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Abstract. We present an elementary way to obtain new families of division algebras

of degree n out of division algebras with a multiplicative norm. Families of four- and

eight-dimensional non-flexible quadratic division algebras over a field F of characteristic

not 2 are constructed elementary as a-mutation algebras of Hurwitz division algebras

A over F , choosing a ∈ A \ F . In particular, we obtain real eight-dimensional division

algebras with derivation algebra su(3) or G2.

Introduction

Since there does not exist any general theory of nonassociative algebras, it is desirable to
get a more unified point of view at least on certain types. Shavarevich [Sh, p. 201] suggested
the structure of a real division algebra as a test problem for a possible future understanding
of various types of algebras from a unified point of view. It thus seems only natural to try
to find division algebra constructions which work over any base field and not just over the
reals. It is usually beneficial to formulate such constructions in a base-free way, since this
makes the structure of the algebras easier to understand.

For a unital algebra A over a field F and an element a ∈ A in the center of A, the
a-mutation algebra A(a) is obtained by assigning the underlying vector space of A the new
multiplication u ◦ v = auv + (1− a)vu.

For an associative algebra A, the mutation algebras A(a), also called quasi-associative
algebras, appear in the structure theory of noncommutative simple Jordan algebras [M2].

There is no doubt that a-mutation algebras of alternative algebras play a prominent
role in the classification of real division algebras: If, in a non-commutative four- or eight-
dimensional real Jordan division algebra, any two elements not in the same two-dimensional
subalgebra generate a four-dimensional subalgebra, then that algebra is either an a-mutation
algebra of Hamilton’s quaternion algebra or of Cayley’s octonion algebra, with a ∈ R,
a 6= 1

2 . Furthermore, it is well-known that all four-dimensional real flexible quadratic division
algebras are a-mutations H(a) of Hamilton’s quaternion algebra, where a ∈ R, a 6= 1

2 .
The situation becomes more complex in dimension eight: eight-dimensional real flexible

quadratic division algebras do not all arise from a-mutations with a ∈ R or even from a
combination of such mutations and generalized Cayley-Dickson doublings. They can be
obtained out of Cayley’s octonion algebra O by vectorial isotopy, however, cf. [C-V-K-R].
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In [L], those eight-dimensional real quadratic division algebras which arise as the Cayely-
Dickson doubling of a quadratic division algebra are listed. The classification is broken
down into classifying the subcategories of eight-dimensional real quadratic division algebras
of degree 1, 3 or 5 in [D3]. The major tools in this classification are dissident maps [Da, D1,
2, 3].

In this paper, we construct families of non-flexible quadratic division algebras over an
arbitrary field of characteristic not 2 out of Hurwitz division algebras of dimension 4 or
8. The advantage of our construction is that it is straightforward and base free. The
algebras are constructed as a-mutations A(a) of Hurwitz division algebras. More precisely,
we generalize the concept of an a-mutation and allow a ∈ A (and not just in the center of
A) when defining the multiplication

u ◦ v = a(uv) + (1− a)(vu)

of the a-mutation algebra A(a) of a unital algebra A.
How to obtain new division algebras via general mutations out of non-commutative divi-

sion algebras with a multiplicative norm form is described in Section 2.1. We then focus on
some special cases, among them the a-mutation algebras A(a). Our main result is contained
in Theorem 10: For a Hurwitz division algebra C of dimension 4 or 8 and all a ∈ C, a 6= 1

2 ,
C(a) is a quadratic division algebra which is flexible if and only if a ∈ F . If C is a quaternion
division algebra and a ∈ C, a 6= 1

2 , these four-dimensional unital division algebras C(a) are
not isotopic to associative or nonassociative quaternion algebras. Cayley-Dickson doublings
of four-dimensional mutation algebras are briefly considered in Section 2.2. In Section 3,
mutation algebras of associative algebras with higher degree multiplicative norm forms are
considered. Section 4 deals with the automorphisms and derivations of mutation algebras.

1. Preliminaries

Let F be a field.

1.1. Nonassociative algebras. By “F -algebra” we mean a finite dimensional nonassocia-
tive algebra over F . A nonassociative algebra A 6= 0 is called a division algebra if for any
a ∈ A, a 6= 0, the left multiplication with a, La(x) = ax, and the right multiplication with
a, Ra(x) = xa, are bijective. A is a division algebra if and only if A has no zero divisors
[Sch, pp. 15, 16].

For an F -algebra A, commutativity is measured by the commutator [x, y] = xy − yx

and associativity is measured by the associator [x, y, z] = (xy)z − x(yz). The nucleus of
A is given by Nuc(A) = {x ∈ A | [x,A,A] = [A, x,A] = [A,A, x] = 0}. The nucleus is an
associative subalgebra of A containing F1 and x(yz) = (xy)z whenever one of the elements
x, y, z is in Nuc(A). The center of A is defined as C(A) = {x ∈ A |x ∈ Nuc(A) and xy =
yx for all y ∈ A}.

Let A be an F -algebra is which is unital and strictly power-associative. Fixing a basis
(ui)1≤i≤r of A and taking indeterminates x1, . . . , xr, there is a generic element

x =
∑

xiui ∈ A⊗F F (x1, . . . , xr)
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and a unique monic polynomial

PA,x(X) = Xm − S1(X) + · · ·+ (−1)mSm(X)1A

of least degree which has x as a root. The coefficients Si are homogeneous polynomials in
the xi’s, S1 = TA is the (generic) trace, Sm = NA the (generic) norm and m is called the
degree of A [KMRT, p. 451 ff.].
A is called alternative if its associator [x, y, z] is alternating. An anti-automorphism

σ : A→ A of period 2 is called an involution on A. An involution on a unital algebra is called
scalar if all norms σ(x)x are elements of F1. For every scalar involution σ, NA(x) = σ(x)x
(resp. the trace TA(x) = σ(x) + x) is a quadratic (resp. a linear) form on A. An algebra
A together with a nondegenerate quadratic form N : A → F is called a mono-composition
algebra, if N(x2) = N(x)2 for all x ∈ A.

1.2. Quadratic algebras. A unital algebra A is called quadratic, if there exists a quadratic
form N : A→ F such that x2−N(1A, x)x+N(x)1A = 0 for all x ∈ A, where N(x, y) = N(x+
y) − N(x) − N(y) denotes the symmetric bilinear form induced by N . This automatically
implies that N(1A) = 1. The form N is uniquely determined and called the norm N = NA

of the quadratic algebra A. The existence of a scalar involution on a unital algebra A implies
that A is quadratic [M1, Theorem 1.1]. Moreover, the unital algebras with scalar involution
are precisely those quadratic algebras with normal trace [M1, Theorem 1.1].

Every quadratic algebra is a unital mono-composition algebra [M1, p. 86].
It is well-known that if charF 6= 2, every quadratic algebra over F can be obtained out

of an anti-commutative algebra (V,∧) and an F -bilinear form (, ) : V × V → V by defining
a multiplication on the F -vector space A = F ⊕ V via

(a, u)(b, v) = (ab+ (u, v), av + bu+ u ∧ v)

for all a, b ∈ F and u, v ∈ V . The resulting algebra A is denoted by (V, (, ),∧) = F ⊕ V .

1.3. Composition algebras. A quadratic formN : A→ F on an algebra A is multiplicative
if N(uv) = N(u)N(v) for all u, v ∈ A. An algebra A is called a composition algebra over
F if it admits a nondegenerate multiplicative quadratic form N : A → F ; i.e., its induced
symmetric bilinear form N(u, v) = N(u+v)−N(u)−N(v) determines a module isomorphism
C
∼−→ A∨ = HomF (A,F ). The form N is unique [KMRT, p. 454 ff.]. It is called the norm

of A and we also write N = NA. A unital composition algebra is called a Hurwitz algebra.
Hurwitz algebras are quadratic alternative and N(1A) = 1; the norm of a Hurwitz algebra
C is the unique nondegenerate quadratic form on A that is multiplicative. A quadratic
alternative algebra is a Hurwitz algebra if and only if its norm is nondegenerate [M1, 4.6].
Hurwitz algebras exist only in dimensions 1, 2, 4 or 8. Those of dimension 2 are exactly the
quadratic étale F -algebras, those of dimension 4 exactly the well-known quaternion algebras.
The ones of dimension 8 are called octonion algebras. The conjugation x = TC/F (x)1A − x
of a Hurwitz algebra C is a scalar involution, called the canonical involution of C, where
TA : A→ F , TA/F (x) = NA/F (1A, x), is the trace of A.

Let D be a Hurwitz algebra over F with canonical involution : D → D. Let c ∈ F×.
Then the F -vector space A = D ⊕ D can be made into a unital algebra over F via the
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multiplications

(u, v)(u′, v′) = (uu′ + cv̄′v, v′u+ vū′)

for u, u′, v, v′ ∈ D. The unit element of A is given by 1 = (1, 0). A is called the Cayley-
Dickson doubling of D.

Every composition algebra A is a principal Albert isotope of a Hurwitz algebra: There
are isometries ϕ1, ϕ2 of the norm NC for a suitable Hurwitz algebra C over F such that the
multiplication ? of A can be written as

x ? y = ϕ1(x)ϕ2(y).

Given a Hurwitz algebra C over F of dimension ≥ 2 with canonical involution , the mul-
tiplications

x ? y = x̄ȳ, x ? y = x̄y, x ? y = xȳ

for all x, y ∈ C define the para-Hurwitz algebra, resp. the left- and right composition algebra
associated to C. Together with C these are called the standard composition algebras.

Standard composition algebras of dimension eight have a derivation algebra isomorphic
to G2.

2. General mutation algebras

2.1. Let F be a field and A an algebra over F with underlying vector space V and let
f, g, fi ∈ Gl(V ) for i = 1, . . . , 6.

Define the algebra (A, ◦(f1,...,f6)) over F as the algebra with underlying vector space V
and multiplication given by

u ◦(f1,...,f6) v = f3(f1(u)f2(v)) + f6(f4(v)f5(u)).

Theorem 1. Let A be an algebra over F with an anisotropic multiplicative norm N : A→ F

of degree n and fi a similarity of N with similarity factor αi, i = 1, . . . , 6. If

α1α2α3 6= α4α5α6

then (A, ◦(f1,...,f6)) is a division algebra.

Proof. Since A has an anisotropic multiplicative norm, it must itself be a division algebra:
uv = 0 implies N(u)N(v) = 0, thus N(u) = 0 or N(v) = 0, yielding u = 0 or v = 0. Let
u, v ∈ A be non-zero. Suppose that u◦(f1,...,f6)v = 0, then f3(f1(u)f2(v)) = −f6(f4(v)f5(u)).
Applying the norm on both sides yields α1α2α3N(u)N(v) = α4α5α6N(v)N(u), thus α1α2α3 =
α4α5α6, a contradiction. �

Remark 2. Let A be a principal Albert isotope A(f,g)
0 of an algebra A0 over F with mul-

tiplicative norm NA0 and f, g isometries of the norm. Then A has the multiplicative norm
NA = NA0 and (A, ◦(f1,...,f6)) = (C, ◦(f◦f1,g◦f2,f3,f◦f4,g◦f5,f6)).
If A is a division algebra over F with multiplicative norm N : A → F of degree n and
fi ∈ Gl(V ) similarities of N with similarity factors αi, i = 1, . . . , 6, then we can also define
a new multiplication on V via

u �(f1,...,f6) v = f3(f1(u)f2(v)) + f6(f5(u)f4(v)).
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If

α1α2α3 6= α4α5α6

then (A, �(f1,...,f6)) is a division algebra by an analogous argument as in the proof of Theorem
1. We will not pursue this idea here. There is some overlap with this type of multiplication
and a possible way to generalize the construction of twisted fields by Albert (cf. [Pu]).

We will focus on the special case

u ◦(f,g) v = f(uv) + g(vu),

in particular on

u ◦f v = f(uv) + (id− f)(vu),

assuming here that f ∈ Gl(V ) is chosen such that id− f ∈ Gl(V ) as well. Moreover, define
A(a,b) to be the algebra with V as underlying vector space and new multiplication given by

u ◦ v = a(uv) + b(vu),

A
(a,b)
r be the algebra with V as underlying vector space and new multiplication given by

u ◦ v = (uv)a+ (vu)b

A
(a,b)
l,r be the algebra with V as underlying vector space and new multiplication given by

u ◦ v = a(uv) + (vu)b,

A
(a,b)
r,l be the algebra with V as underlying vector space and new multiplication given by

u ◦ v = (uv)a+ b(vu)

and A
(a,b)
m be the algebra with V as underlying vector space and new multiplication given

by

u ◦ v = (ua)v + (vb)u.

Note that (Aopp)(b,a)
m has the multiplication

u ◦ v = u(av) + v(bu),

so that we do not need to study this multiplication separately. Obviously, also

(A(a,b)
l,r )op = A

(b,a)
r,l .

For a unital algebra A, we define A(a) = A(a,1A−a), A(a)
r = A

(a,1A−a)
r , A(a)

m = A
(a,1A−a)
m and

A
(a)
l,r = A

(a,1A−a)
l,r . Obviously,

(Aop)(f,g) = A(g,f) (Aop)(a,b) = A(b,a)
r , (Aop)(a,b)

r = A(b,a),

so that in the following it suffices to consider A(a), A(a)
m and A

(a)
l,r , for instance.

We will mostly focus on unital algebras A.
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Remark 3. (i) A(a,b)
m generalizes a quantum mechanical version of a generalized Hamilton

mechanics algebra and has been extensively studied for alternative algebras A by Elduque,
Montaner and Myung [E-M], [E-My1, 2].
(ii) For a, b ∈ F , obviously A(a,b) = A

(a,b)
r = A

(a,b)
l,r = A

(a,b)
m and if A is unital, Der(A) ⊂

Der(A(a,b)).
(iii) If G : A→ B is an algebra isomorphism then

G(u ◦ v) = G(a(uv)) +G(b(vu)) = G(a)(G(u)G(v)) +G(b)(G(v)G(u)) = G(u) ◦G(v),

therefore G is an isomorphism between A(a,b) and B(G(a),G(b)). An analogous argument im-
plies that G is an isomorphism between A(a,b)

r and B(G(a),G(b))
r , A(G(a),G(b))

m and B(G(a),G(b))
m

and also between A(a,b)
l,r and B(G(a),G(b))

l,r . Similarly, an anti-isomorphism G : A→ B induces

isomorphisms between A(a,b) and B(G(b),G(a))
r , A(a,b)

r and B(G(b),G(a)), A(a,b)
m and B(G(b),G(a))

m ,
and A

(a,b)
l,r and B

(G(b),G(a))
l,r .

The following observations are obvious:

(1) u◦f u = u2. If A carries a multiplicative norm N of degree n then N(u◦f u) = N(u)2.
If n = 2 then (A, ◦f ) is a mono-composition algebra.

(2) For all a, b ∈ A, u ◦ u = (a + b)u2 in A(a,b).If A carries a multiplicative norm N of
degree n then

N(u ◦ u) = N(a+ b)N(u)2

and so

N(u ◦ u) = N(u)2 iff N(a+ b) = 1.

Thus if n = 2 and N(a+ b) = 1 then A(a,b) is a mono-composition algebras.
(3) If A carries a multiplicative norm N of degree 2 then A = C(h1,h2) for a suitable Hur-

witz algebra C over F , with h1, h2 isometries of the norm NC = N , and (A, ◦(f,g))
with f(x) = ax, g(x) = (1C − a)x, is a mono-composition algebra.

(4) (A, ◦(f,f)) is isotopic to A+ with multiplication u · v = 1
2 (uv + vu).

Corollary 4. Let A be an algebra over F together with an anisotropic multiplicative form
N of degree n.
(i) If f , g are similarities of N with similarity factors α 6= β then (A, ◦(f,g)) is a division
algebra.
(ii) If a, b ∈ A such that N(a) 6= N(−b), then A(a,b), A(a,b)

l,r and A(a,b)
m are division algebras.

If additionally N(a+ b) = 1 then N(u ◦ u) = N(u)2 in A(a,b).

This follows from Theorem 1 (the proof of A(a,b)
m being a division algebra was already

given in [E-My1, 2]).
From now on, let

F be a field of characteristic not 2.

For a unital algebra A and a, b ∈ A,

(4) (A, ◦f ) has unit element 1A.
(5) A(a,b) is a unital algebra with unit element 1A iff b = 1A − a.
(6) A( 1

2 ) = A+ with u ◦ v = 1
2 (uv + vu).
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(7) In A(a), u ◦ v = vu+ a[u, v].
(8) In A(a) and A

(a)
m , u ◦ u = u2. If A carries a multiplicative norm N of degree n then

N(u ◦ u) = N(u)2 in A(a) and A
(a)
m . In particular, for n = 2, A(a) and A

(a)
m are

mono-composition algebras.
(9) If A is power-associative (resp., strictly power-associative), then so is A(a) and u◦k =

uk in A(a) for all k ≥ 2. If A also carries a multiplicative norm, then N(u◦k) = N(u)k

in A(a) for all k ≥ 2.
(10) For all a ∈ A×, a 6= 1

2 , if A is not commutative then A(a) is not commutative.
(11) If A has a scalar involution , i.e. 1̄A = 1A and uū ∈ F1A then in A(a), ū ◦ u =

u ◦ ū = N(u)1A.

(12) For all a ∈ F , a 6= 1
2 , we have Der(A(a)) = Der(A).

Corollary 5. (i) Let A be a Hurwitz division algebra. For all a ∈ A, a 6= 1
2 , A(a) is a unital

mono-composition division algebra over F .
(ii) Let A be a composition division algebra, i.e. A = C(h1,h2) for a suitable Hurwitz algebra
C over F and isometries h1, h2 of its norm NC . Define f(x) = ax, g(x) = (1C − a)x with
a ∈ A, a 6= 1C . Then for all a ∈ A, a 6= 1

2 , (A, ◦(f,g)) is a mono-composition division algebra
over F .

Proof. (i) Suppose A is Hurwitz. Let u, v ∈ A such that u 6= 0, v 6= 0 and u ◦f v = f(uv) +
(id−f)(vu) = a(uv)+(1A−a)(vu). Then NA(a)NA(u)NA(v) = NA(1−a)NA(v)NA(u) and
thus NA(a) = NA(a− 1). Suppose A is a quaternion algebra. Then for a = x1 +x2i+x3j+
x4k, N(a) = x2

1− cx2
2− dx2

3 + cdx2
4 for suitable c, d ∈ F× and NA(a− 1) = (x1− 1)2− cx2

2−
dx2

3 + cdx2
4, so that NA(a) = NA(a− 1) implies a = 1

2 . An analogous calculation implies the
assertion if A is an octonion algebra. If A is a separable field extension, it is trivial.
(ii) Let A be a composition algebra. Then there exists a suitable Hurwitz algebra C over F
and isometries h1, h2 of its norm NC , such that A = C(h1,h2) [KMRT] and with respect to
the multiplication in C, we have

f(x) = h1(a)h2(x), g(x) = h1(1C − a)h2(x)

and
u ◦ v = f(h1(u)h2(v)) + g(h1(v)h2(u))

= h1(a)h2(h1(u)h2(v))) + h1(1C − a)h2(h1(v)h2(u))

Thus, if there are u, v ∈ (A, ◦f ) such that u 6= 0, v 6= 0 and u◦v = 0 then h1(a)h2(h1(u)h2(v)) =
−h1(1C − a)h2(h1(v)h2(u)) in C, therefore NC(a) = NC(a − 1C) and hence for all a ∈ A
with NC(a) 6= NC(a− 1C), (A, ◦f ) is a division algebra over F as in (i). �

Remark 6. If A is a quadratic algebra and a ∈ A we know that every proper ideal of A(a)

contains an idempotent. Moreover, every f ∈ Aut(A(a)) is an isometry of NA. So

Aut(A(a)) ⊂ O(NA)

(cf. Gainov’s results on mono-composition algebras [G1], [G2]).

If A is unital, we call A(a) an a-mutation of A, generalizing the common terminology used
in the literature.
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Proposition 7. (i) Let A be a quadratic algebra with norm N . Then (A, ◦f ) is a quadratic
algebra over F with norm N and unit element 1A.
(ii) Let A be a unital algebra of degree n with norm N . Then A(a) is an algebra of degree
n over F for all a ∈ A. If N is also multiplicative and A a division algebra then A(a) is a
division algebra for all a ∈ A with N(a) 6= N(a− 1).

Proof. (i) A is unital and therefore (A, ◦f ) is unital with unit element 1A. We have

u ◦f u−N(1A, u) ◦f u+N(u) ◦f 1A = u2 − uN(1A, u)u+N(u)1A = 0.

(ii) Since A is unital and strictly power-associative, so is A(a). A straightforward calculation
yields:

u◦n − S1(u) ◦ u◦n−1 + · · ·+ (−1)nN(u) ◦ 1A = un − S1(u)un−1 + · · ·+ (−1)nN(u)1A = 0.

�

Lemma 8. (i) If A is flexible and a, b both lie in the center of A then A(a,b) is flexible.
(ii) Let A = Cay(D, c) be a Hurwitz algebra of dimension 4 or 8 and a = (x, y), b = (x′, y′) ∈
D ⊕D. Then D(x,x′) is a subalgebra of A(a,b), D(x,x′)

m a subalgebra of A(a,b)
m and D

(x,x′)
l,r a

subalgebra of A(a,b)
l,r ).

(iii) Let A = (L/F, σ, c) be a cyclic algebra over F of degree n and a = (x, y, z), b =
(x′, y′, z′) ∈ L⊕L⊕L = (L/F, σ, c). Then L(x,x′), with multiplication u ◦ v = (x+ x′)uv, is
a subalgebra of A(a,b), A(a,b)

m and A(a,b)
l,r .

Proof. All three proofs are straightforward calculations. We demonstrate (ii) for the sake of
the reader and compute the multiplication in A(a) as example:

(u, v) ◦ (u′, v′) = (x, y)(uu′ + cv̄′v, v′u+ vū′) + (1− x,−y)(u′u+ cv̄v′, vu′ + v′ū)

= (xuu′ + xcv̄′v − cūv̄′y − cu′v̄y, v′ux+ vū′x− yū′ū− yv̄v′c)

+((1− x)u′u+ (1− x)cv̄v′ − cū′v̄y − cuv̄′y, vu′(1− x) + v′ū(1− x)− yūū′ − yv̄′vc)

= (u ◦x u′ + xcv̄′v − cūv̄′y − cu′v̄y + (1− x)cv̄v′ − cū′v̄y − cuv̄′y,

v′ux+ vū′x− yū′ū− yv̄v′c+ vu′(1− x) + v′ū(1− x)− yūū′ − yv̄′vc)

= (u ◦x u′ + xc(v̄′v − v̄v′)− cūv̄′y − cu′v̄y + cv̄v′ − cū′v̄y − cuv̄′y,

v′ux+ vū′x− yū′ū− yv̄v′c+ vu′ − xvu′ + v′ū− v′ūx− yūū′ − yv̄′vc).

Thus

(u, v) ◦ (u′, v′) = (u ◦x u′ + c[x(v̄′v − v̄v′) + v̄v′]− c[ū+ u]v̄′y − c[u′ + ū′]v̄y,

[v′ux+ v′ū− v′ūx] + [vū′x+ vu′ − xvu′]− y[ū′ū+ ūū′]− y[v̄′v + v̄v′]c).

�

Let A = Cay(D, c) be a Hurwitz algebra of dimension 4 or 8 and a = (x, y) ∈ D ⊕ D.
Then, by Lemma 8, D(x) is a subalgebra of A(a). For A = (L/F, σ, c), L is a subalgebra of
A(a), of A(a)

m and of A(a)
l,r .
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Proposition 9. Let A = (V, (, ),∧) = F ⊕ V be a quadratic algebra. Let a = (α, x) ∈ A,
α ∈ F, x ∈ V .
(i) A(a) = (V, (/)a,∧a) is a quadratic algebra with norm NA, F -bilinear form

(u/v)a := α((u, v)− (v, u)) + (v, u) + 2(x, u ∧ v)

and ∧a given by

u ∧a v := ((u, v)− (v, u))x+ 2x ∧ (u ∧ v) + (2α− 1)(u ∧ v).

(ii) If A has a scalar involution, then (u/v)a = (v, u) + 2(x, u ∧ v).
(iii) If A is a Hurwitz algebra and a 6∈ F then A(a) is not flexible.
(iv) If A is a quaternion division algebra and a 6= 1

2 then A(a) is not isotopic to an associative
or nonassociative quaternion algebra.

Proof. (i) The proof of the identities is a simple computation.
(ii) If A has a scalar involution, then ( , ) is symmetric, hence (u/v)a = (v, u) + 2(x, u ∧ v).
(iii) If A is a Hurwitz algebra then ( , ) is symmetric and (u/v)a = (v, u)+2(x, u∧v). Hence
( / )a is symmetric iff (v/u)a = (u/v)a iff (x, v ∧ u) = (x, u ∧ v) iff (x, u ∧ v) = 0 for all
u, v ∈ A. Since ( , ) is nondegenerate, this implies x = 0. Hence for x 6= 0, ( / )a is not
symmetric and thus A(a) not flexible by [R, Lemme 2.2].
(iv) Suppose A(a) is isotopic to a quaternion division algebra D over F , then this implies
it must have Nuc(A(a)) = D, so that A(a) is associative, a contradiction. Suppose A(a) is
isotopic to a nonassociative quaternion division algebra Cay(K, c) over F [W], [A-P], K a
separable quadratic field extension of F , then this implies it must have Nuc(A(a)) = K,
so that A(a) is itself isomorphic to a nonassociative quaternion algebra by Waterhouse’s
classification [W], again a contradiction since A(a) is quadratic. �

Suppose A is a Hurwitz division algebra and a ∈ A, a 6= 1
2 . Then ∧a is a dissident map

[O]. In particular, if a ∈ F , we obtain the classical situation that

(u, v)a = a((u, v)− (v, u)) + (v, u), u ∧a v = (2a− 1)(u ∧ v).

Using Lemma 8 (i), we obtain from this our main result:

Theorem 10. Let C be a Hurwitz division algebra of dimension 4 or 8. For all a ∈ C,
a 6= 1

2 , C(a) is a quadratic division algebra which is flexible if and only if a ∈ F .

2.2. Cayley-Dickson doublings of quadratic algebras. Let D be a quadratic algebra
over F with trace involution (which need not be an algebra involution and may only be a
linear map A→ A). Let c ∈ F×. Then the F -vector space A = D ⊕D can be made into a
quadratic algebra over F via the multiplications

(u, v)(u′, v′) = (uu′ + cv̄′v, v′u+ vū′)

for u, u′, v, v′ ∈ D. The unit element of A is given by 1 = (1, 0). A is called the Cayley-
Dickson doubling of D and denoted by Cay(D, c). A is a quadratic algebra with norm
NA = ND ⊥ (−c)ND.

Note that the doubling process referred to in [L] only employs the scalar c = −1.
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Remark 11. Suppose D is a quaternion algebra.
(i) A = Cay(D(a), c) with a ∈ A \ { 1

2}, c ∈ F× is a quadratic algebra with subalgebra
D(a) and flexible iff a ∈ F . Moreover, A = Cay(D(a), c) = (V, (/), µ) is a division algebra
iff ND ⊥ (−c)ND is anisotropic and µ : V ∧ V → V is a dissident map, cf. [O], i.e. iff
c 6∈ ND(D×) and u, v and µ(u ∧ v) are linearly independent whenever u and v are linearly
independent.
(ii) For A(a), a = (x, y) ∈ A = Cay(D, c), the multiplication is given by

(u, v) ◦ (u′, v′) = (u ◦x u′ + c[x(v̄′v − v̄v′) + v̄v′]− c[ū+ u]v̄′y − c[u′ + ū′]v̄y,

[v′ux+ v′ū− v′ūx] + [vū′x+ vu′ − xvu′]− y[ū′ū+ ūū′]− y[v̄′v + v̄v′]c).

A(a) is a quadratic algebra with subalgebra D(x) (Lemma 8). In particular, for a = (x, 0),
the multiplication is given by

(u, v) ◦ (u′, v′) = (u ◦x u′ + c[x(v̄′v − v̄v′) + v̄v′], [v′ux+ v′ū− v′ūx] + [vū′x+ vu′ − xvu′]).

For B = Cay(D(x), c), however, the multiplication is given by

(u, v) ? (u′, v′) = (u ◦x u′ + cv̄′ ◦x v, v′ ◦x u+ v ◦x ū′)

= (u ◦x u′ + c(x(v̄′v) + (1− x)(vv̄′)), x(v′u) + (1− x)(uv′) + x(vū′) + (1− x)(ū′v)).

Again, B is a quadratic algebra with subalgebra D(x). We leave it open for now if an algebra
obtained through a Cayley-Dickson doubling of a mutation algebra again is a mutation
algebra.

Example 12. For Hamilton’s quaternion algebra H over R, the Cayley-Dickson doubling
A = Cay(H(a),−1) is a quadratic division algebra for all a ∈ H with a 6= 1

2 [L, 1.7]. H(a) is
flexible iff a ∈ R. Hence

A = Cay(H(a),−1)

is a non-flexible quadratic division algebra over R for all a ∈ H \ R.

3. Division algebras of degree n

Theorem 1 has the following consequences:

Proposition 13. Let F have characteristic not 3. Let A = (L/F, σ, c) be a cyclic division
algebra of degree 3 with norm N and a = (u, v, w) ∈ L ⊕ L ⊕ L = (L/F, σ, c). If NL(u) 6=
NL(u− 1) + 3cTL(vw) then A(a) is a unital division algebra of degree 3 such that N(u◦k) =
N(u)k for all k ≥ 2.

Proof. If N(a) 6= N(a− 1) then A(a) is a division algebra. Now

N(a) = N((u, v, w)) = NL(u) + cNL(v) + c2NL(w)− 3cTL(uvw)

and

N(a− 1) = N((u− 1, v, w)) = NL(u− 1) + cNL(v) + c2NL(w)− 3cT ((u− 1)vw),

so that N(a) = N(a− 1) if and only if

NL(u)+ cNL(v)+ c2NL(w)−3cT (uvw) = NL(u−1)+ cNL(v)+ c2NL(w)−3cTL((u−1)vw)
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iff

NL(u)− 3cT (uvw) = NL(u− 1)− 3cT (uvw) + 3cTL(vw)

iff

NL(u) = NL(u− 1) + 3cTL(vw).

�

Proposition 14. Let L be a separable field extension over F of degree n with norm NL. Let
h1, h2 be isometries of NL, such that the principal Albert isotope L(h1,h2) = (L, ?), u ? v =
h1(u)h2(v), is a non-unital non-commutative algebra. A = L(h1,h2) has the multiplicative
norm NL. For all a, b ∈ L with NL(−b) 6= NL(a), A(a,b), A(a,b)

l,r and A
(a,b)
m are division

algebras. In particular, this holds for all a ∈ L with NL(a− 1L) 6= NL(a) and b = 1L − a.

Corollary 15. Let L be a separable field extension of F and A = L(h1,h2), where h1, h2 are
isometries of the norm NL.
(i) Let F be a field which contains a primitive third root of unity and [L : F ] = 3. Let a ∈ L,
a 6= 1, 1

2 ± i
1

2
√

3
and b = 1L − a. Then A(a,b), A(a,b)

l,r and A(a,b)
m are division algebras over F

with N(u ◦ u) = N(u)2.
(ii) Let F be a field which contains a primitive 5th root of unity and [L : F ] = 5 where
L = F (α) with α5 = c. Supposes a = u1 + u2α+ · · ·+ u5α

4 ∈ L such that

u3
1[u2

1 − 5cu2u5 − 5cu3u4] 6=
u1[(u1 − 1)4 − 5c(u1 − 1)2u2u5 − 5c(u1 − 1)2u3u4 − u2

2u4 − u2u
2
3 − u2

5u3 − u5u
2
4]

−(u1 − 1)4 + 5c(u1 − 1)2u2u5 + 5c(u1 − 1)2u3u4 − 5c(u1 − 1)u2
2u4 − 5c(u1 − 1)u2u

2
3 − 5c2(u1 − 1)u2

5u3

−5c2(u1 − 1)u5u
2
4 + 5cu3

2u3 − 5c2u2
2u

2
5 + 5c2u2u

3
4 + 5c3u3

5u4 + 5c2u5u
3
3 − 5c2u2

3u
2
4 + 5c2u2u3u4u5

and b = 1L − a. Then A(a,b), A(a,b)
l,r and A(a,b)

m are division algebras over F with N(u ◦ u) =
N(u)2.
In particular, if a = 1 + u2α+ · · ·+ u5α

4 ∈ L, a 6= 1, such that

1 = 5c[u2u5 + u3u4 + u3
2u3 − cu2

2u
2
5 + cu2u

3
4 + c2u3

5u4 + cu5u
3
3 − cu2

3u
2
4 + cu2u3u4u5]

−u2
2u4 − u2u

2
3 − u2

5u3 − u5u
2
4

then A(a,b), A(a,b)
l,r and A(a,b)

m are division algebras over F .

Proof. (i) Let L = F (α) with α3 = c be a cubic field extension of F with norm N . Then

N(u1 + u2α+ u3α
2) = u3

1 + cu3
2 + c2u3

3 − 3cu1u2u3

for ui ∈ F , so that N(a) = N(a− 1) for a = u1 + u2α+ u3α
2 implies

u3
1 + cu3

2 + c2u3
3 − 3cu1u2u3 = (u1 − 1)3 + cu3

2 + c2u3
3 − 3cu1u2u3,

which is equivalent to u3
1 = u3

1 − 3u2
1 + 3u1 − 1, i.e. to 0 = 3u2

1 − 3u1 + 1, which means
u1 = 1

2 ± i
1

2
√

3
.
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(ii) Let L = F (α) with α5 = c be a quintic field extension of F with norm N . Then

NL(u1 + u2α+ · · ·+ u5α
4) = u5

1 + cu5
2 + c2u5

3 + c3u5
4 + c4u5

5

−5cu3
1u2u5 − 5cu3

1u3u4 + 5cu2
1u

2
2u4 + 5cu2

1u2u
2
3 + 5c2u2

1u
2
5u3

+5c2u2
1u5u

2
4 − 5cu1u

3
2u3 + 5c2u1u

2
2u

2
5 − 5c2u1u2u

3
4 − 5c3u1u

3
5u4

−5c2u1u5u
3
3 + 5c2u1u

2
3u

2
4 − 5c2u3

2u5u4 + 5c2u2
2u5u

2
3 + 5c2u2

2u3u
2
4 − 5c2u2u

3
3u4

−5c3u2u
3
5u3 + 5c3u2u

2
5u

2
4 + 5c3u2

5u
2
3u4 − 5c3u5u3u

3
4 − 5c2u1u2u3u4u5

for ui ∈ F , and

NL((u1 − 1) + u2α+ · · ·+ u5α
4) = (u1 − 1)5 + cu5

2 + c2u5
3 + c3u5

4 + c4u5
5

−5c(u1 − 1)3u2u5 − 5c(u1 − 1)3u3u4 + 5c(u1 − 1)2u2
2u4 + 5c(u1 − 1)2u2u

2
3 + 5c2(u1 − 1)2u2

5u3

+5c2(u1 − 1)2u5u
2
4 − 5c(u1 − 1)u3

2u3 + 5c2(u1 − 1)u2
2u

2
5 − 5c2(u1 − 1)u2u

3
4 − 5c3(u1 − 1)u3

5u4

−5c2(u1 − 1)u5u
3
3 + 5c2(u1 − 1)u2

3u
2
4 − 5c2u3

2u5u4 + 5c2u2
2u5u

2
3 + 5c2u2

2u3u
2
4 − 5c2u2u

3
3u4

−5c3u2u
3
5u3 + 5c3u2u

2
5u

2
4 + 5c3u2

5u
2
3u4 − 5c3u5u3u

3
4 − 5c2(u1 − 1)u2u3u4u5

so that N(a) = N(a− 1) for a = u1 + u2α+ · · ·+ u5α
4 is equivalent to

u1[u4
1 − 5cu2

1u2u5 − 5cu2
1u3u4 + 5cu1u

2
2u4 + 5cu1u2u

2
3 + 5c2u1u

2
5u3

+5c2u1u5u
2
4 − 5cu3

2u3 + 5c2u2
2u

2
5 − 5c2u2u

3
4 − 5c3u3

5u4 − 5c2u5u
3
3 + 5c2u2

3u
2
4 − 5c2u2u3u4u5] =

(u1 − 1)[(u1 − 1)4 − 5c(u1 − 1)2u2u5 − 5c(u1 − 1)2u3u4 + 5c(u1 − 1)u2
2u4 + 5c(u1 − 1)u2u

2
3

+5c2(u1 − 1)u2
5u3 + 5c2(u1 − 1)u5u

2
4 − 5cu3

2u3 + 5c2u2
2u

2
5 − 5c2u2u

3
4 − 5c3u3

5u4 − 5c2u5u
3
3

+5c2u2
3u

2
4 − 5c2u2u3u4u5]

iff

u1[u4
1 − 5cu2

1u2u5 − 5cu2
1u3u4 + 5cu1u

2
2u4 + 5cu1u2u

2
3 + 5c2u1u

2
5u3 + 5c2u1u5u

2
4] =

u1[(u1 − 1)4 − 5c(u1 − 1)2u2u5 − 5c(u1 − 1)2u3u4 + 5c(u1 − 1)u2
2u4 + 5c(u1 − 1)u2u

2
3

+5c2(u1 − 1)u2
5u3 + 5c2(u1 − 1)u5u

2
4]

−[(u1 − 1)4 − 5c(u1 − 1)2u2u5 − 5c(u1 − 1)2u3u4 + 5c(u1 − 1)u2
2u4 + 5c(u1 − 1)u2u

2
3

+5c2(u1 − 1)u2
5u3 + 5c2(u1 − 1)u5u

2
4 − 5cu3

2u3 + 5c2u2
2u

2
5 − 5c2u2u

3
4 − 5c3u3

5u4 − 5c2u5u
3
3

+5c2u2
3u

2
4 − 5c2u2u3u4u5]

iff

u3
1[u2

1 − 5cu2u5 − 5cu3u4] =
u1[(u1 − 1)4 − 5c(u1 − 1)2u2u5 − 5c(u1 − 1)2u3u4 − u2

2u4 − u2u
2
3 − u2

5u3 − u5u
2
4]

−(u1 − 1)4 + 5c(u1 − 1)2u2u5 + 5c(u1 − 1)2u3u4 − 5c(u1 − 1)u2
2u4 − 5c(u1 − 1)u2u

2
3

−5c2(u1 − 1)u2
5u3 − 5c2(u1 − 1)u5u

2
4 + 5cu3

2u3 − 5c2u2
2u

2
5 + 5c2u2u

3
4 + 5c3u3

5u4

+5c2u5u
3
3 − 5c2u2

3u
2
4 + 5c2u2u3u4u5

Put u1 = 1 to obtain

1 = 5c[u2u5 + u3u4 + u3
2u3 − cu2

2u
2
5 + cu2u

3
4 + c2u3

5u4 + cu5u
3
3 − cu2

3u
2
4 + cu2u3u4u5]

−u2
2u4 − u2u

2
3 − u2

5u3 − u5u
2
4.

�
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4. Automorphisms and derivations

Since A is a finite-dimensional algebra over F , the Lie algebra Aut(A) of automorphisms
of A, viewed as algebraic group, is a subalgebra of the derivation algebra Der(A) and for
F = R, we have dimAut(A) = dimDer(A). For a ∈ A, define

Auta(A) = {F ∈ Aut(A) |F (a) = a} and Dera(A) = {d ∈ Der(A) | d(a) = 0}.

If a ∈ F then Auta(A) = Aut(A) and Dera(A) = Der(A).

Lemma 16. For a unital algebra A with underlying vector space V and f, g ∈ Gl(V ),

{F ∈ Aut(A) |F ◦ f = f ◦ F, F ◦ g = g ◦ F} ⊂ Aut(A, ◦(f,g)),

{D ∈ Der(A) |D ◦ f = f ◦D,D ◦ g = g ◦D} ⊂ Der(A, ◦(f,g)).

In particular, for all a, b ∈ F ,

Aut(A) ⊂ Aut(A(a,b)), Der(A) ⊂ Der(A(a,b)).

Proposition 17. Let A be an algebra over F and a, b ∈ A.
(i) {F ∈ Aut(A) |F (a) = a, F (b) = b} ⊂ Aut(A(a,b)), Aut(A(a,b)

m ) and Aut(A(a,b)
l,r ).

In particular, Auta(A) is a subgroup of Aut(A(a)), Aut(A(a,b)
m ) and Aut(A(a)

l,r ).

(ii) {d ∈ Der(A) | d(a) = 0, d(b) = 0} ⊂ Der(A(a,b)), Der(A(a,b)
m ) and Der(A(a,b)

l,r ).

In particular, Dera(A) is a subalgebra of Der(A(a)), Der(A(a,b)
m ) and Der(A(a)

l,r ).

Proof. (i) Let F ∈ Aut(A). Then

F (u ◦ v) = F (a(uv) + b(vu)) = F (a)(F (u)F (v)) + F (b)(F (v)F (u))

and
F (u) ◦ F (v) = a(F (u)F (v)) + b(F (v)F (u)).

Thus if F (a) = a and F (b) = b then F ∈ Aut(A(a,b)).
(ii) If D is a derivation of A then D(uv) = D(u)v + uD(v) for all u, v ∈ A. Thus in A(a,b),

D(u ◦ v) = D(a)(D(u)v) +D(a)(uD(v)) + a(D(u)v) + a(uD(v))

+D(b)(D(v)u) +D(b)(vD(u)) + b(D(v)u) + b(vD(u)),

while
D(u) ◦ v + u ◦D(v) = a(uD(v)) + b(vD(u)) + a(uD(v)) + b(D(v)u).

Hence if D(a) = 0 and D(b) = 0 then D ∈ Der(A(a,b)).
The proofs for A(a,b)

m and A
(a,b)
l,r are analogously. �

Lemma 16 and the classification of real division algebras in [B-O1, 2] yield:

Corollary 18. Suppose that a, b ∈ F such that a 6= ±b.
(i) If A is a quaternion division algebra then A(a,b) is a division algebra and

SU(2) ⊂ Aut(A(a,b)), su(2) ⊂ Der(A(a,b)).

In particular, if F = R then

SU(2) = Aut(H(a,b)), su(2) = Der(H(a,b)).
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(ii) If A is an octonion division algebra then A(a,b) is division and

G2 ⊂ Aut(A(a,b)), G2 ⊂ Der(A(a,b)).

In particular, if F = R then

G2 = Aut(O(a,b)), G2 = Der(O(a,b)).

Remark 19. If A is an associative central simple algebra, all elements of Der(A) are inner
derivations. For a non-zero a ∈ A, the inner derivation ada(x) = ax−xa satisfies ada(a) = 0.
For all b ∈ F (a) ⊂ A we get ada(b) = 0. Thus for all non-zero a ∈ A and b ∈ F (a) we
have ada, adb ∈ Der(A(a,b)), i.e. Der(A(a,b)) 6= 0. Analogously, also Der(A(a,b)

m ) 6= 0 and
Der(A(a,b)

l,r ) 6= 0.

For an alternative algebra A over F , the automorphism group of A(a,b)
m either is much larger

than the one of A or there is no relation at all between the two groups [E-My1].
By Remark 6, for a quadratic algebra A and all a ∈ A,

Aut(A(a)) ⊂ O(NA).

In the following, we include results on A
(a,b)
m for the sake of completeness, although they

have been proved already in [E-My1].
Let A be an octonion division algebra over F and a ∈ A×. Then a ∈ F1A or a yields a

quadratic field extension S = F1+Fa of F . In the latter case, let S⊥ = {x ∈ A |NA(x, S) =
0} and let α ∈ S \ F such that µ = α2 ∈ F . Then the form 〈 , 〉 defined via

〈u, v〉 = µNA(u, v)− αNA(αu, v)

for all u, v ∈ S⊥ is an S-hermitian form on S⊥. We know that Auta(A) ∼= SU(S⊥, 〈 , 〉) and
Dera(A) ∼= su(S⊥, 〈 , 〉) [E-My1, p. 109] which yields:

Proposition 20. Let A be an octonion division algebra over F and a ∈ A \ F . Then

SU(S⊥, 〈 , 〉) ⊂ Aut(A(a)), SU(S⊥, 〈 , 〉) ⊂ Aut(A(a)
m ) and SU(S⊥, 〈 , 〉) ⊂ Aut(A(a)

l,r );

su(S⊥, 〈 , 〉) ⊂ Der(A(a)), su(S⊥, 〈 , 〉) ⊂ Der(A(a)
m ) and su(S⊥, 〈 , 〉) ⊂ Der(A(a)

l,r ).

4.1. The real case. Let us briefly recap what this means in the real case. For all a, b ∈ H,
N(a) 6= N(b), the derivation algebra of the division algebras H(a,b), H(a,b)

m and H(a,b)
l,r is

either R or su(2) by the classification in [B-O1, 2]. For all u ∈ H, H(uau−1,ubu−1) ∼= H(a,b),
H(uau−1,ubu−1)

m
∼= H(a,b)

m and H(uau−1,ubu−1)
l,r

∼= H(a,b)
l,r by Remark 3 (iii).

In particular, for all a ∈ H, a 6= 1
2 , H(a) is a real quadratic division algebra with subalgebra

C. H(a) is flexible if and only if a ∈ R.
For all a, b ∈ O, N(a) 6= N(b), O(a,b), O(a,b)

m and O(a,b)
l,r are division algebras. For

a = (a0, a1), b = (b0, b1) ∈ O = Cay(H,−1), the algebras O(a,b), O(a,b)
m and O(a,b)

l,r have

H(a0,b0), H(a0,b0)
m and H(a0,b0)

l,r , respectively, as subalgebras.

In particular, O(a)
m contains H(a0)

m as subalgebra, O(a)
l,r contains H(a0)

l,r as subalgebra and
the quadratic division algebra O(a) contains H(a0) as subalgebra.

If a, b ∈ R with a 6= ±b, O(a,b) contains H(a,b) as subalgebra and has derivation algebra
G2 by Corollary 18.
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For all a ∈ O, a 6= 1
2 , the algebras O(a), O(a)

m and O(a)
l,r are division and by Proposition 20,

they have a derivation algebra containing su(3), i.e. their derivation algebra is isomorphic
to su(3) or G2. Real division algebras with derivation algebra su(3) were determined in [B-
O2]: If the derivation algebra of an eight-dimensional real division algebra A is isomorphic
to su(3), A is either a flexible generalized pseudo-octonion algebra or the direct sum of two
one-dimensional modules and a six-dimensional irreducible su(3)-module [B-O2].

For all a ∈ O, a 6= 1
2 , O(a) is a real quadratic division algebra which is flexible if and only

if a ∈ R.
Hence for all a ∈ O, a 6∈ R, the non-flexible real quadratic division algebra O(a) either

has derivation algebra G2 or it has derivation algebra su(3) and is the direct sum of two
one-dimensional modules and a six-dimensional irreducible su(3)-module. A multiplication
table for algebras of the latter case is given [B-O2, (4.2)] and it is shown that every real
algebra defined by this table admits su(3) as derivation algebra [B-O2, Theorem 4.1]. Which
case appears as derivation algebra is not clear and will probably depend on the choice of a.
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