Cho-Ho Chu, Michael Mackey

¹ School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK Email: c.chu@qmul.ac.uk

Abstract Let Z and W be JB*-triples and let T be a linear isometry from Z into W. For any $z \in Z$ with ||z|| < 1, we show that

$$T\{z, z, z\} = \{T(z), T(z), T(z)\}$$

if the Möbius transform induced by T(z) preserves the unit ball of T(Z). We show further that T is, *locally*, a triple homomorphism via a tripotent: for any $z \in Z$, there is a tripotent u in W^{**} such that

$$\{u, T\{a, b, c\}, u\} = \{u, \{T(a), T(b), T(c)\}, u\}$$

for all a, b, c in the smallest subtriple Z_z of Z containing z, and also, $\{u, T(\cdot), u\} : Z_z \longrightarrow W^{**}$ is an isometry.

1 Introduction

Jordan algebraic structures play an important role in the geometry of infinite dimensional Banach manifolds. Indeed, as shown by Kaup [14], every bounded symmetric domain gives rise to a Jordan triple product $\{\cdot, \cdot, \cdot\}$ on its tangent space and a surjective linear map T between these spaces is an isometry if, and only if, it preserves the Jordan triple product :

$$T\{a, b, c\} = \{T(a), T(b), T(c)\}.$$

These tangent spaces form an important class of complex Banach spaces, called JB*-*triples*. One can therefore study the geometry of symmetric domains via the algebraic structures of JB*-triples. We remark that Jordan methods were

² Department of Mathematics, University College Dublin, Belfield, Dublin 4, Ireland Email:michael.mackey@ucd.ie

Supported by London Mathematical Society Scheme 4 grant 4904.

Mathematics Subject Classification 2000. 46L70, 32M15, 46G20, 17C65, 46L05.

Keywords and phrases: Isometry, Möbius transformation, symmetric domain, JB*-triple,

 $^{{\}rm JB}^*\mbox{-algebra},$ C*-algebra.

first introduced by Koecher [15] into the theory of finite dimensional bounded symmetric domains and they were also discussed in detail in [16].

Although a Jordan triple monomorphism is necessarily an isometry, a nonsurjective linear isometry between two JB*-triples need not preserve the Jordan triple product. It is natural to ask to what extent can a non-surjective linear isometry preserve the Jordan triple product. The object of this paper is to address this question. We note that, by polarization, a linear map $T: Z \longrightarrow W$ between JB*-triples preserves the Jordan triple product if, and only if,

$$T\{a, a, a\} = \{T(a), T(a), T(a)\}$$
 $(a \in Z).$

To answer the above question, our first task is to understand what makes a surjective linear isometry preserve the Jordan triple product. Upon a closer study of the geometry behind the proof of this fact in [14, Proposition 5.5], we found that the condition needed is a certain invariant property of the Möbius transformation. In Section 3 we discuss this in detail and show that, given a linear isometry $T: Z \longrightarrow W$ between JB*-triples, not necessarily surjective, one has

$$T\{a, a, a\} = \{T(a), T(a), T(a)\}$$

for ||a|| < 1 if the Möbius transformation g_{Ta} induced by T(a) preserves the open unit ball of the image T(Z). In Section 4, we show that, although a non-surjective linear isometry $T : Z \longrightarrow W$ between JB*-triples need not be a triple homomorphism, it is, nevertheless, *locally* a triple homomorphism, that is, for any $a \in Z$, there is a tripotent $u \in W^{**}$ such that $||\{u, T(z), u\}|| = ||z||$ and

$$\{u, T\{z, z, z\}, u\} = \{u, \{T(z), T(z), T(z)\}, u\}$$

for every z in the JB*-triple generated by a. The tripotent u above depends on the given element $a \in Z$, but if Z admits a character, then one can find a tripotent $v \in W^{**}$ such that $\{v, T(\cdot), v\} \neq 0$ and

$$\{v, T\{z, z, z\}, v\} = \{v, \{T(z), T(z), T(z)\}, v\}$$

for all $z \in Z$. Without any condition on Z, such a tripotent v may not exist. Finally in Section 5, we prove more specialized results in the setting of JB*algebras. In particular, we show that, if $T: Z \longrightarrow W$ is a linear isometry from a JB*-triple Z into a JB*-algebra (W, \circ) , then there is a *largest* projection $p \in W^{**}$ such that, for all $a \in Z$,

$$T\{a, a, a\} \circ p = \{T(a), T(a), T(a)\} \circ p$$

and p operator commutes with $T(a) \circ T(a)^*$.

The results in this paper generalize those in [7] for C*-algebras. We begin in the next section with some basic definitions and results concerning JB^* -triples.

2 JB*-triples

Throughout this paper, an isometry $T : Z \longrightarrow W$ between Banach spaces is *not* assumed to be surjective and we often write Ta for the image T(a) for convenience. We first recall that a JB^* -triple Z is a complex Banach space equipped with a continuous Jordan triple product $\{\cdot, \cdot, \cdot\} : Z^3 \longrightarrow Z$ which is symmetric and linear in the outer variables, and conjugate linear in the middle variable such that for $a, b, c, x, y \in Z$, we have

(i) $\{a, b, \{c, x, y\}\} = \{\{a, b, c\}, x, y\} - \{c, \{b, a, x\}, y\} + \{c, x, \{a, b, y\}\};$

(ii) the map $z \in Z \mapsto \{a, a, z\} \in Z$ is hermitian with nonnegative spectrum; (iii) $||\{a, a, a\}|| = ||a||^3$.

For later reference, we define two fundamental linear operators on a JB*-triple Z. For $x, y \in Z$, the box operator $x \Box y : Z \longrightarrow Z$ and the Bergman operator $B(x, y) : Z \longrightarrow Z$ are defined by

$$(x \Box y)(z) = \{x, y, z\}$$

$$B(x, y)(z) = z - 2\{x, y, z\} + \{x, \{y, z, y\}, x\}.$$

Every C*-algebra A is a JB*-triple with the following Jordan triple product

$$\{a, b, c\} = \frac{1}{2}(ab^*c + cb^*a) \qquad (a, b, c \in A).$$

A closed subspace of a JB^{*}-triple is called a *subtriple* if it is closed with respect to the triple product. A linear map $T: Z \longrightarrow W$ between JB^{*}-triples is called a *triple homomorphism* if it preserves the triple product in which case, the kernel J of T is a *triple ideal* of Z, that is, $\{Z, Z, J\} + \{Z, J, Z\} \subset J$ and the range T(Z) is a subtriple of W. We refer to [3, 6, 18-20] for expositions as well as recent surveys of JB^{*}-triples and symmetric Banach manifolds. In the sequel, we write $a^{(3)} = \{a, a, a\}$ and use frequently the polarization formula

$$\{a, b, c\} = \frac{1}{8} \sum_{\alpha^4 = \beta^2 = 1} \alpha \beta (a + \alpha b + \beta c)^{(3)}.$$

An element u in a JB*-triple is called a *tripotent* if $u^{(3)} = u$. If a JB*-triple Z has a predual (which is necessarily unique), then it is called a JBW^* -triple in which case, Z has an abundance of tripotents. Each tripotent $u \in Z$ induces a splitting of Z, $Z = Z_0 \oplus Z_1 \oplus Z_2$, known as the *Peirce decomposition*, into a direct sum of the 0, 1 and 2-eigenspaces of the operator $2 u \Box u$. The Peirce projections $P_i(u) : Z \to Z_i$ onto the eigenspaces Z_i , for i = 0, 1, 2, are given in terms of the triple product,

$$P_0(u)(z) = B(u, u)(z)$$

$$P_1(u)(z) = 2(\{u, u, z\} - \{u, \{u, z, u\}, u\})$$

$$P_2(u)(z) = \{u, \{u, z, u\}, u\}.$$

These projections are contractive. Each eigenspace Z_i is a subtriple of Z. Indeed we have $\{Z_i, Z_j, Z_k\} \subset Z_{i-j+k}$ for $i, j, k \in \{0, 1, 2\}$ where $Z_r := \{0\}$ for $r \notin \{0, 1, 2\}$. In particular, $Z_2 = P_2(u)(Z)$ is a JB*-algebra with identity u, and with respect to the following non-associative product and involution:

$$x \circ y = \{x, u, y\}, \qquad x^* = \{u, x, u\}.$$

We note that a JB*-algebra, that is, a Jordan Banach algebra (A, \circ) equipped with an isometric involution * satisfying $||x \circ y|| \leq ||x|| ||y||$ and $||\{x, x, x\}|| =$ $||x||^3$, is also a JB*-triple with the Jordan triple product

$$\{a, b, c\} = (a \circ b^*) \circ c - (a \circ c) \circ b^* + (b^* \circ c) \circ a.$$

For example, a C*-algebra is a JB*-algebra with the Jordan product

$$a \circ b = \frac{1}{2}(ab + ba).$$

A JB*-algebra is called a JC*-*algebra* if it can be embedded as a norm-closed subspace of a C*-algebra, closed with respect to the involution and the above Jordan product. A JB*-algebra having a (necessarily unique) predual is called a JBW*-*algebra*, it is called a JW*-*algebra* if it is also a JC*-algebra. We refer to [10] for a detailed exposition of Jordan Banach algebras including JB*-algebras and JBW*-algebras.

Each tripotent u in a JBW*-triple Z has a support face F(u) in the predual Z_* of Z, given by

$$F(u) = \{\varphi \in Z_* : \|\varphi\| = 1 = \varphi(u)\}$$

which is a norm-exposed face of the closed unit ball Z_{*1} of Z_* . One can introduce a partial ordering \leq to the set $\mathcal{T}(Z)$ of tripotents in a JBW*-triple Z. For any two tripotents u and v in Z, one defines $u \leq v$ if v - u is orthogonal to u which means that

$$\{u, v - u, x\} = 0$$

for all $x \in Z$. With this partial ordering, it has been shown in [8] that given a family of tripotents $\{u_{\alpha}\}_{\alpha \in Q}$ in Z, either the lattice supremum $\bigvee_{\alpha \in Q} u_{\alpha}$ exists

in $\mathcal{T}(Z)$, or $Z_{*1} = \bigvee_{\alpha \in Q} F(u_{\alpha})$, that is, the smallest norm-exposed face of Z_{*1} containing the union $\bigcup_{\alpha} F(u_{\alpha})$ is Z_{*1} itself. By [5], Z embeds as a subtriple of a JBW*-algebra A such that the predual Z_* is a 1-complemented subspace of the predual A_* of A, where we recall that a closed subspace of a Banach space E is called 1-complemented if it is the range of a contractive projection on E. In particular, faces of Z_{*1} are faces of the closed unit ball A_{*1} and, every

face F of A_{*1} is either disjoint from Z_{*1} or the intersection $F \cap Z_{*1}$ is a face

of Z_{*1} . It follows that, if $\{u_{\alpha}\}_{\alpha \in Q}$ is a family of tripotents in $\mathcal{T}(Z)$ such that $Z_{*1} = \bigvee_{\alpha} F(u_{\alpha})$, then we also have $A_{*1} = \bigvee_{\alpha}' F(u_{\alpha})$, where \bigvee' denotes the supremum in A_{*1} , for otherwise, $F = \bigvee_{\alpha}' F(u_{\alpha})$ is a proper norm-exposed face of A_{*1} and the intersection $F \cap Z_{*1}$ is a norm-exposed face of Z_{*1} containing $\bigcup_{\alpha} F(u_{\alpha})$, giving $F \cap Z_{*1} = Z_{*1}$ which is impossible since $0 \notin F$.

By [8, p.322], every element z in a JBW*-triple Z admits a support tripotent $u_z \in \mathcal{T}(Z)$ satisfying

$$z = \{u_z, z, u_z\} = \{u_z, u_z, z\}$$

3 Isometries and Möbius transformation

In this section, we reveal the role of Möbius transformations in the preservation of Jordan structures by a linear isometry. We first introduce the relevant geometric and holomorphic aspects of JB*-triples. A map $g: D \longrightarrow U$ between open sets in complex Banach spaces Z and W, respectively, is called *holomorphic* if the Fréchet derivative $g'(a): Z \longrightarrow W$ exists for every $a \in D$, where g'(a) is a linear map satisfying

$$\lim_{t \to 0} \frac{\|g(a+t) - g(a) - g'(a)(t)\|}{\|t\|} = 0.$$

A holomorphic map $g: D \longrightarrow U$ is called *biholomorphic* if it is bijective and the inverse g^{-1} is also holomorphic. The open unit ball of a Banach space Zwill be denoted by Z_0 . Let $Aut Z_0$ be the automorphism group of Z_0 , consisting of all biholomorphic maps from Z_0 onto itself. Upmeier [20] has shown that $Aut Z_0$ is a real Banach-Lie group and by a deep result of Kaup [14], a complex Banach space Z is a JB*-triple if, and only if, $Aut Z_0$ acts transitively on Z_0 , in which case, the Jordan triple product is constructed via the Lie algebra of $Aut Z_0$. For a JB*-triple Z, the basic elements in $Aut Z_0$ are the Möbius transformations. Given $a \in Z_0$, we define the *Möbius transformation of* Z_0 , *induced by* a, to be the biholomorphic map $g_a: Z_0 \longrightarrow Z_0$ given by

$$g_a(z) = a + B(a,a)^{1/2} (I + z \Box a)^{-1}(z)$$

where *I* is the identity operator. We have $g_a(0) = a$, $g_a^{-1} = g_{-a}$ and, the Fréchet derivatives $g'_a(0) = B(a, a)^{1/2}$ and $g'_{-a}(a) = B(a, a)^{-1/2}$ (cf. [14]). If *Z* is a C*-algebra, we have the following formula for the Möbius transformation which was due to Potapov [17] and Harris [11]:

$$g_a(z) = (1 - aa^*)^{-1/2}(a+z)(1 + a^*z)^{-1}(1 - a^*a)^{1/2}.$$

Lemma 1. Let $T : Z \longrightarrow W$ be a linear isometry between JB^* -triples Z and W. Let $a \in Z_0$ and let $\psi \in Aut T(Z)_0$ be such that $\psi(T(a)) = 0$. Then

$$\psi(0) = -\psi'(T(a))(T(B(a, a)^{1/2}(a))).$$

Proof. Let $h = \psi T g_a : Z_0 \longrightarrow T(Z)_0$. Then h is biholomorphic and h(0) = 0. Hence h is linear by Cartan's uniqueness theorem and on Z_0 , $h = h'(0) = (\psi T g_a)'(0) = (\psi T)'(g_a(0))g'_a(0) = (\psi T)'(a)B(a,a)^{1/2}$. Evaluating h at -a, we get the formula.

We note that $Tg_{-a}T^{-1}$ is an automorphism of $T(Z)_0$ and maps T(a) to 0. For a C*-algebra, we have $B(a, a)^{1/2}(a) = (1 - aa^*)^{1/2}a(1 - a^*a)^{1/2} = a - aa^*a$ since $(1 - aa^*)^{1/2}a = a(1 - a^*a)^{1/2}$. Therefore we have $B(a, a)^{1/2}(a) = a - \{a, a, a\}$ in a JB*-triple by considering the subtriple generated by a which is linearly isometric to an abelian C*-algebra. Since B(a, a) = B(-a, -a), we have $g_{-a}(-z) = -g_a(z)$. It follows that, if D = -D is a subset of the open unit ball of a JB*-triple, invariant under g_a , then it is also invariant under g_{-a} and $g_a(D) = D$.

By refining Kaup's result in [14, Proposition 5.5] (see also [11]), we now show how the Möbius transformation and surjectivity effect the preservation of the triple product by a linear isometry.

Proposition 1. Let $T : Z \longrightarrow W$ be a linear isometry between JB^* -triples Zand W. Let $a \in Z_0$ and let $g_{Ta} \in Aut W_0$ be the Möbius transformation induced by T(a). If $g_{Ta}(T(Z)_0) \subset T(Z)_0$, then we have

$$T\{a, a, a\} = \{T(a), T(a), T(a)\}.$$

In particular, if T is surjective, then T is a triple isomorphism.

Proof. Let ψ be the restriction to $T(Z)_0$ of the Möbius transformation $g_{-Ta} \in Aut Z_0$. Then $\psi \in Aut T(Z)_0$, $\psi(T(a)) = 0$ and the derivative $\psi'(T(a)) : T(Z) \longrightarrow T(Z)$ is the restriction of the derivative $g'_{T(a)}(T(a)) : W \longrightarrow W$ which is equal to $B(T(a), T(a))^{-1/2}$. By Lemma 1, we have

$$-T(a) = \psi(0) = -\psi'(T(a))(T(B(a,a)^{1/2}(a))) = -B(T(a),T(a))^{-1/2}T(a-a^{(3)}).$$

It follows that $T(a) - T(a)^{(3)} = B(T(a), T(a))^{1/2}(T(a)) = T(a - a^{(3)})$ which gives $T(a)^{(3)} = T(a^{(3)})$.

Finally, if T is surjective then $T(Z)_0 = W_0$ is invariant under g_{Ta} for all $a \in A_0$. Hence T preserves the triple product.

Remark 1. The above result subsumes Kadison's seminal result for surjective isometries between C*-algebras. It has also been discussed in [4] in the setting of JB*-algebras. We note from [7] that, for a fixed a, the condition $T(a^{(3)}) = (Ta)^{(3)}$ alone does not imply $T(a^{(n)}) = (Ta)^{(n)}$ for any odd integer n > 3.

The following corollary is immediate.

Corollary 1. Let $T : Z \longrightarrow W$ be a linear isometry between JB^* -triples. Then T(Z) is a subtriple of W if, and only if, $T(Z)_0$ is invariant under the Möbius transformation $g_{T(a)}$ for all ||a|| < 1.

Example 1. Let M_n be the JB*-triple of $n \times n$ complex matrices. Let $T : \mathbb{C} \longrightarrow M_2$ be defined by

$$T(a) = \begin{pmatrix} 0 \ \frac{a}{2} \\ a \ 0 \end{pmatrix}.$$

Then T is a linear isometry and $T(\mathbb{C})$ is not a subtriple of M_2 . Also T(1) is not unitary and $T(\mathbb{C})$ contains no nontrivial positive element. For $a \neq 0$, we have $T(a^{(3)}) \neq (Ta)^{(3)}$ and in fact, for 0 < |a| < 1,

$$g_{Ta}(Tx) = \begin{pmatrix} 0 & \frac{2(a+x)}{4+\bar{a}x} \\ \frac{a+x}{1+\bar{a}x} & 0 \end{pmatrix}$$

which is outside $T(\mathbb{C})$.

Example 2. A Hilbert space H is a JB^* -triple with Jordan triple product

$$\{x, y, z\} = \frac{1}{2} \left(\langle x, y \rangle z + \langle z, y \rangle x \right)$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product in H. Hence, given a linear isometry $T: H \longrightarrow K$ between Hilbert spaces, the range T(H) is a subtriple of K and T is a triple isomorphism onto T(H).

Given $a \in H_0$, the Möbius transformation $g_a : H_0 \longrightarrow H_0$ is given by

$$g_a(x) = \frac{a + E_a(x) + \sqrt{1 - \|a\|^2}(I - E_a)(x)}{1 + \langle x, a \rangle}$$

where E_a is the projection from H onto the subspace $\mathbb{C}a$. Given a linear isometry T on H, we have $\langle Tx, Ta \rangle = \langle x, a \rangle$ and $E_{Ta}(Tx) = E_a(x)Ta$. It follows that

$$g_{Ta}(Tx) = T(g_a(x))$$

and indeed, $T(H)_0$ is invariant under g_{Ta} for all ||a|| < 1.

Example 3. Let $C(\Omega)$ and $C(\Omega \cup \{\beta\})$ be the C*-algebras of continuous functions on the closed unit disc $\Omega \subset \mathbb{C}$ and $\Omega \cup \{\beta\}$ respectively, where $\beta \in \mathbb{C} \setminus \Omega$. Define $T : C(\Omega) \longrightarrow C(\Omega \cup \{\beta\})$ by

$$(Ta)(x) = \begin{cases} a(x) & \text{if } x \in \Omega\\ \frac{1}{2}(a(1) + a(0)) & \text{if } x = \beta. \end{cases}$$

Then T is a linear isometry and $T(C(\Omega)) = \{h \in C(\Omega \cup \{\beta\}) : 2h(\beta) = h(1) + h(0)\}$ which is not a subtriple of $C(\Omega \cup \{\beta\})$. It is easy to see that T is not

a triple isomorphism onto its range, but for $a \in C(\Omega)_0$ with a(1) = a(0) = 0, we have $g_{Ta}(T(C(\Omega))_0) \subset T(C(\Omega))_0$. Indeed, if $h \in T(C(\Omega))_0$, then

$$g_{Ta}(h)(\beta) = \left(\frac{Ta+h}{1+\overline{Ta}h}\right)(\beta) = \frac{Ta(\beta)+h(\beta)}{1+\overline{Ta(\beta)}h(\beta)}$$
$$= \frac{2(a(1)+a(0)+h(1)+h(0))}{4+\overline{a(1)+a(0)}(h(1)+h(0))} = \frac{1}{2}(h(1)+h(0))$$
$$= \frac{1}{2}(g_{Ta}(h)(1)+g_{Ta}(h)(0))$$

which gives $g_{Ta}(h) \in T(C(\Omega))_0$. It is clear that $T(a^{(3)}) = T(a)^{(3)}$.

4 Isometries and Jordan triple product

Our goal in this section is to show that a non-surjective linear isometry $T : Z \longrightarrow W$ between JB*-triples preserves, at least *locally*, the Jordan triple product, via a tripotent. Since the JB*-subtriple generated by an element $z \in Z$ is Jordan isomorphic to the JB*-triple $C_0(X)$ of complex continuous functions on a locally compact Hausdorff space X, vanishing at infinity, it suffices to study the case in which $Z = C_0(X)$.

We recall that for any functional φ in the predual of a JBW*-triple W, there is a unique tripotent $u_{\varphi} \in W$, called the *support tripotent* of φ , such that $\varphi = \varphi \circ P_2(u_{\varphi})$ and $\varphi|_{P_2(u_{\varphi})(W)}$ is a faithful normal positive functional on the JBW*-algebra $P_2(u_{\varphi})(W)$ [9, Proposition 2]. The JBW*-algebra $P_2(u_{\varphi})(W)$ becomes an inner product space with respect to the inner product

$$\langle a, b \rangle = \varphi\{a, b, u_{\varphi}\}.$$

Moreover φ is an extreme point of the closed unit ball of the predual if, and only if, u_{φ} is a minimal tripotent, that is, $\{u_{\varphi}, W, u_{\varphi}\} = \mathbb{C}u_{\varphi}$. We denote by ∂E the set of extreme points of the closed unit ball of a Banach space E.

As usual, we embed and regard a JB*-triple Z as a subtriple of its second dual Z^{**} which is a JBW*-triple. The following theorem generalizes the results in [7,12].

Theorem 1. Let W be a JB^* -triple and let $T : C_0(X) \longrightarrow W$ be a linear isometry. Then either T is a triple homomorphism or there is a tripotent $u \in W^{**}$ such that

$$\{u, T(f^3), u\} = \{u, T(f)^3, u\}$$

for all $f \in C_0(X)$ and

$$\{u, T(\cdot), u\} : C_0(X) \longrightarrow W^{**}$$

is an isometry.

Proof. Let $E = T(C_0(X))$. Then the dual map $T^* : E^* \to C_0(X)^*$ of $T : C_0(X) \to E$ is a surjective linear isometry. We also denote by T^* the dual map of $T : C_0(X) \longrightarrow W$ since no confusion is likely. Let

$$Q = \{ \varphi \in \partial W^* : \varphi|_E \in \partial E^* \}.$$

Then Q is non-empty since each extreme point $\psi \in \partial E^*$ extends to an extreme point $\varphi \in \partial W^*$.

Let $\varphi \in Q$ with $\psi = \varphi|_E \in \partial E^*$. Then $T^*\varphi = T^*\psi$ is an extreme point of the closed unit ball of $C_0(X)^*$ and hence there exists $x_{\varphi} \in X$ such that $T^*\psi = \alpha \delta_{x_{\varphi}}$ with $|\alpha| = 1$. Let $u_{\varphi} \in W^{**}$ be the support tripotent of φ .

Since u_{φ} is a minimal tripotent and $\varphi\{u_{\varphi}, \cdot, u_{\varphi}\} = \overline{\varphi \circ P_2(u_{\varphi})}(\cdot) = \overline{\varphi}(\cdot)$, where the bar '-' denotes complex conjugation, we have

$$\{u_{\varphi}, b, u_{\varphi}\} = \overline{\varphi(b)}u_{\varphi} \qquad (b \in W^{**}).$$

From $\varphi \circ T(f) = (T^*\varphi)(f) = (T^*\psi)(f) = \alpha f(x_{\varphi})$, we obtain, in W^{**} ,

$$\{u_{\varphi}, T(f), u_{\varphi}\} = \overline{\alpha f(x_{\varphi})}u_{\varphi} \qquad (f \in C_0(X))$$

and $\{u_{\varphi}, T(\cdot), u_{\varphi}\}$ is a triple homomorphism. In particular,

$$\overline{\alpha f^{(3)}(x_{\varphi})}u_{\varphi} = \{u_{\varphi}, Tf, u_{\varphi}\}^{(3)} = \{u_{\varphi}, \{Tf, P_2(u_{\varphi})(Tf), Tf\}, u_{\varphi}\}$$
$$= \alpha f(x_{\varphi})\{u_{\varphi}, \{Tf, u_{\varphi}, Tf\}, u_{\varphi}\}$$

and hence $\varphi\{u_{\varphi}, \{Tf, u_{\varphi}, Tf\}, u_{\varphi}\} = (\overline{\alpha f(x_{\varphi})})^2$ or

$$\varphi\{Tf, u_{\varphi}, Tf\} = (\alpha f(x_{\varphi}))^2. \tag{1}$$

We prove that

$$\{u_{\varphi}, T(f^{(3)}), u_{\varphi}\} = \{u_{\varphi}, (Tf)^{(3)}, u_{\varphi}\} \qquad (f \in C_0(X)).$$

It suffices to show that

$$\varphi\{u_{\varphi}, (Tf)^{(3)}, u_{\varphi}\} = \overline{\alpha f^{(3)}(x_{\varphi})}.$$

We first show that

$$\{u_{\varphi}, u_{\varphi}, Th\} = u_{\varphi}$$

for $h \in C_0(X)$ satisfying ||h|| = 1 and $h(x_{\varphi}) = \bar{\alpha}$. We have, by the Schwarz inequality [2, Proposition 1.2],

$$1 = |\varphi(Th)|^2 = |\varphi\{u_{\varphi}, Th, u_{\varphi}\}|^2$$

$$\leq \varphi\{u_{\varphi}, u_{\varphi}, u_{\varphi}\}\varphi\{Th, Th, u_{\varphi}\} \leq ||Th||^2 = ||h||^2 = 1$$

giving $\varphi\{Th, Th, u_{\varphi}\} = 1$. Let

$$N_{\varphi} = \{ b \in W^{**} : \varphi\{b, b, u_{\varphi}\} = 0 \}$$

Cho-Ho Chu, Michael Mackey

Then we have

$$N_{\varphi} = P_0(u_{\varphi})(W^{**}) \tag{2}$$

by [2, p.516]. We show $Th - u_{\varphi} \in N_{\varphi}$. Indeed, we have

$$\varphi\{Th - u_{\varphi}, Th - u_{\varphi}, u_{\varphi}\} = \varphi\{Th, Th, u_{\varphi}\} - \varphi\{u_{\varphi}, Th, u_{\varphi}\} + \varphi\{u_{\varphi}, u_{\varphi}, u_{\varphi}\} - \varphi\{Th, u_{\varphi}, u_{\varphi}\} = 0$$

where $\varphi\{Th, u_{\varphi}, u_{\varphi}\} = \overline{\varphi\{u_{\varphi}, Th, u_{\varphi}\}} = 1$. Hence, by (2), we have $\{u_{\varphi}, u_{\varphi}, Th - u_{\varphi}\} = 0$ and $\{u_{\varphi}, u_{\varphi}, Th\} = u_{\varphi}$.

We next show that $\varphi\{Tg, Tg, u_{\varphi}\} = 0$ whenever $g \in C_0(X)$ satisfies $g(x_{\varphi}) = 0$. We may assume, by Urysohn's lemma, that g vanishes on a neighbourhood of x_{φ} , in which case, we can choose $k \in C_0(X)$ such that ||k|| = 1, $k(x_{\varphi}) = \alpha$ and kg = 0. Then ||k + g|| = 1 and $(k + g)(x_{\varphi}) = \alpha$. Therefore, by the above, we have $T(k + g) + N_{\varphi} = u_{\varphi} + N_{\varphi} = Tk + N_{\varphi}$ which yields $Tg \in N_{\varphi}$, that is, $\varphi\{Tg, Tg, u_{\varphi}\} = 0$.

Now let $f \in C_0(X)$ with ||f|| = 1. Pick $h \in C_0(X)$ with ||h|| = 1 and $h(x_{\varphi}) = \bar{\alpha}$. Then $(f - \alpha f(x_{\varphi})h)(x_{\varphi}) = 0$ and therefore we have $Tf - \alpha f(x_{\varphi})Th \in N_{\varphi}$ and by (2) again,

$$\{u_{\varphi}, u_{\varphi}, Tf - \alpha f(x_{\varphi})Th\} = 0$$

giving

$$\{u_{\varphi}, u_{\varphi}, Tf\} = \alpha f(x_{\varphi})\{u_{\varphi}, u_{\varphi}, Th\} = \alpha f(x_{\varphi})u_{\varphi}.$$

Moreover, we have

$$\begin{aligned} &\alpha f(x_{\varphi})\{u_{\varphi}, Tf, u_{\varphi}\} = \{u_{\varphi}, Tf, \{u_{\varphi}, u_{\varphi}, Tf\}\} \\ &= \{\{u_{\varphi}, Tf, u_{\varphi}\}, u_{\varphi}, Tf\} - \{u_{\varphi}, \{Tf, u_{\varphi}, u_{\varphi}\}, Tf\} + \{u_{\varphi}, u_{\varphi}, \{u_{\varphi}, Tf, Tf\}\} \\ &= \overline{\alpha f(x_{\varphi})}\{u_{\varphi}, u_{\varphi}, Tf\} - \overline{\alpha f(x_{\varphi})}\{u_{\varphi}, u_{\varphi}, Tf\} + \{u_{\varphi}, u_{\varphi}, \{u_{\varphi}, Tf, Tf\}\} \\ &= \{u_{\varphi}, u_{\varphi}, \{u_{\varphi}, Tf, Tf\}\} \end{aligned}$$

and hence $\varphi\{u_{\varphi}, Tf, Tf\} = \varphi(\{u_{\varphi}, u_{\varphi}, \{u_{\varphi}, Tf, Tf\}\}) = \alpha f(x_{\varphi})\varphi\{u_{\varphi}, Tf, u_{\varphi}\}.$ Therefore we have

$$\overline{\varphi\{u_{\varphi}, (Tf)^{(3)}, u_{\varphi}\}} = \varphi\{u_{\varphi}, u_{\varphi}, \{Tf, Tf, Tf\}\}$$

$$= \varphi(\{\{u_{\varphi}, u_{\varphi}, Tf\}, Tf, Tf\} - \{Tf, \{u_{\varphi}, u_{\varphi}, Tf\}, Tf\} + \{Tf, Tf, \{u_{\varphi}, u_{\varphi}, Tf\}\})$$

$$= 2\alpha f(x_{\varphi})\varphi\{u_{\varphi}, Tf, Tf\} - \overline{\alpha f(x_{\varphi})}\varphi\{Tf, u_{\varphi}, Tf\}$$

$$= \alpha f^{(3)}(x_{\varphi})$$

using (1). It follows that

$$\varphi\{u_{\varphi}, (Tf)^{(3)}, u_{\varphi}\} = \overline{\alpha f^{(3)}(x_{\varphi})} = \varphi\{u_{\varphi}, T(f^{(3)}), u_{\varphi}\}.$$

By the remarks in Section 2, we have two cases:

10

- (i) the lattice supremum $u = \bigvee_{\varphi \in Q} u_{\varphi}$ is a tripotent in W^{**} ;
- (ii) $W_1^* = \bigvee_{\varphi \in Q} F(u_\varphi) = \bigvee_{\varphi \in Q} \{\varphi\}.$

Case (i). The tripotent $u = \bigvee_{\varphi \in Q} u_{\varphi}$ has support face

$$F(u) = \{ \psi \in W^* : \|\psi\| = \psi(u) = 1 \}$$

which is the normal state space of the atomic JBW*-algebra $P_2(u)(W^{**})$. Let ρ be an extreme point of F(u) with support tripotent u_{ρ} which is a minimal projection in $P_2(u)(W^{**})$. If we select from $\{u_{\varphi}\}_{\varphi \in Q}$ a maximal subfamily $\{u_{\varphi}\}_{\varphi \in Q'}$ with mutually orthogonal central supports $\{c(u_{\varphi})\}_{\varphi \in Q'}$, then $u = \sum_{\varphi \in Q'} c(u_{\varphi})$

where each $P_2(c(u_{\varphi}))(W^{**})$ is a type I JBW*-factor. It follows from [10, Lemma 5.3.2] that u_{ρ} is exchanged by a symmetry $s \in P_2(u)(W^{**})$ to some u_{φ} with $\varphi \in Q'$, that is, $u_{\rho} = \{s, u_{\varphi}, s\}$, with $T^*\varphi = \alpha \delta_{x_{\varphi}}$ as before. Then we have $\rho\{s, \cdot, s\} = \overline{\varphi}(\cdot)$.

Let $S: C_0(X) \to W^{**}$ be the isometry defined by

$$S(f) = \{s, Tf, s\}^*$$
 $(f \in C_0(X))$

where * is the involution in $P_2(u)(W^{**})$. By the above argument, we have $\varphi(S(f^{(3)})) = \varphi((Sf)^{(3)})$. As φ is a state of $P_2(u)(W^{**})$, it follows that

$$\begin{split} \rho(T(f^{(3)})) &= \overline{\varphi}\{s, T(f^{(3)}), s\} = \varphi(\{s, T(f^{(3)}), s\}^*) \\ &= \varphi((\{s, Tf, s\}^*)^{(3)}) \\ &= \varphi(\{s, \{Tf, \{s, \{s, Tf, s\}, s\}, Tf\}, s\}^*) \\ &= \varphi(\{s, (Tf)^{(3)}, s\}^*) \\ &= \rho((Tf)^{(3)}). \end{split}$$

Since $\rho \in F(u)$ was arbitrary, we obtain

$$\{u, T(f^{(3)}), u\} = \{u, (Tf)^{(3)}, u\}.$$

Finally, for any $f \in C_0(X)$, pick $x \in X$ with ||f|| = |f(x)|. Let $\psi \in \partial E^*$ with $T^*\psi = \delta_x$, and let $\varphi \in \partial W^*$ be an extension of ψ . Then $\varphi \in Q$ and $T^*\varphi = \delta_x$. Hence

$$||Tf|| \ge ||\{u, Tf, u\}|| \ge ||\{u_{\varphi}, \{u_{\varphi}, \{u, Tf, u\}, u_{\varphi}\}, u_{\varphi}\}||$$

= $||\{u_{\varphi}, Tf, u_{\varphi}\}||$
= $||\overline{f(x)}u_{\varphi}|| = |f(x)| = ||f||$

which gives $||\{u, Tf, u\}|| = ||f||.$

Case (ii). Let W^{**} be embedded as a subtriple of a JBW*-algebra B such that W^* is 1-complemented in the predual B_* . As remarked in Section 2, we have $B_{*1} = \bigvee_{\varphi \in Q} \{\varphi\}$. It follows that there is a subfamily $\{\varphi\}_{\varphi \in Q''}$ such that the atomic part B_a of B is a direct sum

 $B_a = \bigoplus_{\varphi \in Q''} B(u_\varphi)$

where $B(u_{\varphi})$ is the weak*-closed ideal in B generated by u_{φ} and is a type I JBW*-factor. Given an extreme point $\rho \in \partial W^*$, it is also an extreme point of B_{*1} and its support tripotent u_{ρ} is in some $B(u_{\varphi})$. As before, u_{ρ} is equivalent to u_{φ} via a symmetry in B and it follows that

$$\rho(T(f^{(3)})) = \rho((Tf)^{(3)}).$$

As $\rho \in \partial W^*$ was arbitrary, we have

$$T(f^{(3)}) = (Tf)^{(3)}$$

for all $f \in C_0(X)$, that is, T is a triple homomorphism. This completes the proof.

Remark 2. We note that the map $\{u, T(\cdot), u\}$ in Theorem 1 is complex conjugate linear and it is equivalent to state that the complex linear map $P_2(u) \circ T$ is an isometry.

Theorem 2. Let $T : Z \longrightarrow W$ be a linear isometry between JB^* -triples Z and W. Then for any $z \in Z$, there is a tripotent $u_z \in W^{**}$ such that

$$\{u_z, T(a^{(3)}), u_z\} = \{u_z, (Ta)^{(3)}, u_z\}$$

for all a in the subtriple Z_z generated by z, and that

$$\{u_z, T(\cdot), u_z\} : Z_z \longrightarrow W^{**}$$

is an isometry.

Proof. Let $z \in Z$. If the restriction $T : Z_z \longrightarrow W$ is a triple homomorphism, one can take $u_z \in W^{**}$ to be the support tripotent of T(z); otherwise, Theorem 1 furnishes the required tripotent u_z .

Example 4. Let $T : \mathbb{C} \longrightarrow M_2$ be the isometry defined in Example 1:

$$T(a) = \begin{pmatrix} 0 & \frac{a}{2} \\ a & 0 \end{pmatrix}.$$

Then the tripotent

$$u = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

satisfies the conditions in Theorem 1.

In Theorem 2, the tripotent u_z depends on the given element $z \in Z$. Extending the arguments in the proof of Theorem 1, we show below that, if Z admits a character, then one can find a tripotent $v \in W^{**}$ such that $\{v, T(\cdot), v\} \neq 0$ and

$$\{v, T(a^{(3)}), v\} = \{v, (Ta)^{(3)}, v\}$$

for all $a \in Z$. Without any condition on Z, such a tripotent v may not exist.

A character φ of a JB*-triple Z is a non-zero triple homomorphism φ : $Z \longrightarrow \mathbb{C}$.

Lemma 2. Let φ be a character of a JB*-triple Z. Then φ is an extreme point of the closed unit ball of Z*.

Proof. Since $\varphi : Z \longrightarrow \mathbb{C}$ is a triple homomorphism, the induced quotient map $\tilde{\varphi} : Z_{\text{ker }\varphi} \longrightarrow \mathbb{C}$ is a triple isomorphism and hence an isometry. In particular, $\|\varphi\| = 1$. Let $e \in Z^{**}$ be the support tripotent of φ . For $f \in Z^*$, we denote by $P_2(e)f$ the composite function $f \circ P_2(e) \in Z^*$ and $P_2(e)Z^*$ is defined accordingly.

If $\varphi = \frac{1}{2}f + \frac{1}{2}g$ with $||f||, ||g|| \le 1$, then we have ||f|| = ||g|| = 1 and

$$\begin{split} \mathbf{I} &= \|\varphi\| = \|P_2(e)\varphi\| \\ &\leq \frac{1}{2}\|P_2(e)f\| + \frac{1}{2}\|P_2(e)g\| \leq 1 \end{split}$$

which yields $||P_2(e)f|| = 1 = ||P_2(e)g||$ and so $P_2(e)f = f$ and $P_2(e)g = g$ by [9, Proposition 1]. It follows that φ is an extreme point of the unit ball of Z^* if, and only if, it is an extreme point of the unit ball of of $P_2(e)Z^*$.

Now consider the character $\varphi : P_2(e)Z^{**} \longrightarrow \mathbb{C}$ as a weak^{*} continuous functional. The kernel ker φ is a weak^{*}-closed Jordan ideal in the JBW^{*}algebra $(P_2(e)Z^{**}, \circ)$. Hence there is a central projection q in $P_2(e)Z^{**}$ such that ker $\varphi = P_2(e)Z^{**} \circ q$ [10, 4.3.6]. The projection e - q has a weak^{*}-closed support face in $P_2(e)Z^*$, namely,

$$F_{e-q} = \{ \psi \in P_2(e)Z^* : \|\psi\| = \psi(e) = 1 = \psi(e-q) \}.$$

Pick an extreme point ρ from F_{e-q} . Then $\rho(\ker \varphi) = \{0\}$ implies that $\varphi = \rho$ which is an extreme point of the unit ball of $P_2(e)Z^*$.

Proposition 2. Let $T : Z \to W$ be a linear isometry between JB^* -triples. If Z admits a character, then there is a tripotent u in W^{**} such that $\{u, T(\cdot), u\}$: $Z \longrightarrow W^{**}$ is a nonzero triple homomorphism and

$$\{u, T(a^{(3)}), u\} = \{u, (Ta)^{(3)}, u\} \qquad (a \in Z).$$

Proof. Let η be a character of Z and consider the isometry $T^*: T(Z)^* \longrightarrow Z^*$. Since η is the pre-image of an extreme point of the unit ball of $T(Z)^*$, and since the extreme points in the unit ball of $T(Z)^*$ can be extended to the extreme points in the unit ball of W^* , we see that there is an extreme point φ of the unit ball of W^* such that $\varphi \circ T = \eta$. Let $u \in W^{**}$ be the minimal tripotent supporting φ . Then

$$\{u, T(\cdot), u\} = \varphi \circ T(\cdot)u = \eta(\cdot)u$$

implies that $\{u, T(\cdot), u\}$ is a nonzero triple homomorphism, and as in the proof of Theorem 1, we have

$$\{u, T(a^{(3)}), u\} = \{u, (Ta)^{(3)}, u\} \quad (a \in Z).$$

The converse of Proposition 2 holds if W is abelian.

Proposition 3. Let $T : Z \longrightarrow W$ be a linear isometry between JB^* -triples where W is an abelian C^* -algebra. The following conditions are equivalent:

- (i) there is a tripotent $u \in W^{**}$ such that $\{u, T(\cdot), u\} \neq 0$ and $\{u, T(a^{(3)}), u\} = \{u, (Ta)^{(3)}, u\}$ for $a \in Z$;
- (ii) Z admits a character.

Proof. Let u be the tripotent in (i) such that $\{u, T(\cdot), u\} \neq 0$. Then there exists a character ρ of W which does not vanish on $\{u, T(Z), u\}$, and hence the composite $\rho \circ \{u, T(\cdot), u\} : Z \longrightarrow \mathbb{C}$ is a non-zero triple homomorphism.

Example 5. Let $T: M_2 \longrightarrow C(Y)$ be the natural linear isometry into the continuous functions on the closed unit ball Y of M_2^* . Since M_2 has no character, there is no tripotent in $C(Y)^{**}$ satisfying Proposition 2.

5 Isometries in JB*-algebras

In this section, we consider a linear isometry from a JB*-triple into a JB*algebra. This is motivated by the fact that, given a linear isometry $T : Z \longrightarrow W$ between JB*-triples, by considering the second dual map, we may assume that W is a JBW*-triple which is, via an isometric embedding [5], a subtriple of a JBW*-algebra. This leads to the case in which the range W can be taken as a JB*-algebra. We will prove a more general result for linear contractions from JB*-triples into JB*-algebras. In this case, they may still preserve a fair amount of Jordan structure, after scaling down by a projection.

We first need to develop some basic results for JB*-algebras in which one can make good use of projections apart from tripotents. The Jordan product in a JB*-algebra will be denoted by \circ . We note that every JBW*-algebra A has an identity **1** [10, 4.1.7] and a continuous linear functional φ on A is positive if, and only if, $\|\varphi\| = \varphi(\mathbf{1})$. If φ is a positive functional and if $\varphi(p) = \varphi(\mathbf{1})$ for some projection p in A, then we have

$$\varphi(a \circ p) = \varphi(a) \qquad (a \in A)$$

Indeed, if $a = a^*$, then the Schwarz inequality [10, 3.6.2] gives

$$0 \le \varphi(a \circ (\mathbf{1} - p))^2 \le \varphi(a^2)\varphi((\mathbf{1} - p)^2) = 0$$

and therefore $\varphi(a \circ (\mathbf{1} - p)) = 0$. We also have

$$\varphi\{p, a, p\} = \varphi(2p \circ (p \circ a) - p \circ a) = \varphi(a).$$

Let φ be a normal state of A. Since the projections in A form a complete lattice [10, 4.2.8], there is a smallest projection $p_{\varphi} \in A$ such that $\varphi(p_{\varphi}) = 1$. We call p_{φ} the support projection of φ . For any positive normal functional φ , its support projection is the smallest projection p_{φ} in A satisfying $\varphi(p_{\varphi}) = \varphi(\mathbf{1})$. More generally, a norm-closed face of the normal state space of A also admits a support projection shown in the following lemma.

Lemma 3. Let F be a norm-closed face of the normal state space S of a JBW*algebra A. Then there is a projection $p \in A$ such that

$$F = \{ \varphi \in S : \varphi(p) = 1 \}.$$

Proof. Since F is a norm-closed face of the closed unit ball of the predual A_* of A, it follows from [8, Corollary 4.5] that F is a norm-exposed face of S. By [1], every norm-exposed face of S is of the above form.

Given a JB*-algebra A, we let

$$Q(A) = \{ \varphi \in A^* : \varphi \ge 0 \text{ and } \|\varphi\| \le 1 \}$$

be the quasi-state space of A. Given a projection p in A^{**} , the set

$$F^+(p) = \{\varphi \in Q(A) : \varphi(\mathbf{1} - p) = 0\}$$

is a face of Q(A) containing 0. We show below that all weak* closed faces of Q(A) containing 0 are of this form.

Lemma 4. Let A be a JB*-algebra and let $F \subset Q(A)$ be a weak* closed face of Q(A) containing 0. Then there is a projection p in A** such that

$$F = F^{+}(p) = \{ \varphi \in Q(A) : \varphi(\mathbf{1} - p) = 0 \}.$$

Proof. Let $S = \{\varphi \in A^* : \varphi(\mathbf{1}) = 1 = \|\varphi\|\}$ be the normal state space of A^{**} . We have $F = co(F' \cup \{0\})$ where $F' = F \cap S$ is a weak^{*} closed face of S and by Lemma 3, there is a projection $p \in A^{**}$ such that

$$F' = \{\varphi \in S : \varphi(p) = 1\}$$

and it follows that $F = F^+(p)$.

Lemma 5. Let A be a JC*-algebra and let $p \in A^{**}$ be a projection. Then for all $x \in A$, we have $x \circ p = 0$ if, and only if, $\varphi(x^* \circ x) = 0$ for all $\varphi \in F^+(p)$.

Proof. The second dual A^{**} is a JW*-algebra and we may assume that it is a unital Jordan subalgebra of a von Neumann algebra \mathcal{A} , with the same identity. Let $\varphi \in F^+(p)$. Then $\varphi(p) = \varphi(1)$ and by previous remarks, we have $\varphi(x) = \varphi(p \circ x) = \varphi(\{p, x, p\})$ for all $x \in A$. The condition $0 = x \circ p = xp + px$ implies that pxp = -px = -xp and so px = xp = 0. Hence $\varphi(x^* \circ x) = \varphi(\{p, x^* \circ x, p\}) = \frac{1}{2}\varphi(p(x^*x + xx^*)p) = \frac{1}{2}\varphi(0) = 0$.

For the converse, choose $\psi \in Q(A)$ and let $\tilde{\psi}$ be a norm-preserving extension of ψ to \mathcal{A} . Then $\tilde{\psi}$ is positive on \mathcal{A} . Define $\varphi(\cdot) = \psi\{p, (\cdot)^*, p\}$. Then $\varphi \in F^+(p)$ and so $\varphi(x^* \circ x) = 0$. The Schwarz inequality gives

$$\begin{aligned} |\psi(px)|^2 + |\psi(xp)|^2 &\leq \psi(pxx^*p) + \psi(px^*xp) = 2\psi(p(x^* \circ x)p) \\ &= 2\psi\{p, (x^* \circ x), p\} = 2\varphi(x^* \circ x) = 0. \end{aligned}$$

Hence $\tilde{\psi}(px) = \tilde{\psi}(xp) = 0$ and $\psi(x \circ p) = \tilde{\psi}(x \circ p) = 0$. As ψ was arbitrary in Q(A), it follows that $x \circ p = 0$.

Proposition 4. Let B be a JB*-algebra and let $p \in B^{**}$ be a projection. Then for $x \in B$, the following conditions are equivalent:

(i) $x \circ p = 0$; (ii) $\varphi(x^* \circ x) = 0$ for all $\varphi \in F^+(p)$.

Proof. Let B_{sa} be the self-adjoint part of B. First, let $x \in B_{sa}$ and let A be the JBW*-subalgebra of B^{**} generated by x, p and $\mathbf{1}$. Then A is a JW*-algebra and by Lemma 5, we have $x \circ p = 0$ if, and only if, $\psi(x^2) = 0$ for all $\psi \in F_A^+(p)$, where

$$F_A^+(p) = \{ \psi \in A_* : \psi(\mathbf{1}) = \|\psi\| \text{ and } \psi(\mathbf{1} - p) = 0 \}.$$

Since every $\varphi \in F^+(p)$ restricts to a quasi-state $\varphi|_A \in F^+_A(p)$ and since every $\psi \in F^+_A(p)$ extends to a quasi-state $\widetilde{\psi} \in F^+(p)$, we have $x \circ p = 0$ if, and only if, $\varphi(x^2) = 0$ for all $\varphi \in F^+(p)$.

Now for any $x \in B$, write $x = x_1 + ix_2$ with $x_1, x_2 \in B_{sa}$. Then $x \circ p = 0$ if, and only if, $x_1 \circ p = 0$ and $x_2 \circ p = 0$. This is equivalent to $\varphi(x_1^2) = 0 = \varphi(x_2^2)$ for all $\varphi \in F^+(p)$ which is the same as $\varphi(x_1^2 + x_2^2) = 0 = \varphi(x^* \circ x)$ for every $\varphi \in F^+(p)$.

Two self-adjoint elements a and p in a JB*-algebra B are said to operator commute if they generate an associative subalgebra of B. If p is a projection, this is equivalent to $\{p, a, p\} = a \circ p$, and to $\{a, p, a\} = a^2 \circ p$ (cf. [10, Lemma 2.5.5]). Condition (ii) below is an operator commuting condition.

Theorem 3. Let Z be a JB^* -triple, B be a JB^* -algebra and let $T : Z \longrightarrow B$ be a linear contraction. Then there is a largest projection p in B^{**} such that for all $a, b, c \in Z$, we have

(i) $T\{a, b, c\} \circ p = \{Ta, Tb, Tc\} \circ p;$ (ii) $\{p, T(a)^* \circ T(b), p\} = (T(a) \circ T(b)^*) \circ p.$

Proof. Let

$$F_1 = \bigcap_{a \in Z_1} \left\{ \varphi \in Q(B) : \varphi \left((Ta^{(3)} - (Ta)^{(3)})^* \circ (Ta^{(3)} - (Ta)^{(3)}) \right) = 0 \right\}.$$

Then F_1 is a weak^{*} closed face of Q(B) containing zero. For a in Z_1 , we define a weak^{*} continuous affine map $\Phi_a : Q(B) \longrightarrow Q(B)$ by

$$\Phi_a(\varphi)(\cdot) = \overline{\varphi}(\{(Ta)^* \circ Ta, \ \cdot \ , (Ta)^* \circ Ta\})$$

where the bar '-' denotes complex conjugation. For n = 1, 2, ..., the sets

$$F_{n+1} = \{ \varphi \in F_n : \Phi_a(\varphi) \in F_n \text{ for all } a \in Z_1 \} = \bigcap_{a \in Z_1} F_n \cap \Phi_a^{-1}(F_n)$$

form a decreasing sequence of weak* closed faces of Q(B). The intersection $F = \bigcap_{n=1}^{\infty} F_n$ is a weak* closed face of Q(B) containing zero. By Lemma 4, there is a projection in $p \in B^{**}$ supporting F:

$$F = F^+(p) = \{\varphi \in Q(B) : \varphi(\mathbf{1} - p) = 0\}.$$

For each a in A_1 and φ in F, we have

$$\Phi_a(\varphi)(\cdot) = \overline{\varphi}(\{(Ta)^* \circ (Ta), \cdot, (Ta)^* \circ (Ta)\}) \in F,$$

and consequently,

$$\varphi\{(Ta)^* \circ Ta, \ p \ , (Ta)^* \circ Ta\} = \overline{\Phi_a(\varphi)(p)} = \overline{\Phi_a(\varphi)(1)} = \varphi(((Ta)^* \circ Ta)^2).$$

Let $z = (Ta)^* \circ Ta$. Then z is self-adjoint, as is $x = p \circ z - z$. For all $\varphi \in F^+(p)$,

$$\begin{split} \varphi(x^* \circ x) &= \varphi((p \circ z - z)^2) \\ &= \varphi((p \circ z)^2 - 2z \circ (p \circ z) + z^2) \\ &= \varphi((p \circ z)^2 - \{z, p, z\} - z^2 \circ p + z^2) \\ &= \varphi((p \circ z)^2 - \{z, p, z\}) \end{split}$$

using the fact that $\varphi(z^2) = \varphi(z^2 \circ p)$. By calculating in the special subalgebra generated by p and z, one obtains

$$(p \circ z)^{2} = \frac{1}{2}p \circ \{z, p, z\} + \frac{1}{4}\{p, z^{2}, p\} + \frac{1}{4}\{z, p, z\}.$$

Hence we have

$$\begin{aligned} 4\varphi(x^* \circ x) &= \varphi(2p \circ \{z, p, z\} + \{p, z^2, p\} + \{z, p, z\} - 4\{z, p, z\}) \\ &= \varphi(2\{z, p, z\} + z^2 - 3\{z, p, z\}) \\ &= \varphi(z^2) - \varphi(\{z, p, z\}) \\ &= \varPhi_a(1) - \varPhi_a(p) = 0. \end{aligned}$$

By Proposition 4, we have $p \circ x = 0$. As p is a projection, it follows that $\{p, z, p\} - p \circ z = 2(p \circ z) \circ p - 2p \circ z = 2p \circ x = 0$, that is,

$$\{p,(Ta)^*\circ (Ta),p\}=((Ta)^*\circ (Ta))\circ p$$

for all $a \in Z_1$. By polarization, we have

$$\{p, (Ta)^* \circ (Tb), p\} = ((Ta) \circ (Tb)^*) \circ p$$

for all $a, b \in Z$. For $a \in Z_1$, we have

$$\varphi\left((Ta^{(3)} - (Ta)^{(3)})^* \circ (Ta^{(3)} - (Ta)^{(3)})\right) = 0$$

for all $\varphi \in F$, hence Proposition 4 yields

$$(Ta^{(3)}) \circ p = (Ta)^{(3)} \circ p$$
.

Polarization then gives

$$T\{a, b, c\} \circ p = \{Ta, Tb, Tc\} \circ p \qquad (a, b, c \in Z).$$

Finally, if q is a projection in B^{**} satisfying conditions (i) and (ii), then $F^+(q) \subset F_1$. Indeed, for $\varphi \in F^+(q)$, we have

$$\varphi\left((Ta^{(3)} - (Ta)^{(3)})^* \circ (Ta^{(3)} - (Ta)^{(3)})\right) = 0$$

since $(Ta^{(3)} - (Ta)^{(3)}) \circ q = 0$ by (i) and Proposition 4 applies. Further, for all $a \in Z_1$, we have $\Phi_a(F^+(q)) \subset F^+(q)$ since

$$\begin{split} \Phi_a(\varphi)(q) &= \overline{\varphi} \left(\{ (Ta)^* \circ Ta, q, (Ta)^* \circ Ta \} \right) \\ &= \Phi_a(\varphi)(((Ta)^* \circ Ta)^2 \circ q) \\ &= \Phi_a(\varphi)(((Ta)^* \circ Ta)^2) = \Phi_a(\varphi)(1) \end{split}$$

where the second identity follows from (ii). Therefore $F^+(q) \subset \bigcap_{n=1}^{\infty} F_n = F^+(p)$ and $q \leq p$.

Remark 3.(1) We note that condition (i) in Theorem 3 also gives

$$\{p, T\{a, a, a\}, p\} = 2(p \circ T\{a, a, a\}^*) \circ p - p \circ T\{a, a, a\}^*$$
$$= \{p, \{Ta, Ta, Ta\}, p\}.$$

(2) If B is a JC*-algebra in Theorem 3, then condition (i) gives

$$T\{a, a, a\}p + pT\{a, a, a\} = \{Ta, Ta, Ta\}p + p\{Ta, Ta, Ta\}$$

and by (1) above, we have both $T\{a, a, a\}p = \{Ta, Ta, Ta\}p$ and $pT\{a, a, a\} = p\{Ta, Ta, Ta\}.$

(3) If B is a JBW*-algebra in Theorem 3, then p can be chosen in B itself. Indeed, we have $B = z \circ B^{**}$ for some central projection $z \in B^{**}$ and $z \circ p$ is the largest projection satisfying conditions (i) and (ii).

Example 6. The projection p in Theorem 3 could be zero, even if T is an isometry. Indeed, for the isometry $T : \mathbb{C} \longrightarrow M_2$ in Example 1, we have p = 0. On the other hand, for the isometry $S : \mathbb{C} \longrightarrow M_3$ given by

$$S(a) = \begin{pmatrix} 0 & 0 & \frac{a}{2} \\ 0 & a & 0 \\ a & 0 & 0 \end{pmatrix}$$

we have

$$p = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Moreover $S(\cdot) \circ p$ is an isometry.

Example 7. Let $T: C(\Omega) \longrightarrow C(\Omega \cup \{\beta\})$ be the non-surjective isometry given in Example 3. Then the characteristic function $p = \chi_{\Omega} \in C(\Omega \cup \{\beta\})$ is the largest projection satisfying the conclusion of Theorem 3.

References

- Alfsen E. M., Shultz F.W.: State spaces of Jordan algebras, Acta Mathematica 140 (1978), 155-190.
- Barton T., Friedman Y.: Grothendieck's inequality for JB*-triples and applications, J. London Math. Soc. 36 (1987), 513–523.
- Chu C-H.: Jordan structures in Banach manifolds, Studies in Adv. Math. 20, Amer. Math. Soc. (2001), 201 -210.
- Chu C-H.: Jordan Banach algebras in harmonic analysis, Contemp. Math. 363 (2004) 59-68.
- Chu C-H., Iochum B.: Complementation of Jordan triples in von Neumann algebras, Proc. Amer. Math. Soc., 108 (1990), 19–24.

- Chu C-H., Mellon P.: Jordan structures in Banach spaces and symmetric manifolds, Expo. Math. 16 (1998) 157-180.
- Chu C-H., Wong N-C.: Isometries between C*-algebras, Rev. Mat. Iberoamericana 20 (2004) 87-105.
- 8. Edwards C.M., Rüttimann G.: On the facial structure of the unit balls in a JBW^{*}-triple and its predual, J. London Math. Soc. **38** (1988), 317–332.
- Friedman Y., Russo B.: Structure of the predual of a JBW*-triple, J. Reine Angew. Math., 356, (1985), 67–89.
- 10. Hanche-Olsen H., Størmer E.: Jordan operator algebras, Pitman (1984).
- Harris L.A.: Bounded symmetric homogeneous domains in infinite dimensional spaces, in Proceedings on infinite holomorphy, (Lecture Notes in Math. 364 Springer-Verlag, Berlin 1974) 13-40.
- Holsztynski W.: Continuous mappings induced by isometries of spaces of continuous functions, Studia Math. 26 (1966), 133-136.
- 13. Kadison R. V.: Isometries of operator algebras, Ann. of Math. 54 (1951), 325–338.
- 14. Kaup W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 138 (1983), 503–529.
- 15. Koecher M.: An elementary approach to bounded symmetric domains, in Proceedings of Complex Analysis Conference (Houston 1969), Rice University, 1969.
- Loos O.: Bounded symmetric domains and Jordan pairs, Mathematical Lectures, University of California, Irvine, 1977.
- Potapov V.P.: The multiplicative structure of J-contractive matrix functions, Amer. Math. Soc. Transl. 15 (1960) 131-243.
- Rodriguez Palacios A.: Jordan structures in analysis, Proceedings of Oberwolfach conference (1992) on Jordan algebras, Walter de Gruyter, Berlin (1994) 97-186.
- Russo B.: Structures of JB*-triples, Proceedings of Oberwolfach conference (1992) on Jordan algebras, Walter de Gruyter, Berlin (1994) 208-280.
- 20. Upmeier H.: Symmetric Banach manifolds and Jordan C*-algebras, North-Holland, Amsterdam, 1985.