Isometries between JB*-triples

Cho-Ho Chu, Michael Mackey
${ }^{1}$ School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK Email: c.chu@qmul.ac.uk
${ }^{2}$ Department of Mathematics, University College Dublin, Belfield, Dublin 4, Ireland Email:michael.mackey@ucd.ie

Abstract Let Z and W be JB*-triples and let T be a linear isometry from Z into W. For any $z \in Z$ with $\|z\|<1$, we show that

$$
T\{z, z, z\}=\{T(z), T(z), T(z)\}
$$

if the Möbius transform induced by $T(z)$ preserves the unit ball of $T(Z)$. We show further that T is, locally, a triple homomorphism via a tripotent : for any $z \in Z$, there is a tripotent u in $W^{* *}$ such that

$$
\{u, T\{a, b, c\}, u\}=\{u,\{T(a), T(b), T(c)\}, u\}
$$

for all a, b, c in the smallest subtriple Z_{z} of Z containing z, and also, $\{u, T(\cdot), u\}: Z_{z} \longrightarrow W^{* *}$ is an isometry.

1 Introduction

Jordan algebraic structures play an important role in the geometry of infinite dimensional Banach manifolds. Indeed, as shown by Kaup [14], every bounded symmetric domain gives rise to a Jordan triple product $\{\cdot, \cdot, \cdot\}$ on its tangent space and a surjective linear map T between these spaces is an isometry if, and only if, it preserves the Jordan triple product:

$$
T\{a, b, c\}=\{T(a), T(b), T(c)\} .
$$

These tangent spaces form an important class of complex Banach spaces, called JB*-triples. One can therefore study the geometry of symmetric domains via the algebraic structures of JB*-triples. We remark that Jordan methods were

[^0]first introduced by Koecher [15] into the theory of finite dimensional bounded symmetric domains and they were also discussed in detail in [16].

Although a Jordan triple monomorphism is necessarily an isometry, a nonsurjective linear isometry between two JB*-triples need not preserve the Jordan triple product. It is natural to ask to what extent can a non-surjective linear isometry preserve the Jordan triple product. The object of this paper is to address this question. We note that, by polarization, a linear map $T: Z \longrightarrow W$ between JB*-triples preserves the Jordan triple product if, and only if,

$$
T\{a, a, a\}=\{T(a), T(a), T(a)\} \quad(a \in Z) .
$$

To answer the above question, our first task is to understand what makes a surjective linear isometry preserve the Jordan triple product. Upon a closer study of the geometry behind the proof of this fact in [14, Proposition 5.5], we found that the condition needed is a certain invariant property of the Möbius transformation. In Section 3 we discuss this in detail and show that, given a linear isometry $T: Z \longrightarrow W$ between JB*-triples, not necessarily surjective, one has

$$
T\{a, a, a\}=\{T(a), T(a), T(a)\}
$$

for $\|a\|<1$ if the Möbius transformation $g_{T a}$ induced by $T(a)$ preserves the open unit ball of the image $T(Z)$. In Section 4, we show that, although a nonsurjective linear isometry $T: Z \longrightarrow W$ between JB*-triples need not be a triple homomorphism, it is, nevertheless, locally a triple homomorphism, that is, for any $a \in Z$, there is a tripotent $u \in W^{* *}$ such that $\|\{u, T(z), u\}\|=\|z\|$ and

$$
\{u, T\{z, z, z\}, u\}=\{u,\{T(z), T(z), T(z)\}, u\}
$$

for every z in the JB^{*}-triple generated by a. The tripotent u above depends on the given element $a \in Z$, but if Z admits a character, then one can find a tripotent $v \in W^{* *}$ such that $\{v, T(\cdot), v\} \neq 0$ and

$$
\{v, T\{z, z, z\}, v\}=\{v,\{T(z), T(z), T(z)\}, v\}
$$

for all $z \in Z$. Without any condition on Z, such a tripotent v may not exist. Finally in Section 5, we prove more specialized results in the setting of JB*algebras. In particular, we show that, if $T: Z \longrightarrow W$ is a linear isometry from a JB*-triple Z into a JB^{*}-algebra (W, \circ), then there is a largest projection $p \in W^{* *}$ such that, for all $a \in Z$,

$$
T\{a, a, a\} \circ p=\{T(a), T(a), T(a)\} \circ p
$$

and p operator commutes with $T(a) \circ T(a)^{*}$.
The results in this paper generalize those in [7] for C^{*}-algebras. We begin in the next section with some basic definitions and results concerning JB*-triples.

2 JB*-triples

Throughout this paper, an isometry $T: Z \longrightarrow W$ between Banach spaces is not assumed to be surjective and we often write $T a$ for the image $T(a)$ for convenience. We first recall that a $J B^{*}$-triple Z is a complex Banach space equipped with a continuous Jordan triple product $\{\cdot, \cdot, \cdot\}: Z^{3} \longrightarrow Z$ which is symmetric and linear in the outer variables, and conjugate linear in the middle variable such that for $a, b, c, x, y \in Z$, we have
(i) $\{a, b,\{c, x, y\}\}=\{\{a, b, c\}, x, y\}-\{c,\{b, a, x\}, y\}+\{c, x,\{a, b, y\}\}$;
(ii) the map $z \in Z \mapsto\{a, a, z\} \in Z$ is hermitian with nonnegative spectrum;
(iii) $\|\{a, a, a\}\|=\|a\|^{3}$.

For later reference, we define two fundamental linear operators on a JB*-triple Z. For $x, y \in Z$, the box operator $x \square y: Z \longrightarrow Z$ and the Bergman operator $B(x, y): Z \longrightarrow Z$ are defined by

$$
\begin{aligned}
& (x \square y)(z)=\{x, y, z\} \\
& B(x, y)(z)=z-2\{x, y, z\}+\{x,\{y, z, y\}, x\} .
\end{aligned}
$$

Every C*-algebra A is a JB*-triple with the following Jordan triple product

$$
\{a, b, c\}=\frac{1}{2}\left(a b^{*} c+c b^{*} a\right) \quad(a, b, c \in A) .
$$

A closed subspace of a JB^{*}-triple is called a subtriple if it is closed with respect to the triple product. A linear map $T: Z \longrightarrow W$ between JB*-triples is called a triple homomorphism if it preserves the triple product in which case, the kernel J of T is a triple ideal of Z, that is, $\{Z, Z, J\}+\{Z, J, Z\} \subset J$ and the range $T(Z)$ is a subtriple of W. We refer to $[3,6,18-20]$ for expositions as well as recent surveys of JB*-triples and symmetric Banach manifolds. In the sequel, we write $a^{(3)}=\{a, a, a\}$ and use frequently the polarization formula

$$
\{a, b, c\}=\frac{1}{8} \sum_{\alpha^{4}=\beta^{2}=1} \alpha \beta(a+\alpha b+\beta c)^{(3)} .
$$

An element u in a JB*-triple is called a tripotent if $u^{(3)}=u$. If a JB*-triple Z has a predual (which is necessarily unique), then it is called a $J B W^{*}$-triple in which case, Z has an abundance of tripotents. Each tripotent $u \in Z$ induces a splitting of $Z, Z=Z_{0} \oplus Z_{1} \oplus Z_{2}$, known as the Peirce decomposition, into a direct sum of the 0,1 and 2-eigenspaces of the operator $2 u \square u$. The Peirce projections $P_{i}(u): Z \rightarrow Z_{i}$ onto the eigenspaces Z_{i}, for $i=0,1,2$, are given in terms of the triple product,

$$
\begin{gathered}
P_{0}(u)(z)=B(u, u)(z) \\
P_{1}(u)(z)=2(\{u, u, z\}-\{u,\{u, z, u\}, u\}) \\
P_{2}(u)(z)=\{u,\{u, z, u\}, u\} .
\end{gathered}
$$

These projections are contractive. Each eigenspace Z_{i} is a subtriple of Z. Indeed we have $\left\{Z_{i}, Z_{j}, Z_{k}\right\} \subset Z_{i-j+k}$ for $i, j, k \in\{0,1,2\}$ where $Z_{r}:=\{0\}$ for $r \notin$ $\{0,1,2\}$. In particular, $Z_{2}=P_{2}(u)(Z)$ is a JB*-algebra with identity u, and with respect to the following non-associative product and involution:

$$
x \circ y=\{x, u, y\}, \quad x^{*}=\{u, x, u\} .
$$

We note that a JB*-algebra, that is, a Jordan Banach algebra (A, \circ) equipped with an isometric involution $*$ satisfying $\|x \circ y\| \leq\|x\|\|y\|$ and $\|\{x, x, x\}\|=$ $\|x\|^{3}$, is also a JB*-triple with the Jordan triple product

$$
\{a, b, c\}=\left(a \circ b^{*}\right) \circ c-(a \circ c) \circ b^{*}+\left(b^{*} \circ c\right) \circ a .
$$

For example, a C ${ }^{*}$-algebra is a JB*-algebra with the Jordan product

$$
a \circ b=\frac{1}{2}(a b+b a) .
$$

A JB^{*}-algebra is called a JC^{*}-algebra if it can be embedded as a norm-closed subspace of a C^{*}-algebra, closed with respect to the involution and the above Jordan product. A JB*-algebra having a (necessarily unique) predual is called a JBW^{*}-algebra, it is called a JW^{*}-algebra if it is also a JC^{*}-algebra. We refer to [10] for a detailed exposition of Jordan Banach algebras including JB*-algebras and JBW*-algebras.

Each tripotent u in a JBW ${ }^{*}$-triple Z has a support face $F(u)$ in the predual Z_{*} of Z, given by

$$
F(u)=\left\{\varphi \in Z_{*}:\|\varphi\|=1=\varphi(u)\right\}
$$

which is a norm-exposed face of the closed unit ball $Z_{* 1}$ of Z_{*}. One can introduce a partial ordering \leq to the set $\mathcal{T}(Z)$ of tripotents in a JBW*-triple Z. For any two tripotents u and v in Z, one defines $u \leq v$ if $v-u$ is orthogonal to u which means that

$$
\{u, v-u, x\}=0
$$

for all $x \in Z$. With this partial ordering, it has been shown in [8] that given a family of tripotents $\left\{u_{\alpha}\right\}_{\alpha \in Q}$ in Z, either the lattice supremum $\bigvee_{\alpha \in Q} u_{\alpha}$ exists in $\mathcal{T}(Z)$, or $Z_{* 1}=\bigvee_{\alpha \in Q} F\left(u_{\alpha}\right)$, that is, the smallest norm-exposed face of $Z_{* 1}$ containing the union $\bigcup_{\alpha} F\left(u_{\alpha}\right)$ is $Z_{* 1}$ itself. By [5], Z embeds as a subtriple of a JBW*-algebra A such that the predual Z_{*} is a 1-complemented subspace of the predual A_{*} of A, where we recall that a closed subspace of a Banach space E is called 1-complemented if it is the range of a contractive projection on E. In particular, faces of $Z_{* 1}$ are faces of the closed unit ball $A_{* 1}$ and, every face F of $A_{* 1}$ is either disjoint from $Z_{* 1}$ or the intersection $F \cap Z_{* 1}$ is a face
of $Z_{* 1}$. It follows that, if $\left\{u_{\alpha}\right\}_{\alpha \in Q}$ is a family of tripotents in $\mathcal{T}(Z)$ such that $Z_{* 1}=\bigvee_{\alpha} F\left(u_{\alpha}\right)$, then we also have $A_{* 1}=\bigvee_{\alpha}^{\prime} F\left(u_{\alpha}\right)$, where \bigvee^{\prime} denotes the supremum in $A_{* 1}$, for otherwise, $F=\bigvee_{\alpha}^{\prime} F\left(u_{\alpha}\right)$ is a proper norm-exposed face of $A_{* 1}$ and the intersection $F \cap Z_{* 1}$ is a norm-exposed face of $Z_{* 1}$ containing $\bigcup_{\alpha} F\left(u_{\alpha}\right)$, giving $F \cap Z_{* 1}=Z_{* 1}$ which is impossible since $0 \notin F$.

By [8, p.322], every element z in a JBW*-triple Z admits a support tripotent $u_{z} \in \mathcal{T}(Z)$ satisfying

$$
z=\left\{u_{z}, z, u_{z}\right\}=\left\{u_{z}, u_{z}, z\right\} .
$$

3 Isometries and Möbius transformation

In this section, we reveal the role of Möbius transformations in the preservation of Jordan structures by a linear isometry. We first introduce the relevant geometric and holomorphic aspects of JB*-triples. A map $g: D \longrightarrow U$ between open sets in complex Banach spaces Z and W, respectively, is called holomorphic if the Fréchet derivative $g^{\prime}(a): Z \longrightarrow W$ exists for every $a \in D$, where $g^{\prime}(a)$ is a linear map satisfying

$$
\lim _{t \rightarrow 0} \frac{\left\|g(a+t)-g(a)-g^{\prime}(a)(t)\right\|}{\|t\|}=0
$$

A holomorphic map $g: D \longrightarrow U$ is called biholomorphic if it is bijective and the inverse g^{-1} is also holomorphic. The open unit ball of a Banach space Z will be denoted by Z_{0}. Let $A u t Z_{0}$ be the automorphism group of Z_{0}, consisting of all biholomorphic maps from Z_{0} onto itself. Upmeier [20] has shown that Aut Z_{0} is a real Banach-Lie group and by a deep result of Kaup [14], a complex Banach space Z is a JB*-triple if, and only if, Aut Z_{0} acts transitively on Z_{0}, in which case, the Jordan triple product is constructed via the Lie algebra of $A u t Z_{0}$. For a JB*-triple Z, the basic elements in $A u t Z_{0}$ are the Möbius transformations. Given $a \in Z_{0}$, we define the Möbius transformation of Z_{0}, induced by a, to be the biholomorphic map $g_{a}: Z_{0} \longrightarrow Z_{0}$ given by

$$
g_{a}(z)=a+B(a, a)^{1 / 2}(I+z \square a)^{-1}(z)
$$

where I is the identity operator. We have $g_{a}(0)=a, g_{a}^{-1}=g_{-a}$ and, the Fréchet derivatives $g_{a}^{\prime}(0)=B(a, a)^{1 / 2}$ and $g_{-a}^{\prime}(a)=B(a, a)^{-1 / 2}(c f$. [14]). If Z is a C*algebra, we have the following formula for the Möbius transformation which was due to Potapov [17] and Harris [11]:

$$
g_{a}(z)=\left(1-a a^{*}\right)^{-1 / 2}(a+z)\left(1+a^{*} z\right)^{-1}\left(1-a^{*} a\right)^{1 / 2} .
$$

Lemma 1. Let $T: Z \longrightarrow W$ be a linear isometry between $J B^{*}$-triples Z and W. Let $a \in Z_{0}$ and let $\psi \in \operatorname{Aut} T(Z)_{0}$ be such that $\psi(T(a))=0$. Then

$$
\psi(0)=-\psi^{\prime}(T(a))\left(T\left(B(a, a)^{1 / 2}(a)\right)\right) .
$$

Proof. Let $h=\psi T g_{a}: Z_{0} \longrightarrow T(Z)_{0}$. Then h is biholomorphic and $h(0)=0$. Hence h is linear by Cartan's uniqueness theorem and on $Z_{0}, h=h^{\prime}(0)=$ $\left(\psi T g_{a}\right)^{\prime}(0)=(\psi T)^{\prime}\left(g_{a}(0)\right) g_{a}^{\prime}(0)=(\psi T)^{\prime}(a) B(a, a)^{1 / 2}$. Evaluating h at $-a$, we get the formula.

We note that $T g_{-a} T^{-1}$ is an automorphism of $T(Z)_{0}$ and maps $T(a)$ to 0 . For a C^{*}-algebra, we have $B(a, a)^{1 / 2}(a)=\left(1-a a^{*}\right)^{1 / 2} a\left(1-a^{*} a\right)^{1 / 2}=a-a a^{*} a$ since $\left(1-a a^{*}\right)^{1 / 2} a=a\left(1-a^{*} a\right)^{1 / 2}$. Therefore we have $B(a, a)^{1 / 2}(a)=a-$ $\{a, a, a\}$ in a JB^{*}-triple by considering the subtriple generated by a which is linearly isometric to an abelian C^{*}-algebra. Since $B(a, a)=B(-a,-a)$, we have $g_{-a}(-z)=-g_{a}(z)$. It follows that, if $D=-D$ is a subset of the open unit ball of a JB*-triple, invariant under g_{a}, then it is also invariant under g_{-a} and $g_{a}(D)=D$.

By refining Kaup's result in [14, Proposition 5.5] (see also [11]), we now show how the Möbius transformation and surjectivity effect the preservation of the triple product by a linear isometry.

Proposition 1. Let $T: Z \longrightarrow W$ be a linear isometry between JB*-triples Z and W. Let $a \in Z_{0}$ and let $g_{T a} \in A u t W_{0}$ be the Möbius transformation induced by $T(a)$. If $g_{T a}\left(T(Z)_{0}\right) \subset T(Z)_{0}$, then we have

$$
T\{a, a, a\}=\{T(a), T(a), T(a)\} .
$$

In particular, if T is surjective, then T is a triple isomorphism.
Proof. Let ψ be the restriction to $T(Z)_{0}$ of the Möbius transformation $g_{-T a} \in$ Aut Z_{0}. Then $\psi \in \operatorname{Aut} T(Z)_{0}, \psi(T(a))=0$ and the derivative $\psi^{\prime}(T(a))$: $T(Z) \longrightarrow T(Z)$ is the restriction of the derivative $g_{T(a)}^{\prime}(T(a)): W \longrightarrow W$ which is equal to $B(T(a), T(a))^{-1 / 2}$. By Lemma 1, we have
$-T(a)=\psi(0)=-\psi^{\prime}(T(a))\left(T\left(B(a, a)^{1 / 2}(a)\right)=-B(T(a), T(a))^{-1 / 2} T\left(a-a^{(3)}\right)\right.$.
It follows that $T(a)-T(a)^{(3)}=B(T(a), T(a))^{1 / 2}(T(a))=T\left(a-a^{(3)}\right)$ which gives $T(a)^{(3)}=T\left(a^{(3)}\right)$.

Finally, if T is surjective then $T(Z)_{0}=W_{0}$ is invariant under $g_{T a}$ for all $a \in A_{0}$. Hence T preserves the triple product.

Remark 1. The above result subsumes Kadison's seminal result for surjective isometries between C^{*}-algebras. It has also been discussed in [4] in the setting of JB^{*}-algebras. We note from [7] that, for a fixed a, the condition $T\left(a^{(3)}\right)=$ $(T a)^{(3)}$ alone does not imply $T\left(a^{(n)}\right)=(T a)^{(n)}$ for any odd integer $n>3$.

The following corollary is immediate.

Corollary 1. Let $T: Z \longrightarrow W$ be a linear isometry between JB*-triples. Then $T(Z)$ is a subtriple of W if, and only if, $T(Z)_{0}$ is invariant under the Möbius transformation $g_{T(a)}$ for all $\|a\|<1$.

Example 1. Let M_{n} be the JB*-triple of $n \times n$ complex matrices. Let $T: \mathbb{C} \longrightarrow$ M_{2} be defined by

$$
T(a)=\left(\begin{array}{cc}
0 & \frac{a}{2} \\
a & 0
\end{array}\right) .
$$

Then T is a linear isometry and $T(\mathbb{C})$ is not a subtriple of M_{2}. Also $T(1)$ is not unitary and $T(\mathbb{C})$ contains no nontrivial positive element. For $a \neq 0$, we have $T\left(a^{(3)}\right) \neq(T a)^{(3)}$ and in fact, for $0<|a|<1$,

$$
g_{T a}(T x)=\left(\begin{array}{cc}
0 & \frac{2(a+x)}{4+\bar{a} x} \\
\frac{a+x}{1+\bar{a} x} & 0
\end{array}\right)
$$

which is outside $T(\mathbb{C})$.
Example 2. A Hilbert space H is a JB*-triple with Jordan triple product

$$
\{x, y, z\}=\frac{1}{2}(\langle x, y\rangle z+\langle z, y\rangle x)
$$

where $\langle\cdot, \cdot\rangle$ denotes the inner product in H. Hence, given a linear isometry $T: H \longrightarrow K$ between Hilbert spaces, the range $T(H)$ is a subtriple of K and T is a triple isomorphism onto $T(H)$.

Given $a \in H_{0}$, the Möbius transformation $g_{a}: H_{0} \longrightarrow H_{0}$ is given by

$$
g_{a}(x)=\frac{a+E_{a}(x)+\sqrt{1-\|a\|^{2}}\left(I-E_{a}\right)(x)}{1+\langle x, a\rangle}
$$

where E_{a} is the projection from H onto the subspace $\mathbb{C} a$. Given a linear isometry T on H, we have $\langle T x, T a\rangle=\langle x, a\rangle$ and $E_{T a}(T x)=E_{a}(x) T a$. It follows that

$$
g_{T a}(T x)=T\left(g_{a}(x)\right)
$$

and indeed, $T(H)_{0}$ is invariant under $g_{T a}$ for all $\|a\|<1$.
Example 3. Let $C(\Omega)$ and $C(\Omega \cup\{\beta\})$ be the C^{*}-algebras of continuous functions on the closed unit disc $\Omega \subset \mathbb{C}$ and $\Omega \cup\{\beta\}$ respectively, where $\beta \in \mathbb{C} \backslash \Omega$. Define $T: C(\Omega) \longrightarrow C(\Omega \cup\{\beta\})$ by

$$
(T a)(x)= \begin{cases}a(x) & \text { if } x \in \Omega \\ \frac{1}{2}(a(1)+a(0)) & \text { if } x=\beta .\end{cases}
$$

Then T is a linear isometry and $T(C(\Omega))=\{h \in C(\Omega \cup\{\beta\}): 2 h(\beta)=$ $h(1)+h(0)\}$ which is not a subtriple of $C(\Omega \cup\{\beta\})$. It is easy to see that T is not
a triple isomorphism onto its range, but for $a \in C(\Omega)_{0}$ with $a(1)=a(0)=0$, we have $g_{T a}\left(T(C(\Omega))_{0}\right) \subset T(C(\Omega))_{0}$. Indeed, if $h \in T(C(\Omega))_{0}$, then

$$
\begin{aligned}
g_{T a}(h)(\beta) & =\left(\frac{T a+h}{1+\overline{T a} h}\right)(\beta)=\frac{T a(\beta)+h(\beta)}{1+\overline{T a(\beta)} h(\beta)} \\
& =\frac{2(a(1)+a(0)+h(1)+h(0))}{4+\overline{a(1)+a(0)}(h(1)+h(0))}=\frac{1}{2}(h(1)+h(0)) \\
& =\frac{1}{2}\left(g_{T a}(h)(1)+g_{T a}(h)(0)\right)
\end{aligned}
$$

which gives $g_{T a}(h) \in T(C(\Omega))_{0}$. It is clear that $T\left(a^{(3)}\right)=T(a)^{(3)}$.

4 Isometries and Jordan triple product

Our goal in this section is to show that a non-surjective linear isometry T : $Z \longrightarrow W$ between JB*-triples preserves, at least locally, the Jordan triple product, via a tripotent. Since the JB*-subtriple generated by an element $z \in Z$ is Jordan isomorphic to the JB^{*}-triple $C_{0}(X)$ of complex continuous functions on a locally compact Hausdorff space X, vanishing at infinity, it suffices to study the case in which $Z=C_{0}(X)$.

We recall that for any functional φ in the predual of a JBW^{*}-triple W, there is a unique tripotent $u_{\varphi} \in W$, called the support tripotent of φ, such that $\varphi=\varphi \circ P_{2}\left(u_{\varphi}\right)$ and $\left.\varphi\right|_{P_{2}\left(u_{\varphi}\right)(W)}$ is a faithful normal positive functional on the JBW*-algebra $P_{2}\left(u_{\varphi}\right)(W)$ [9, Proposition 2]. The JBW*-algebra $P_{2}\left(u_{\varphi}\right)(W)$ becomes an inner product space with respect to the inner product

$$
\langle a, b\rangle=\varphi\left\{a, b, u_{\varphi}\right\} .
$$

Moreover φ is an extreme point of the closed unit ball of the predual if, and only if, u_{φ} is a minimal tripotent, that is, $\left\{u_{\varphi}, W, u_{\varphi}\right\}=\mathbb{C} u_{\varphi}$. We denote by ∂E the set of extreme points of the closed unit ball of a Banach space E.

As usual, we embed and regard a JB*-triple Z as a subtriple of its second dual $Z^{* *}$ which is a JBW*-triple. The following theorem generalizes the results in $[7,12]$.

Theorem 1. Let W be a JB*-triple and let $T: C_{0}(X) \longrightarrow W$ be a linear isometry. Then either T is a triple homomorphism or there is a tripotent $u \in$ $W^{* *}$ such that

$$
\left\{u, T\left(f^{3}\right), u\right\}=\left\{u, T(f)^{3}, u\right\}
$$

for all $f \in C_{0}(X)$ and

$$
\{u, T(\cdot), u\}: C_{0}(X) \longrightarrow W^{* *}
$$

is an isometry.

Proof. Let $E=T\left(C_{0}(X)\right)$. Then the dual map $T^{*}: E^{*} \rightarrow C_{0}(X)^{*}$ of T : $C_{0}(X) \rightarrow E$ is a surjective linear isometry. We also denote by T^{*} the dual map of $T: C_{0}(X) \longrightarrow W$ since no confusion is likely. Let

$$
Q=\left\{\varphi \in \partial W^{*}:\left.\varphi\right|_{E} \in \partial E^{*}\right\} .
$$

Then Q is non-empty since each extreme point $\psi \in \partial E^{*}$ extends to an extreme point $\varphi \in \partial W^{*}$.

Let $\varphi \in Q$ with $\psi=\left.\varphi\right|_{E} \in \partial E^{*}$. Then $T^{*} \varphi=T^{*} \psi$ is an extreme point of the closed unit ball of $C_{0}(X)^{*}$ and hence there exists $x_{\varphi} \in X$ such that $T^{*} \psi=\alpha \delta_{x_{\varphi}}$ with $|\alpha|=1$. Let $u_{\varphi} \in W^{* *}$ be the support tripotent of φ.

Since u_{φ} is a minimal tripotent and $\varphi\left\{u_{\varphi}, \cdot, u_{\varphi}\right\}=\overline{\varphi \circ P_{2}\left(u_{\varphi}\right)}(\cdot)=\bar{\varphi}(\cdot)$, where the bar '-' denotes complex conjugation, we have

$$
\left\{u_{\varphi}, b, u_{\varphi}\right\}=\overline{\varphi(b)} u_{\varphi} \quad\left(b \in W^{* *}\right) .
$$

From $\varphi \circ T(f)=\left(T^{*} \varphi\right)(f)=\left(T^{*} \psi\right)(f)=\alpha f\left(x_{\varphi}\right)$, we obtain, in $W^{* *}$,

$$
\left\{u_{\varphi}, T(f), u_{\varphi}\right\}=\overline{\alpha f\left(x_{\varphi}\right)} u_{\varphi} \quad\left(f \in C_{0}(X)\right)
$$

and $\left\{u_{\varphi}, T(\cdot), u_{\varphi}\right\}$ is a triple homomorphism. In particular,

$$
\begin{aligned}
\overline{\alpha f^{(3)}\left(x_{\varphi}\right)} u_{\varphi} & =\left\{u_{\varphi}, T f, u_{\varphi}\right\}^{(3)}=\left\{u_{\varphi},\left\{T f, P_{2}\left(u_{\varphi}\right)(T f), T f\right\}, u_{\varphi}\right\} \\
& =\alpha f\left(x_{\varphi}\right)\left\{u_{\varphi},\left\{T f, u_{\varphi}, T f\right\}, u_{\varphi}\right\}
\end{aligned}
$$

and hence $\varphi\left\{u_{\varphi},\left\{T f, u_{\varphi}, T f\right\}, u_{\varphi}\right\}=\left(\overline{\alpha f\left(x_{\varphi}\right)}\right)^{2}$ or

$$
\begin{equation*}
\varphi\left\{T f, u_{\varphi}, T f\right\}=\left(\alpha f\left(x_{\varphi}\right)\right)^{2} \tag{1}
\end{equation*}
$$

We prove that

$$
\left\{u_{\varphi}, T\left(f^{(3)}\right), u_{\varphi}\right\}=\left\{u_{\varphi},(T f)^{(3)}, u_{\varphi}\right\} \quad\left(f \in C_{0}(X)\right)
$$

It suffices to show that

$$
\varphi\left\{u_{\varphi},(T f)^{(3)}, u_{\varphi}\right\}=\overline{\alpha f^{(3)}\left(x_{\varphi}\right)} .
$$

We first show that

$$
\left\{u_{\varphi}, u_{\varphi}, T h\right\}=u_{\varphi}
$$

for $h \in C_{0}(X)$ satisfying $\|h\|=1$ and $h\left(x_{\varphi}\right)=\bar{\alpha}$. We have, by the Schwarz inequality [2, Proposition 1.2],

$$
\begin{aligned}
1 & =|\varphi(T h)|^{2}=\left|\varphi\left\{u_{\varphi}, T h, u_{\varphi}\right\}\right|^{2} \\
& \leq \varphi\left\{u_{\varphi}, u_{\varphi}, u_{\varphi}\right\} \varphi\left\{T h, T h, u_{\varphi}\right\} \leq\|T h\|^{2}=\|h\|^{2}=1
\end{aligned}
$$

giving $\varphi\left\{T h, T h, u_{\varphi}\right\}=1$. Let

$$
N_{\varphi}=\left\{b \in W^{* *}: \varphi\left\{b, b, u_{\varphi}\right\}=0\right\} .
$$

Then we have

$$
\begin{equation*}
N_{\varphi}=P_{0}\left(u_{\varphi}\right)\left(W^{* *}\right) \tag{2}
\end{equation*}
$$

by [2, p.516]. We show $T h-u_{\varphi} \in N_{\varphi}$. Indeed, we have

$$
\begin{aligned}
& \varphi\left\{T h-u_{\varphi}, T h-u_{\varphi}, u_{\varphi}\right\} \\
= & \varphi\left\{T h, T h, u_{\varphi}\right\}-\varphi\left\{u_{\varphi}, T h, u_{\varphi}\right\}+\varphi\left\{u_{\varphi}, u_{\varphi}, u_{\varphi}\right\}-\varphi\left\{T h, u_{\varphi}, u_{\varphi}\right\}=0
\end{aligned}
$$

where $\varphi\left\{T h, u_{\varphi}, u_{\varphi}\right\}=\overline{\varphi\left\{u_{\varphi}, T h, u_{\varphi}\right\}}=1$. Hence, by (2), we have $\left\{u_{\varphi}, u_{\varphi}, T h-\right.$ $\left.u_{\varphi}\right\}=0$ and $\left\{u_{\varphi}, u_{\varphi}, T h\right\}=u_{\varphi}$.

We next show that $\varphi\left\{T g, T g, u_{\varphi}\right\}=0$ whenever $g \in C_{0}(X)$ satisfies $g\left(x_{\varphi}\right)=$ 0 . We may assume, by Urysohn's lemma, that g vanishes on a neighbourhood of x_{φ}, in which case, we can choose $k \in C_{0}(X)$ such that $\|k\|=1, k\left(x_{\varphi}\right)=\alpha$ and $k g=0$. Then $\|k+g\|=1$ and $(k+g)\left(x_{\varphi}\right)=\alpha$. Therefore, by the above, we have $T(k+g)+N_{\varphi}=u_{\varphi}+N_{\varphi}=T k+N_{\varphi}$ which yields $T g \in N_{\varphi}$, that is, $\varphi\left\{T g, T g, u_{\varphi}\right\}=0$.

Now let $f \in C_{0}(X)$ with $\|f\|=1$. Pick $h \in C_{0}(X)$ with $\|h\|=1$ and $h\left(x_{\varphi}\right)=$ $\bar{\alpha}$. Then $\left(f-\alpha f\left(x_{\varphi}\right) h\right)\left(x_{\varphi}\right)=0$ and therefore we have $T f-\alpha f\left(x_{\varphi}\right) T h \in N_{\varphi}$ and by (2) again,

$$
\left\{u_{\varphi}, u_{\varphi}, T f-\alpha f\left(x_{\varphi}\right) T h\right\}=0
$$

giving

$$
\left\{u_{\varphi}, u_{\varphi}, T f\right\}=\alpha f\left(x_{\varphi}\right)\left\{u_{\varphi}, u_{\varphi}, T h\right\}=\alpha f\left(x_{\varphi}\right) u_{\varphi} .
$$

Moreover, we have

$$
\begin{aligned}
& \alpha f\left(x_{\varphi}\right)\left\{u_{\varphi}, T f, u_{\varphi}\right\}=\left\{u_{\varphi}, T f,\left\{u_{\varphi}, u_{\varphi}, T f\right\}\right\} \\
& =\left\{\left\{u_{\varphi}, T f, u_{\varphi}\right\}, u_{\varphi}, T f\right\}-\left\{u_{\varphi},\left\{T f, u_{\varphi}, u_{\varphi}\right\}, T f\right\}+\left\{u_{\varphi}, u_{\varphi},\left\{u_{\varphi}, T f, T f\right\}\right\} \\
& =\overline{\alpha f\left(x_{\varphi}\right)}\left\{u_{\varphi}, u_{\varphi}, T f\right\}-\overline{\alpha f\left(x_{\varphi}\right)}\left\{u_{\varphi}, u_{\varphi}, T f\right\}+\left\{u_{\varphi}, u_{\varphi},\left\{u_{\varphi}, T f, T f\right\}\right\} \\
& =\left\{u_{\varphi}, u_{\varphi},\left\{u_{\varphi}, T f, T f\right\}\right\}
\end{aligned}
$$

and hence $\varphi\left\{u_{\varphi}, T f, T f\right\}=\varphi\left(\left\{u_{\varphi}, u_{\varphi},\left\{u_{\varphi}, T f, T f\right\}\right\}\right)=\alpha f\left(x_{\varphi}\right) \varphi\left\{u_{\varphi}, T f, u_{\varphi}\right\}$. Therefore we have

$$
\begin{aligned}
& \hline \varphi\left\{u_{\varphi},(T f)^{(3)}, u_{\varphi}\right\} \\
& =\varphi\left\{u_{\varphi}, u_{\varphi},\{T f, T f, T f\}\right\} \\
& =\varphi\left(\left\{\left\{u_{\varphi}, u_{\varphi}, T f\right\}, T f, T f\right\}-\left\{T f,\left\{u_{\varphi}, u_{\varphi}, T f\right\}, T f\right\}+\left\{T f, T f,\left\{u_{\varphi}, u_{\varphi}, T f\right\}\right\}\right) \\
& =2 \alpha f\left(x_{\varphi}\right) \varphi\left\{u_{\varphi}, T f, T f\right\}-\overline{\alpha f\left(x_{\varphi}\right)} \varphi\left\{T f, u_{\varphi}, T f\right\} \\
& =\alpha f^{(3)}\left(x_{\varphi}\right)
\end{aligned}
$$

using (1). It follows that

$$
\varphi\left\{u_{\varphi},(T f)^{(3)}, u_{\varphi}\right\}=\overline{\alpha f^{(3)}\left(x_{\varphi}\right)}=\varphi\left\{u_{\varphi}, T\left(f^{(3)}\right), u_{\varphi}\right\} .
$$

By the remarks in Section 2, we have two cases :
(i) the lattice supremum $u=\bigvee_{\varphi \in Q} u_{\varphi}$ is a tripotent in $W^{* *}$;
(ii) $W_{1}^{*}=\bigvee_{\varphi \in Q} F\left(u_{\varphi}\right)=\bigvee_{\varphi \in Q}\{\varphi\}$.

Case (i). The tripotent $u=\bigvee_{\varphi \in Q} u_{\varphi}$ has support face

$$
F(u)=\left\{\psi \in W^{*}:\|\psi\|=\psi(u)=1\right\}
$$

which is the normal state space of the atomic JBW ${ }^{*}$-algebra $P_{2}(u)\left(W^{* *}\right)$. Let ρ be an extreme point of $F(u)$ with support tripotent u_{ρ} which is a minimal projection in $P_{2}(u)\left(W^{* *}\right)$. If we select from $\left\{u_{\varphi}\right\}_{\varphi \in Q}$ a maximal subfamily $\left\{u_{\varphi}\right\}_{\varphi \in Q^{\prime}}$ with mutually orthogonal central supports $\left\{c\left(u_{\varphi}\right)\right\}_{\varphi \in Q^{\prime}}$, then $u=\sum_{\varphi \in Q^{\prime}} c\left(u_{\varphi}\right)$ where each $P_{2}\left(c\left(u_{\varphi}\right)\right)\left(W^{* *}\right)$ is a type I JBW*-factor. It follows from [10, Lemma 5.3.2] that u_{ρ} is exchanged by a symmetry $s \in P_{2}(u)\left(W^{* *}\right)$ to some u_{φ} with $\varphi \in Q^{\prime}$, that is, $u_{\rho}=\left\{s, u_{\varphi}, s\right\}$, with $T^{*} \varphi=\alpha \delta_{x_{\varphi}}$ as before. Then we have $\rho\{s, \cdot, s\}=\bar{\varphi}(\cdot)$.

Let $S: C_{0}(X) \rightarrow W^{* *}$ be the isometry defined by

$$
S(f)=\{s, T f, s\}^{*} \quad\left(f \in C_{0}(X)\right)
$$

where * is the involution in $P_{2}(u)\left(W^{* *}\right)$. By the above argument, we have $\varphi\left(S\left(f^{(3)}\right)\right)=\varphi\left((S f)^{(3)}\right)$. As φ is a state of $P_{2}(u)\left(W^{* *}\right)$, it follows that

$$
\begin{aligned}
\rho\left(T\left(f^{(3)}\right)\right) & =\bar{\varphi}\left\{s, T\left(f^{(3)}\right), s\right\}=\varphi\left(\left\{s, T\left(f^{(3)}\right), s\right\}^{*}\right) \\
& =\varphi\left(\left(\{s, T f, s\}^{*}\right)^{(3)}\right) \\
& =\varphi\left(\{s,\{T f,\{s,\{s, T f, s\}, s\}, T f\}, s\}^{*}\right) \\
& =\varphi\left(\left\{s,(T f)^{(3)}, s\right\}^{*}\right) \\
& =\rho\left((T f)^{(3)}\right) .
\end{aligned}
$$

Since $\rho \in F(u)$ was arbitrary, we obtain

$$
\left\{u, T\left(f^{(3)}\right), u\right\}=\left\{u,(T f)^{(3)}, u\right\}
$$

Finally, for any $f \in C_{0}(X)$, pick $x \in X$ with $\|f\|=|f(x)|$. Let $\psi \in \partial E^{*}$ with $T^{*} \psi=\delta_{x}$, and let $\varphi \in \partial W^{*}$ be an extension of ψ. Then $\varphi \in Q$ and $T^{*} \varphi=\delta_{x}$. Hence

$$
\begin{aligned}
\|T f\| \geq\|\{u, T f, u\}\| & \geq\left\|\left\{u_{\varphi},\left\{u_{\varphi},\{u, T f, u\}, u_{\varphi}\right\}, u_{\varphi}\right\}\right\| \\
& =\left\|\left\{u_{\varphi}, T f, u_{\varphi}\right\}\right\| \\
& =\left\|\overline{f(x)} u_{\varphi}\right\|=|f(x)|=\|f\|
\end{aligned}
$$

which gives $\|\{u, T f, u\}\|=\|f\|$.

Case (ii). Let $W^{* *}$ be embedded as a subtriple of a JBW* ${ }^{*}$-algebra B such that W^{*} is 1-complemented in the predual B_{*}. As remarked in Section 2, we have $B_{* 1}=\bigvee_{\varphi \in Q}\{\varphi\}$. It follows that there is a subfamily $\{\varphi\}_{\varphi \in Q^{\prime \prime}}$ such that the atomic part ${ }_{B_{a}}$ of B is a direct sum

$$
B_{a}=\bigoplus_{\varphi \in Q^{\prime \prime}} B\left(u_{\varphi}\right)
$$

where $B\left(u_{\varphi}\right)$ is the weak*-closed ideal in B generated by u_{φ} and is a type I JBW*-factor. Given an extreme point $\rho \in \partial W^{*}$, it is also an extreme point of $B_{* 1}$ and its support tripotent u_{ρ} is in some $B\left(u_{\varphi}\right)$. As before, u_{ρ} is equivalent to u_{φ} via a symmetry in B and it follows that

$$
\rho\left(T\left(f^{(3)}\right)\right)=\rho\left((T f)^{(3)}\right)
$$

As $\rho \in \partial W^{*}$ was arbitrary, we have

$$
T\left(f^{(3)}\right)=(T f)^{(3)}
$$

for all $f \in C_{0}(X)$, that is, T is a triple homomorphism. This completes the proof.
Remark 2. We note that the map $\{u, T(\cdot), u\}$ in Theorem 1 is complex conjugate linear and it is equivalent to state that the complex linear map $P_{2}(u) \circ T$ is an isometry.
Theorem 2. Let $T: Z \longrightarrow W$ be a linear isometry between JB*-triples Z and W. Then for any $z \in Z$, there is a tripotent $u_{z} \in W^{* *}$ such that

$$
\left\{u_{z}, T\left(a^{(3)}\right), u_{z}\right\}=\left\{u_{z},(T a)^{(3)}, u_{z}\right\}
$$

for all a in the subtriple Z_{z} generated by z, and that

$$
\left\{u_{z}, T(\cdot), u_{z}\right\}: Z_{z} \longrightarrow W^{* *}
$$

is an isometry.
Proof. Let $z \in Z$. If the restriction $T: Z_{z} \longrightarrow W$ is a triple homomorphism, one can take $u_{z} \in W^{* *}$ to be the support tripotent of $T(z)$; otherwise, Theorem 1 furnishes the required tripotent u_{z}.
Example 4. Let $T: \mathbb{C} \longrightarrow M_{2}$ be the isometry defined in Example 1:

$$
T(a)=\left(\begin{array}{cc}
0 & \frac{a}{2} \\
a & 0
\end{array}\right) .
$$

Then the tripotent

$$
u=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

satisfies the conditions in Theorem 1.

In Theorem 2, the tripotent u_{z} depends on the given element $z \in Z$. Extending the arguments in the proof of Theorem 1 , we show below that, if Z admits a character, then one can find a tripotent $v \in W^{* *}$ such that $\{v, T(\cdot), v\} \neq 0$ and

$$
\left\{v, T\left(a^{(3)}\right), v\right\}=\left\{v,(T a)^{(3)}, v\right\}
$$

for all $a \in Z$. Without any condition on Z, such a tripotent v may not exist.
A character φ of a JB^{*}-triple Z is a non-zero triple homomorphism φ : $Z \longrightarrow \mathbb{C}$.

Lemma 2. Let φ be a character of a JB*-triple Z. Then φ is an extreme point of the closed unit ball of Z^{*}.

Proof. Since $\varphi: Z \longrightarrow \mathbb{C}$ is a triple homomorphism, the induced quotient $\operatorname{map} \widetilde{\varphi}: Z / \operatorname{ker} \varphi \longrightarrow \mathbb{C}$ is a triple isomorphism and hence an isometry. In particular, $\|\varphi\|=1$. Let $e \in Z^{* *}$ be the support tripotent of φ. For $f \in Z^{*}$, we denote by $P_{2}(e) f$ the composite function $f \circ P_{2}(e) \in Z^{*}$ and $P_{2}(e) Z^{*}$ is defined accordingly.

If $\varphi=\frac{1}{2} f+\frac{1}{2} g$ with $\|f\|,\|g\| \leq 1$, then we have $\|f\|=\|g\|=1$ and

$$
\begin{aligned}
1=\|\varphi\| & =\left\|P_{2}(e) \varphi\right\| \\
& \leq \frac{1}{2}\left\|P_{2}(e) f\right\|+\frac{1}{2}\left\|P_{2}(e) g\right\| \leq 1
\end{aligned}
$$

which yields $\left\|P_{2}(e) f\right\|=1=\left\|P_{2}(e) g\right\|$ and so $P_{2}(e) f=f$ and $P_{2}(e) g=g$ by [9, Proposition 1]. It follows that φ is an extreme point of the unit ball of Z^{*} if, and only if, it is an extreme point of the unit ball of of $P_{2}(e) Z^{*}$.

Now consider the character $\varphi: P_{2}(e) Z^{* *} \longrightarrow \mathbb{C}$ as a weak* continuous functional. The kernel $\operatorname{ker} \varphi$ is a weak*-closed Jordan ideal in the JBW*algebra $\left(P_{2}(e) Z^{* *}, \circ\right)$. Hence there is a central projection q in $P_{2}(e) Z^{* *}$ such that $\operatorname{ker} \varphi=P_{2}(e) Z^{* *} \circ q[10,4.3 .6]$. The projection $e-q$ has a weak*-closed support face in $P_{2}(e) Z^{*}$, namely,

$$
F_{e-q}=\left\{\psi \in P_{2}(e) Z^{*}:\|\psi\|=\psi(e)=1=\psi(e-q)\right\} .
$$

Pick an extreme point ρ from F_{e-q}. Then $\rho(\operatorname{ker} \varphi)=\{0\}$ implies that $\varphi=\rho$ which is an extreme point of the unit ball of $P_{2}(e) Z^{*}$.

Proposition 2. Let $T: Z \rightarrow W$ be a linear isometry between JB*-triples. If Z admits a character, then there is a tripotent u in $W^{* *}$ such that $\{u, T(\cdot), u\}$: $Z \longrightarrow W^{* *}$ is a nonzero triple homomorphism and

$$
\left\{u, T\left(a^{(3)}\right), u\right\}=\left\{u,(T a)^{(3)}, u\right\} \quad(a \in Z)
$$

Proof. Let η be a character of Z and consider the isometry $T^{*}: T(Z)^{*} \longrightarrow Z^{*}$. Since η is the pre-image of an extreme point of the unit ball of $T(Z)^{*}$, and since the extreme points in the unit ball of $T(Z)^{*}$ can be extended to the extreme points in the unit ball of W^{*}, we see that there is an extreme point φ of the unit ball of W^{*} such that $\varphi \circ T=\eta$. Let $u \in W^{* *}$ be the minimal tripotent supporting φ. Then

$$
\{u, T(\cdot), u\}=\varphi \circ T(\cdot) u=\eta(\cdot) u
$$

implies that $\{u, T(\cdot), u\}$ is a nonzero triple homomorphism, and as in the proof of Theorem 1, we have

$$
\left\{u, T\left(a^{(3)}\right), u\right\}=\left\{u,(T a)^{(3)}, u\right\} \quad(a \in Z)
$$

The converse of Proposition 2 holds if W is abelian.
Proposition 3. Let $T: Z \longrightarrow W$ be a linear isometry between JB*-triples where W is an abelian C^{*}-algebra. The following conditions are equivalent:
(i) there is a tripotent $u \in W^{* *}$ such that $\{u, T(\cdot), u\} \neq 0$ and $\left\{u, T\left(a^{(3)}\right), u\right\}=$ $\left\{u,(T a)^{(3)}, u\right\}$ for $a \in Z$;
(ii) Z admits a character.

Proof. Let u be the tripotent in (i) such that $\{u, T(\cdot), u\} \neq 0$. Then there exists a character ρ of W which does not vanish on $\{u, T(Z), u\}$, and hence the composite $\rho \circ\{u, T(\cdot), u\}: Z \longrightarrow \mathbb{C}$ is a non-zero triple homomorphism.

Example 5. Let $T: M_{2} \longrightarrow C(Y)$ be the natural linear isometry into the continuous functions on the closed unit ball Y of M_{2}^{*}. Since M_{2} has no character, there is no tripotent in $C(Y)^{* *}$ satisfying Proposition 2.

5 Isometries in JB*-algebras

In this section, we consider a linear isometry from a JB*-triple into a JB*algebra. This is motivated by the fact that, given a linear isometry $T: Z \longrightarrow W$ between JB*-triples, by considering the second dual map, we may assume that W is a JBW*-triple which is, via an isometric embedding [5], a subtriple of a JBW*-algebra. This leads to the case in which the range W can be taken as a JB*-algebra. We will prove a more general result for linear contractions from JB^{*}-triples into JB^{*}-algebras. In this case, they may still preserve a fair amount of Jordan structure, after scaling down by a projection.

We first need to develop some basic results for JB*-algebras in which one can make good use of projections apart from tripotents. The Jordan product in a JB*-algebra will be denoted by o. We note that every JBW*-algebra A has
an identity $\mathbf{1}$ [10, 4.1.7] and a continuous linear functional φ on A is positive if, and only if, $\|\varphi\|=\varphi(\mathbf{1})$. If φ is a positive functional and if $\varphi(p)=\varphi(\mathbf{1})$ for some projection p in A, then we have

$$
\varphi(a \circ p)=\varphi(a) \quad(a \in A) .
$$

Indeed, if $a=a^{*}$, then the Schwarz inequality [10, 3.6.2] gives

$$
0 \leq \varphi(a \circ(\mathbf{1}-p))^{2} \leq \varphi\left(a^{2}\right) \varphi\left((\mathbf{1}-p)^{2}\right)=0
$$

and therefore $\varphi(a \circ(\mathbf{1}-p))=0$. We also have

$$
\varphi\{p, a, p\}=\varphi(2 p \circ(p \circ a)-p \circ a)=\varphi(a) .
$$

Let φ be a normal state of A. Since the projections in A form a complete lattice $[10,4.2 .8]$, there is a smallest projection $p_{\varphi} \in A$ such that $\varphi\left(p_{\varphi}\right)=1$. We call p_{φ} the support projection of φ. For any positive normal functional φ, its support projection is the smallest projection p_{φ} in A satisfying $\varphi\left(p_{\varphi}\right)=\varphi(\mathbf{1})$. More generally, a norm-closed face of the normal state space of A also admits a support projection shown in the following lemma.

Lemma 3. Let F be a norm-closed face of the normal state space S of a JBW*algebra A. Then there is a projection $p \in A$ such that

$$
F=\{\varphi \in S: \varphi(p)=1\} .
$$

Proof. Since F is a norm-closed face of the closed unit ball of the predual A_{*} of A, it follows from [8, Corollary 4.5] that F is a norm-exposed face of S. By [1], every norm-exposed face of S is of the above form.

Given a JB*-algebra A, we let

$$
Q(A)=\left\{\varphi \in A^{*}: \varphi \geq 0 \text { and }\|\varphi\| \leq 1\right\}
$$

be the quasi-state space of A. Given a projection p in $A^{* *}$, the set

$$
F^{+}(p)=\{\varphi \in Q(A): \varphi(\mathbf{1}-p)=0\}
$$

is a face of $Q(A)$ containing 0 . We show below that all weak* closed faces of $Q(A)$ containing 0 are of this form.

Lemma 4. Let A be a JB*-algebra and let $F \subset Q(A)$ be a weak* closed face of $Q(A)$ containing 0 . Then there is a projection p in $A^{* *}$ such that

$$
F=F^{+}(p)=\{\varphi \in Q(A): \varphi(\mathbf{1}-p)=0\}
$$

Proof. Let $S=\left\{\varphi \in A^{*}: \varphi(\mathbf{1})=1=\|\varphi\|\right\}$ be the normal state space of $A^{* *}$. We have $F=\operatorname{co}\left(F^{\prime} \cup\{0\}\right)$ where $F^{\prime}=F \cap S$ is a weak* closed face of S and by Lemma 3 , there is a projection $p \in A^{* *}$ such that

$$
F^{\prime}=\{\varphi \in S: \varphi(p)=1\}
$$

and it follows that $F=F^{+}(p)$.
Lemma 5. Let A be a $J C^{*}$-algebra and let $p \in A^{* *}$ be a projection. Then for all $x \in A$, we have $x \circ p=0$ if, and only if, $\varphi\left(x^{*} \circ x\right)=0$ for all $\varphi \in F^{+}(p)$.

Proof. The second dual $A^{* *}$ is a JW*-algebra and we may assume that it is a unital Jordan subalgebra of a von Neumann algebra \mathcal{A}, with the same identity. Let $\varphi \in F^{+}(p)$. Then $\varphi(p)=\varphi(\mathbf{1})$ and by previous remarks, we have $\varphi(x)=\varphi(p \circ x)=\varphi(\{p, x, p\})$ for all $x \in A$. The condition $0=x \circ p=x p+p x$ implies that $p x p=-p x=-x p$ and so $p x=x p=0$. Hence $\varphi\left(x^{*} \circ x\right)=$ $\varphi\left(\left\{p, x^{*} \circ x, p\right\}\right)=\frac{1}{2} \varphi\left(p\left(x^{*} x+x x^{*}\right) p\right)=\frac{1}{2} \varphi(0)=0$.

For the converse, choose $\psi \in Q(A)$ and let $\widetilde{\psi}$ be a norm-preserving extension of ψ to \mathcal{A}. Then $\widetilde{\psi}$ is positive on \mathcal{A}. Define $\varphi(\cdot)=\psi\left\{p,(\cdot)^{*}, p\right\}$. Then $\varphi \in F^{+}(p)$ and so $\varphi\left(x^{*} \circ x\right)=0$. The Schwarz inequality gives

$$
\begin{aligned}
|\widetilde{\psi}(p x)|^{2}+|\widetilde{\psi}(x p)|^{2} & \leq \widetilde{\psi}\left(p x x^{*} p\right)+\widetilde{\psi}\left(p x^{*} x p\right)=2 \widetilde{\psi}\left(p\left(x^{*} \circ x\right) p\right) \\
& =2 \psi\left\{p,\left(x^{*} \circ x\right), p\right\}=2 \varphi\left(x^{*} \circ x\right)=0 .
\end{aligned}
$$

Hence $\widetilde{\psi}(p x)=\widetilde{\psi}(x p)=0$ and $\psi(x \circ p)=\widetilde{\psi}(x \circ p)=0$. As ψ was arbitrary in $Q(A)$, it follows that $x \circ p=0$.

Proposition 4. Let B be a $J B^{*}$-algebra and let $p \in B^{* *}$ be a projection. Then for $x \in B$, the following conditions are equivalent:
(i) $x \circ p=0$;
(ii) $\varphi\left(x^{*} \circ x\right)=0 \quad$ for all $\varphi \in F^{+}(p)$.

Proof. Let $B_{s a}$ be the self-adjoint part of B. First, let $x \in B_{s a}$ and let A be the JBW^{*}-subalgebra of $B^{* *}$ generated by x, p and $\mathbf{1}$. Then A is a JW^{*}-algebra and by Lemma 5 , we have $x \circ p=0$ if, and only if, $\psi\left(x^{2}\right)=0$ for all $\psi \in F_{A}^{+}(p)$, where

$$
F_{A}^{+}(p)=\left\{\psi \in A_{*}: \psi(\mathbf{1})=\|\psi\| \text { and } \psi(\mathbf{1}-\mathrm{p})=0\right\} .
$$

Since every $\varphi \in F^{+}(p)$ restricts to a quasi-state $\left.\varphi\right|_{A} \in F_{A}^{+}(p)$ and since every $\psi \in F_{A}^{+}(p)$ extends to a quasi-state $\widetilde{\psi} \in F^{+}(p)$, we have $x \circ p=0$ if, and only if, $\varphi\left(x^{2}\right)=0$ for all $\varphi \in F^{+}(p)$.

Now for any $x \in B$, write $x=x_{1}+i x_{2}$ with $x_{1}, x_{2} \in B_{s a}$. Then $x \circ p=0$ if, and only if, $x_{1} \circ p=0$ and $x_{2} \circ p=0$. This is equivalent to $\varphi\left(x_{1}^{2}\right)=0=\varphi\left(x_{2}^{2}\right)$ for all $\varphi \in F^{+}(p)$ which is the same as $\varphi\left(x_{1}^{2}+x_{2}^{2}\right)=0=\varphi\left(x^{*} \circ x\right)$ for every $\varphi \in F^{+}(p)$.

Two self-adjoint elements a and p in a JB*-algebra B are said to operator commute if they generate an associative subalgebra of B. If p is a projection, this is equivalent to $\{p, a, p\}=a \circ p$, and to $\{a, p, a\}=a^{2} \circ p$ (cf. [10, Lemma 2.5.5]). Condition (ii) below is an operator commuting condition.

Theorem 3. Let Z be a $J B^{*}$-triple, B be a JB*-algebra and let $T: Z \longrightarrow B$ be a linear contraction. Then there is a largest projection p in $B^{* *}$ such that for all $a, b, c \in Z$, we have
(i) $T\{a, b, c\} \circ p=\{T a, T b, T c\} \circ p$;
(ii) $\left\{p, T(a)^{*} \circ T(b), p\right\}=\left(T(a) \circ T(b)^{*}\right) \circ p$.

Proof. Let

$$
F_{1}=\bigcap_{a \in Z_{1}}\left\{\varphi \in Q(B): \varphi\left(\left(T a^{(3)}-(T a)^{(3)}\right)^{*} \circ\left(T a^{(3)}-(T a)^{(3)}\right)\right)=0\right\}
$$

Then F_{1} is a weak* closed face of $Q(B)$ containing zero. For a in Z_{1}, we define a weak* continuous affine map $\Phi_{a}: Q(B) \longrightarrow Q(B)$ by

$$
\Phi_{a}(\varphi)(\cdot)=\bar{\varphi}\left(\left\{(T a)^{*} \circ T a, \cdot,(T a)^{*} \circ T a\right\}\right)
$$

where the bar '-' denotes complex conjugation. For $n=1,2, \ldots$, the sets

$$
F_{n+1}=\left\{\varphi \in F_{n}: \Phi_{a}(\varphi) \in F_{n} \text { for all } a \in Z_{1}\right\}=\bigcap_{a \in Z_{1}} F_{n} \cap \Phi_{a}^{-1}\left(F_{n}\right)
$$

form a decreasing sequence of weak* closed faces of $Q(B)$. The intersection $F=\bigcap_{n=1}^{\infty} F_{n}$ is a weak* closed face of $Q(B)$ containing zero. By Lemma 4 , there is a projection in $p \in B^{* *}$ supporting F :

$$
F=F^{+}(p)=\{\varphi \in Q(B): \varphi(\mathbf{1}-p)=0\}
$$

For each a in A_{1} and φ in F, we have

$$
\Phi_{a}(\varphi)(\cdot)=\bar{\varphi}\left(\left\{(T a)^{*} \circ(T a), \cdot,(T a)^{*} \circ(T a)\right\}\right) \in F,
$$

and consequently,

$$
\varphi\left\{(T a)^{*} \circ T a, p,(T a)^{*} \circ T a\right\}=\overline{\Phi_{a}(\varphi)(p)}=\overline{\Phi_{a}(\varphi)(1)}=\varphi\left(\left((T a)^{*} \circ T a\right)^{2}\right)
$$

Let $z=(T a)^{*} \circ T a$. Then z is self-adjoint, as is $x=p \circ z-z$. For all $\varphi \in F^{+}(p)$,

$$
\begin{aligned}
\varphi\left(x^{*} \circ x\right) & =\varphi\left((p \circ z-z)^{2}\right) \\
& =\varphi\left((p \circ z)^{2}-2 z \circ(p \circ z)+z^{2}\right) \\
& =\varphi\left((p \circ z)^{2}-\{z, p, z\}-z^{2} \circ p+z^{2}\right) \\
& =\varphi\left((p \circ z)^{2}-\{z, p, z\}\right)
\end{aligned}
$$

using the fact that $\varphi\left(z^{2}\right)=\varphi\left(z^{2} \circ p\right)$. By calculating in the special subalgebra generated by p and z, one obtains

$$
(p \circ z)^{2}=\frac{1}{2} p \circ\{z, p, z\}+\frac{1}{4}\left\{p, z^{2}, p\right\}+\frac{1}{4}\{z, p, z\} .
$$

Hence we have

$$
\begin{aligned}
4 \varphi\left(x^{*} \circ x\right) & =\varphi\left(2 p \circ\{z, p, z\}+\left\{p, z^{2}, p\right\}+\{z, p, z\}-4\{z, p, z\}\right) \\
& =\varphi\left(2\{z, p, z\}+z^{2}-3\{z, p, z\}\right) \\
& =\varphi\left(z^{2}\right)-\varphi(\{z, p, z\}) \\
& =\Phi_{a}(1)-\Phi_{a}(p)=0 .
\end{aligned}
$$

By Proposition 4, we have $p \circ x=0$. As p is a projection, it follows that $\{p, z, p\}-p \circ z=2(p \circ z) \circ p-2 p \circ z=2 p \circ x=0$, that is,

$$
\left\{p,(T a)^{*} \circ(T a), p\right\}=\left((T a)^{*} \circ(T a)\right) \circ p
$$

for all $a \in Z_{1}$. By polarization, we have

$$
\left\{p,(T a)^{*} \circ(T b), p\right\}=\left((T a) \circ(T b)^{*}\right) \circ p
$$

for all $a, b \in Z$. For $a \in Z_{1}$, we have

$$
\varphi\left(\left(T a^{(3)}-(T a)^{(3)}\right)^{*} \circ\left(T a^{(3)}-(T a)^{(3)}\right)\right)=0
$$

for all $\varphi \in F$, hence Proposition 4 yields

$$
\left(T a^{(3)}\right) \circ p=(T a)^{(3)} \circ p .
$$

Polarization then gives

$$
T\{a, b, c\} \circ p=\{T a, T b, T c\} \circ p \quad(a, b, c \in Z) .
$$

Finally, if q is a projection in $B^{* *}$ satisfying conditions (i) and (ii), then $F^{+}(q) \subset F_{1}$. Indeed, for $\varphi \in F^{+}(q)$, we have

$$
\varphi\left(\left(T a^{(3)}-(T a)^{(3)}\right)^{*} \circ\left(T a^{(3)}-(T a)^{(3)}\right)\right)=0
$$

since $\left(T a^{(3)}-(T a)^{(3)}\right) \circ q=0$ by (i) and Proposition 4 applies. Further, for all $a \in Z_{1}$, we have $\Phi_{a}\left(F^{+}(q)\right) \subset F^{+}(q)$ since

$$
\begin{aligned}
\Phi_{a}(\varphi)(q) & =\bar{\varphi}\left(\left\{(T a)^{*} \circ T a, q,(T a)^{*} \circ T a\right\}\right) \\
& =\Phi_{a}(\varphi)\left(\left((T a)^{*} \circ T a\right)^{2} \circ q\right) \\
& =\Phi_{a}(\varphi)\left(\left((T a)^{*} \circ T a\right)^{2}\right)=\Phi_{a}(\varphi)(1)
\end{aligned}
$$

where the second identity follows from (ii). Therefore $F^{+}(q) \subset \bigcap_{n=1}^{\infty} F_{n}=F^{+}(p)$ and $q \leq p$.

Remark 3.(1) We note that condition (i) in Theorem 3 also gives

$$
\begin{aligned}
\{p, T\{a, a, a\}, p\} & =2\left(p \circ T\{a, a, a\}^{*}\right) \circ p-p \circ T\{a, a, a\}^{*} \\
& =\{p,\{T a, T a, T a\}, p\} .
\end{aligned}
$$

(2) If B is a JC^{*}-algebra in Theorem 3, then condition (i) gives

$$
T\{a, a, a\} p+p T\{a, a, a\}=\{T a, T a, T a\} p+p\{T a, T a, T a\}
$$

and by (1) above, we have both $T\{a, a, a\} p=\{T a, T a, T a\} p$ and $p T\{a, a, a\}=p\{T a, T a, T a\}$.
(3) If B is a JBW*-algebra in Theorem 3, then p can be chosen in B itself. Indeed, we have $B=z \circ B^{* *}$ for some central projection $z \in B^{* *}$ and $z \circ p$ is the largest projection satisfying conditions (i) and (ii).

Example 6. The projection p in Theorem 3 could be zero, even if T is an isometry. Indeed, for the isometry $T: \mathbb{C} \longrightarrow M_{2}$ in Example 1, we have $p=0$. On the other hand, for the isometry $S: \mathbb{C} \rightarrow M_{3}$ given by

$$
S(a)=\left(\begin{array}{ccc}
0 & 0 & \frac{a}{2} \\
0 & a & 0 \\
a & 0 & 0
\end{array}\right)
$$

we have

$$
p=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Moreover $S(\cdot) \circ p$ is an isometry.
Example 7. Let $T: C(\Omega) \longrightarrow C(\Omega \cup\{\beta\})$ be the non-surjective isometry given in Example 3. Then the characteristic function $p=\chi_{\Omega} \in C(\Omega \cup\{\beta\})$ is the largest projection satisfying the conclusion of Theorem 3.

References

1. Alfsen E. M., Shultz F.W.: State spaces of Jordan algebras, Acta Mathematica 140 (1978), 155-190.
2. Barton T., Friedman Y.: Grothendieck's inequality for $J B^{*}$-triples and applications, J. London Math. Soc. 36 (1987), 513-523.
3. Chu C-H.: Jordan structures in Banach manifolds, Studies in Adv. Math. 20, Amer. Math. Soc. (2001), 201 -210.
4. Chu C-H.: Jordan Banach algebras in harmonic analysis, Contemp. Math. 363 (2004) 59-68.
5. Chu C-H., Iochum B.: Complementation of Jordan triples in von Neumann algebras, Proc. Amer. Math. Soc., 108 (1990), 19-24.
6. Chu C-H., Mellon P.: Jordan structures in Banach spaces and symmetric manifolds, Expo. Math. 16 (1998) 157-180.
7. Chu C-H., Wong N-C.: Isometries between C^{*}-algebras, Rev. Mat. Iberoamericana 20 (2004) 87-105.
8. Edwards C.M., Rüttimann G.: On the facial structure of the unit balls in a JBW*-triple and its predual, J. London Math. Soc. 38 (1988), 317-332.
9. Friedman Y., Russo B.: Structure of the predual of a $J B W^{*}$-triple, J. Reine Angew. Math., 356, (1985), 67-89.
10. Hanche-Olsen H., Størmer E.: Jordan operator algebras, Pitman (1984).
11. Harris L.A.: Bounded symmetric homogeneous domains in infinite dimensional spaces, in Proceedings on infinite holomorphy, (Lecture Notes in Math. $\mathbf{3 6 4}$ Springer-Verlag, Berlin 1974) 13-40.
12. Holsztynski W.: Continuous mappings induced by isometries of spaces of continuous functions, Studia Math. 26 (1966), 133-136.
13. Kadison R. V.: Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338.
14. Kaup W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 138 (1983), 503-529.
15. Koecher M.: An elementary approach to bounded symmetric domains, in Proceedings of Complex Analysis Conference (Houston 1969), Rice University, 1969.
16. Loos O.: Bounded symmetric domains and Jordan pairs, Mathematical Lectures, University of California, Irvine, 1977.
17. Potapov V.P.: The multiplicative structure of J-contractive matrix functions, Amer. Math. Soc. Transl. 15 (1960) 131-243.
18. Rodriguez Palacios A.: Jordan structures in analysis, Proceedings of Oberwolfach conference (1992) on Jordan algebras, Walter de Gruyter, Berlin (1994) 97-186.
19. Russo B.: Structures of JB*-triples, Proceedings of Oberwolfach conference (1992) on Jordan algebras, Walter de Gruyter, Berlin (1994) 208-280.
20. Upmeier H.: Symmetric Banach manifolds and Jordan C*-algebras, North-Holland, Amsterdam, 1985.

[^0]: Supported by London Mathematical Society Scheme 4 grant 4904.
 Mathematics Subject Classification 2000. 46L70, 32M15, 46G20, 17C65, 46L05.
 Keywords and phrases: Isometry, Möbius transformation, symmetric domain, JB*-triple, JB*-algebra, C*-algebra.

