and L are the only Λ-graded ideals of L,
- predivision-B2-graded if L is R-graded with a compatible Λ-grading

and every 0 6= Lλ
α, α ∈ ∆, contains an invertible element,

- division-B2-graded if L is R-graded with a compatible Λ-grading and
every nonzero element in Lλ

α, α ∈ ∆, is invertible,
- a Lie torus of type B2 if k is a field, L is division-B2-graded and

dimk Lλ
α ≤ 1 for all α ∈ ∆.

The reader will certainly know at least 3 examples of B2-graded Lie alge-
bras, say for simplicity over a field of characteristic 6= 2, 3:

(I) special linear Lie algebras sl2n(k) = sl2(Matn(k)),
(II) symplectic Lie algebras spn(k) = sp2(Matn(k)) (here R = C2 is more

natural),
(III) orthogonal Lie algebras o(Q) of a nondegenerate quadratic form Q on

an odd-dimensional quadratic space with base point and containing
a hyperbolic plane.
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All of these are simple Lie algebras. Our first classification result says that,
up to central extensions and allowing graded-simple coordinates, these are
all examples in the graded-simple case with Λ torsion-free:

Theorem A (Th. 7.12) Let Λ be torsion-free and let L be a Lie algebra
over a ring k containing 1

2 and 1
3 . Then L is centerless B2-graded-simple if

and only if L is graded isomorphic to
(I) sl4(A)/Z

(
sl4(A)

)
where sl4(A) = {X ∈ gl4(A) : tr(X) ∈ [A,A]},

and A is a graded-simple associative k-algebra,
(II) sp2(A, π)/Z(sp2(A, π)) for A as in (I) with involution π,

(III) an elementary orthogonal Lie algebra eo(Q) where Q is a graded-
nondegenerate quadratic form with base point and containing a hy-
perbolic plane over a graded-field.

We point out that even the case Λ = {0} was not explicitly known before,
although it could have been derived from [MN]. Also, in the application to
affine reflection Lie algebras and their centreless core our assumption on Λ
is fulfilled.

Our second classification result (Th. 7.13) is parallel to Th. A: It allows
an arbitrary Λ but assumes that the Lie algebra L is centreless and division-
B2-graded. In this setting, case (I) disappears, the algebra A in (II) is
division-graded and Q in (III) is graded-anisotropic. In characteristic 0 this
result has also been obtained by Benkart-Yoshii [BY, Th. 4.3] using different
methods and giving a less precise description of the Lie algebras. We can
easily derive from our results a classification of centreless Lie tori of type
B2.

Corollary (Cor. 7.14) A Lie algebra L is a centreless Lie torus of type
B2 if and only if L is graded isomorphic to one of the following:

(I) a symplectic Lie algebra sp2(A, π) for A a noncommutative associa-
tive torus with involution π, or to

(II) an elementary orthogonal Lie algebra eo(Q) for Q a graded-anisotro-
pic quadratic form over an associative torus with the same properties
as Q in (III) of Th. A.

Again in characteristic 0 this has also been obtained by Benkart-Yoshii
[BY, Th. 5.9]. For k = C and Λ = Zn, the Lie tori classification is due
to Allison-Gao [AG]. A different approach to this (again for Λ = Zn) has
recently been worked out by Faulkner [F] in the context of his classification
of BC2 Lie tori. We obtain the Lie algebra results as a consequence of our
results on so-called triangulated Jordan structures, using the Tits-Kantor-
Koecher construction.

This brings us to the second goal for this paper, the classification of
graded-simple-triangulated Jordan structures, which seems to be a timely
undertaking in the light of the recent growing interest in graded Jordan
structures. We restrict ourselves here to Jordan algebras, for which the
results are easier to state. A quadratic unital Jordan algebra J is called
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graded-triangulated if J =
⊕

λ∈Λ Jλ is graded by some abelian group Λ and
contains two supplementary orthogonal idempotents e1, e2 ∈ J0 strongly
connected by some u ∈ J2(e1) ∩ J2(e2) ∩ J0. Of course, graded-simple-
triangulated means graded-simple and graded-triangulated.

To put our results into perspective, let us point out that already the case
Λ = {0} is nontrivial: The “Osborn-McCrimmon-Capacity-2-Theorem” ([J,
6.3], [M2, 22.2]), which classifies simple Jordan algebras of capacity 2 (=
simple triangulated Jordan algebras with division diagonal Peirce spaces)
is the most complicated piece of the classification of simple Jordan alge-
bras with capacity, and a cornerstone of the classification of simple Jordan
algebras. The well-known result is that there are three types of simple tri-
angulated Jordan algebras, namely the Jordan algebra analogues of the Lie
algebras (I)-(III) above: (I) Matrix algebras Mat2(A) for A simple associa-
tive, (II) hermitian matrix algebras H2(A,A0, π) for A as in (I) and (III)
Jordan algebras associated to a nondegenerate quadratic form, nowadays
called Clifford Jordan algebras. In complete analogy to Th. A we show that
for a torsion-free Λ this remains true in the graded-simple setting if one
replaces the simple coordinates by graded-simple coordinates:

Theorem B (Th. 6.3.b) A triangulated quadratic Jordan algebra J which
is graded-simple with respect to a grading by a torsion-free abelian group Λ
is graded isomorphic to one of the following Jordan algebras:

(I) full matrix algebra Mat2(B) for a noncommutative graded-simple as-
sociative unital B;

(II) hermitian matrices H2(A,A0, π) for a graded-simple noncommutati-
ve A with ample subspace A0 and graded involution π;

(III) Clifford Jordan algebra ACalg(q, F, F0) for a graded-nondegenerate q
over a graded-field F with Clifford-ample subspace F0.

Conversely, all Jordan algebras in (I)–(III) are graded-simple-triangulated.

As for Th. A, we prove a second classification result (Cor. 6.5) in which the
assumption on Λ is replaced by the condition that elements in the Peirce
space J12 are sums of invertible elements. And of course, there are also
corollaries for triangulated Jordan algebra tori, formulated in Cor. 6.6 for
Λ = Zn.

We have mentioned that the Lie algebra results follow from our results on
Jordan structures. So how do we prove, say, the Jordan algebra result? In
fact, we first prove the results for graded-simple-triangulated Jordan triple
systems by adapting the approach of [MN] to the graded-simple setting.
This paper deals with the case Λ = {0} and so generalizes the Osborn-
McCrimmon-Capacity-2-Theorem to Jordan triple systems. Once the triple
case has been established, we can derive the results for Jordan algebras and
Jordan pairs (Th 6.12, Cor. 6.14 and Cor. 6.15) by standard techniques.
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The paper is divided into seven sections. In the first two sections we es-
tablish the terminology, identities and general results about graded Jordan
triple systems and graded-triangulated Jordan triple systems, respectively,
that will be needed throughout the paper. Proofs in the first two sections
are mainly left to the reader since they are easy generalizations of the cor-
responding ungraded cases. In sections §3 and §4 we present our two basic
models for graded-triangulated Jordan triple systems, the hermitian matrix
and the Clifford systems and prove Coordinatization Theorems for both
of them. Section §5 is devoted to classifying graded-simple-triangulated
Jordan triple systems. As a corollary we obtain a classification of division-
triangulated Jordan triple systems (Cor. 5.12) and triangulated Jordan triple
tori (Cor. 5.13). These classification theorems are extended to Jordan alge-
bras and Jordan pairs in §6. Finally, in the last section, we apply our results
to Lie algebras.

Unless specified otherwise, all algebraic structures are defined over an
arbitrary ring of scalars, denoted k, and are assumed to be graded by an
abelian group Λ, written additively. We will use Loos’ Lecture Notes [L] as
our basic reference for Jordan triple systems and Jordan pairs.

1. Graded Jordan triple systems

This section introduces some basic notions of graded Jordan triple sys-
tems. For example we establish in Th. 1.4 that Peirce-2- and Peirce-0-spaces
of a degree 0 tripotent inherit graded-simplicity.

A k-module M is graded by Λ if M =
⊕

λ∈Λ Mλ where (Mλ : λ ∈ Λ)
is a family of k-submodules of M . In this case, we call M Λ-graded if the
support set suppΛ{λ ∈ Λ : Mλ 6= 0} generates Λ as an abelian group. Of
course, if M is graded by Λ, it is Ξ-graded for Ξ the subgroup generated by
suppΛ M . But it is usually more convenient to just consider graded modules
(and triple systems) as opposed to Λ-graded ones. We say that M is graded
if M is graded by some (unimportant) abelian group, which for simplicity
we assume to be Λ. A homogeneous element of a graded M is an element
of

⋃
λ∈Λ Mλ. If M =

⊕
λ∈Λ Mλ and N =

⊕
λ∈Λ Nλ are graded modules,

a k-linear map ϕ : M → N is said to be homogeneous of degree γ ∈ Λ if
ϕ(Mλ) ⊆ Nλ+γ for all λ ∈ Λ.

A Jordan triple system J with quadratic operator P and triple product
{., ., .} is graded by Λ if the underlying module is so, say J =

⊕
λ∈Λ Jλ,

and the family (Jλ : λ ∈ Λ) satisfies P (Jλ)Jµ ⊆ J2λ+µ and {Jλ, Jµ, Jν} ⊆
Jλ+µ+ν for all λ, µ, ν ∈ Λ. We will say that J is Λ-graded if J is graded by Λ
and the underlying module is Λ-graded. As for modules, we will simply speak
of a graded Jordan triple system if the grading group Λ is not important.

If J and J ′ are graded Jordan triple systems, a homomorphism ϕ : J → J ′
is said to be graded if it is homogeneous of degree 0. Correspondingly, a
graded isomorphism is a bijective graded homomorphism, and we say that
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J and J ′ are graded isomorphic, written as J ∼=Λ J ′, if there exists a graded
isomorphism between J and J ′.

Let J be a graded Jordan triple system. A subsystem M of J is called
graded if M =

⊕
λ∈Λ(M ∩ Jλ). If M is an arbitrary subsystem of J , the

greatest graded subsystem of J contained in M is Mgr =
⊕

λ∈Λ(M ∩Jλ). If
M is an ideal of J , then so is Mgr. We also note that the quotient of J by a
graded ideal is again graded with respect to the canonical quotient grading.
We call J graded-simple if P (J)J 6= 0 and every graded ideal is either 0 or
equal to J . We say that J is graded-prime if P (I)K = 0 for graded ideals
I,K of J implies I = 0 or K = 0, and graded-semiprime if P (I)I = 0 for
a graded ideal I implies I = 0. We denote by T (J) = {x ∈ J : P (x)J =
0} the set of trivial elements of J , and put T Λ(J) :=

⋃
λ∈Λ T λ(J), where

T λ(J) = T (J) ∩ Jλ. We say that J is graded-nondegenerate if T Λ(J) =
0. We note that if J is graded-nondegenerate, it is also graded-semiprime.
Finally, we say that J is graded-strongly prime if it is graded-prime and
graded-nondegenerate, and division-graded if it is nonzero and every nonzero
homogeneous element is invertible in J .

Recall that the McCrimmon radical M(J) of a Jordan triple system J
is the smallest ideal of J such that the quotient J/M(J) is nondegener-
ate [L, §4]. It can be constructed as follows: M(J) :=

⋃
αMα(J), where

M0(J) = 0, M1(J) is the ideal of J generated by the set of trivial elements
T (J) of J and, by using transfinite induction, the ideals Mα(J) are defined
by Mα(J)/Mα−1(J) = M1

(
J/Mα−1(J)

)
if α is a non-limit ordinal and

Mα(J) =
⋃

β<αMβ(J) for a limit ordinal α.

Definition 1.1. Let J be a graded Jordan triple system and let M(J) be
its McCrimmon radical. We define the graded-McCrimmon radical of J ,
denoted grM(J), as the greatest graded ideal contained in M(J), i.e.,

grM(J) := M(J)gr =
⊕

λ∈Λ

(
Jλ ∩M(J)

)
.

Thus grM(J) =
⊕

λ∈Λ grMλ(J) for grMλ(J) = Jλ∩M(J). The following
characterization is immediate from the definition, see [L, §4] for the ungraded
case.

Proposition 1.2. Let J be a graded Jordan triple system. Then the ho-
mogenous spaces grMλ(J) of grM(J) are grMλ(J) =

⋃
α(Mα(J) ∩ Jλ)

for Mα(J) as defined above. The graded-McCrimmon radical is the smallest
graded ideal of J such that the quotient J/grM(J) is graded-nondegenerate.

We will need the following result.

Proposition 1.3. (see [A], [KZ] for Λ = 0) If J is a graded-simple Jordan
triple system, then J is graded-nondegenerate.

Proof. We can suppose grM(J) = J . Hence grM(J) = M(J) = J . By [A],
[KZ] J is then locally nilpotent, i.e., every finitely generated subalgebra of J
is nilpotent. But this immediately leads to a contradiction. ¤
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Let e be a tripotent in a Jordan triple system J , i.e., P (e)e = e. We
thus have the Peirce decomposition of J with respect to e, written as J =
J2(e)⊕J1(e)⊕J0(e). If, in addition, J is graded and e ∈ J0, it is immediate
that that the Peirce spaces Ji(e), i = 0, 1, 2, are graded: Ji(e) =

⊕
λ∈Λ Jλ

i (e)
where Jλ

i (e) = Ji(e) ∩ Jλ.

Theorem 1.4. Let J be a graded-simple Jordan triple system with a tripo-
tent 0 6= e ∈ J0. Then the Peirce subsystem J2(e) is graded-simple and if
J0(e) 6= 0, then J0(e) is also graded-simple.

Proof. This can be proven in the same way as the ungraded result [M1, 3.8].
¤

2. Graded-triangulated Jordan triple systems

In this section we begin our study of graded-triangulated Jordan triple sys-
tems. We define the basic notations used throughout, present a list of mul-
tiplication rules, and discuss graded-nondegeneracy and graded-simplicity
(Prop. 2.23). Throughout J is a Jordan triple system, assumed to be graded
from Def. 2.11 on.

A triple of nonzero tripotents (u; e1, e2) is called a triangle if ei ∈ J0(ej),
i 6= j, ei ∈ J2(u), i = 1, 2, u ∈ J1(e1) ∩ J1(e2), and the following multi-
plication rules hold: P (u)ei = ej , i 6= j, and P (e1, e2)u = u. In this case,
e := e1 + e2 is a tripotent such that e and u have the same Peirce spaces.
The verification that (u; e1, e2) is a triangle is simplified by the Triangle
Criterion [N2, I.2.5], which says that as soon as u and e1 are tripotents
satisfying u ∈ J1(e1) and e1 ∈ J2(u) then (u; e1, P (u)e1) is a triangle.

A Jordan triple system with a triangle (u; e1, e2) is said to be triangulated
if J = J2(e1)⊕

(
J1(e1) ∩ J1(e2)

)⊕ J2(e2) which is equivalent to J = J2(e).
In this case, we will use the notation Ji = J2(ei) and M = J1(e1) ∩ J1(e2).
Hence

J = J1 ⊕M ⊕ J2.

For such a J the index i will always vary in {1, 2}, in which case j ∈ {1, 2}
is given by j = 3 − i. An arbitrary product P (x)y in J has the form
P (x1 + m + x2)(y1 + n + y2) = z1 + r + z2, where

zi = P (xi)yi + P (m)yj + {xi, n,m}, and
r = P (m)n + {x1, y1,m}+ {x2, y2,m}+ {x1, n, x2}.

Using Peirce multiplication rules and standard Jordan identities, most of
these products can be written in terms of the quadratic operators

Qi : M → Ji : m 7→ Qi(m) := P (m)ej ,

with linearizations Qi(m,n) = P (m,n)ej , the automorphism − : J → J

x 7→ x := P (e)x, e = e1 + e2,

and the bilinear maps Ji ×M → M defined by
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2.1. Ji ×M → M : (xi,m) 7→ xi ·m = L(xi)m := {xi, ei, m}.
Indeed we have [MN, 1.3.2-1.3.6]:

2.2. P (m)n = Qi(m, n) ·m−Qj(m) · n,

2.3. {m,n, xi} = Qi(m,xi · n) = {m,xi · n, ei},
2.4. {m,xi, n} = Qj(m,xi · n) = Qj(n, xi ·m),

2.5. {xi, yi,m} = xi · (yi ·m),

2.6. {xi,m, yj} = xi · (yj ·m) = yj · (xi ·m),

while P (xi)yi ∈ Ji and P (m)yi ∈ Jj cannot be reduced. Also [MN, 1.3.7]:

2.7. ei ·m = m and P (xi)yi ·m = xi ·
(
yi · (xi ·m)

)
,

Note that − has period 2 with ei = ei, stabilizes the Peirce subspaces Ji

and M and reduces to P (ei) on Ji and P (e1, e2) on M . We will also consider
the square of elements xi ∈ Ji defined as

2.8. x2
i := P (xi)ei.

Because of 2.7 we have L(xi)2 = L(x2
i ). We say that J is faithfully

triangulated or that u is faithful if any x1 ∈ J1 with x1 · u = 0 vanishes. We
will also need the traces

Ti(m) := Qi(u,m) = {u ej m},
and the map

∗ := P (e)P (u) = P (u)P (e),
which is an automorphism of J of period 2 such that u∗ = u, e∗i = ej , and
so J∗i = Jj . The following lemma is shown in the proof of [MN, 1.15] and
will be used later.

Lemma 2.9. Let J = J1 ⊕M ⊕ J2 be a triangulated Jordan triple system.
If z = z1 + m + z2 ∈ T (J), then zi ∈ T (Ji) and m ∈ Rad Qi for i = 1, 2
where Rad Qi = {m ∈ M : Qi(m) = 0 = Qi(m,M)}. Conversely, if m ∈
Rad Q1 ∪ Rad Q2, then P (m)M = 0 = P (P (m)Ji)J .

Definition 2.10. If M =
⊕

λ∈Λ Mλ and N =
⊕

λ∈Λ Nλ are graded modules
and Q : M → N is a quadratic map, we call Q graded if Q(Mλ) ⊆ N2λ and
Q(Mλ,Mν) ⊆ Nλ+ν , where Q(., .) is the bilinear form associated to Q.
Recall that the radical of Q is Rad Q = {m ∈ M : Q(m) = 0 = Q(m,M)}.
In our situation the graded-radical of Q, defined as

grRad Q :=
⊕

λ∈Λ {m ∈ Mλ : Q(m) = 0 = Q(m,M)},
will be more important. Naturally, we say that Q is graded-nondegenerate if
grRad Q = 0. It is easily seen that the submodule {m ∈ M : Q(m,M) = 0}
is graded. For any m =

∑
λ∈Λ mλ ∈ M satisfying Q(m,M) = 0, we have

Q(m) =
∑

λ∈Λ Q(mλ), where Q(mλ) ∈ N2λ. Hence grRad Q = Rad Q if
1
2 ∈ k or Λ does not have 2-torsion. In general, grRad Q is the greatest
graded submodule of Rad Q.
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Definition 2.11. A Jordan triple system J is said to be graded-triangulated
if J is graded by some abelian group Λ and triangulated by (u; e1, e2) ⊆
J0. We call a graded-triangulated J Λ-triangulated if suppΛ J = {λ ∈ Λ :
Jλ

i 6= 0 or Mλ 6= 0} generates Λ as abelian group. We call J graded-simple-
triangulated if J is graded-simple and graded-triangulated.

Let J be a graded-triangulated Jordan triple system. The grading group
of a graded-triangulated Jordan triple system will usually be denoted by
Λ. Observe that the Λ-grading is compatible with the Peirce decomposition:
The subsystems Ji and M are graded: Ji =

⊕
λ∈Λ Jλ

i and M =
⊕

λ∈Λ Mλ,
the quadratic operators Qi and the automorphisms ∗ and − are graded.

As before we let (u; e1, e2) be the triangle inducing the triangulation. The
product formulas 2.2-2.6 show that a graded linear subspace K = K1⊕N ⊕
K2 with Ki ⊆ Ji, N ⊆ M , is a graded subsystem if

2.12. Ki = Ki, N = N, P (Ki)Ki ⊆ Ki, P (N)Ki ⊆ Kj and Ki ·N ⊆ N .

As in [MN], we denote by C the subalgebra of Endk(M) generated by

C0 = L(J1) =
⊕

λ∈Λ L(Jλ
1 ),

and we say that u is C-faithful if cu = 0 implies c = 0. It is easily seen
that EndΛ

k (M) :=
⊕

λ∈Λ Endλ
k(M), where Endλ

k(M) = {ϕ ∈ Endk(M) :
ϕ(Mγ) ⊆ Mγ+λ for all γ ∈ Λ}, is a subalgebra of Endk M which is graded by
Λ. Note that L(Jλ

i ) ∈ Endλ
k(M). Hence C0 is a graded submodule, and this

implies that C is a graded subalgebra of EndΛ
k (M), i.e., C =

⊕
λ∈Λ Cλ where

Cλ = C ∩ Endλ
k(M). We have that L(x1) := L(x1) = P (e)L(x1)P (e) ∈ C0.

Therefore c 7→ c = P (e)cP (e)|M defines an automorphism on C of period 2,
which is graded. Moreover, L : J1 → C0, x1 7→ L(x1) is a nonzero graded
specialization with respect to P (c0)d0 = c0d0c0 ∈ C0, for c0, d0 ∈ C0. By
[MN, 1.6.6], C has a reversal involution π, i.e.,

2.13.
(
L(x1) · · ·L(xn)

)π = L(xn) · · ·L(x1).

It easily follows from 2.4 that

2.14. Q2(cm, n) = Q2(m, cπn).

It is clear from 2.13 that π is homogeneous of degree 0 and commutes
with the automorphism − of C. Moreover, C0 = C0 ⊆ H(C, π) is an ample
subspace of (C, π), i.e., 1 ∈ C0 and cC0c

π ⊆ C0 for all c ∈ C. Indeed, for
c ∈ C, x1 ∈ J1, we have by [MN, 1.6.9]

2.15. cL(x1)cπ = L(P (cu)P (u)x1).

Besides the formulas already mentioned we will use the following identities
proven in [MN, 1.6.8, 1.6.11, 1.6.2, 1.6.3, 1.6.10, 1.6.12, 1.6.14]. For c ∈ C,
m ∈ M and xi ∈ Ji we have

2.16. c + cπ = L
(
T1(cu)

)
,
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2.17. Q2(cu,m) = T2(cπm),

2.18. Ti(m)∗ = Tj(m∗) = Tj(m) and Qi(m)∗ = Qj(m∗),

2.19. m∗ = Ti(m) · u−m,

2.20. (cu)∗ = c∗u = cπu and hence cc∗u = c∗cu, where c∗ = P (u)cP (u).
Note that C∗ is the subalgebra of Endk(M) generated by L(J2).

2.21. (x∗i − xi) ·m =
(
Ti(m) · xi − Ti(xi ·m)

) · u = −Γi(xi;m)u,

where Γi(xi; m) := L
(
Ti(xi ·m)

) − L
(
Ti(m)

)
L(xi). Observe that Γi(xi; m)

is linear in the two variables.

2.22.

Γ1(x1; m)Γ1(x1;m)πm = L
(
Q2(m)

)
[L(x1), Γ1(x1; m)]u

+ L(x1)[L
(
Q1(m)

)
, L(x1)]m + [L(x1), L(P (m)P (u)x1)]m ∈ Cu.

The following proposition is a straightforward generalization of the cor-
responding result for Λ = 0 [MN, 1.15]. Its proof, which uses Prop. 1.3,
Th. 1.4 and Lem. 2.9, will be left to the reader.

Proposition 2.23. Let J be a graded-triangulated Jordan triple system.
Then

(i) J is graded-nondegenerate iff J1 and Q1 are graded-nondegenerate,
iff J2 and Q2 are graded-nondegenerate. In this case, J is faithfully
triangulated.

(ii) J is graded-simple iff J1 is graded-simple and Q1 is graded-nondegene-
rate, iff J2 is graded-simple and Q2 is graded-nondegenerate.

Definition 2.24. A graded-triangulated Jordan triple system J is called
division-triangulated if the Jordan triple systems Ji, i = 1, 2, are division-
graded and if every homogeneous 0 6= m ∈ M is invertible in M , equivalently
in J . We call J division-Λ-triangulated if J is division-triangulated and Λ-
triangulated. Thus, suppΛ J = {λ ∈ Λ : Jλ

i 6= 0 or Mλ 6= 0} generates Λ as
abelian group.

Any division-triangulated Jordan triple system is in particular graded-
simple. Since e1+e2 is invertible, an off-diagonal element m ∈ M is invertible
iff P (m)(e1 + e2) = Q1(m)⊕Q2(m) is invertible in J which is equivalent to
both Qi(m) being invertible in Ji.

Let k be a field. A triangulated Jordan triple torus is a division-triangu-
lated Jordan triple system J = J1 ⊕ M ⊕ J2 for which dimk Jλ

i ≤ 1 and
dimk Mλ ≤ 1 for all λ ∈ Λ. We call such a Jordan triple system a Λ-
triangulated Jordan triple torus if J is division-Λ-triangulated.

We will use the same approach to define “tori” and Λ-tori in other cate-
gories: associative algebras (3.10), Jordan algebras (6.4), Jordan pairs (6.13)
and Lie algebras (7.3), and we will see in §7 the connection between them:
Λ-triangulated Jordan structures coordinatize B2-Lie tori, which is our prin-
cipal motivation for studying them.
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For the next lemma we recall that a subset S ⊂ Λ is called a pointed
reflection subspace if 0 ∈ S and 2S − S ⊂ S, see for example [NY, 2.1],
where it is also shown that any pointed reflection subspace is a union of
cosets modulo 2Z[S], including the trivial coset 2Z[S]. Here Z[S] denotes
the Z-span of S. In particular, a pointed reflection subspace is in general
not a subgroup.

Lemma 2.25. Let J be a division-Λ-triangulated Jordan triple system . Put

L = suppΛ J1 = suppΛ J2 and S = suppΛ M.

Then L and S are pointed reflection subspaces of Λ satisfying

L+ 2S ⊂ L and L+ S ⊂ S. (2.1)

Proof. We have suppΛ J1 = suppΛ J2 by applying the invertible operator
P (u) to Ji. That L and S are pointed reflection spaces is a general fact which
is true for any division-graded Jordan triple system J =

⊕
λ∈Λ Jλ with J0 6=

0: We have, with obvious notation, (yµ)−1 ∈ J−µ, whence P (xλ)(yµ)−1 ∈
J2λ−µ. The formulas in (2.1) follow from P (mλ)xµ

1 ∈ J2λ+µ
2 and invertibility

of L(xλ
1) on M . ¤

Remark 2.26. The relations (2.1) are well-known from the theory of extended
affine root systems of type B2 ([AABGP, II]), or more generally, the theory
of extension data for affine reflection systems ([LN2]). This is of course no
accident in view of the connections between triangulated Jordan structures
and B2-graded Lie algebras, explained in §7.

3. Hermitian matrix systems

In this section we introduce the first of the two basic models for our paper,
the hermitian matrix system (Def. 3.1), and we characterize them within the
class of all triangulated Jordan triple systems in Th. 3.3. We then describe
the graded ideals of a hermitian matrix system (Prop. 3.5), which allows
us to describe the graded-(semi)prime and graded-simple hermitian matrix
systems (Cor. 3.6 and Prop. 3.9). Finally, in Lem. 3.12 we describe the
division-triangulated and tori among the hermitian matrix systems.

Definition 3.1. Hermitian matrix systems H2(A,A0, π,−). Recall [MN,
§2] that an (associative) coordinate system (A,A0, π,−) consists of a unital
associative k-algebra A with involution π and an automorphism − of period
2 commuting with π, together with a − stable π-ample subspace A0, i.e.,
A0 = A0 ⊆ H(A, π), 1 ∈ A0 and aa0a

π ⊆ A0 for all a ∈ A and a0 ∈ A0.
We will call such a coordinate system graded by Λ if A =

⊕
λ∈Λ Aλ is

graded, π and − are homogeneous of degree 0 and A0 is a graded submodule:
A0 =

⊕
λ∈Λ Aλ

0 for Aλ
0 = A0 ∩Aλ.

To a graded coordinate system (A,A0, π,− ) we associate the hermitian
matrix system H = H2(A,A0, π,− ) which by definition is the Jordan triple
system of 2 × 2-matrices over A which are hermitian (X = Xπt) and have
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diagonal entries in A0, with triple product P (X)Y = XY
πt

X = XY X,
t = transpose. The Jordan triple system H2(A, A0, π,− ) is spanned by
elements

aλ
0 [ii] = aλ

0Eii and aγ [12] = aγE12 + (aγ)πE21 = (aγ)π[21],

aγ ∈ Aγ , aλ
0 ∈ Aλ

0 . Such a system is graded by Λ: H =
⊕

λ∈Λ Hλ where
Hλ = span{aλ

0 [ii], aλ[12] : aλ
0 ∈ Aλ

0 , aλ ∈ Aλ}, and graded-triangulated by
(u = 1[12]; e1 = 1[11], e2 = 1[22]) ∈ H0. Note that the automorphisms −
and ∗ of H defined in §2 are

a0[11] + a[12] + b0[22] = a0[11] + a[12] + b0[22],
(a0[11] + a[12] + b0[22])∗ = b0[11] + aπ[12] + a0[22].

We say that H is diagonal if the diagonal coordinates A0 generate all coordi-
nates A. In this case, the involution π is the reversal involution with respect
to A0, i.e., π(a1 · · · an) = an · · · a1 for ai ∈ A0.

Example 3.2. As an example, suppose A = B¢Bop is a direct algebra sum
of an associative graded algebra B and its opposite algebra Bop and that π
is the exchange involution (b1, b2) 7→ (b2, b1) of A. (Here and in the following
¢ denotes the direct sum of ideals.) Then necessarily A0 = {(b, b) : b ∈ B}
and H2(A,A0, π,− ) is canonically isomorphic to Mat2(B), the 2×2-matrices
over B, with Jordan triple product Pxy = xȳx or Pxy = xȳtx depending on
the automorphism − of A. Namely, we have the first case if (b1, b2) = (b̄1, b̄2)
where b 7→ b̄ is an automorphism of B of period 2, and we have the second
case if (b1, b2) = (bι

2, b
ι
1) where b 7→ bι is an involution of B.

Within triangulated Jordan triple systems, the hermitian matrix systems
can be characterized as follows.

Theorem 3.3. triangulated hermitian coordinatization theorem.
([MN, 2.4] for Λ = 0) For any graded Jordan triple system J = J1⊕M ⊕ J2

which is faithfully triangulated by (u; e1, e2), the graded subsystem

Jh = J1 ⊕ Cu⊕ J2,

where C denotes the subalgebra of Endk(M) generated by C0 = L(J1), is
graded-triangulated by (u; e1, e2) and graded isomorphic to the diagonal her-
mitian matrix system H = H2(A, A0, π,− ) under the map

x1 ⊕ cu⊕ x2 7→
(

L(x1) c
cπ L(x∗2)

)

for A = C|Cu, A0 = C0|Cu, cπ as in 2.13, and c = P (e) ◦ c ◦ P (e)|Cu.
The above isomorphism maps the triangle (u; e1, e2) of J onto the standard
triangle (1[12]; 1[11], 1[22]) of H. We have J = Jh as graded triple systems
if and only if M = Cu.

Proof. If J is a graded-triangulated Jordan triple system, then (A,A0, π,− ),
for A = C|Cu, A0 = C0|Cu, dπ as in 2.13 and d = P (e) ◦ d ◦ P (e), is
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a graded coordinate system. Since A0 generates A, H2(A,A0, π,− ) is a
diagonal hermitian matrix system. Also, by definition, Jh is graded.

Now it follows from [MN, 2.4] that Jh is a subsystem of J isomorphic to
H2(A,A0, π,− ) under the map

x1 ⊕ cu⊕ x2 7→
(

L(x1) c
cπ L(x∗2)

)
,

which is clearly a graded isomorphism (recall that (Jλ
i )∗ = Jλ

j ). That the
isomorphism preserves the triangles is clear. Also by [MN, 2.4], we have
that Jh = J if and only if M = Cu. ¤

Let A be a graded algebra and let S be a set of endomorphisms of A
preserving the grading. We call I a graded ideal of (A,S) if I is a graded
ideal left invariant by all s ∈ S. If P is a property of an algebra defined
in terms of ideals we will say that (A,S) is graded-P if P holds for all
graded ideals of (A,S). We will apply this for P=graded-(semi)prime and
P=graded-simple. For S = {π,− } as above we will determine the graded-
simple (A, S)-structures in Prop. 3.7. Here we only note:

Remark 3.4. If S is a finite semi-group consisting of automorphisms or in-
volutions of a graded associative algebra A, then (A, S) is graded-semiprime
if and only if A is graded-semiprime. Indeed, if I is a graded ideal of A with
I2 = 0 then Î =

∑
s∈S s(I) is an S-invariant graded ideal of A with În = 0

for n > |S|. Hence Î = 0 and so also I = 0.

Proposition 3.5. Let H = H2(A,A0, π,− ) be a hermitian matrix system.
Then the graded ideals of H are exactly the submodules

H2(B, B0) = B0[11]⊕B[12]⊕B0[22]

for (π,− )-invariant graded submodules B0 ⊆ A0 and B ⊆ A such that for
a ∈ A, a0 ∈ A0, b ∈ B, and b0 ∈ B0,

(1) ba + bπaπ, ba0b
π, and ab0a

π lie in B0,
(2) ab0, a0b, aba, and bab lie in B.

In particular,
(i) if B is a graded ideal of (A, π,− ), then H2(B, B ∩ A0) is a graded

ideal of H2(A,A0, π,− ), and, conversely,
(ii) if (A, π,− ) is graded-semiprime and H2(B, B0) is a nonzero graded

ideal of H2(A,A0, π,− ), then there exists a nonzero graded ideal I
of (A, π,− ) such that H2(I, I0) ⊆ H2(B, B0), for I0 = I ∩B0.

Proof. This easily follows from the case Λ = 0 which is proven in [MN, 2.7].
¤

As a consequence, we have the following corollary whose proof is again
omitted since it is based on a standard argument.

Corollary 3.6. ([MN, 2.7(5), 2.11] for Λ = 0) Let H = H2(A,A0, π,− ) be a
hermitian matrix system. Then
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(i) H is graded-simple iff (A, π,− ) is graded-simple.
(ii) The following are equivalent:

(a) H is graded-nondegenerate,
(b) H is graded-semiprime,
(c) (A, π,− ) is graded-semiprime,
(d) A is graded-semiprime.

(iii) H is graded-prime iff (A, π,− ) is graded-prime.

Because of Cor. 3.6(i) it is of interest to determine the graded-simple
coordinate systems (A, π,− ). This can be done without assuming that A is
associative.

Proposition 3.7. Let A be an arbitrary, not necessarily associative, graded
algebra with commuting involution π and automorphism − of order 2, which
are homogeneous of degree 0. Then the graded-simple structures (A, π,− )
are precisely the following:

(I) graded-simple A with graded involution π and graded automorphism
−;

(II) A ∼=Λ B ¢ Bop with exchange involution π for a graded-simple B

with graded automorphism − : (b1, b2)π = (b2, b1), (b1, b2) = (b1, b2);
(III) A ∼=Λ B ¢ Bop with exchange involution π for a graded-simple B

with graded involution ι : (b1, b2)π = (b2, b1), (b1, b2) = (b2
ι, b1

ι);
(IV) A ∼=Λ B ¢ B with exchange automorphism − for a graded-simple B

with graded involution π : (b1, b2)π = (b1
π, b2

π), (b1, b2) = (b2, b1);
(V) A ∼=Λ B ¢Bop ¢B ¢Bop for a graded-simple B with π the exchange

involution of C = B ¢ Bop and − the exchange automorphisms
of C ¢ C : (a1, a2, a3, a4)π = (a2, a1, a4, a3) and (a1, a2, a3, a4) =
(a3, a4, a1, a2).

Proof. The proof is again a straightforward generalization of the correspond-
ing result in the ungraded situation, which is [MN, 2.8]. ¤

For later use we note the following special case of Prop. 3.7 for a com-
mutative algebra D and π the identity “involution”. We note that D is not
assumed to be unital.

Corollary 3.8. Let D be a commutative graded algebra with a graded auto-
morphism − of order 2. Then (D,− ) is graded-simple if and only if either D
is graded-simple or D ∼=Λ B ¢ B, for a commutative graded-simple B with
the exchange automorphism.

Recall ([L, §1.14]) that a Jordan triple system T is called polarized if
there exist submodules T± such that T = T+ ⊕ T− and for σ = ± we have
P (T σ)T σ = 0 = {T σ, T σ, T−σ} and P (T σ)T−σ ⊆ T σ. In this case, V =
(T+, T−) is a Jordan pair. Conversely, to any Jordan pair V = (V +, V −)
we can associate a polarized Jordan triple system T (V ) = V + ⊕ V − with
quadratic map P defined by P (x)y = Q(x+)y−⊕Q(x−)y+ for x = x+⊕ x−
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and y = y+ ⊕ y−. In fact, the category of Jordan pairs is equivalent to the
category of polarized Jordan triple systems. It is also known that for any
Jordan triple system T the pair (T, T ) is a Jordan pair ([L, §1.13]). Hence,
it has an associated polarized Jordan triple system which we will denote
T ⊕ T . Examples are the cases (IV) and (V) of Prop. 3.9 below.

Proposition 3.9. hermitian graded-simplicity criterion. A graded
Jordan triple system is a graded-simple-triangulated hermitian matrix system
H2(A,A0, π,− ) if and only if it is graded isomorphic to one of the following:

(I) H2(A,A0, π,− ) for a graded-simple A;
(II) Mat2(B) for a graded-simple associative unital B with graded auto-

morphism −, where (bij) = (bij) for (bij) ∈ Mat2(B) and P (x)y =
xyx;

(III) Mat2(B) for a graded-simple associative unital B with graded invo-
lution ι, where (bij) = (bι

ij) for (bij) ∈ Mat2(B) and P (x)y = xytx;
(IV) polarized H2(B, B0, π) ⊕ H2(B, B0, π) for a graded-simple B with

graded involution π;
(V) polarized Mat2(B)⊕Mat2(B) for a graded-simple associative unital

B and P (x)y = xyx.
Among the cases (II)–(V), the matrix system is diagonal iff B is noncom-
mutative.

Proof. By definition and Cor. 3.6(i), a graded Jordan triple system is a
graded-simple J = H2(A, A0, π,− ) if and only if (A, A0, π,− ) is a graded
coordinate system where (A, π,− ) is graded-simple. Since the graded-simple
structures (A, π,− ) have been described in Prop. 3.7, it now suffices to show
that the cases (I)–(V) of Prop 3.7 correspond to the cases (I)–(V) above.
This is straightforward and will be left to the reader, see [MN, 2.10] for the
case in which the grading group Λ = 0. ¤

In order to describe division-triangulated hermitian matrix systems we
need to introduce some concepts from the theory of division-graded algebras.

Definition 3.10. A unital associative graded algebra A =
⊕

λ∈Λ Aλ is
called predivision-graded if every nonzero homogeneous space contains an
invertible element. The support suppΛ A = {λ ∈ Λ : Aλ 6= 0} of a
predivision-graded A is a subgroup of Λ. We will call A predivision-Λ-graded
if suppΛ A = Λ.

After choosing a family of invertible elements (uλ : λ ∈ Λ) with uλ ∈ Aλ,
one can identify a predivision-Λ-graded algebra A with a crossed-product
algebra A = (B, Λ, σ, τ) in the sense of [P] with B = A0 and the twist τ

and the action σ defined by uλuµ = τ(λ, µ)uλ+µ and uλb =
(
σ(λ)(b)

)
uλ for

b ∈ B.
An example of a predivision-Λ-graded algebra is the so-called twisted

group algebra Bt[Λ], i.e., the crossed product algebra (B, Λ, σ, τ) with σ(λ) =
IdB for all λ ∈ Λ. An immediate special case of a twisted group algebra is
k[Λ], the group algebra of Λ over k where τ(λ, µ) = 1k for all λ, µ ∈ k.
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A unital associative graded algebra A is called a division-graded if every
nonzero homogeneous element is invertible, and such an algebra is called
division-Λ-graded if suppΛ A = Λ. A division-Λ-graded algebra A is the
same as a crossed product algebra (B, Λ, σ, τ) with B a division algebra. A
division-graded algebra is in particular graded-simple.

A unital associative commutative graded algebra A is graded-simple if
and only if it is division-graded. Such algebras will be called graded-fields,
more precisely Λ-graded-fields if suppΛ A = Λ. A Λ-graded-field is the same
as a twisted group algebra Bt[Λ] with B a field. If Λ is free, a Λ-graded field
is isomorphic to the group algebra of Λ.

If A is a division-graded algebra defined over a field k and such that
dimk Aλ ≤ 1, then A is said to be an (associative) torus. In this case we
call A a Λ-torus if suppΛ A = Λ. From the point of view of crossed product
algebras, a Λ-torus is the same as a twisted group algebra kt[Λ] over the
field k. We note that in this case τ is a 2-cocycle of Λ with coefficients in k.

Example 3.11. Zn-tori. Let A be a Zn-torus and choose nonzero ti ∈ Aεi ,
where εi is the ith-canonical basis vector of Zn. Then the algebra structure
of A is uniquely determined by the rules

tit
−1
i = 1A = t−1

i ti, 1 ≤ i ≤ n and titj = qijtjti, 1 ≤ i, j ≤ n (3.1)

where qij ∈ k satisfy

qii = 1 = qij qji for 1 ≤ i, j ≤ n. (3.2)

For example Aλ = ktλ for λ = (λ1, . . . , λn) ∈ Zn and tλ = tλ1
1 tλ2

2 · · · tλn
n .

Conversely, let q = (qij) be a n × n-matrix over the field k whose entries
satisfy (3.2), then the associative unital algebra kq defined by generators
ti, t

−1
i and relations (3.1) is a Zn-torus. It is customary to call kq a quantum

Zn-torus or simply a quantum torus if the grading group is not important,
since kq can be viewed as a quantization of the coordinate ring of the n-torus
(k×)n, i.e. the Laurent polynomial ring in n variables. Observe that kq is a
Laurent polynomial ring iff all qij = 1.

A quantum torus has a graded involution iff all qij = ±1 ([AG, §2]). In
this case, an example of a well-defined involution is the reversal involution
πrev with respect to the generating set {t±1

1 , . . . , t±1
n }:

πrev

(
tλ1
1 tλ2

2 · · · tλn
n

)
= tλn

n t
λn−1

n−1 · · · tλ1
1 (3.3)

The following lemma is immediate from the definitions above and the
multiplication rules of hermitian matrix systems.

Lemma 3.12. Let H = H2(A,A0, π,−) be a hermitian matrix system.
(a) The following are equivalent:

(i) Every homogeneous 0 6= m ∈ M = A[12] is invertible in H,
(ii) A is division-graded,
(iii) H is division-triangulated.
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(b) Let k be a field. Then H is a Λ-triangulated Jordan triple torus iff A
is a Λ-torus.

Proof. The implication (i) ⇒ (ii) follows from the multiplication rules of H.
If A is division-graded, a nonzero homogeneous element a0 ∈ A0 is invertible
in A, say with inverse b0. We have b0 ∈ H(A, π) since a0 ∈ H(A, π). But
then b0 = b0a0b

π
0 ∈ A0, whence A0 is division-graded, proving (iii). The

implication (iii) ⇒ (i) is immediate, and (b) follows from (a). ¤
Example 3.13. As a special case of Lem. 3.12 we get: H2(A,A0, π,−) is a
Zn-triangulated Jordan triple torus iff A is a quantum Zn-torus.

4. Clifford systems

In this section we introduce the second model of a graded-triangulated
Jordan triple system, the ample Clifford systems (Def. 4.2), and we charac-
terize them within the class of triangulated Jordan triple systems in Th. 4.3.
We describe the graded-(semi)prime, graded-strongly prime and graded-
simple Clifford systems in Prop. 4.4 and the division-triangulated and tori
among the Clifford systems in Cor. 4.5.

Definition 4.1. Quadratic form triples. Let D =
⊕

λ∈Λ Dλ be a graded
unital commutative associative k-algebra endowed with an involution − of
degree 0, i.e., Dλ = Dλ for all λ ∈ Λ. If

(i) V is a graded D-module, i.e., V =
⊕

λ∈Λ V λ is a decomposition into
k-submodules such that dλxγ ∈ V λ+γ for dλ ∈ Dλ, xγ ∈ V γ and all
λ, γ ∈ Λ,

(ii) q : V → D is a graded D-quadratic form (cf. Def. 2.10), and
(iii) S : V → V is a hermitian isometry of order 2 and degree 0, i.e.,

S(dx) = dS(x) for d ∈ D, q
(
S(x)

)
= q(x), S2 = Id and S(V λ) = V λ,

then V becomes a Jordan triple system, denoted J(q, S) and called a qua-
dratic form triple, by defining P (x)y = q

(
x, S(y)

)
x− q(x)S(y) for x, y ∈ V

(see for example [N2, §1, Ex. 1.6]). Clearly J(q, S) is graded by Λ. We note
for later use:

x ∈ J(q, S) is invertible ⇐⇒ q(x) ∈ D is invertible, (4.1)

and then x−1 = q(x)−1S(x).

Definition 4.2. Ample Clifford systems AC(q, S, D0). We consider (M, q,
S, u), where (M, q, S) satisfy (i)–(iii) of Def. 4.1 above and in addition

(iv) there exists u ∈ M0 with q(u) = 1 and S(u) = u.
We then define (M̃, q̃, S̃) as follows:

(i)′ M̃ := De1 ⊕M ⊕De2, where De1 ⊕De2 is a free graded D-module
with basis (e1, e2) of degree 0,

(ii)′ q̃ : M̃ → D is the quadratic form given by q̃(d1e1 ⊕ m ⊕ d2e2) =
d1d2 − q(m), whence De1 ⊕De2 is a hyperbolic plane orthogonal to
M , and
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(iii)′ S̃ : M̃ → M̃ is the map d1e1 ⊕m⊕ d2e2 7→ d2e1 ⊕−S(m)⊕ d1e2.
It is then easily checked that (M̃, q̃, S̃) also satisfies the conditions (i)–

(iii) above, and therefore yields a quadratic form triple, called full Clifford
system and denoted FC(q, S). Its multiplication is given by

P (c1e1 ⊕m⊕ c2e2) (b1e1 ⊕ n⊕ b2e2) = d1e1 ⊕ p⊕ d2e2, (4.2)

where

di = c2
i bi + ci q

(
m,S(n)

)
+ bj q(m)

p = [c1b1 + c2b2 + q
(
m,S(n)

)
]m + [c1c2 − q(m)]S(n)

and

{c1e1 ⊕m⊕ c2e2 , b1e1 ⊕ n⊕ b2e2 , c′1e1 ⊕m′ ⊕ c′2e2}
= d1e1 ⊕ p⊕ d2e2, (4.3)

where

di = q
(
cim

′ + c′im , S(n)
)

+ bj q(m,m′) + 2ci c
′
i bi

p = [c1b1 + c2b2 + q
(
m,S(n)

)
] m′ + [c′1b1 + c′2b2 + q

(
m′, S(n)

)
] m

+ [c1c
′
2 + c′1c2 − q(m,m′)]S(n).

Note that FC(q, S) is graded-triangulated by (u; e1, e2).
As already observed in [MN, 3.5], in general we need not take the full

Peirce spaces Dei in order to get a graded-triangulated Jordan triple system.
Indeed, let us define a Clifford-ample subspace of (D, ¯ , q) as a graded k-
submodule D0 of D, such that D0 = D0, 1 ∈ D0 and D0q(M) ⊆ D0. Then

M0 := D0 e1 ⊕M ⊕D0 e2

is a graded subsystem of the full Clifford system FC(q, S) containing the
triangle (u; e1, e2). Hence it is a graded-triangulated Jordan triple system,
called an ample Clifford system and denoted AC(q, S, D0) or AC(q, M, S,
D,−, D0) if more precision is necessary. Note that J0 = AC(q, S,D0) is an
outer ideal of the full Clifford system J = FC(q, S).

We point out that (D, Id, ¯) is a graded associative coordinate system in
the sense of Def. 3.1, and that a Clifford-ample subspace D0 is in particular
(Id, ¯)-ample. Hence ample Clifford systems are full in characteristic 6= 2,
which here means D0 = D.

Our derived operations of §2 on J0 are

d0e1 ⊕m⊕ c0e2 = d0e1 ⊕ S(m)⊕ c0e2,

(d0e1 ⊕m⊕ c0e2)∗ = c0e1 ⊕ (q(u,m)u−m)⊕ d0e2.

Theorem 4.3. Clifford coordinatization theorem. ([MN, 3.6, 3.10]
for Λ = 0) Let J = J1 ⊕M ⊕ J2 be a graded Jordan triple system which is
faithfully triangulated by (u; e1, e2). For i = 1, 2, define

(i) Ci as the subalgebra of Endk(M) generated by L(Ji),
(ii) Γi(xi; m) := L

(
Ti(xi ·m)

)−L
(
Ti(m)

)
L(xi) ∈ Ci for xi ∈ Ji,m ∈ M ,
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(iii) ∆i(xi; m) = L(P (m)P (u)xi)− L
(
Qi(m)

)
L(xi) ∈ Ci,

(iv) N0 = {n0 ∈ M : Γi(Ji; n0) = 0, i = 1, 2},
(v) Ki = {ki ∈ Ji : Γi(ki; CiN0) = 0},
(vi) Ngr =

⊕
λ∈Λ(N∩Mλ), for N = {n ∈ M : ∆i(Ji;n) = ∆i(Ji; n,N0) =

Γi(Ti(n);CiN0) = 0, i = 1, 2} ⊆ N0, i.e., Ngr is the greatest graded
submodule of N .

Then
Jq = K1 ⊕Ngr ⊕K2

is a graded subsystem of J which is faithfully triangulated by (u; e1, e2) and
graded isomorphic to the ample Clifford system AC(q, Ngr, S, D,−, D0) un-
der the map

x1 ⊕ n⊕ x2 7→ L(x1)⊕ n⊕ L(x∗2),
where D0 = L(K1), D is the subalgebra of Endk(Ngr) generated by D0,
c = P (e) ◦ c ◦ P (e)|Ngr, q(n) = L

(
Q1(n)

)
, and S(n) = P (e)n. The above

isomorphism maps the triangle of J onto the standard triangle of AC(q,Ngr,
S, D,−, D0).

Moreover, J = Jq as graded triple systems if and only if ∆1(J1;M) ≡ 0.
In particular, if u is C1-faithful and (x1 − x∗1) · m = 0, for all x1 ∈ J1,
m ∈ M , then ∆1(J1;M) ≡ 0 and so J = Jq.

Proof. Let J be a graded Jordan triple system faithfully triangulated by
(u; e1, e2). By [MN, 3.10], K1 ⊕ N ⊕ K2 is a subsystem of J faithfully
triangulated by (u; e1, e2). Since N0 and Ki, i = 1, 2, are graded (all the
defining identities are linear), Jq is the greatest graded submodule of K1 ⊕
N⊕K2. Clearly (u; e1, e2) ∈ J0

q . To see that Jq is also a graded subsystem of
J faithfully triangulated by (u; e1, e2), it is in view of 2.12 enough to prove
Ngr = Ngr and Ki · Ngr ⊆ Ngr. But this follows directly from N = N ,
Ki ·N ⊆ N , Jλ

i ·Mγ ⊆ Mλ+γ and the fact that − is homogeneous of degree
0. On the other hand, since ∆1(K1; Ngr) ≡ 0 by definition, we have by
[MN, 3.6] that Jq is isomorphic to the ample Clifford system AC(q,Ngr,
S, D,−, D0) under the map and data specified in the theorem. Clearly the
isomorphism is homogeneous of degree 0 and preserves the triangles.

Recall from [MN, 3.10] that J = K1⊕N⊕K2 if and only if ∆1(J1; M) ≡ 0.
In this case N = M is graded whence Jq = J . Conversely, if Jq = J then
∆1(J1;Mλ) ≡ 0, which implies that ∆1(J1;M) ≡ 0: ∆1(J1; mλ + mγ) =
∆1(J1;mλ,mγ) ⊆ ∆1(J1;mλ, N0) ≡ 0 since N ⊆ N0. Finally, if u is C1-
faithful and (x1 − x∗1) · m = 0, then ∆1(J1; M) ≡ 0 by [MN, 3.8] and so
J = Jq. ¤
Proposition 4.4. Let J = AC(q, M, S, D,−, D0) = D0e1⊕M ⊕D0e2 be an
ample Clifford system for which D acts faithfully on M .

(i) If J is graded-(semi)prime, then (D,− ) is graded-(semi)prime.
(ii) The following are equivalent:

(a) J is graded-nondegenerate,
(b) q is graded-nondegenerate and J is graded-semiprime,
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(c) q is graded-nondegenerate and (D,− ) is graded-semiprime.
(iii) J is graded-strongly prime iff q is graded-nondegenerate and (D,− )

is graded-prime.
(iv) ([MN, 3.14, 3.15] for Λ = 0) The following are equivalent:

(a) J is graded-simple,
(b) q is graded-nondegenerate and (D,− ) is graded-simple,
(c) J is graded isomorphic to one of the following:

(I) AC(q, S, F0) for a graded-nondegenerate q over a graded-
field F with Clifford-ample subspace F0, or

(II) a polarized AC(q, S, F0)⊕AC(q, S, F0), where AC(q, S, F0)
is as in (I).

In this case, u is D-faithful.

Proof. We will first establish some preliminary results on the structure of
graded ideals of J . Thus, let I be a graded ideal of J . We will use the
multiplication formulas (4.2), (4.3) to evaluate the possibilities for I. First,
invariance of I under P (ei), P (e1, e2) and P (u) shows that

I = B0e1 ⊕N ⊕B0e2, (1)

for some graded k-submodules B0 ⊆ D0, N ⊆ M . From P (e1)I ⊆ I we
obtain B0 = B0. Furthermore, we claim

q graded-nondegenerate and B0 = 0 ⇒ I = 0. (2)

Indeed, in this case P (N)e2 + {N, e2,M} ⊆ B0 implies q(N) + q(N, M) ⊆
B0 = 0, whence Nλ ⊆ grRad q for all λ ∈ Λ, and then N = 0, therefore
I = 0. Next we claim

(D,− ) graded-simple, q graded-nondegenerate ⇒ J graded-simple. (3)

First notice that by Cor. 3.8 either D is a division-graded algebra or is the
direct sum of two copies of a division-graded algebra with the exchange
automorphism. Let I be a proper graded ideal of J which we write in the
form (1). Then B0 6= D, since B0 = D would imply e1 ∈ I, which in turn
would force e2 = P (u)e1 ∈ I, e1 + e2 ∈ I and then I = J . Now, as in
the proof of [MN, 3.14], it follows that no b0 ∈ B0 is invertible in D: If

b−1
0 ∈ D, then b−2

0 = q(b−1
0 u) ⊆ D0, since q(M) ⊆ D0, and e1 = b2

0b
−2
0 e1 =

P (b0e1)(b−2
0 e1) ∈ P (I)J ⊆ I. Hence, if D is division-graded, Bλ

0 = 0 for all
λ ∈ Λ, and then B0 = 0. If, otherwise, D = A ¢ A for a division-graded
A with the exchange automorphism, let b0 = (a, 0) or (0, a) be in B0 for a
homogeneous a ∈ Aλ. Then (a, a) = b0 + b0 ∈ B0, and since (a, a) is not
invertible in D, we get a = 0 and then B0 = 0, in which case I = 0 by (2).

(D,− ) graded-(semi)prime and q graded-nondegenerate ⇒ (4)

J graded-(semi)prime.

We suppose I,K are graded ideals of J with I = K in the semiprime case,
satisfying P (I)K = 0. By (1), we can write I, K in the form I = B0e1⊕N⊕
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B0e2 and K = C0e1 ⊕ L⊕ C0e2. From P (B0e1)C0e1 = 0 we get B2
0C0 = 0.

If D is graded-(semi)prime (always in the semiprime case by Rem. 3.4), then
B0 = 0 or C0 = 0. If D is not graded-prime, then it easily follows that D
is a subdirect sum A ¢s A of two copies of a graded-prime algebra A with
the exchange automorphism. In this case, let 0 6= b0 ∈ B0, 0 6= c0 ∈
C0 be homogeneous elements. Then, by graded-primeness of A, b2

0c0 = 0
implies that b0 = (b, 0), c0 = (0, c) or b0 = (0, b), c0 = (c, 0) for homogeneous
b, c ∈ A, respectively. Without loss of generality, assume b0 = (b, 0) and
c0 = (0, c). Hence b0 + b0 = (b, b) ∈ B0 and 0 = (b2, b2)(0, c) = (0, b2c), thus
b2c = 0. But, again by the graded-primeness of A we have that b2 = 0 or
c = 0, that is, b = 0 or c = 0, which is a contradiction. Then B0 = 0 or
C0 = 0. Therefore I = 0 or K = 0 by (2).

For the proof of the other directions we again establish some preliminary
results. Let B be a graded ideal of (D,− ). A straightforward verification
using the multiplication rules (4.2), (4.3) shows that then

B̃ := (B ∩D0)e1 ⊕BM ⊕ (B ∩D0)e2

is a graded ideal of J . Since BM = 0 implies B ⊆ AnnD(M) = 0, it is clear
that

B̃ = 0 ⇔ B = 0.

On the other hand, if B̃ = J , then 1 ∈ D0 = B ∩D0, hence B = D. Then

B̃ = J ⇔ B = D.

It now follows easily from the multiplication rules in Def. 4.2 that

J graded-(semi)prime ⇒ (D,− ) graded-(semi)prime, and (5)

J graded-simple ⇒ (D,− ) graded-simple. (6)

For the proof of (ii) we also need

(D,− ) graded-semiprime ⇒ J1 graded-nondegenerate. (7)

Indeed, if d0 ∈ D0 is a homogeneous trivial element of J1, then d2
0D0 = 0.

In particular, d2
0 = 0. But in a graded-semiprime commutative algebra, all

homogeneous nilpotent elements vanish, so d0 = 0.
Finally, by using Prop. 2.23(i) and the fact that Q1 = q in our situation

we have

J graded-nondegenerate ⇔ (8)
q graded-nondegenerate and J1 graded-nondegenerate.

Now the proof of (i)-(iv) follows easily: (i) is (5). For (ii), the fact that
any graded-nondegenerate Jordan triple system is also graded-semiprime
together with (i), (7) and (8) yields: J graded-nondegenerate (by (8))
⇒ q graded-nondegenerate and J graded-semiprime (by (i)) ⇒ q graded-
nondegenerate and (D,− ) graded-semiprime (by (7)) ⇒ q graded-nondege-
nerate and J1 graded-nondegenerate (by (8)) ⇒ J graded-nondegenerate.
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For (iii), we have by definition of graded-strongly primeness and (i) and
(ii) that J graded-strongly prime implies q graded-nondegenerate and (D,− )
graded-prime. The converse direction follows from (ii) and (4). Finally (iv)
follows from (3), (6) and graded-nondegeneracy of J characterized by (8).
Note that then u is D-faithful since {d ∈ D : du = 0} is a proper graded ideal
of (D,− ). The remaining statements in (iv) are an immediate application
of Cor. 3.8. ¤

The assumption that D acts faithfully on M in the preceding proposition
and the following corollary will be automatic in the application later on.

Corollary 4.5. Let J = AC(q, S, D0) = D0e1 ⊕ M ⊕ D0e2 be an ample
Clifford system with D acting faithfully on M .

(a) The following are equivalent:
(i) Every nonzero homogeneous element of M is invertible,
(ii) D is a graded-field and q is graded-anisotropic in the sense that

0 6= q(m) ∈ D for every nonzero homogeneous m ∈ M ,
(iii) J is division-triangulated.

In this case M is a free D-module.

(b) Let k be a field. Then J is a triangulated Jordan triple torus iff
(I) D is a torus, say with suppΛ D = Γ, hence D = kt[Γ] is a twisted

group algebra, and
(II) M is a free D-module with a homogeneous D-basis {ui : i ∈ I}, say

ui ∈ M δi, with q(ui) 6= 0 and (δi + Γ) 6= (δj + Γ) for i 6= j.
If in this case D = D0, then {ui : i ∈ I} is an orthogonal basis: q(ui, uj) = 0
for i 6= j.

Proof. (a) If (i) holds, the invertibility criterion (4.1) together with q(du) =
d2 implies that D is a graded-field and then that q is graded-anisotropic.
Suppose (ii). Then clearly every nonzero homogenous m ∈ M is invertible.
Moreover, it follows as in Lem 3.12 that D0 is a division-graded triple,
whence J is division-triangulated. The implication (iii) ⇒ (i) is clear. It
is a standard fact that any graded module over a division-graded algebra is
free with a homogeneous basis.

(b) Suppose J is a triangulated Jordan triple torus. Then (a) applies.
Since D → D.u ⊂ M is injective and homogeneous of degree 0, D is a
torus. Hence D = kt[Γ] is a twisted group algebra for Γ = suppΛ D, a
subgroup of Λ. As in (a), M is a free D-module with a homogeneous basis
{ui : i ∈ I}. We have q(ui) 6= 0 because ui 6= 0. Since 0 6= DγMµ for
γ ∈ Γ and µ ∈ suppΛ M , the condition (δi + Γ) 6= (δj + Γ) for i 6= j follows
from dimk Mλ ≤ 1. The converse is easily verified. Observe that q(ui, uj) ∈
Dδi+δj , but δi + δj 6∈ Γ if D = D0. Otherwise, δi = −δj + γ = δj + (γ − 2δj)
for some γ ∈ Γ and γ − 2δj ∈ Γ by (2.1) since Γ = L in the notation of
loc. cit. and S = −S. ¤
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Example 4.6. Let Λ = Zn and let J = AC(q, S, D0) = D0e1⊕M⊕D0e2 be
a Λ-triangulated ample Clifford system such that D0 generates D as algebra.
For L = suppΛ D0 we therefore have Z[L] = suppΛ D = Γ, a subgroup of
Λ, and for S = suppΛ M we get from (2.1) that 2S ⊂ L ⊂ S, so Λ = Z[S]
and 2Λ ⊂ Z[L] = Γ ⊂ Λ, proving that Λ/Γ is a finite group. It follows that
Γ is free of rank n, thus D is isomorphic to a Laurent polynomial ring in n
variables. Moreover, from L+S ⊂ S (or from Cor. 4.5(b)) we get Γ+S ⊂ S,
whence the set of coset S/Γ embeds in the finite group Λ/Γ and is therefore
finite. Thus, M is free of finite rank.

5. Graded-simple-triangulated Jordan triple systems

In this section we prove (Th. 5.10) that under some mild additional
assumptions the graded-simple hermitian matrix and ample Clifford sys-
tems give us in fact all the possibilities for graded-simple-triangulated Jor-
dan triple systems, and we describe them completely in Cor. 5.11. Fi-
nally, we describe the division-triangulated and tori, in particular the case
Λ = Zn, among the graded-triangulated Jordan triple systems in Corollar-
ies 5.12, 5.13 and 5.14.

Unless specified otherwise, J = J1 ⊕ M ⊕ J2 is a Jordan triple system
over k triangulated by (u; e1, e2). We refer the reader to §2 for unexplained
notation. We will not right away assume that J is graded or even graded-
simple. Rather, to prove the main result of this section we will perform
certain reductions to more specific situations (passing to a completion of J
over the Laurent series ring or passing to an isotope) and, unfortunately,
graded-simplicity can not always be maintained under these reductions. We
will therefore begin this section by presenting these reductions.

Let J be an arbitrary Jordan triple system and let t be an indeterminate
over k. We denote by

Ĵ = J((t)) =
{∑

i≥N xit
i : xi ∈ J,N ∈ Z}

the Jordan triple system over k whose Jordan triple product is defined by

P̂
( ∑

i≥N

xit
i
) ( ∑

j≥M

yjt
j
)

=
∑

i≥N, j≥M

P (xi)yjt
2i+j +

∑

i2>i1≥N, j≥M

{xi1 , yj , xi2}ti1+i2+j .

Note that this makes sense since in any fixed degree the sum on the right
hand side is finite. Observe that Ĵ contains J = J t0 as a subsystem. It
is also easy to check that

∑
i≥N xit

i with xN 6= 0 is invertible in Ĵ if xN is
invertible in J .

Assumption 5.1. J = J1 ⊕M ⊕ J2 is a Jordan triple system triangulated
by (u; e1, e2) for which the k-linear map L : J1 → C0 : x1 7→ L(x1) defined
in 2.1 is injective. Note that then L : J2 → C∗

0 is also injective because
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L(x2)c∗0 = (L(x∗2)c0)∗ and x∗2 ∈ J1. Recall that C denotes the subalgebra of
Endk(M) generated by C0.

Lemma 5.2. If J satisfies Assumption 5.1 with respect to the triangle T =
(u; e1, e2) then so does Ĵ , also with respect to T . Moreover:

(i) The Peirce spaces of Ĵ with respect to T are Ĵi = Ji((t)) and M̂ =
M((t)).

(ii) Let Ĉ be the subalgebra of EndkM((t)) generated by Ĉ0 = L(Ĵ1) =
C0((t)), and let π̂ be the reversal involution of Ĉ with respect to Ĉ0

(cf. 2.13). Then C is canonically isomorphic to the subalgebra of
Ĉ preserving degrees. Identifying C with this subalgebra we have
π̂|C = π and, with obvious meaning, ∗̂|C = ∗.

(iii) For m ∈ M we put m̂ = u + tm and note that m̂ is invertible in
J((t)). Then for all c ∈ C ⊆ Ĉ and Q̂2(.) = P̂ (.)e1 :

Q̂2(cm̂) = 0 = Q̂2(cm̂, m̂) =⇒ Q2(cm) = 0 = Q2(cm,m),

Q̂2(m̂, c c∗m̂) = 0 =⇒ Q2(m, cc∗m) = 0, and

Q̂2(cM, m̂) = 0 =⇒ Q2(cM, m) = 0.

(iv) If Ji does not contain nonzero elements with trivial square cf. (2.8),
then neither does Ĵi.

Proof. (i) and (ii) are clear. (iii) That m̂ = u + tm is invertible in Ĵ follows
from the invertibility criterion mentioned above. We have Q̂2(cm̂) = P̂ (cu+
ctm)e1 = Q2(cu) + Q2(cu, cm)t + Q2(cm)t2 and Q̂2(cm̂, m̂) = Q2(cu, u) +(
Q2(cu,m) + Q2(cm, u)

)
t + Q2(cm,m)t2, which implies the first equation.

The others follow similarly.
¤

Our second reduction is passing to an isotope. Recall that for an arbitrary
Jordan triple system and an invertible element v of J the isotope J (v) is
the Jordan triple system with multiplication P (v)(x)y = P (x)P (v)y. The
following lemma, whose proof is left to the reader, describes which properties
are maintained by passing from J to a special isotope.

Lemma 5.3. Suppose J is triangulated by T = (u; e1, e2), and let m ∈ M
be an invertible element. Then v = e1 + Q2(m)−1 is invertible in J and
the isotope J̃ := J (v) with P̃ = P (v) is triangulated by T̃ = (ũ; ẽ1, ẽ2) =
(m; e1, Q2(m)) with Peirce spaces J̃1 = J1, M̃ = M and J̃2 = J2 as k-
modules. Moreover, denoting the data for J̃ by L̃, C̃0 etc, we have :

(i) L̃ = L as k-linear maps, hence C̃0 = C0 and (C̃, π̃) = (C, π) as
algebras with involution. In particular, if J satisfies Assumption 5.1
then so does J̃ with respect to T̃ .

(ii) For n, n1 ∈ M we have Q̃2(n) = Q2(n) and Q̃2(n, n1) = Q2(n, n1).
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(iii) If J1 does not contain nonzero x1 ∈ J1 with x2
1 = 0 the same holds

for J̃1.
(iv) Suppose J =

⊕
λ∈Λ Jλ is graded-triangulated by (u; e1, e2) ∈ J0. If

m ∈ Mλ is homogeneous, then J̃ is graded-triangulated with

J̃µ
1 = Jµ

1 , M̃µ = Mµ+λ, J̃µ
2 = Jµ+2λ

2 (µ ∈ Λ).

We point out that J̃1 and J1 are in general not isomorphic as triple sys-
tems, rather we have P̃ (x1)y1 = P (x1)ȳ1.

From now on we will use the notations Ĵ and J̃ to denote the Jordan
triple systems of Lemma 5.2 and Lemma 5.3.

Proposition 5.4. Suppose J satisfies Assumption 5.1, and let R be a π-
invariant ideal of C satisfying R ∩ C0 = 0. Then for all r ∈ R, x1 ∈ J1,
c ∈ C and m ∈ M the following hold:

(i) r + rπ = r2 = rrπ = rL(x1)rπ = r(cπ − c) = 0. Also [r, C] = 0, so R
is a central ideal.

(ii) Qi(ru) = 0 = Ti(ru) for i = 1, 2,
(iii) Q2(rm) = 0 = Q2(rm, m),
(iv) Q1(rm)2 = 0,
(v) T2(rm)2 = Q1(rm)∗,
(vi) If either (a) M = Cu or (b) J1 does not contain nonzero x1 ∈ J1

with x2
1 = 0 (cf. 2.8), then Q2(RM,M) = 0.

Proof. (i) By 2.15 and 2.16, r+rπ = L
(
T1(ru)

)
, rL(x1)rπ = L(P (ru)P (u)x1)

and rrπ = L
(
Q1(ru)

)
all lie in R ∩C0. Hence r + rπ = rrπ = rL(x1)rπ = 0

and, because of injectivity of L, also Q1(ru) = 0 = T1(ru). It now follows
that r2 = −rrπ = 0. Linearizing cL(x1)cπ ∈ C0, we have

cL(x1)dπ + dL(x1)cπ ∈ C0. (1)

Specializing (1) for d = r and using that rπ = −r, we get cL(x1)r =
rL(x1)cπ. For c = 1 we then have L(x1)r = rL(x1). Since C0 generates
C as a k-algebra, this forces [r, C] = 0. Then cL(x1)r = rL(x1)cπ evaluated
for x1 = e1 shows r(cπ − c) = 0.

(ii) We have already shown in the proof of (i) that Q1(ru) = 0 = T1(ru) =
Q1(ru, u). By 2.20, (ru)∗ = rπu = −ru, and then by 2.18, 0 = T1(ru)∗ =
T2

(
(ru)∗

)
= −T2(ru) and 0 = Q1(ru)∗ = Q2

(
(ru)∗

)
= Q2(−ru) = Q2(ru).

(iii) We first prove that it is enough to show (iii) for invertible m by
passing to Ĵ . Indeed, because of (iii) of Lem. 5.2 it is enough to establish
(iii) for Ĵ . But for Ĵ we know that for any m ∈ M the element m̂ = u + tm

is invertible in Ĵ and that Ĵ also satisfies Assumption 5.1. Let R̂ be the
ideal of Ĉ generated by R ⊆ C ⊆ Ĉ, that is R̂ = R((t)). Then R̂ ∩ Ĉ0 =
(R ∩ C0)((t)) = 0 follows. Thus, without loss of generality we can assume
that m is invertible.
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We then pass to the isotope J̃ , and note that J̃ satisfies the assumptions
of this proposition. Moreover, because of (ii) of Lem. 5.3, it will be sufficient
to prove (iii) for m = ũ ∈ J̃ , or equivalently for u ∈ J . But (iii) for m = u
is just (ii).

(iv) now follows easily from (iii) since Q2(rm) = 0 implies Q1(rm)2 =
P

(
Q1(rm)

)
e1 = P (rm)P (e2)P (rm)e1 = P (rm)P (e2)Q2(rm) = 0.

(v) We have T2(rm)2 = P
(
T2(rm)

)
e2 = P ({rm, e1, u})e2, where, by [L,

JP21] and because of P (e1)u = 0 and Q2(rm) = 0 by (iii),

P ({rm, e1, u})e2 = P (rm)P (e1)P (u)e2 + P (u)P (e1)P (rm)e2

+L(rm, e1)P (u)L(e1, rm)e2 − P (P (rm)P (e1)u, u)e2

= Q2(rm) + Q1(rm)∗ + Q2(rm,P (u) rm)
= Q1(rm)∗ + Q2(rm, (rm)∗).

By 2.19, (rm)∗ = r∗m∗ = r∗(T1(m) ·u−m) = L
(
T1(m)

)
r∗u− r∗m where in

the last equality we used 2.6 and the fact that C∗ is the subalgebra generated
by L(J2), and hence commutes with C. Since rπ = −r we then get from
2.14 and 2.20 that

Q2(rm, (rm)∗) = Q2

(
rm, r∗(T1(m) · u−m)

)

= Q2(m, rπL
(
T1(m)

)
r∗u) − Q2(m, rπr∗m)

= −Q2(m, rL
(
T1(m)

)
rπu) + Q2(m, rr∗m)

= Q2(m, rr∗m)

since rL
(
T1(m)

)
rπ = 0 by (i). Therefore, if we can establish Q2(m, rr∗m) =

0 we are done. As in the proof of (iii) we imbed J into Ĵ . Then Lem.5.2(iii)
shows that it is sufficient to prove this for an invertible m. But for invertible
m we have C∗m ⊆ Cm, since by [L, JP21] and 2.5

L(x2)m = P (x2,m)e2 = P (P (m)P (m)−1x2,m)e2

= L(m,P (m)−1x2)P (m)e2 = {Q1(m), P (m)−1x2,m}
= L

(
Q1(m)

)
L( P (m)−1x2 )m ∈ Cm.

Hence Q2(m,RC∗m) ⊆ Q2(m,RCm) ⊆ Q2(m,Rm) = 0 by (iii).
(vi) In case (a) we have, using 2.17, Q2(RM, M) = Q2(RCu, Cu) ⊆

Q2(Ru, Cu) = T2(RπCu) = T2(RCu) ⊆ T2(Ru). Now the claim follows
from (ii).

In case (b) first note that neither J2 = J∗1 contains a nonzero x2 ∈ J2

with x2
2 = 0. It then follows from (iv) and (v) that

T2(RM) = 0. (2)

Next we show

Q2(RM,m) = 0 for invertible m ∈ M. (3)

Indeed, applying Lem. 5.3, in particular (ii) and (iii), we see that it suffices
to prove (3) for m = u, in which case it reduces to (2). Finally, we can show
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that Q2(RM, m) = 0 for arbitrary m ∈ M : By Lem. 5.2 it suffices to show
Q̂2(RM, m̂) = 0, for m̂ = u + tm. But this holds by (3) since Ĵ satisfies our
assumptions. ¤

Recall that C0 is a Jordan triple system with P (c0)(d0) = c0d0c0 and that
L : J1 → C0, x1 7→ L(x1) is a nonzero specialization (see 2.7). In particular,
L(x2

1) =
(
L(x1)

)2 and if Assumption 5.1 holds then J1
∼=Λ C0 as graded

Jordan triple systems if J is graded by Λ.

Lemma 5.5. Suppose J is graded-triangulated and satisfies Assumption 5.1
with respect to (u; e1, e2) ⊆ J0. Let R be a π-invariant graded ideal of C such
that R∩C0 = 0. If C0 does not contain nonzero homogeneous elements which
square to zero, then Q2(RM,m) = 0 for invertible homogeneous m ∈ M .

Proof. We pass from J to the isotope J̃ of Lem. 5.3. Since by that lemma
all our assumptions are maintained, it follows from (ii) of Lem. 5.3 that it
suffices to prove T2(RM) = 0. To do so, let r ∈ R and n ∈ M be homo-
geneous elements. By Prop. 5.4(iv), L

(
Q1(rn)

)2 = L(Q1(rn)2) = 0, which
implies that Q1(rn) = 0 by our assumptions. But then by Prop. 5.4(v),
L

(
T2(rn)

)2 = L(T2(rn)2) = L(Q1(rn)∗) = 0. Since C0
∼=Λ J1 does not con-

tain nonzero elements with square 0, the same holds for C∗
0 = L(J2). Hence

T2(rn) = 0 follows, and this implies T2(RM) = 0 as desired. ¤
Lemma 5.6. Suppose J is graded-triangulated by (u; e1, e2). Then C ′ :=
C{c − cπ : c ∈ C}C = C[C, C]C is a (π,− )-graded ideal of C such that
C ′M ⊆ Cu.

Proof. The first part of the lemma is straightforward. That C ′M ⊆ Cu
follows from [MN, 1.6.13]. ¤
Assumption 5.7. J is graded-triangulated with grading group Λ and fulfills
Assumption 5.1 with respect to a triangle (u; e1, e2) ⊆ J0.

Lemma 5.8. Suppose J fulfills Assumption 5.7. If R is a maximal (π,−)-
invariant and graded ideal of C with R ∩ C0 = 0, then M = Cu or C0 does
not contain nonzero homogeneous elements with trivial square.

Proof. If R is a maximal (π,−)-invariant and graded ideal of C with R∩C0 =
0, consider the (π,−)-graded-simple algebra C̆ := C/R and let ϕ : C → C̆
be the canonical epimorphism. Since ϕ is homogeneous of degree 0, the ideal
ϕ(C ′) = C̆ ′ = C̆[C̆, C̆]C̆ is graded and invariant under the induced maps π̆

and c 7→ c̆, whence either C̆ ′ = C̆ or C̆ ′ = 0. If C̆ ′ = C̆, then 1̆ ∈ C̆ ′ and so
1 = c′ + r where c′ ∈ C ′. Now 12 = 1 = c′2 + c′r + rc′ + r2, but r2 = 0 by
Prop. 5.4(i). Hence 1 ∈ C ′ which by Lem. 5.6 implies M ⊆ Cu, so M = Cu.

Otherwise C̆ ′ = 0. Then [C̆, C̆] = 0, that is, C̆ is commutative and hence
π̆ is trivial. In this case (C̆, −̆) is graded-simple. By Cor. 3.8, C̆ is either
division-graded or the direct sum of two copies of a division-graded algebra
with the exchange automorphism. In particular, C̆ does not contain nonzero
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homogeneous elements with trivial square. So neither does the subspace
C̆0 = ϕ(C0) nor C0 since R ∩ C0 = 0. ¤

Proposition 5.9. Suppose J is a graded-triangulated Jordan triple system
for which J1 is graded-simple. Then Assumption 5.7 holds. If R is a proper
(π,−)-invariant graded ideal of C then R ∩ C0 = 0 and Q2(RM, m) = 0 for
invertible homogeneous m ∈ M .

Proof. Since J1 is graded-simple and the specialization L : J1 → C0, x1 7→
L(x1) is nontrivial, it is injective, proving Assumption 5.7. It is then an
isomorphism of graded Jordan triple systems, whence C0 is also graded-
simple. Therefore the graded ideal R ∩ C0 of the Jordan triple system C0

must be either 0 or C0. But if R ∩ C0 = C0, then C0 ⊆ R which implies
C = R contradicting that R is proper. So R∩C0 = 0. By Lem. 5.8, M = Cu
or C0 does not contain nonzero homogeneous elements of trivial square. If
M = Cu, then Q2(RM, M) = 0 by Prop. 5.4(vi). Otherwise, it follows from
Lem. 5.5 that Q2(RM,m) = 0 for invertible homogeneous m ∈ M . ¤

Now we are ready to establish our main result.

Theorem 5.10. ([MN, 4.3] for Λ = 0) Let J be a graded-simple-triangulated
Jordan triple system satisfying one of the following conditions

(a) every nonzero m ∈ M is a linear combination of invertible homoge-
neous elements, or

(b) the grading group Λ is torsion-free.
Then (C, π,−) is graded-simple, u is C-faithful, and exactly one of the fol-
lowing two cases holds:

(i) C is not commutative and M = Cu. In this case, π 6= Id and J
is graded isomorphic to the graded-simple diagonal hermitian matrix
system H2(C, C0, π,− );

(ii) C is commutative. In this case, π = Id and J is graded isomorphic to
the graded-simple ample Clifford system AC(q, M, S, C,−, C0), where
q(m) = L

(
Q1(m)

)
and S(m) = m.

In both cases, the triangles are preserved by the isomorphisms.

Remarks. (1) We point out that the assumptions (a) or (b) are only
needed to show that (C, π,−) is graded-simple. Our proof shows that any
graded-triangulated Jordan triple system with a graded-simple (C, π,−) sat-
isfies (i) or (ii)! We also note that hermitian matrix systems are of course
also defined for commutative coordinate algebras C. But in the commutative
case they are isomorphic to ample Clifford systems.

(2) This theorem generalizes [MN, Prop. 4.3]: Λ = 0 is a special case of
our assumption (b). Our proof is slightly different from the proof given in
[MN] and in fact corrects a small inaccuracy there: The Isotope Trick [MN,
4.1] cannot be applied since J̃ does not necessarily inherit simplicity from
J .
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(3) The assumption (a), which, admittedly, looks somewhat funny at
first sight, is fulfilled in the most important application of the theorem, the
division-triangulated case (Cor. 5.12).

Proof. We will proceed in four steps.
(I) (C, π,−) is graded-simple. Let R be a maximal (π,−)-invariant graded

ideal of C. Such an ideal R exists by Zorn. Our claim (I) then means R = 0.
This will follow if we can show rm = 0 for homogeneous r ∈ R and m ∈ M .
Recall that Q2 is graded-nondegenerate by Prop. 2.23(ii). It is therefore
sufficient to prove

Q2(rm) = 0 = Q2(rm, M) for homogeneous r ∈ R and m ∈ M. (1)

Since J1 is graded-simple by Prop. 2.23(ii), it follows from Prop. 5.9 that J
satisfies Assumption 5.7. Since R is in particular proper, it also follows from
Prop. 5.9 that C0 ∩ R = 0 and Q2(rm, n) = 0 for invertible homogeneous
n ∈ M . Also, Q2(rm) = 0 by Prop. 5.4(iii). Thus, (1) holds in case (a).

We also know from Lem. 5.8 that M = Cu or C0 does not contain
nonzero homogeneous elements with trivial square. But if M = Cu then
Q2(rm, M) = 0 by Prop. 5.4(vi), hence again (1) follows. We can therefore
assume that C0 does not have nonzero homogeneous elements with triv-
ial square. We will use our assumption (b) to prove (1) in this case. We
claim that in fact C0 does not contain nonzero elements with trivial square:
Let x =

∑
xλi ∈ C0, with 0 6= xλi ∈ Cλi

0 , such that x2 = 0. Since Λ is
torsion-free, it can be ordered (as a group) and we can therefore consider
(xλ)2 for λ = max{λi}. But x2 = 0 implies (xλ)2 = 0, hence xλ = 0 by
the absence of nonzero homogeneous elements of trivial square, contradic-
tion. Since (J1, e1) ∼=Λ (C0, 1) as triple systems with tripotents, the sub-
space J1 does not contain nonzero elements with trivial square. But then
Q2(rm, M) = 0 = Q2(rm) follows from (vi) and (iii) of Prop. 5.4.

(II) u is C-faithful. By (I), we have that C is (π,− )-graded-simple. Now,
Z = {z ∈ C : zu = 0} is obviously a left ideal of C. It is also a right
ideal since for d ∈ C and z ∈ Z we have zCu = zCπu (by 2.20) = zC∗u
(by 2.6) = C∗zu = 0. Also, Z is graded since u ∈ M0, and finally it is
(π,− )-invariant since zπu = (zu)∗ = 0 by 2.20 and zu = z u = zu = 0. Then
Z must be C or 0. But note that Z 6= C since 1 /∈ Z. Hence Z = 0, that is,
u is C-faithful.

We will now distinguish the two cases π 6= Id and π = Id.
(III) π 6= Id: Then C is noncommutative. Indeed, since C0 ⊂ H(C, π)

generates C as an algebra, C is commutative iff π = Id. Also, there exists
a homogeneous c ∈ C such that cπ 6= c, and then the (π,− )-graded ideal
C ′ = C{c − cπ : c ∈ C}C (Lem. 5.6) is nonzero and hence equals C, in
particular 1 ∈ C ′. By Lem. 5.6 again, this implies M = Cu. By Th. 3.3 J is
then graded isomorphic to the hermitian matrix system H2(C, C0, π,− ) as
claimed in (i).
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(IV) π = Id: Then C is commutative and −-graded-simple. We will prove
that in this case J is graded isomorphic to an ample Clifford system. By
C-faithfulness, this will follow from Th. 4.3 as soon as we have established
(x1 − x∗1) · m = 0 for all x1 ∈ J1 and m ∈ M . Now by 2.21 we know
(x1 − x∗1) · m = Γ1(x1; m)u. By linearity of Γ1 in x1 and m, it therefore
remains to prove

Γ1(x1; m) = 0 for homogeneous x1 ∈ J1 and m ∈ M . (2)

Since C is commutative, 2.22 shows Γ1(x1; m)2m = 0, so Γ1(x1; m) is never
invertible. If (C,− ) is graded-simple, it is a division-graded algebra and
so (2) holds. Otherwise, by Cor. 3.8, identify C = A ¢ A with the direct
sum of two copies of a division-graded commutative algebra A and − is the
exchange automorphism. Then we have that

Γ1(x1;m) = 0 for all homogeneous −-invariant x1 ∈ J1 and m ∈ M. (3)

Let x1 ∈ J1 and m ∈ M be arbitrary homogeneous elements. Since C =
A ¢ A we get 1 = ε + ε for orthogonal idempotents ε and ε in C0, namely
ε = 1A. We now claim that

(x1 − x∗1) ·m = ε(y1 − y∗1) · n1 + ε(z1 − z∗1) · n2 (4)

for some homogeneous y1 = y1 and z1 = z1 in J1 and ni = ni ∈ M . The
proof of (4) given in the proof of [MN, 4.4] for Λ = 0 also works in our
setting. But (4) together with (3) implies (2), finishing the proof of the
theorem. ¤

From the previous Theorem 5.10 together with Prop. 3.9 and Prop. 4.4(iv)
we get the following classification.

Corollary 5.11. ([MN, 4.4] for Λ = 0) A graded-simple-triangulated Jordan
triple system satisfying (a) or (b) of Th. 5.10 is graded isomorphic to one
of the following triple systems:
non-polarized

(I) diagonal H2(A,A0, π,− ) for a graded-simple noncommutative A with
graded involution π and automorphism −;

(II) Mat2(B) with P (x)y = xyx for a noncommutative graded-simple
associative unital B with graded automorphism − and (yij) = (yij)
for (yij) ∈ Mat2(B);

(III) Mat2(B) with P (x)y = xytx for a noncommutative graded-simple
associative unital B with graded involution ι and (yij) = (yι

ij) for
(yij) ∈ Mat2(B);

(IV) AC(q, S, F0) for a graded-nondegenerate q over a graded-field F with
Clifford-ample subspace F0;

or polarized
(V) H2(B,B0, π)⊕H2(B,B0, π) for a diagonal hermitian matrix system

H2(B,B0, π) with graded-simple noncommutative B;
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(VI) Mat2(B)⊕Mat2(B) for a noncommutative graded-simple associative
unital B with P (x)y = xyx;

(VII) AC(q, S, F0)⊕AC(q, S, F0) for AC(q, S, F0) as in (IV).

Conversely, the Jordan triple systems in (I)–(VII) are graded-simple-trian-
gulated.

Corollary 5.12. For a graded-triangulated Jordan triple system J the fol-
lowing are equivalent:

(i) J is graded-simple and every homogeneous 0 6= m ∈ M is invertible,
(ii) J is division-triangulated,
(iii) J is graded isomorphic to one of the following:

(I) diagonal hermitian matrix system H2(A,A0, π,− ) for a noncom-
mutative division-graded A.

(II) AC(q, S, F0) for a graded-anisotropic q over a graded-field F
with Clifford-ample subspace F0.

Proof. If (i) holds we can apply Th. 5.10: J is graded isomorphic to a
hermitian matrix system or to an ample Clifford system, and C is u-faithful.
The assumption on M together with Cor. 3.12 and Cor. 4.5 then show that
J is graded isomorphic to one of the two cases in (iii) and that J is division-
triangulated. The implication (ii) ⇒ (i) is trivial, and (iii) ⇒ (i) follows
from the quoted corollaries. ¤

Corollary 5.13. A graded Jordan triple system J over a field k is a trian-
gulated Jordan triple torus iff J is graded isomorphic to

(I) a diagonal hermitian matrix system H2(A,A0, π,−) for a noncom-
mutative torus A, or to

(II) an ample Clifford system AC(D, q,M) with D,M as described in
Cor. 4.5(b).

Proof. This follows from Cor. 5.12 and the description of tori in Lemma 3.12
and Cor. 4.5. ¤

Corollary 5.14. J is a Zn-triangulated Jordan triple torus iff J is graded
isomorphic to

(I) a diagonal hermitian matrix system H2(A, A0, π,−) where A is a
quantum Zn-torus, see Ex. 3.13 and π = πrev is the reversal involu-
tion, or to

(II) an ample Clifford system as described in Ex. 4.6.

Proof. All statements follow from the quoted references. Note that by con-
struction D0 generates D in the Clifford case, so that we are indeed in the
setting of Ex. 4.6. ¤
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6. Graded-simple-triangulated Jordan algebras and Jordan
pairs

In this section we specialize our results on graded-triangulated Jordan
triple systems to Jordan algebras and Jordan pairs: We classify graded-
simple-triangulated Jordan algebras (Th. 6.3) and Jordan pairs (Th. 6.12),
and we deduce from these theorems the classifications of division-triangu-
lated Jordan algebras and pairs (Cor. 6.5, Cor. 6.14). As an example, we
describe the classification of Zn-triangulated Jordan algebra tori (Cor. 6.6)
and Jordan pair tori (Cor. 6.15).

In this paper all Jordan algebras are assumed to be unital, with unit
element denoted 1 or 1J if we need to be more precise, and with Jordan
product written as Uxy. A homomorphism of Jordan algebras is a k-linear
map f : J → J ′ satisfying f(Uxy) = Uf(x)f(y) and f(1J) = 1J ′ .

In order to apply our results we will view Jordan algebras as Jordan triple
systems with identity elements. Thus, to a Jordan algebra J we associate
the Jordan triple system T (J) defined on the k-module J with Jordan triple
product Pxy = Uxy. The element 1J ∈ J satisfies P (1J) = Id. Conversely,
every Jordan triple system T containing an element 1 ∈ T with P (1) = Id
is a Jordan algebra with unit element 1 and multiplication Uxy = Pxy.

For many concepts there is no or not a big difference between J and T (J).
For example, a Jordan algebra J is graded by Λ if and only if T (J) is graded
by Λ, in which case 1J ∈ J0. In this case, a graded ideal of J is the same
as a graded ideal of T (J), and we will call J graded-simple if T (J) is so.
Moreover, if e ∈ J is an idempotent, i.e., e2 = e, then e is a tripotent of
T (J) and the Peirce spaces of J and T (J) with respect to e coincide, i.e.,
T

(
Ji(e)

)
= T (J)i(e), i = 0, 1, 2. In particular, the Peirce spaces Ji(e) are

graded if e ∈ J0. We thus get the following corollary from Th. 1.4.

Corollary 6.1. If J is a graded-simple Jordan algebra with an idempotent
0 6= e ∈ J0, then the Peirce space J2(e) is a graded-simple Jordan algebra,
and if J0(e) 6= 0 then J0(e) is graded-simple too.

A graded Jordan algebra J is called graded-triangulated by (u; e1, e2) if
ei = e2

i ∈ J0, i = 1, 2, are supplementary orthogonal idempotents and
u ∈ J1(e1)0 ∩ J1(e2)0 with u2 = 1 and u3 = u. It is called Λ-triangulated
if it is graded-triangulated and suppΛ J generates Λ as a group. Note that
any x ∈ J with x2 = 1 satisfies 2x3 = x2 ◦x = 2x and Ux3−x = UxUx2−1 = 0
by [J, (1.5.4) and (3.3.4)], whence x2 = 1 implies x3 = x in case 1

2 ∈ k or
x is homogeneous and J is graded-nondegenerate. Of course, we also have
x2 = 1 ⇒ x3 = x if J is special. In any case, with our definition of a
triangle in a Jordan algebra, J is graded-triangulated by (u; e1, e2) iff T (J)
is graded-triangulated by (u; e1, e2). Also, J is Λ-triangulated iff T (J) is so.

This close relation to graded-triangulated Jordan triple systems also in-
dicates how to get examples of graded-triangulated Jordan algebras: We
take a Jordan triple system which is graded-triangulated by (u; e1, e2) and
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require P (e) = Id for e = e1 + e2. Doing this for our two basic examples,
yields the following examples of graded-triangulated Jordan algebras.

Definition 6.2. (A) Hermitian matrix algebras: This is the graded Jordan
triple system H2(A,A0, π,− ) of Def. 3.1 with automorphism − = Id, which
we will write as H2(A,A0, π). Note that this is a Jordan algebra with product
U(x)y = P (x)y = xyx and identity element 1J = E11 + E22. If for exam-
ple A = B ¢ Bop and π is the exchange involution, then H2(A,A0, π) ∼=Λ

Mat2(B) where Mat2(B) is the Jordan algebra with product Uxy = xyx.
(B) Quadratic form Jordan algebras: This is the graded ample Clifford

system AC(q,M, S,D,− , D0) of Def. 4.2 with automorphism − = Id and
S|M = Id. Since then P (e) = Id we get indeed a graded-triangulated Jordan
algebra denoted ACalg(q,M,D, D0) or just ACalg(q,D, D0) if M is unimpor-
tant. Note that this Jordan algebra is defined on D0e1⊕M ⊕D0e2 and has
product Uxy = q(x, ỹ)x−q(x)ỹ where q(d1e1⊕m⊕d2e2) = d1d2−q(m) and
(d1e1 ⊕m ⊕ d2e2)̃ = d2e1 ⊕ −m ⊕ d1e1. (If 1

2 ∈ k it is therefore a reduced
spin factor in the sense of [M2, II, §3.4].)

Theorem 6.3. A graded-simple-triangulated Jordan algebra satisfying
(a) every nonzero m ∈ M is a linear combination of invertible homoge-

neous elements, or
(b) the grading group Λ is torsion-free,

is graded isomorphic to one of the following Jordan algebras:
(I) diagonal H2(A,A0, π) for a graded-simple noncommutative A;

(II) Mat2(B) for a noncommutative graded-simple associative unital B;
(III) ACalg(q, F, F0) for a graded-nondegenerate q over a graded-field F

with Clifford-ample subspace F0.
Conversely, all Jordan algebras in (I)–(III) are graded-simple-triangulated.

Proof. Let J be a graded-simple-triangulated Jordan algebra that satisfies
(a) or (b). Then T (J) is a graded-simple-triangulated Jordan triple system
with e = 1J satisfying (a) or (b) of Th. 5.10, hence graded isomorphic as
Jordan triple system to H2(C, C0, π), where (C, π) is graded-simple, or to
ACalg(q, C,C0), where C is division-graded. But because the graded isomor-
phisms appearing in Th. 5.10 preserve the triangles, they are in fact isomor-
phisms of Jordan algebras. Therefore J is graded isomorphic to H2(C, C0, π),
where (C, π) is graded-simple, or to ACalg(q, C, C0), where C is a graded-
field. In the second case J is of type (III) of the statement for F0 = C0 and
F = C. On the other hand, it follows from Prop. 3.7 that (C, π) is graded-
simple iff either C is graded-simple or C ∼=Λ B ¢ B for a graded-simple
associative B and π is the exchange involution. Hence H2(C,C0, π), where
(C, π) is graded-simple, is as in (I) or (II) of the statement. The converse
follows from Cor. 5.11. ¤
Definition 6.4. As in the Jordan triple system case, a graded Jordan al-
gebra J is called division-graded if every nonzero homogeneous element is
invertible in J .
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We say that J is division-triangulated if it is graded-triangulated, the
Jordan algebras Ji, i = 1, 2, are division-graded and every homogeneous
0 6= m ∈ M is invertible in J . It is called division-Λ-triangulated if it is
division-triangulated as well as Λ-graded.

A division-(Λ)-triangulated Jordan algebra J is called a (Λ)-triangulated
Jordan algebra torus if J is defined over a field k and dimk Jλ

i ≤ 1 and
dimk Mλ ≤ 1.

Thus, J is a division-(Λ)-triangulated Jordan algebra iff T (J) is a division-
(Λ)-triangulated Jordan triple system. We therefore get the Jordan algebra
versions of the Corollaries 5.12–5.14. We formulate the first and last of
them, and leave the translation of the second, Cor. 5.13, to the reader.

Corollary 6.5. For a graded-triangulated Jordan algebra J the following
are equivalent:

(i) J is graded-simple and every homogeneous 0 6= m ∈ M is invertible,
(ii) J is division-triangulated,
(iii) J is graded isomorphic to one of the following:

(I) a diagonal hermitian matrix algebra H2(A,A0, π) for a noncom-
mutative division-graded A;

(II) a quadratic form Jordan algebra ACalg(q, F, F0) for a graded-
anisotropic q over a graded-field F with Clifford-ample subspace
F0.

Corollary 6.6. A graded Jordan algebra J over a field k is a Zn-triangulated
Jordan algebra torus iff J is graded isomorphic to

(I) a diagonal hermitian matrix algebra H2(A,A0, π) where A is a non-
commutative quantum Zn-torus and πrev is the reversal involution,
see Ex. 3.13, or to

(II) a quadratic form Jordan algebra ACalg(q, M, D,D0) = D0e1 ⊕M ⊕
De2, where
(a) D = k[Γ] is the group algebra of a subgroup Γ ⊂ Zn with 2Zn ⊂

Γ, hence Γ is free of rank n and D is isomorphic to a Laurent
polynomial ring in n variables,

(b) D0 is a Clifford-ample subspace, hence D0 = D if char(k) 6= 2,
(c) M is a Zn-graded D-module which is free of finite rank, with

a homogeneous basis, say {u0, . . . , ul}, and the ui have degree
δi ∈ Zn with δ0 = 0 and δi + Γ 6= δj + Γ for i 6= i,

(d) the D-quadratic form q : M → D satisfies q(u0) = 1, 0 6=
q(ui) ∈ D2δi and q(ui, uj) = 0 for i 6= j.

Remark 6.7. For Λ = Zn Cor. 6.6 is proven in [AG, Prop. 4.53 and Prop. 4.80]
and in an equivalent form (structurable algebras instead of Jordan algebras)
in [F, §3, Th. 9], assuming char k 6= 2, 3 ([F]) or k = C in [AG].

Let now V = (V +, V −) be a Jordan pair. A grading of V by Λ is a de-
composition V σ =

⊕
λ∈Λ V σ[λ], σ = ±, such that the associated polarized

Jordan triple system T (V ) is graded with homogeneous spaces T (V )λ =
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V +[λ] ⊕ V −[λ]. The properties of graded Jordan triple systems we have
considered so far in this paper make sense for graded Jordan pairs too. For
example, a graded Jordan pair V is graded-nondegenerate if every homo-
geneous absolute zero divisor of V + or V − vanishes. It is immediate that
V is graded-nondegenerate if and only if T (V ) is graded-nondegenerate. As
usual, V is said to be graded-simple if Q(V σ)V −σ 6= 0 and every graded ideal
is either trivial or equal to V ; V is graded-prime if it does not contain nonzero
graded ideals I and K such that Q(Iσ)K−σ = 0 and graded-semiprime if
Q(Iσ)I−σ = 0 implies I = 0. For properties defined in terms of ideals we
have the following lemma, whose proof is again a straightforward adaptation
of the proof in the ungraded situation.

Lemma 6.8. ([N1, 1.5] for Λ = 0) Let V be a graded Jordan pair.
(i) If I = (I+, I−) is a graded ideal of V , then I+⊕ I− is a graded ideal

of T (V ).
(ii) Let πσ : T (V ) → V σ, σ = ±, be the canonical projection. If J is a

graded ideal of T (V ), then

J
˜

:= (J ∩ V +, J ∩ V −) and J̃ :=
(
π+(J), π−(J)

)
,

are graded ideals of V satisfying J
˜

+ ⊕ J
˜
− ⊆ J ⊆ J̃+ ⊕ J̃− and

Q(J̃σ)V −σ + Q(V σ)J̃−σ + {V σV −σJ̃σ} ⊆ J
˜

σ

(iii) V is graded-(semi)prime or graded-simple if and only if T (V ) is,
respectively, graded-(semi)prime or graded-simple.

Idempotents in a Jordan pair V and tripotents in T (V ) correspond to each
other naturally: Any idempotent e = (e+, e−) of V , i.e., Q(eσ)e−σ = eσ,
gives rise to the tripotent e+ ⊕ e− of T (V ), and conversely any tripotent of
T (V ) arises in this way. Moreover, we have the following obvious though
fundamental fact. If V = V2(e)⊕ V1(e)⊕ V0(e) is the Peirce decomposition
of V with respect to an idempotent e = (e+, e−), then the Peirce spaces of
T (V ) with respect to e+ ⊕ e− are T (V )i(e+ ⊕ e−) = T

(
Vi(e)

)
, i = 0, 1, 2.

The following corollary is a consequence of Lem. 6.8(iii) and Th. 1.4.

Corollary 6.9. If 0 6= e ∈ V [0] is an idempotent of a graded-simple Jordan
pair V , then the Peirce space V2(e) is graded-simple and if V0(e) 6= 0, then
V0(e) is also graded-simple.

Definition 6.10. Recall [N3] that a triple of nonzero idempotents (u; e1, e2)
of a Jordan pair V is a triangle if ei ∈ V0(ej), i 6= j, ei ∈ V2(u), i = 1, 2,
u ∈ V1(e1) ∩ V1(e2), and the following multiplication rules hold for σ = ±:
Q(uσ)e−σ

i = eσ
j , i 6= j, and Q(eσ

1 , eσ
2 )u−σ = uσ.

A graded Jordan pair V is said to be graded-triangulated if V contains
a triangle (u; e1, e2) in V [0] and V = V1 ⊕ M ⊕ V2, where Vi = V2(ei),
i = 1, 2, and M = V1(e1) ∩ V1(e2). It is then immediate that V is graded-
triangulated if and only if T (V ) is so. Naturally, we call V Λ-triangulated



36 ERHARD NEHER AND MARIBEL TOCÓN

if T (V ) is so. However, rather than applying the Jordan triple classification
to graded-(Λ)-triangulated Jordan pairs, we will use the Jordan algebra
Classification Th. 6.3. Namely, it is well known [N3, p.470] that V is covered
by a triangle (u; e1, e2) if and only if V ∼= (J, J) where J is the homotope
algebra J = V +(e−), e = e1+e2, with multiplication Uxy = Q(x)Q(e−)y and
unit element e+, which is covered by the triangle (u+; e+

1 , e+
2 ). If V is graded-

(Λ)-triangulated then so is J , and V ∼=Λ (J, J), since the isomorphism V ∼=
(J, J) is given by (Id, Q(e−)). Conversely, if J is a graded-(Λ)-triangulated
Jordan algebra (or Jordan triple system), then the associated Jordan pair
(J, J) is graded-(Λ)-triangulated. We therefore obtain the following two
types of examples of graded-triangulated Jordan pairs.

Example 6.11. (A′) Hermitian matrix pairs: V = (J, J) where J =
H2(A,A0, π) is a hermitian matrix algebra as in example (A) of Def. 6.2.

(B′) Quadratic form pairs: V = (J, J) where J = ACalg(q, D,D0) is a
quadratic form Jordan algebra as in example (B) of Def. 6.2. We note that
V ∼=Λ

(
AC(q, Id, D0),AC(q, Id, D0)

)
where AC(q, Id, D0) is the correspond-

ing ample Clifford system.

Theorem 6.12. A graded-simple-triangulated Jordan pair satisfying
(a) every nonzero m ∈ Mσ is a linear combination of invertible homo-

geneous elements, or
(b) the grading group Λ is torsion-free,

is graded isomorphic to a Jordan pair (J, J) where J is a graded-simple-
triangulated Jordan algebra as described in Th. 6.3. Conversely, all these
Jordan pairs (J, J) are graded-simple-triangulated.

Proof. Let V be graded-simple-triangulated by (u; e1, e2). Then V is graded
isomorphic to the Jordan pair of the unital Jordan algebra J = V +(e−). The
algebra J is then graded-simple, with Jλ = V +[λ], and graded-triangulated
by (u+; e+

1 , e+
2 ). Thus J is graded isomorphic to an algebra described in

Th. 6.3. Conversely, let V = (J, J) be the Jordan pair for J as in (I)–(III).
It follows from Th. 5.11 that the associated Jordan triple system T (V ) is
graded-simple-triangulated, hence V is graded-simple-triangulated by Lem.
6.8(iii). ¤

Definition 6.13. A graded Jordan pair V is said to be division-graded
if it is nonzero and every nonzero element in V σ[λ] is invertible in V [λ].
A graded-triangulated Jordan pair V will be called division-triangulated,
respectively division-Λ-triangulated , if the associated Jordan triple system
T (V ) = V +⊕V − is so. Similarly, a division-triangulated Jordan pair defined
over a field k is a triangulated Jordan pair torus if dimk V σ

i [λ] ≤ 1, i = 1, 2,
and dimk Mσ[λ] ≤ 1 for σ = ±. The notion of a Λ-triangulated Jordan pair
torus is the obvious one.

Since invertibility in V is equivalent to invertibility in the unital Jordan
algebra associated to V , we get the following corollaries.
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Corollary 6.14. For a graded-triangulated Jordan pair V the following are
equivalent:

(i) V is graded-simple and every homogeneous 0 6= m ∈ Mσ, σ = ±, is
invertible,

(ii) V is division-triangulated,
(iii) V is graded isomorphic to the Jordan pair (J, J) where J is one of

the Jordan algebras of Cor. 6.5.

Corollary 6.15. V is a triangulated Jordan pair torus iff V is graded iso-
morphic to a Jordan pair (J, J) where J is one of the following:

(I) J = H2(A,A0, π) is a diagonal hermitian matrix algebra of a noncom-
mutative torus A;

(II) J = ACalg(q, F, F0) for a graded-anisotropic q over a graded-field F
with Clifford-ample subspace F0, with F = D and M as described in
Cor. 4.5(b).

7. Graded-simple Lie algebras of type B2

In this section we apply our results on graded-simple-triangulated Jordan
algebras and pairs from the previous section 6 and obtain a classification of
(B2, Λ)-graded-simple and centreless division-(B2, Λ)-graded Lie algebras in
Th. 7.12 and Th. 7.13. In particular, we classify centreless Lie tori of type
(B2, Λ) in Cor. 7.14.

We begin by recalling the relevant definitions from the theory of root-
graded Lie algebras (Def. 7.1 and Def. 7.3). The link to triangulated Jordan
structures is given by the Tits-Kantor-Koecher construction, reviewed in
7.2 in general and then in Prop. 7.4 for the particular types of Lie algebras
studied in this section.

Since we realize B2-graded Lie algebras as central extensions of Tits-
Kantor-Koecher algebras of triangulated Jordan pairs, we assume in this
section that all Lie algebras, Jordan pairs and related algebraic structures
are defined over a ring k in which 2 · 1k and 3 · 1k are invertible.

Definition 7.1. Let R be a finite reduced root system (R could even only
be locally finite in the sense of [LN1]). We suppose that 0 ∈ R, and denote
by Q(R) the root lattice of R. A Lie algebra L over k is called (R, Λ)-graded
if

(1) L has a compatible Q(R)- and Λ-gradings, i.e., L = ⊕λ∈ΛLλ and
L = ⊕α∈Q(R)Lα such that for Lλ

α = Lλ ∩ Lα we have

Lα = ⊕λ∈ΛLλ
α, Lλ = ⊕α∈Q(R)L

λ
α, and [Lλ

α, Lκ
β] ⊆ Lλ+κ

α+β,

for λ, κ ∈ Λ, α, β ∈ Q(R).
(2) {α ∈ Q(R) : Lα 6= 0} ⊆ R.
(3) for every 0 6= α ∈ R the homogeneous space L0

α contains an element
e 6= 0 that is invertible in the following sense: There exists f ∈ L0−α
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such that h = [e, f ] acts on Lβ, β ∈ R, by

[h, xβ] = 〈β, α∨〉xβ, xβ ∈ Lβ (7.1)

where 〈α, β∨〉 denotes the Cartan integer of the two roots α, β ∈ R.
(4) L0 =

∑
0 6=α∈R[Lα, L−α], and {λ ∈ Λ : Lλ

α 6= 0 for some α ∈ R}
spans Λ as abelian group.

It follows that {α ∈ Q(R) : Lα 6= 0} = R. Also, any invertible element
e generates an sl2-triple (e, h, f). If Λ is not spanned by the support, we
will simply speak of an R-graded Lie algebra with a compatible Λ-grading .
An (R, Λ)-graded or R-graded Lie algebra with a compatible Λ-grading is
graded-simple if it is graded-simple with respect to the Λ-grading. A Lie
algebra is (R, Λ)-graded-simple, or R-graded-simple if it is (R, Λ)-graded
and graded-simple, respectively R-graded with a compatible graded-simple
Λ-grading.

The definition of a root-graded Lie algebra is taken from [N3]. Originally,
root-graded Lie algebras were defined over fields of characteristic 0 by a
different system of axioms, [BM] and [BZ]. As explained in [N3, Remark
2.1.2], an R-graded Lie algebra in the sense of [BZ] and [BM] is the same as
an R-graded Lie algebra as defined above. A lot is known about the structure
of root-graded Lie algebras, see [N5, 5.10] for a summary of results. We will
use here that L is a Lie algebra graded by a 3-graded root system R iff L is
a central covering of the Tits-Kantor-Koecher algebra TKK(V ) of a Jordan
pair V covered by a grid whose associated root system is R ([N3, 2.7]).

7.2. Review of TKK-algebras. Recall, see e.g. [N3, 1.5], that the Tits-
Kantor-Koecher algebra TKK(V ) of a Jordan pair V , in short the TKK-
algebra of V = (V +, V −), is a Z-graded Lie algebra defined on the k-module

TKK(V ) = V − ⊕ δ(V +, V −)⊕ V +

where δ(V +, V −) is the span of all inner derivations δ(x, y) = (D(x, y),
−D(y, x)), (x, y) ∈ V , of V . The Z-grading TKK(V ) =

⊕
i∈ZTKK(V )(i) is

a 3-grading in the sense that it has support {0,±1}, namely TKK(V )(±1) =
V ± and TKK(V )(0) = δ(V +, V −). The Lie algebra product is determined
by [x+, y−] = δ(x+, y−) and by the natural action of δ(V +, V −) on V ±:
[δ(x+, y−), u+] = {x+, y−, u+} and [δ(x+, y−), v−] = −{y−, x+, v−}. It is
important for the connection between Jordan theory and Lie algebras that,
conversely, for any 3-graded Lie algebra L = L(1)⊕L(0)⊕L(−1) the “wings”
(L(1), L(−1)) form a Jordan pair VL with Jordan triple product

{xσ, y−σ, zσ} = [[xσ, y−σ], zσ] (7.2)

for xσ, zσ ∈ V σ = L(σ1) and y−σ ∈ V −σ = L(−σ1), σ = ±. Moreover, the
ideal L′ = L(−1) ⊕ [L(−1), L(1)] ⊕ L(1) of L is a central extension of the
TKK-algebra TKK(VL), namely L′/C ∼= TKK(VL) for

C = {d ∈ [L(−1), L(1)] : [d, L±(1)] = 0}.
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We note that because of 1
2 , 1

3 ∈ k, a Jordan pair can be defined by the
Jordan triple products {., ., .}. The formula (7.2) is crucial: It allows one to
transfer properties between the Jordan pair and the associated Lie algebras.
An example is Prop. 7.4 below.

A grading of V by Λ extends to a grading of TKK(V ) by Λ using the
canonical grading of δ(V +, V −). The gradings of TKK(V ) used in the fol-
lowing will all be induced in this way from gradings of V . We point out that
suppΛ V ⊆ suppΛ TKK(V ), but both span the same subgroup of Λ.

Definition 7.3. To define special cases of root-graded Lie algebras, we
extend the definition of an invertible element to any e ∈ Lλ

α, α 6= 0, requiring
the inverse f ∈ L−λ

−α and the equation (7.1) for h = [e, f ]. Then, an (R, Λ)-
graded or R-graded Lie algebra L with a compatible Λ-grading is division-
graded if every nonzero element in Lλ

α, α 6= 0, is invertible, and a Lie torus
if it is division-graded, k is a field and dimk Lλ

α ≤ 1 for all 0 6= α ∈ R. As
usual, in this case we will speak of a division-(R, Λ)-graded Lie algebra and
a Lie torus of type (R, Λ), or division-R-graded Lie algebras and Lie tori of
type R if Λ is not necessarily spanned by the Λ-support.

We now specialize R = B2 = C2 = {0} ∪ {±ε1 ± ε2} ∪ {±2ε1,±2ε2}
and observe that R is 3-graded with 1-part R1 = {2ε1, ε1 + ε2, 2ε2} (an
isomorphic realization of this 3-graded root system will be used in Ex. 7.11.

Proposition 7.4. (a) The TKK-algebra TKK(V ) of a graded-triangulated
Jordan pair V = V1 ⊕M ⊕ V2 is B2-graded with compatible Λ-grading. Its
homogeneous spaces are

TKK(V )λ
±2εi

= V ±
i [λ],

TKK(V )λ
±(ε1+ε2) = M±[λ],

TKK(V )λ
εi−εj

= δ(e+
i ,M−[λ]), (i, j) ∈ {(1, 2), (2, 1)},

TKK(V )λ
0 =

∑

i=1,2

δ(e+
i , V −

i [λ]) + δ(u+,M−[λ]).

Conversely, if L is a B2-graded Lie algebra with compatible Λ-grading, then
its centre Z(L) is contained in L0, namely Z(L) = {x ∈ L0 : [x, Lα] =
0 for α ∈ (±R1)}, and L/Z(L) is graded isomorphic to the TKK-algebra of
the graded-triangulated Jordan pair V = (V +, V −) given by

V ±
i [λ] = Lλ

±2εi
and M±[λ] = Lλ

±(ε1+ε2).

(b) Let L be a B2-graded Lie algebra with compatible Λ-grading and let V
be the associated graded-triangulated Jordan pair defined in (a). Then L is

(i) graded-simple if and only if L = TKK(V ) and V is graded-simple;
(ii) division-graded if and only if V is division-triangulated;
(iii) a Lie torus if and only if V is a triangulated Jordan pair torus.
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(iv) (B2,Λ)-graded iff V is Λ-triangulated. In particular, L is division-
(B2,Λ)-graded iff V is division-Λ-triangulated, and a Lie torus of
type (B2, Λ) iff V is a Λ-triangulated Jordan pair torus.

Proof. (a) is the graded version of [N3, 2.3–2.6]. The generalization from
Λ = {0} to arbitrary Λ is immediate. We note that for a root-graded
Lie algebra L we have L/L′ and the centre of L coincides with the central
subspace C defined above.

In (b) the equivalence of graded-simplicity is a general fact ([GN, 2.5]),
and (iii) is immediate from (ii) and the formulas in (a). For the proof of
(ii) one shows that e ∈ Lα, α ∈ R±1, is invertible in the sense of Def. 7.1,
say with inverse f ∈ L−α, iff e has the appropriate invertibility property
in the Jordan pair V , again with inverse f . This proves in particular the
implication =⇒ . For the other direction, it then suffices to show that for
a root-graded Lie algebra L invertibility in the spaces Lα, α ∈ R1, forces
invertibility in Lγ , γ ∈ R0. This can be done by using Lγ = [Lα, L−β] for
appropriate α, β ∈ R1. We leave the details to the reader, in particular in
view of Rem. 7.5. ¤

Remark 7.5. In characteristic 0, a centreless Lie torus of type (B2,Zn) is the
same as the centreless core of a extended affine Lie algebra of type B2. The
latter have been studied in [AG, §4] for k = C. Therefore, in this setting
the torus part of the theorem above is implicit in [AG, §4].

One can also define Lie algebras graded by non-reduced root systems. A
B2-graded Lie algebra is then a special type of a BC2-graded Lie algebra.
In the setting of BC2-graded Lie algebras the torus version of Prop. 7.4
has been proven in [F, Th. 3], where Jordan pairs and Jordan algebras are
replaced by structurable algebras, and a triangulated Jordan algebra torus
by a so-called quasi-torus.

Remark 7.6. We have formulated Prop. 7.4 in terms of triangulated Jordan
pairs, since it is in this setting that the proposition can be generalized to
describe division-R-graded Lie algebras and Lie tori of type R for any 3-
graded root system R. We will however not need this here.

Remark 7.7. We have seen in Th. 6.12 that a graded-triangulated Jordan
pair V = (V +, V −) is isomorphic to the Jordan pair (J, J) associated to a
graded-triangulated Jordan algebra J . Since isomorphic Jordan pairs lead
to isomorphic TKK-algebras, one also has the Jordan algebra version of
Prop. 7.4. We leave the formulation to the reader.

Remark 7.8. For easier comparison with the literature ([AG, BY, F]) we
indicate how to “find” the Λ-triangulated Jordan algebra J in a B2-graded
Lie algebra L, using the notation of above. As a k-module, J =

⊕
λ∈Λ(Lλ

2ε1
⊕

Lλ
ε1+ε2

⊕ Lλ
2ε2

). For a, b ∈ J , the Jordan algebra product is given by a · b =
1
2 [[a, 1−], b] where 1− = f1 +f2 and fi ∈ L0

−2εi
is the inverse of the invertible

element ei ∈ L2εi whose existence is guaranteed by condition (3) in Def. 7.1.
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The identity element of J is 1J = e1 +e2, the elements ei are idempotents of
J , and J is triangulated by (u; e1, e2) for u the invertible element in L0

ε1+ε2
.

Prop. 7.4 reduces the classification of the various types of B2-graded Lie
algebras to determining the TKK-algebras of the corresponding triangulated
Jordan pairs and Jordan algebras, which we have described in the previous
section §6. Models for these TKK-algebras were given in [N3] for arbitrary
triangulated Jordan pairs over arbitrary rings. A more precise description
can be obtained in the graded-simple and division-graded case. To this end,
we re-visit the description of the TKK-algebras of the two types of Jordan
pairs and algebras that appear in the classification of division-triangulated
Jordan pairs and algebras in Cor. 6.14 and Cor. 6.5.

Example 7.9. The TKK-algebra of the Jordan pair (J, J) for J = H2(A, π),
equivalently, of the Jordan algebra J . ([N3, 4.2]). Note that the ample
subspace A0 of the hermitian matrix algebra is A0 = H(A, π) since 1

2 ∈ k.
Let

p2(A, π) :=
{[

a b
c −aπt

]
∈ Mat4(A) : a ∈ Mat2(A), b, c ∈ J

}
.

It is easy to see that p2(A, π) is the −1-eigenspace of an involution of the
associative algebra Mat4(A), hence a subalgebra of the general Lie algebra
gl4(A). The natural 3-grading of gl4(A) induces one of p2 = p2(A, π): We
have p2 = p2, (1) ⊕ p2, (0) ⊕ p2, (−1), where

p2, (1) =
{[

0 b
0 0

]
: b ∈ H2(A, π)

}
,

p2, (0) =
{[

a 0
0 −aπt

]
: a ∈ Mat2(A)

}
,

p2, (−1) =
{[

0 0
c 0

]
: c ∈ H2(A, π)

}
.

The Lie algebra p has a compatible Λ-grading p =
⊕

λ∈Λ pλ for which pλ

consists of the matrices with all entries in Aλ. The Jordan pair associated
to this 3-graded Lie algebra, see the review 7.2, is V = (J, J). We put

sp2(A, π) = p2, (1) ⊕ [p2, (1), p2, (−1)]⊕ p2, (−1),

called the symplectic Lie algebra associated to (A, π). The proof of [AABGP,
III, Prop. 4.2(a), (b)] also works in our more general setting and yields

sp2(A, π) = [p2(A, π), p2(A, π)] = {X ∈ p2(A, π) : tr(X) ∈ [A,A]}.
The Lie algebra sp2(A, π) is C2-graded with root spaces indicated in the
following tableau:



0 ε1 − ε2 2ε1 ε1 + ε2

ε2 − ε1 0 ε1 + ε2 2ε2

−2ε1 −ε1 − ε2 0 ε2 − ε1

−ε1 − ε2 −2ε2 ε1 − ε2 0



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It follows from Prop. 7.4 that

TKK(V ) ∼= sp2(A, π)/Z
(
sp2(A, π)

)
.

However, one has the following criterion for sp2(A, π) to be centreless (again
[AABGP, III, Prop. 4.2(d)] works in our more general setting):

Lemma 7.10. If A = Z(A)⊕ [A,A], e.g. if A is a torus ([NY, Prop. 3.3]),
then sp2(A, π) is centreless and hence is (isomorphic to) the TKK-algebra
of the Jordan algebra J = H2(A, π) and the Jordan (J, J).

Example 7.11. The TKK-algebra of the Jordan pair V = (J, J) for J =
ACalg(q, D). ([N3, 5.1, 5.3]) As in Ex. 7.9 the Clifford-ample subspace D0 =
D since 1

2 ∈ k. Thus J = De1 ⊕ M ⊕ De2 for a graded commutative
associative k-algebra D and q : M → D is a D-quadratic form.

For a D-quadratic form qN : N → D on a D-module N we define the
orthogonal Lie algebra of qN as o(qN ) = {X ∈ EndD(N) : qN (Xn, n) =
0 for all n ∈ N}, and the elementary orthogonal Lie algebra eo(qN ) as
eo(qN ) = SpanD{n1n

∗
2 − n2n

∗
1 : n1, n2 ∈ N} where n∗1 is the D-linear form

on N defined by n∗1(n) = qN (n1, n).
To describe the TKK-algebra of V or, equivalently of J , we put h1 = e1,

h−1 = e2 and define a D-quadratic form q∞ on

J∞ = Dh2 ⊕Dh1 ⊕M ⊕Dh−1 ⊕Dh−2

by requiring q∞|M = −q, (Dh2 ⊕ Dh−2) ⊥ (Dh1 ⊕ Dh−1) ⊥ M , and
q∞(hi, h−i) = 1, q∞(h±i) = 0 for i = 1, 2. It follows from [N3, (5.3.6)] that

TKK(V ) ∼= eo(q∞),

in particular, TKK(V ) ∼= o(q∞) if M is free of finite rank.
To obtain a more detailed description of the TKK-algebra, we assume in

the following that M has a homogeneous D-basis {ui : i ∈ I}, an assumption
which by Cor. 4.5 is always fulfilled if J is division-triangulated. Then J∞
is free too and endomorphisms of J∞ can be identified with column-finite
(4 + |I|)× (4 + |I|)-matrices over D, which we do with respect to the basis
h2, h1, (ui)i∈I , h−1, h−2. Let G be the |I| × |I|-matrix representing q with
respect to the basis (ui)i∈I . Then X ∈ eo(q∞) ⇐⇒

X =




a b −mt
2G −s 0

c d −mt
1G 0 s

n1 n2 XM m1 m2

t 0 −nt
1G d b

0 −t −nt
2G c a




where a, b, c, d, s, t ∈ D, m1,m2, n1, n2 ∈ D(I) ∼= M and XM ∈ eo(q) (if M
has finite rank the latter condition is equivalent to GXM +Xt

MG = 0). The
Lie algebra eo(q∞) has a B2-grading for B2 = {0} ∪ {±εi,±ε2,±ε1 ± ε2}
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whose homogeneous spaces o(q∞)α, α ∈ B2, are symbolically indicated by
the matrix below.



0 ε2 − ε1 ε2 ε1 + ε2 ·
ε1 − ε2 0 ε1 · ε1 + ε2

−ε2 −ε1 0 ε1 ε2

−(ε1 + ε2) · −ε1 0 ε2 − ε1

· −(ε1 + ε2) −ε2 ε1 − ε2 0




Here 0 is the 0-root space, while · indicates an entry 0 in the matrices in
o(q∞). The isomorphism TKK(V ) ∼= eo(q∞) is given by considering the
3-grading of the root system B2 whose 1-part is {ε2, ε2 ± ε1}. Hence

V ± = o(q∞)±(ε1+ε2) ⊕ o(q∞)±ε2 ⊕ o(q∞)±(ε2−ε1)

are the right respectively left columns of the matrices in eo(q∞).

Before we state the main results of this section, we remind the reader that
we assume 1

2 , 1
3 ∈ k in this section.

Theorem 7.12. For a torsion-free Λ the following are equivalent:

(i) L is a B2-graded-simple Lie algebra,
(ii) L is graded isomorphic to the TKK-algebra of a graded-simple-trian-

gulated Jordan algebra,
(iii) L is graded isomorphic to one of the following Lie algebras:

(I) sp2(A, π)/Z(sp2(A, π)) for a graded-simple A with involution π,
(II) sl4(B)/Z

(
sl4(B)

)
where sl4(B) = {X ∈ gl4(B) : tr(X) ∈ [B,B]},

and B is a noncommutative graded-simple associative algebra,
(III) eo(q∞) in the notation of Ex. 7.11 for D = F a graded-field

and q : M → F a graded-nondegenerate F -quadratic form on a
graded F -module M with base point u ∈ M0.

Proof. The equivalence of (i) and (ii) follows from Prop. 7.4 and Th. 6.12.
If (ii) holds, the cases (I) and (III) of Th. 6.3 correspond to the Lie algebras
(I) and (III) above, as follows from Ex. 7.9 and Ex. 7.11. That in case (II)
of Th.6.3 one gets case (II) above is shown in [N3, (3.4.3)]. The remaining
implication (iii) ⇒ (ii) is easy. ¤

With an analogous proof we obtain the classification of B2-division-graded
Lie algebras.

Theorem 7.13. For a Lie algebra L the following are equivalent:

(i) L is a centreless division-(B2,Λ)-graded Lie algebra,
(ii) L is graded isomorphic to the TKK-algebra of a division-Λ-triangu-

lated Jordan algebra,
(iii) L is graded isomorphic to one of the following Lie algebras:
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(I) sp2(A, π)/Z(sp2(A, π)) where A is a noncommutative division-
Λ-graded associative algebra with involution π and generated by
H(A, π),

(II) eo(q∞) in the notation of Ex. 7.11 for D = F a graded-field,
q : M → F a graded-anisotropic quadratic form on a graded
F-module M with base point u ∈ M0 and whose Λ-support gen-
erates Λ.

In particular, using Lem. 7.10 we get the following corollary.

Corollary 7.14. A Lie algebra L is a centreless Lie torus of type (B2, Λ)
iff L is graded isomorphic to one of the following:

(I) A symplectic Lie algebra sp2(A, π) as in Ex. 7.9, where A is a non-
commutative Λ-torus with involution π and generated by H(A, π).

(II) An elementary orthogonal Lie algebra eo(q∞) as in Ex. 7.11 with D a
torus, M as described in Cor. 4.5(b), q : M → D graded-anisotropic
and Λ spanned by suppΛ M .

Remark 7.15. Centreless division-(B2, Λ)-graded Lie algebras over fields of
characteristic 0 and centreless Lie tori of type (B2,Λ) are also described in
[BY, Th. 4.3 and Th. 5.9], using a different method. Our approach gives a
more precise description of these Lie algebras. The special case Λ = Zn had
been established before in [AG, Th. 4.87]. It could also be deduced from the
results in [F, Th. 9], see Rem. 6.7.

The data A, D, M and q occurring for Λ = Zn in Cor. 7.14 are described
in detail in Cor. 6.6.
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