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Abstract Let Z and W be JB*-triples and let T be a linear isometry from Z into W . For
any z ∈ Z with ‖z‖ < 1, we show that

T{z, z, z} = {T (z), T (z), T (z)}

if the Möbius transform induced by T (z) preserves the unit ball of T (Z). We show further
that T is, locally, a triple homomorphism via a tripotent : for any z ∈ Z, there is a tripotent
u in W ∗∗ such that

{u, T{a, b, c}, u} = {u, {T (a), T (b), T (c)}, u}

for all a, b, c in the smallest subtriple Zz of Z containing z, and also, {u, T (·), u} : Zz −→ W ∗∗

is an isometry.

1 Introduction

Jordan algebraic structures play an important role in the geometry of infinite

dimensional Banach manifolds. Indeed, as shown by Kaup [14], every bounded

symmetric domain gives rise to a Jordan triple product {·, ·, ·} on its tangent

space and a surjective linear map T between these spaces is an isometry if, and

only if, it preserves the Jordan triple product :

T{a, b, c} = {T (a), T (b), T (c)} .

These tangent spaces form an important class of complex Banach spaces, called

JB*-triples. One can therefore study the geometry of symmetric domains via

the algebraic structures of JB*-triples. We remark that Jordan methods were
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first introduced by Koecher [15] into the theory of finite dimensional bounded

symmetric domains and they were also discussed in detail in [16].

Although a Jordan triple monomorphism is necessarily an isometry, a non-

surjective linear isometry between two JB*-triples need not preserve the Jordan

triple product. It is natural to ask to what extent can a non-surjective linear

isometry preserve the Jordan triple product. The object of this paper is to

address this question. We note that, by polarization, a linear map T : Z −→ W

between JB*-triples preserves the Jordan triple product if, and only if,

T{a, a, a} = {T (a), T (a), T (a)} (a ∈ Z) .

To answer the above question, our first task is to understand what makes

a surjective linear isometry preserve the Jordan triple product. Upon a closer

study of the geometry behind the proof of this fact in [14, Proposition 5.5], we

found that the condition needed is a certain invariant property of the Möbius

transformation. In Section 3 we discuss this in detail and show that, given a

linear isometry T : Z −→ W between JB*-triples, not necessarily surjective,

one has

T{a, a, a} = {T (a), T (a), T (a)}
for ‖a‖ < 1 if the Möbius transformation gTa induced by T (a) preserves the

open unit ball of the image T (Z). In Section 4, we show that, although a non-

surjective linear isometry T : Z −→ W between JB*-triples need not be a

triple homomorphism, it is, nevertheless, locally a triple homomorphism, that

is, for any a ∈ Z, there is a tripotent u ∈ W ∗∗ such that ‖{u, T (z), u}‖ = ‖z‖
and

{u, T{z, z, z}, u} = {u, {T (z), T (z), T (z)}, u}
for every z in the JB*-triple generated by a. The tripotent u above depends

on the given element a ∈ Z, but if Z admits a character, then one can find a

tripotent v ∈ W ∗∗ such that {v, T (·), v} 6= 0 and

{v, T{z, z, z}, v} = {v, {T (z), T (z), T (z)}, v}

for all z ∈ Z. Without any condition on Z, such a tripotent v may not exist.

Finally in Section 5, we prove more specialized results in the setting of JB*-

algebras. In particular, we show that, if T : Z −→ W is a linear isometry from

a JB*-triple Z into a JB*-algebra (W, ◦), then there is a largest projection

p ∈ W ∗∗ such that, for all a ∈ Z,

T{a, a, a} ◦ p = {T (a), T (a), T (a)} ◦ p

and p operator commutes with T (a) ◦ T (a)∗.

The results in this paper generalize those in [7] for C*-algebras. We begin in

the next section with some basic definitions and results concerning JB*-triples.
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2 JB*-triples

Throughout this paper, an isometry T : Z −→ W between Banach spaces is

not assumed to be surjective and we often write Ta for the image T (a) for

convenience. We first recall that a JB*-triple Z is a complex Banach space

equipped with a continuous Jordan triple product {·, ·, ·} : Z3 −→ Z which is

symmetric and linear in the outer variables, and conjugate linear in the middle

variable such that for a, b, c, x, y ∈ Z, we have

(i) {a, b, {c, x, y}} = {{a, b, c}, x, y} − {c, {b, a, x}, y}+ {c, x, {a, b, y}};
(ii) the map z ∈ Z 7→ {a, a, z} ∈ Z is hermitian with nonnegative spectrum;

(iii) ‖{a, a, a}‖ = ‖a‖3.

For later reference, we define two fundamental linear operators on a JB*-triple

Z. For x, y ∈ Z, the box operator x�y : Z −→ Z and the Bergman operator

B(x, y) : Z −→ Z are defined by

(x�y )(z) = {x, y, z}
B(x, y)(z) = z − 2{x, y, z}+ {x, {y, z, y}, x}.

Every C*-algebra A is a JB*-triple with the following Jordan triple product

{a, b, c} =
1

2
(ab∗c+ cb∗a) (a, b, c ∈ A).

A closed subspace of a JB*-triple is called a subtriple if it is closed with respect

to the triple product. A linear map T : Z −→ W between JB*-triples is called

a triple homomorphism if it preserves the triple product in which case, the

kernel J of T is a triple ideal of Z, that is, {Z,Z, J} + {Z, J, Z} ⊂ J and

the range T (Z) is a subtriple of W . We refer to [3,6,18–20] for expositions as

well as recent surveys of JB*-triples and symmetric Banach manifolds. In the

sequel, we write a(3) = {a, a, a} and use frequently the polarization formula

{a, b, c} =
1

8

∑
α4=β2=1

αβ(a+ αb+ βc)(3).

An element u in a JB*-triple is called a tripotent if u(3) = u. If a JB*-triple

Z has a predual (which is necessarily unique), then it is called a JBW*-triple

in which case, Z has an abundance of tripotents. Each tripotent u ∈ Z induces

a splitting of Z, Z = Z0 ⊕ Z1 ⊕ Z2, known as the Peirce decomposition, into

a direct sum of the 0, 1 and 2-eigenspaces of the operator 2u�u . The Peirce

projections Pi(u) : Z → Zi onto the eigenspaces Zi, for i = 0, 1, 2, are given in

terms of the triple product,

P0(u)(z) = B(u, u)(z)

P1(u)(z) = 2({u, u, z} − {u, {u, z, u}, u})
P2(u)(z) = {u, {u, z, u}, u}.
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These projections are contractive. Each eigenspace Zi is a subtriple of Z. Indeed

we have {Zi, Zj, Zk} ⊂ Zi−j+k for i, j, k ∈ {0, 1, 2} where Zr := {0} for r /∈
{0, 1, 2}. In particular, Z2 = P2(u)(Z) is a JB*-algebra with identity u, and

with respect to the following non-associative product and involution :

x ◦ y = {x, u, y} , x∗ = {u, x, u}.

We note that a JB*-algebra, that is, a Jordan Banach algebra (A, ◦) equipped

with an isometric involution ∗ satisfying ‖x ◦ y‖ ≤ ‖x‖‖y‖ and ‖{x, x, x}‖ =

‖x‖3, is also a JB*-triple with the Jordan triple product

{a, b, c} = (a ◦ b∗) ◦ c− (a ◦ c) ◦ b∗ + (b∗ ◦ c) ◦ a.

For example, a C*-algebra is a JB*-algebra with the Jordan product

a ◦ b =
1

2
(ab+ ba).

A JB*-algebra is called a JC*-algebra if it can be embedded as a norm-closed

subspace of a C*-algebra, closed with respect to the involution and the above

Jordan product. A JB*-algebra having a (necessarily unique) predual is called a

JBW*-algebra, it is called a JW*-algebra if it is also a JC*-algebra. We refer to

[10] for a detailed exposition of Jordan Banach algebras including JB*-algebras

and JBW*-algebras.

Each tripotent u in a JBW*-triple Z has a support face F (u) in the predual

Z∗ of Z, given by

F (u) = {ϕ ∈ Z∗ : ‖ϕ‖ = 1 = ϕ(u)}

which is a norm-exposed face of the closed unit ball Z∗1 of Z∗. One can intro-

duce a partial ordering ≤ to the set T (Z) of tripotents in a JBW*-triple Z.

For any two tripotents u and v in Z, one defines u ≤ v if v − u is orthogonal

to u which means that

{u, v − u, x} = 0

for all x ∈ Z. With this partial ordering, it has been shown in [8] that given

a family of tripotents {uα}α∈Q in Z, either the lattice supremum
∨
α∈Q

uα exists

in T (Z), or Z∗1 =
∨
α∈Q

F (uα), that is, the smallest norm-exposed face of Z∗1

containing the union
⋃

α F (uα) is Z∗1 itself. By [5], Z embeds as a subtriple

of a JBW*-algebra A such that the predual Z∗ is a 1-complemented subspace

of the predual A∗ of A, where we recall that a closed subspace of a Banach

space E is called 1-complemented if it is the range of a contractive projection

on E. In particular, faces of Z∗1 are faces of the closed unit ball A∗1 and, every

face F of A∗1 is either disjoint from Z∗1 or the intersection F ∩ Z∗1 is a face
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of Z∗1. It follows that, if {uα}α∈Q is a family of tripotents in T (Z) such that

Z∗1 =
∨

α F (uα), then we also have A∗1 =
∨′

α F (uα), where
∨′ denotes the

supremum in A∗1, for otherwise, F =
∨′

α F (uα) is a proper norm-exposed face

of A∗1 and the intersection F ∩ Z∗1 is a norm-exposed face of Z∗1 containing⋃
α F (uα), giving F ∩ Z∗1 = Z∗1 which is impossible since 0 /∈ F .

By [8, p.322], every element z in a JBW*-triple Z admits a support tripotent

uz ∈ T (Z) satisfying

z = {uz, z, uz} = {uz, uz, z} .

3 Isometries and Möbius transformation

In this section, we reveal the role of Möbius transformations in the preserva-

tion of Jordan structures by a linear isometry. We first introduce the relevant

geometric and holomorphic aspects of JB*-triples. A map g : D −→ U between

open sets in complex Banach spaces Z and W , respectively, is called holomor-

phic if the Fréchet derivative g′(a) : Z −→ W exists for every a ∈ D, where

g′(a) is a linear map satisfying

lim
t→0

‖g(a+ t)− g(a)− g′(a)(t)‖
‖t‖

= 0.

A holomorphic map g : D −→ U is called biholomorphic if it is bijective and

the inverse g−1 is also holomorphic. The open unit ball of a Banach space Z

will be denoted by Z0. Let AutZ0 be the automorphism group of Z0, consisting

of all biholomorphic maps from Z0 onto itself. Upmeier [20] has shown that

AutZ0 is a real Banach-Lie group and by a deep result of Kaup [14], a complex

Banach space Z is a JB*-triple if, and only if, AutZ0 acts transitively on Z0,

in which case, the Jordan triple product is constructed via the Lie algebra

of AutZ0. For a JB*-triple Z, the basic elements in AutZ0 are the Möbius

transformations. Given a ∈ Z0, we define the Möbius transformation of Z0,

induced by a, to be the biholomorphic map ga : Z0 −→ Z0 given by

ga(z) = a+B(a, a)1/2(I + z�a )−1(z)

where I is the identity operator. We have ga(0) = a, g−1
a = g−a and, the Fréchet

derivatives g′a(0) = B(a, a)1/2 and g′−a(a) = B(a, a)−1/2 (cf. [14]). If Z is a C*-

algebra, we have the following formula for the Möbius transformation which

was due to Potapov [17] and Harris [11]:

ga(z) = (1− aa∗)−1/2(a+ z)(1 + a∗z)−1(1− a∗a)1/2.

Lemma 1. Let T : Z −→ W be a linear isometry between JB*-triples Z and

W . Let a ∈ Z0 and let ψ ∈ Aut T (Z)0 be such that ψ(T (a)) = 0. Then

ψ(0) = −ψ′(T (a))(T (B(a, a)1/2(a))).
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Proof. Let h = ψTga : Z0 −→ T (Z)0. Then h is biholomorphic and h(0) = 0.

Hence h is linear by Cartan’s uniqueness theorem and on Z0, h = h′(0) =

(ψTga)
′(0) = (ψT )′(ga(0))g

′
a(0) = (ψT )′(a)B(a, a)1/2. Evaluating h at −a, we

get the formula.

We note that Tg−aT
−1 is an automorphism of T (Z)0 and maps T (a) to 0.

For a C*-algebra, we have B(a, a)1/2(a) = (1− aa∗)1/2a(1− a∗a)1/2 = a− aa∗a
since (1 − aa∗)1/2a = a(1 − a∗a)1/2. Therefore we have B(a, a)1/2(a) = a −
{a, a, a} in a JB*-triple by considering the subtriple generated by a which is

linearly isometric to an abelian C*-algebra. Since B(a, a) = B(−a,−a), we

have g−a(−z) = −ga(z). It follows that, if D = −D is a subset of the open

unit ball of a JB*-triple, invariant under ga, then it is also invariant under g−a

and ga(D) = D.

By refining Kaup’s result in [14, Proposition 5.5] (see also [11]), we now

show how the Möbius transformation and surjectivity effect the preservation

of the triple product by a linear isometry.

Proposition 1. Let T : Z −→ W be a linear isometry between JB*-triples Z

and W . Let a ∈ Z0 and let gTa ∈ AutW0 be the Möbius transformation induced

by T (a). If gTa(T (Z)0) ⊂ T (Z)0, then we have

T{a, a, a} = {T (a), T (a), T (a)}.

In particular, if T is surjective, then T is a triple isomorphism.

Proof. Let ψ be the restriction to T (Z)0 of the Möbius transformation g−Ta ∈
AutZ0. Then ψ ∈ Aut T (Z)0, ψ(T (a)) = 0 and the derivative ψ′(T (a)) :

T (Z) −→ T (Z) is the restriction of the derivative g′T (a)(T (a)) : W −→ W

which is equal to B(T (a), T (a))−1/2. By Lemma 1, we have

−T (a) = ψ(0) = −ψ′(T (a))(T (B(a, a)1/2(a)) = −B(T (a), T (a))−1/2T (a−a(3)).

It follows that T (a) − T (a)(3) = B(T (a), T (a))1/2(T (a)) = T (a − a(3)) which

gives T (a)(3) = T (a(3)).

Finally, if T is surjective then T (Z)0 = W0 is invariant under gTa for all

a ∈ A0. Hence T preserves the triple product.

Remark 1. The above result subsumes Kadison’s seminal result for surjective

isometries between C*-algebras. It has also been discussed in [4] in the setting

of JB*-algebras. We note from [7] that, for a fixed a, the condition T (a(3)) =

(Ta)(3) alone does not imply T (a(n)) = (Ta)(n) for any odd integer n > 3.

The following corollary is immediate.
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Corollary 1. Let T : Z −→ W be a linear isometry between JB*-triples. Then

T (Z) is a subtriple of W if, and only if, T (Z)0 is invariant under the Möbius

transformation gT (a) for all ‖a‖ < 1.

Example 1. Let Mn be the JB*-triple of n×n complex matrices. Let T : C −→
M2 be defined by

T (a) =

(
0 a

2

a 0

)
.

Then T is a linear isometry and T (C) is not a subtriple of M2. Also T (1) is

not unitary and T (C) contains no nontrivial positive element. For a 6= 0, we

have T (a(3)) 6= (Ta)(3) and in fact, for 0 < |a| < 1,

gTa(Tx) =

(
0 2(a+x)

4+āx
a+x
1+āx

0

)
which is outside T (C).

Example 2. A Hilbert space H is a JB*-triple with Jordan triple product

{x, y, z} =
1

2
(〈x, y〉z + 〈z, y〉x)

where 〈·, ·〉 denotes the inner product in H. Hence, given a linear isometry

T : H −→ K between Hilbert spaces, the range T (H) is a subtriple of K and

T is a triple isomorphism onto T (H).

Given a ∈ H0, the Möbius transformation ga : H0 −→ H0 is given by

ga(x) =
a+ Ea(x) +

√
1− ‖a‖2(I − Ea)(x)

1 + 〈x, a〉

where Ea is the projection from H onto the subspace Ca. Given a linear isom-

etry T on H, we have 〈Tx, Ta〉 = 〈x, a〉 and ETa(Tx) = Ea(x)Ta. It follows

that

gTa(Tx) = T (ga(x))

and indeed, T (H)0 is invariant under gTa for all ‖a‖ < 1.

Example 3. Let C(Ω) and C(Ω ∪ {β}) be the C*-algebras of continuous func-

tions on the closed unit disc Ω ⊂ C and Ω ∪{β} respectively, where β ∈ C\Ω.

Define T : C(Ω) −→ C(Ω ∪ {β}) by

(Ta)(x) =

{
a(x) if x ∈ Ω
1
2
(a(1) + a(0)) if x = β.

Then T is a linear isometry and T (C(Ω)) = {h ∈ C(Ω ∪ {β}) : 2h(β) =

h(1)+h(0)} which is not a subtriple of C(Ω∪{β}). It is easy to see that T is not
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a triple isomorphism onto its range, but for a ∈ C(Ω)0 with a(1) = a(0) = 0,

we have gTa(T (C(Ω))0) ⊂ T (C(Ω))0. Indeed, if h ∈ T (C(Ω))0, then

gTa(h)(β) =

(
Ta+ h

1 + Tah

)
(β) =

Ta(β) + h(β)

1 + Ta(β)h(β)

=
2(a(1) + a(0) + h(1) + h(0))

4 + a(1) + a(0)(h(1) + h(0))
=

1

2
(h(1) + h(0))

=
1

2
(gTa(h)(1) + gTa(h)(0))

which gives gTa(h) ∈ T (C(Ω))0. It is clear that T (a(3)) = T (a)(3).

4 Isometries and Jordan triple product

Our goal in this section is to show that a non-surjective linear isometry T :

Z −→ W between JB*-triples preserves, at least locally, the Jordan triple

product, via a tripotent. Since the JB*-subtriple generated by an element z ∈ Z
is Jordan isomorphic to the JB*-triple C0(X) of complex continuous functions

on a locally compact Hausdorff space X, vanishing at infinity, it suffices to

study the case in which Z = C0(X).

We recall that for any functional ϕ in the predual of a JBW*-triple W ,

there is a unique tripotent uϕ ∈ W , called the support tripotent of ϕ, such that

ϕ = ϕ ◦ P2(uϕ) and ϕ|P2(uϕ)(W ) is a faithful normal positive functional on the

JBW*-algebra P2(uϕ)(W ) [9, Proposition 2]. The JBW*-algebra P2(uϕ)(W )

becomes an inner product space with respect to the inner product

〈a, b〉 = ϕ{a, b, uϕ}.

Moreover ϕ is an extreme point of the closed unit ball of the predual if, and

only if, uϕ is a minimal tripotent, that is, {uϕ,W, uϕ} = Cuϕ. We denote by

∂E the set of extreme points of the closed unit ball of a Banach space E.

As usual, we embed and regard a JB*-triple Z as a subtriple of its second

dual Z∗∗ which is a JBW*-triple. The following theorem generalizes the results

in [7,12].

Theorem 1. Let W be a JB*-triple and let T : C0(X) −→ W be a linear

isometry. Then either T is a triple homomorphism or there is a tripotent u ∈
W ∗∗ such that

{u, T (f 3), u} = {u, T (f)3, u}
for all f ∈ C0(X) and

{u, T (·), u} : C0(X) −→ W ∗∗

is an isometry.
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Proof. Let E = T (C0(X)). Then the dual map T ∗ : E∗ → C0(X)∗ of T :

C0(X) → E is a surjective linear isometry. We also denote by T ∗ the dual map

of T : C0(X) −→ W since no confusion is likely. Let

Q = {ϕ ∈ ∂W ∗ : ϕ|E ∈ ∂E∗}.

Then Q is non-empty since each extreme point ψ ∈ ∂E∗ extends to an extreme

point ϕ ∈ ∂W ∗.

Let ϕ ∈ Q with ψ = ϕ|E ∈ ∂E∗. Then T ∗ϕ = T ∗ψ is an extreme point

of the closed unit ball of C0(X)∗ and hence there exists xϕ ∈ X such that

T ∗ψ = αδxϕ with |α| = 1. Let uϕ ∈ W ∗∗ be the support tripotent of ϕ.

Since uϕ is a minimal tripotent and ϕ{uϕ, ·, uϕ} = ϕ ◦ P2(uϕ)(·) = ϕ̄(·),
where the bar ’−’ denotes complex conjugation, we have

{uϕ, b, uϕ} = ϕ(b)uϕ (b ∈ W ∗∗).

From ϕ ◦ T (f) = (T ∗ϕ)(f) = (T ∗ψ)(f) = αf(xϕ), we obtain, in W ∗∗,

{uϕ, T (f), uϕ} = αf(xϕ)uϕ (f ∈ C0(X))

and {uϕ, T (·), uϕ} is a triple homomorphism. In particular,

αf (3)(xϕ)uϕ = {uϕ, T f, uϕ}(3) = {uϕ, {Tf, P2(uϕ)(Tf), T f}, uϕ}
= αf(xϕ){uϕ, {Tf, uϕ, T f}, uϕ}

and hence ϕ{uϕ, {Tf, uϕ, T f}, uϕ} = (αf(xϕ))2 or

ϕ{Tf, uϕ, T f} = (αf(xϕ))2. (1)

We prove that

{uϕ, T (f (3)), uϕ} = {uϕ, (Tf)(3), uϕ} (f ∈ C0(X)).

It suffices to show that

ϕ{uϕ, (Tf)(3), uϕ} = αf (3)(xϕ).

We first show that

{uϕ, uϕ, Th} = uϕ

for h ∈ C0(X) satisfying ‖h‖ = 1 and h(xϕ) = ᾱ. We have, by the Schwarz

inequality [2, Proposition 1.2],

1 = |ϕ(Th)|2 = |ϕ{uϕ, Th, uϕ}|2

≤ ϕ{uϕ, uϕ, uϕ}ϕ{Th, Th, uϕ} ≤ ‖Th‖2 = ‖h‖2 = 1

giving ϕ{Th, Th, uϕ} = 1. Let

Nϕ = {b ∈ W ∗∗ : ϕ{b, b, uϕ} = 0}.
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Then we have

Nϕ = P0(uϕ)(W ∗∗) (2)

by [2, p.516]. We show Th− uϕ ∈ Nϕ. Indeed, we have

ϕ{Th− uϕ, Th− uϕ, uϕ}
= ϕ{Th, Th, uϕ} − ϕ{uϕ, Th, uϕ}+ ϕ{uϕ, uϕ, uϕ} − ϕ{Th, uϕ, uϕ} = 0

where ϕ{Th, uϕ, uϕ} = ϕ{uϕ, Th, uϕ} = 1. Hence, by (2), we have {uϕ, uϕ, Th−
uϕ} = 0 and {uϕ, uϕ, Th} = uϕ.

We next show that ϕ{Tg, Tg, uϕ} = 0 whenever g ∈ C0(X) satisfies g(xϕ) =

0. We may assume, by Urysohn’s lemma, that g vanishes on a neighbourhood

of xϕ, in which case, we can choose k ∈ C0(X) such that ‖k‖ = 1, k(xϕ) = α

and kg = 0. Then ‖k + g‖ = 1 and (k + g)(xϕ) = α. Therefore, by the above,

we have T (k + g) +Nϕ = uϕ +Nϕ = Tk +Nϕ which yields Tg ∈ Nϕ, that is,

ϕ{Tg, Tg, uϕ} = 0.

Now let f ∈ C0(X) with ‖f‖ = 1. Pick h ∈ C0(X) with ‖h‖ = 1 and h(xϕ) =

ᾱ. Then (f − αf(xϕ)h)(xϕ) = 0 and therefore we have Tf − αf(xϕ)Th ∈ Nϕ

and by (2) again,

{uϕ, uϕ, T f − αf(xϕ)Th} = 0

giving

{uϕ, uϕ, T f} = αf(xϕ){uϕ, uϕ, Th} = αf(xϕ)uϕ.

Moreover, we have

αf(xϕ){uϕ, T f, uϕ} = {uϕ, T f, {uϕ, uϕ, T f}}
= {{uϕ, T f, uϕ}, uϕ, T f} − {uϕ, {Tf, uϕ, uϕ}, T f}+ {uϕ, uϕ, {uϕ, T f, Tf}}
= αf(xϕ){uϕ, uϕ, T f} − αf(xϕ){uϕ, uϕ, T f}+ {uϕ, uϕ, {uϕ, T f, Tf}}
= {uϕ, uϕ, {uϕ, T f, Tf}}

and hence ϕ{uϕ, T f, Tf} = ϕ({uϕ, uϕ, {uϕ, T f, Tf}}) = αf(xϕ)ϕ{uϕ, T f, uϕ}.
Therefore we have

ϕ{uϕ, (Tf)(3), uϕ} = ϕ{uϕ, uϕ, {Tf, Tf, Tf}}
= ϕ({{uϕ, uϕ, T f}, T f, Tf} − {Tf, {uϕ, uϕ, T f}, T f}+ {Tf, Tf, {uϕ, uϕ, T f}})
= 2αf(xϕ)ϕ{uϕ, T f, Tf} − αf(xϕ)ϕ{Tf, uϕ, T f}
= αf (3)(xϕ)

using (1). It follows that

ϕ{uϕ, (Tf)(3), uϕ} = αf (3)(xϕ) = ϕ{uϕ, T (f (3)), uϕ}.

By the remarks in Section 2, we have two cases :
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(i) the lattice supremum u =
∨
ϕ∈Q

uϕ is a tripotent in W ∗∗ ;

(ii) W ∗
1 =

∨
ϕ∈Q

F (uϕ) =
∨
ϕ∈Q

{ϕ} .

Case (i). The tripotent u =
∨

ϕ∈Q uϕ has support face

F (u) = {ψ ∈ W ∗ : ‖ψ‖ = ψ(u) = 1}

which is the normal state space of the atomic JBW*-algebra P2(u)(W
∗∗). Let ρ

be an extreme point of F (u) with support tripotent uρ which is a minimal pro-

jection in P2(u)(W
∗∗). If we select from {uϕ}ϕ∈Q a maximal subfamily {uϕ}ϕ∈Q′

with mutually orthogonal central supports {c(uϕ)}ϕ∈Q′ , then u =
∑
ϕ∈Q′

c(uϕ)

where each P2(c(uϕ))(W ∗∗) is a type I JBW*-factor. It follows from [10, Lemma

5.3.2] that uρ is exchanged by a symmetry s ∈ P2(u)(W
∗∗) to some uϕ with

ϕ ∈ Q′, that is, uρ = {s, uϕ, s}, with T ∗ϕ = αδxϕ as before. Then we have

ρ{s, ·, s} = ϕ(·).
Let S : C0(X) → W ∗∗ be the isometry defined by

S(f) = {s, Tf, s}∗ (f ∈ C0(X))

where ∗ is the involution in P2(u)(W
∗∗). By the above argument, we have

ϕ(S(f (3))) = ϕ((Sf)(3)). As ϕ is a state of P2(u)(W
∗∗), it follows that

ρ(T (f (3))) = ϕ{s, T (f (3)), s} = ϕ({s, T (f (3)), s}∗)
= ϕ(({s, Tf, s}∗)(3))

= ϕ({s, {Tf, {s, {s, Tf, s}, s}, T f}, s}∗)
= ϕ({s, (Tf)(3), s}∗)
= ρ((Tf)(3)).

Since ρ ∈ F (u) was arbitrary, we obtain

{u, T (f (3)), u} = {u, (Tf)(3), u}.

Finally, for any f ∈ C0(X), pick x ∈ X with ‖f‖ = |f(x)|. Let ψ ∈ ∂E∗

with T ∗ψ = δx, and let ϕ ∈ ∂W ∗ be an extension of ψ. Then ϕ ∈ Q and

T ∗ϕ = δx. Hence

‖Tf‖ ≥ ‖{u, Tf, u}‖ ≥ ‖{uϕ, {uϕ, {u, Tf, u}, uϕ}, uϕ}‖
= ‖{uϕ, T f, uϕ}‖
= ‖f(x)uϕ‖ = |f(x)| = ‖f‖

which gives ‖{u, Tf, u}‖ = ‖f‖.
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Case (ii). Let W ∗∗ be embedded as a subtriple of a JBW*-algebra B such

that W ∗ is 1-complemented in the predual B∗. As remarked in Section 2, we

have B∗1 =
∨
ϕ∈Q

{ϕ}. It follows that there is a subfamily {ϕ}ϕ∈Q′′ such that the

atomic part Ba of B is a direct sum

Ba =
⊕
ϕ∈Q′′

B(uϕ)

where B(uϕ) is the weak*-closed ideal in B generated by uϕ and is a type I

JBW*-factor. Given an extreme point ρ ∈ ∂W ∗, it is also an extreme point of

B∗1 and its support tripotent uρ is in some B(uϕ). As before, uρ is equivalent

to uϕ via a symmetry in B and it follows that

ρ(T (f (3))) = ρ((Tf)(3)).

As ρ ∈ ∂W ∗ was arbitrary, we have

T (f (3)) = (Tf)(3)

for all f ∈ C0(X), that is, T is a triple homomorphism. This completes the

proof.

Remark 2. We note that the map {u, T (·), u} in Theorem 1 is complex conju-

gate linear and it is equivalent to state that the complex linear map P2(u) ◦ T
is an isometry.

Theorem 2. Let T : Z −→ W be a linear isometry between JB*-triples Z and

W . Then for any z ∈ Z, there is a tripotent uz ∈ W ∗∗ such that

{uz, T (a(3)), uz} = {uz, (Ta)
(3), uz}

for all a in the subtriple Zz generated by z, and that

{uz, T (·), uz} : Zz −→ W ∗∗

is an isometry.

Proof. Let z ∈ Z. If the restriction T : Zz −→ W is a triple homomorphism,

one can take uz ∈ W ∗∗ to be the support tripotent of T (z); otherwise, Theorem

1 furnishes the required tripotent uz.

Example 4. Let T : C −→M2 be the isometry defined in Example 1 :

T (a) =

(
0 a

2

a 0

)
.

Then the tripotent

u =

(
0 0

1 0

)
satisfies the conditions in Theorem 1.
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In Theorem 2, the tripotent uz depends on the given element z ∈ Z. Extend-

ing the arguments in the proof of Theorem 1, we show below that, if Z admits

a character, then one can find a tripotent v ∈ W ∗∗ such that {v, T (·), v} 6= 0

and

{v, T (a(3)), v} = {v, (Ta)(3), v}

for all a ∈ Z. Without any condition on Z, such a tripotent v may not exist.

A character ϕ of a JB*-triple Z is a non-zero triple homomorphism ϕ :

Z −→ C.

Lemma 2. Let ϕ be a character of a JB*-triple Z. Then ϕ is an extreme point

of the closed unit ball of Z∗.

Proof. Since ϕ : Z −→ C is a triple homomorphism, the induced quotient

map ϕ̃ : Z�kerϕ −→ C is a triple isomorphism and hence an isometry. In

particular, ‖ϕ‖ = 1. Let e ∈ Z∗∗ be the support tripotent of ϕ. For f ∈ Z∗, we

denote by P2(e)f the composite function f ◦P2(e) ∈ Z∗ and P2(e)Z
∗ is defined

accordingly.

If ϕ = 1
2
f + 1

2
g with ‖f‖, ‖g‖ ≤ 1, then we have ‖f‖ = ‖g‖ = 1 and

1 = ‖ϕ‖ = ‖P2(e)ϕ‖

≤ 1

2
‖P2(e)f‖+

1

2
‖P2(e)g‖ ≤ 1

which yields ‖P2(e)f‖ = 1 = ‖P2(e)g‖ and so P2(e)f = f and P2(e)g = g by

[9, Proposition 1]. It follows that ϕ is an extreme point of the unit ball of Z∗

if, and only if, it is an extreme point of the unit ball of of P2(e)Z
∗.

Now consider the character ϕ : P2(e)Z
∗∗ −→ C as a weak* continuous

functional. The kernel kerϕ is a weak*-closed Jordan ideal in the JBW*-

algebra (P2(e)Z
∗∗, ◦). Hence there is a central projection q in P2(e)Z

∗∗ such

that kerϕ = P2(e)Z
∗∗ ◦ q [10, 4.3.6]. The projection e − q has a weak*-closed

support face in P2(e)Z
∗, namely,

Fe−q = {ψ ∈ P2(e)Z
∗ : ‖ψ‖ = ψ(e) = 1 = ψ(e− q)}.

Pick an extreme point ρ from Fe−q. Then ρ(kerϕ) = {0} implies that ϕ = ρ

which is an extreme point of the unit ball of P2(e)Z
∗.

Proposition 2. Let T : Z → W be a linear isometry between JB*-triples. If Z

admits a character, then there is a tripotent u in W ∗∗ such that {u, T (·), u} :

Z −→ W ∗∗ is a nonzero triple homomorphism and

{u, T (a(3)), u} = {u, (Ta)(3), u} (a ∈ Z).
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Proof. Let η be a character of Z and consider the isometry T ∗ : T (Z)∗ −→ Z∗.

Since η is the pre-image of an extreme point of the unit ball of T (Z)∗, and since

the extreme points in the unit ball of T (Z)∗ can be extended to the extreme

points in the unit ball of W ∗, we see that there is an extreme point ϕ of the

unit ball of W ∗ such that ϕ ◦ T = η. Let u ∈ W ∗∗ be the minimal tripotent

supporting ϕ. Then

{u, T (·), u} = ϕ ◦ T (·)u = η(·)u

implies that {u, T (·), u} is a nonzero triple homomorphism, and as in the proof

of Theorem 1, we have

{u, T (a(3)), u} = {u, (Ta)(3), u} (a ∈ Z).

The converse of Proposition 2 holds if W is abelian.

Proposition 3. Let T : Z −→ W be a linear isometry between JB*-triples

where W is an abelian C*-algebra. The following conditions are equivalent:

(i) there is a tripotent u ∈ W ∗∗ such that {u, T (·), u} 6= 0 and {u, T (a(3)), u} =

{u, (Ta)(3), u} for a ∈ Z ;

(ii) Z admits a character.

Proof. Let u be the tripotent in (i) such that {u, T (·), u} 6= 0. Then there

exists a character ρ of W which does not vanish on {u, T (Z), u}, and hence

the composite ρ ◦ {u, T (·), u} : Z −→ C is a non-zero triple homomorphism.

Example 5. Let T : M2 −→ C(Y ) be the natural linear isometry into the con-

tinuous functions on the closed unit ball Y of M∗
2 . Since M2 has no character,

there is no tripotent in C(Y )∗∗ satisfying Proposition 2.

5 Isometries in JB*-algebras

In this section, we consider a linear isometry from a JB*-triple into a JB*-

algebra. This is motivated by the fact that, given a linear isometry T : Z −→ W

between JB*-triples, by considering the second dual map, we may assume that

W is a JBW*-triple which is, via an isometric embedding [5], a subtriple of

a JBW*-algebra. This leads to the case in which the range W can be taken

as a JB*-algebra. We will prove a more general result for linear contractions

from JB*-triples into JB*-algebras. In this case, they may still preserve a fair

amount of Jordan structure, after scaling down by a projection.

We first need to develop some basic results for JB*-algebras in which one

can make good use of projections apart from tripotents. The Jordan product in

a JB*-algebra will be denoted by ◦. We note that every JBW*-algebra A has
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an identity 1 [10, 4.1.7] and a continuous linear functional ϕ on A is positive

if, and only if, ‖ϕ‖ = ϕ(1). If ϕ is a positive functional and if ϕ(p) = ϕ(1) for

some projection p in A, then we have

ϕ(a ◦ p) = ϕ(a) (a ∈ A).

Indeed, if a = a∗, then the Schwarz inequality [10, 3.6.2] gives

0 ≤ ϕ(a ◦ (1− p))2 ≤ ϕ(a2)ϕ((1− p)2) = 0

and therefore ϕ(a ◦ (1− p)) = 0. We also have

ϕ{p, a, p} = ϕ(2p ◦ (p ◦ a)− p ◦ a) = ϕ(a).

Let ϕ be a normal state of A. Since the projections in A form a complete

lattice [10, 4.2.8], there is a smallest projection pϕ ∈ A such that ϕ(pϕ) = 1.

We call pϕ the support projection of ϕ. For any positive normal functional ϕ, its

support projection is the smallest projection pϕ in A satisfying ϕ(pϕ) = ϕ(1).

More generally, a norm-closed face of the normal state space of A also admits

a support projection shown in the following lemma.

Lemma 3. Let F be a norm-closed face of the normal state space S of a JBW*-

algebra A. Then there is a projection p ∈ A such that

F = {ϕ ∈ S : ϕ(p) = 1}.

Proof. Since F is a norm-closed face of the closed unit ball of the predual A∗
of A, it follows from [8, Corollary 4.5] that F is a norm-exposed face of S. By

[1], every norm-exposed face of S is of the above form.

Given a JB*-algebra A, we let

Q(A) = {ϕ ∈ A∗ : ϕ ≥ 0 and ‖ϕ‖ ≤ 1}

be the quasi-state space of A. Given a projection p in A∗∗, the set

F+(p) = {ϕ ∈ Q(A) : ϕ(1− p) = 0}

is a face of Q(A) containing 0. We show below that all weak* closed faces of

Q(A) containing 0 are of this form.

Lemma 4. Let A be a JB*-algebra and let F ⊂ Q(A) be a weak* closed face

of Q(A) containing 0. Then there is a projection p in A∗∗ such that

F = F+(p) = {ϕ ∈ Q(A) : ϕ(1− p) = 0}.
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Proof. Let S = {ϕ ∈ A∗ : ϕ(1) = 1 = ‖ϕ‖} be the normal state space of A∗∗.

We have F = co(F ′ ∪ {0}) where F ′ = F ∩ S is a weak* closed face of S and

by Lemma 3, there is a projection p ∈ A∗∗ such that

F ′ = {ϕ ∈ S : ϕ(p) = 1}

and it follows that F = F+(p).

Lemma 5. Let A be a JC*-algebra and let p ∈ A∗∗ be a projection. Then for

all x ∈ A, we have x ◦ p = 0 if, and only if, ϕ(x∗ ◦ x) = 0 for all ϕ ∈ F+(p).

Proof. The second dual A∗∗ is a JW*-algebra and we may assume that it

is a unital Jordan subalgebra of a von Neumann algebra A, with the same

identity. Let ϕ ∈ F+(p). Then ϕ(p) = ϕ(1) and by previous remarks, we have

ϕ(x) = ϕ(p ◦x) = ϕ({p, x, p}) for all x ∈ A. The condition 0 = x ◦ p = xp+ px

implies that pxp = −px = −xp and so px = xp = 0. Hence ϕ(x∗ ◦ x) =

ϕ({p, x∗ ◦ x, p}) = 1
2
ϕ(p(x∗x+ xx∗)p) = 1

2
ϕ(0) = 0.

For the converse, choose ψ ∈ Q(A) and let ψ̃ be a norm-preserving extension

of ψ to A. Then ψ̃ is positive on A. Define ϕ(·) = ψ{p, (·)∗, p}. Then ϕ ∈ F+(p)

and so ϕ(x∗ ◦ x) = 0. The Schwarz inequality gives

|ψ̃(px)|2 + |ψ̃(xp)|2 ≤ ψ̃(pxx∗p) + ψ̃(px∗xp) = 2ψ̃(p(x∗ ◦ x)p)
= 2ψ{p, (x∗ ◦ x), p} = 2ϕ(x∗ ◦ x) = 0.

Hence ψ̃(px) = ψ̃(xp) = 0 and ψ(x ◦ p) = ψ̃(x ◦ p) = 0. As ψ was arbitrary in

Q(A), it follows that x ◦ p = 0.

Proposition 4. Let B be a JB*-algebra and let p ∈ B∗∗ be a projection. Then

for x ∈ B, the following conditions are equivalent:

(i) x ◦ p = 0 ;

(ii) ϕ(x∗ ◦ x) = 0 for all ϕ ∈ F+(p).

Proof. Let Bsa be the self-adjoint part of B. First, let x ∈ Bsa and let A be the

JBW*-subalgebra of B∗∗ generated by x, p and 1. Then A is a JW*-algebra

and by Lemma 5, we have x◦p = 0 if, and only if, ψ(x2) = 0 for all ψ ∈ F+
A (p),

where

F+
A (p) = {ψ ∈ A∗ : ψ(1) = ‖ψ‖ and ψ(1− p) = 0}.

Since every ϕ ∈ F+(p) restricts to a quasi-state ϕ|A ∈ F+
A (p) and since every

ψ ∈ F+
A (p) extends to a quasi-state ψ̃ ∈ F+(p), we have x ◦ p = 0 if, and only

if, ϕ(x2) = 0 for all ϕ ∈ F+(p).

Now for any x ∈ B, write x = x1 + ix2 with x1, x2 ∈ Bsa. Then x ◦ p = 0 if,

and only if, x1 ◦ p = 0 and x2 ◦ p = 0. This is equivalent to ϕ(x2
1) = 0 = ϕ(x2

2)

for all ϕ ∈ F+(p) which is the same as ϕ(x2
1 + x2

2) = 0 = ϕ(x∗ ◦ x) for every

ϕ ∈ F+(p).
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Two self-adjoint elements a and p in a JB*-algebra B are said to operator

commute if they generate an associative subalgebra of B. If p is a projection,

this is equivalent to {p, a, p} = a ◦ p, and to {a, p, a} = a2 ◦ p (cf. [10, Lemma

2.5.5]). Condition (ii) below is an operator commuting condition.

Theorem 3. Let Z be a JB*-triple, B be a JB*-algebra and let T : Z −→ B

be a linear contraction. Then there is a largest projection p in B∗∗ such that

for all a, b, c ∈ Z, we have

(i) T{a, b, c} ◦ p = {Ta, Tb, T c} ◦ p ;

(ii) {p, T (a)∗ ◦ T (b), p} = (T (a) ◦ T (b)∗) ◦ p .

Proof. Let

F1 =
⋂

a∈Z1

{
ϕ ∈ Q(B) : ϕ

(
(Ta(3) − (Ta)(3))∗ ◦ (Ta(3) − (Ta)(3))

)
= 0
}
.

Then F1 is a weak* closed face of Q(B) containing zero. For a in Z1, we define

a weak* continuous affine map Φa : Q(B) −→ Q(B) by

Φa(ϕ)(·) = ϕ({(Ta)∗ ◦ Ta, · , (Ta)∗ ◦ Ta})

where the bar ’−’ denotes complex conjugation. For n = 1, 2, . . ., the sets

Fn+1 = {ϕ ∈ Fn : Φa(ϕ) ∈ Fn for all a ∈ Z1} =
⋂

a∈Z1

Fn ∩ Φ−1
a (Fn)

form a decreasing sequence of weak* closed faces of Q(B). The intersection

F =
∞⋂

n=1

Fn is a weak* closed face of Q(B) containing zero. By Lemma 4, there

is a projection in p ∈ B∗∗ supporting F :

F = F+(p) = {ϕ ∈ Q(B) : ϕ(111− p) = 0}.

For each a in A1 and ϕ in F , we have

Φa(ϕ)(·) = ϕ({(Ta)∗ ◦ (Ta), · , (Ta)∗ ◦ (Ta)}) ∈ F,

and consequently,

ϕ{(Ta)∗ ◦ Ta, p , (Ta)∗ ◦ Ta} = Φa(ϕ)(p) = Φa(ϕ)(1) = ϕ(((Ta)∗ ◦ Ta)2).

Let z = (Ta)∗◦Ta. Then z is self-adjoint, as is x = p◦z−z. For all ϕ ∈ F+(p),

ϕ(x∗ ◦ x) = ϕ((p ◦ z − z)2)

= ϕ((p ◦ z)2 − 2z ◦ (p ◦ z) + z2)

= ϕ((p ◦ z)2 − {z, p, z} − z2 ◦ p+ z2)

= ϕ((p ◦ z)2 − {z, p, z})
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using the fact that ϕ(z2) = ϕ(z2 ◦ p). By calculating in the special subalgebra

generated by p and z, one obtains

(p ◦ z)2 =
1

2
p ◦ {z, p, z}+

1

4
{p, z2, p}+

1

4
{z, p, z}.

Hence we have

4ϕ(x∗ ◦ x) = ϕ(2p ◦ {z, p, z}+ {p, z2, p}+ {z, p, z} − 4{z, p, z})
= ϕ(2{z, p, z}+ z2 − 3{z, p, z})
= ϕ(z2)− ϕ({z, p, z})
= Φa(1)− Φa(p) = 0.

By Proposition 4, we have p ◦ x = 0. As p is a projection, it follows that

{p, z, p} − p ◦ z = 2(p ◦ z) ◦ p− 2p ◦ z = 2p ◦ x = 0, that is,

{p, (Ta)∗ ◦ (Ta), p} = ((Ta)∗ ◦ (Ta)) ◦ p
for all a ∈ Z1. By polarization, we have

{p, (Ta)∗ ◦ (Tb), p} = ((Ta) ◦ (Tb)∗) ◦ p

for all a, b ∈ Z. For a ∈ Z1, we have

ϕ
(
(Ta(3) − (Ta)(3))∗ ◦ (Ta(3) − (Ta)(3))

)
= 0

for all ϕ ∈ F , hence Proposition 4 yields

(Ta(3)) ◦ p = (Ta)(3) ◦ p .

Polarization then gives

T{a, b, c} ◦ p = {Ta, Tb, T c} ◦ p (a, b, c ∈ Z).

Finally, if q is a projection in B∗∗ satisfying conditions (i) and (ii), then

F+(q) ⊂ F1. Indeed, for ϕ ∈ F+(q), we have

ϕ
(
(Ta(3) − (Ta)(3))∗ ◦ (Ta(3) − (Ta)(3))

)
= 0

since (Ta(3) − (Ta)(3)) ◦ q = 0 by (i) and Proposition 4 applies. Further, for all

a ∈ Z1, we have Φa(F
+(q)) ⊂ F+(q) since

Φa(ϕ)(q) = ϕ ({(Ta)∗ ◦ Ta, q, (Ta)∗ ◦ Ta})
= Φa(ϕ)(((Ta)∗ ◦ Ta)2 ◦ q)
= Φa(ϕ)(((Ta)∗ ◦ Ta)2) = Φa(ϕ)(1)

where the second identity follows from (ii). Therefore F+(q) ⊂
∞⋂

n=1

Fn = F+(p)

and q ≤ p.



Isometries between JB*-triples 19

Remark 3.(1) We note that condition (i) in Theorem 3 also gives

{p, T{a, a, a}, p} = 2(p ◦ T{a, a, a}∗) ◦ p− p ◦ T{a, a, a}∗

= {p, {Ta, Ta, Ta}, p}.

(2) If B is a JC*-algebra in Theorem 3, then condition (i) gives

T{a, a, a}p+ pT{a, a, a} = {Ta, Ta, Ta}p+ p{Ta, Ta, Ta}

and by (1) above, we have both T{a, a, a}p = {Ta, Ta, Ta}p and

pT{a, a, a} = p{Ta, Ta, Ta}.
(3) If B is a JBW*-algebra in Theorem 3, then p can be chosen in B itself.

Indeed, we have B = z ◦ B∗∗ for some central projection z ∈ B∗∗ and z ◦ p
is the largest projection satisfying conditions (i) and (ii).

Example 6. The projection p in Theorem 3 could be zero, even if T is an isom-

etry. Indeed, for the isometry T : C −→ M2 in Example 1, we have p = 0. On

the other hand, for the isometry S : C →M3 given by

S(a) =

0 0 a
2

0 a 0

a 0 0


we have

p =

0 0 0

0 1 0

0 0 0

 .

Moreover S(·) ◦ p is an isometry.

Example 7. Let T : C(Ω) −→ C(Ω∪{β}) be the non-surjective isometry given

in Example 3. Then the characteristic function p = χΩ ∈ C(Ω ∪ {β}) is the

largest projection satisfying the conclusion of Theorem 3.
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