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Introduction

Andrunakievich’s Lemma readily implies that a minimal ideal of an associative
algebra is either simple or has zero multiplication. However, a Jordan version of
Andrunakievich’s Lemma is false even for linear Jordan algebras (cf. [12]) and thus
the problem of knowing whether minimal ideals in Jordan systems were always either
simple or trivial remained open for decades.

The question, for linear Jordan algebras, was posed in 1969 by Zhevlakov (see
[5]) and extended to quadratic Jordan algebras by Nam and McCrimmon in 1983 [14].
A positive answer in the case of linear Jordan algebras was obtained independently
by Medvedev [12, p. 933] and Skosyrskii [15, Cor. 3.1]. The techniques were mainly
combinatorial and strongly dependent on the linearity, i.e., on the existence of 1/2
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in the ring of scalars. Prior to these papers, Nam and McCrimmon had studied
in [14] minimal ideals in quadratic Jordan algebras, showing that they should be
either D-simple or trivial. In [4], Block had shown that D-simple algebras could be
described in terms of simple algebras under the additional assumption of having a
minimal ideal. However, nothing was known about D-simple algebras, hence about
minimal ideals of quadratic Jordan algebras, without this additional condition. With
a different approach, mainly based on the structure theory, in [3] it is shown that
the heart of a nondegenerate Jordan (quadratic) algebra, triple system, or pair is
simple when nonzero. That is the starting point to show in [2] that a minimal ideal
of a quadratic Jordan system must be either simple or trivial, so fully answering
Nam-McCrimmon’s question. However, due to the quadratic nature of this answer,
some questions remained open.

This paper deals with trivial minimal inner ideals of Jordan systems, indeed with
their “level of triviality”. In the general quadratic setting [14] “trivial” was defined
as having zero cube, so that the results obtained in [2] do not imply those in the
linear setting due to Medvedev and Skosyrskii, where triviality meant having zero
square. The problem comes from the fact that the square of an ideal need not be an
ideal.

We will show that, if a minimal ideal I of Jordan system J has zero cube, then it
is more than trivial in the sense that any monomial in J containing two elements of I

vanishes. In particular, this shows that the square of I vanishes when J is a Jordan
algebra, so that I is indeed trivial as a Jordan algebra, which implies the result of
Medvedev and Skosyrskii. This new notion of triviality which depends obviously on
the enveloping system J will be called J-triviality.

The paper is organized as follows: after a preliminary section we start with some
combinatorial lemmas dealing with multiplication operators acting on trivial minimal
ideals. Then, in the second section, we focus on triple systems because the notation
is less cumbersome, and derive from that the corresponding results for algebras and
pairs in the third section. Those readers who are only interested in algebras can
skip the first three sections and go directly to the fourth section where we sketch
an alternative proof for Jordan algebras in which most of the technicalities of triple
systems are avoided. The final fifth section is devoted to explaining the connection
of the problem we are dealing with with that of the definition of a Baer radical in
linear Jordan algebras.

0. Preliminaries

0.1 We will deal with associative and Jordan algebras, pairs and triple systems
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over an arbitrary ring of scalars Φ. The reader is referred to [6, 7, 10, 11] for basic
results, notation, and terminology, though we will stress some of them.

—Given a Jordan algebra J , its products will be denoted by x2, Uxy, for x, y ∈
J . They are quadratic in x and linear in y and have linearizations denoted x ◦ y,
Ux,zy = {x, y, z} = Vx,yz, respectively.

—For a Jordan pair V = (V +, V −), we have products Qxy ∈ V ε, for any x ∈ V ε,
y ∈ V −ε, ε = ±, with linearizations Qx,zy = {x, y, z} = Dx,yz.

—A Jordan triple system J is given by its products Pxy, for any x, y ∈ J , with
linearizations denoted by Px,zy = {x, y, z} = Lx,yz.

0.2 Philosophically, triviality of a Jordan system J should mean that all products
of elements of J vanish. In triples or pairs this means cubic triviality, PJJ = 0 or
QV V = 0. In Jordan algebras it means squares-and-cubes triviality, UJJ = J2 = 0.

Then all linearized products {J, J, J} and J ◦ J vanish as well. If I is an ideal in a
Jordan triple J , pair V , or algebra J we will call I trivial if it is intrinsically trivial
as a subsystem,

PII = 0, resp. QIεI−ε = 0, resp. UII = I2 = 0.

We warn the reader that, in the case of algebras, the above notion of triviality
differs from that used in [14] and [2], which was just cube triviality.

On the other hand, triviality of I as ideal of a Jordan system should mean more
than just triviality as a subsystem, it should mean that all monomial products in the
system vanish as soon as there are at least two factors from I. Because this depends
on the enveloping system J , we will say that such an ideal is J-trivial. In a Jordan
triple J , a simple argument by induction on the degree shows that I being J-trivial
means

PIJ = {I, I, J} = 0 (hence {I, J, I} = 0),

in a Jordan pair V , a V -trivial ideal I satisfies

QIεV −ε = {Iε, I−ε, V ε} = 0, (hence {Iε, V −ε, Iε} = 0),

while in a Jordan algebra J , J-triviality of I means

UIJ = {I, I, J} = I2 = 0 (hence {I, J, I} = 0).

In linear Jordan algebras, where 1
2 ∈ Φ, all products can be built from the bullet

or circle x · y = 1
2 (x ◦ y), so intrinsic triviality of I reduces to I ◦ I = 0 since then



4 anquela, cortés and mccrimmon

2I2 = I ◦ I = 0 and 2UII ⊆ I ◦ (I ◦ I) + I2 ◦ I = 0. But even more, in this case I

remains J-trivial for any enveloping algebra J since 2UIJ ⊆ I ◦ (I ◦ J) + I2 ◦ J = 0
and 2{I, I, J} ⊆ I ◦ (I ◦J)+J ◦ (I ◦ I) = 0. In quadratic Jordan algebras, or in triple
systems or pairs, there is no way to reduce the quadratic products Uxy, Pxy,Qxε(y−ε)
to products of lower degree, so is unlikely that intrinsic triviality implies enveloping
triviality. It is not known if a trivial ideal I in J always contains a J-trivial ideal; we
will prove this when I is minimal.

0.3 A Jordan algebra gives rise to a Jordan triple system by simply forgetting
the squaring and letting P = U . By doubling any Jordan triple system T one obtains
the double Jordan pair V (T ) = (T, T ) with products Qxy = Pxy, for any x, y ∈ T .
From a Jordan pair V = (V +, V −) one can get a (polarized) Jordan triple system
T (V ) = V + ⊕ V − by defining Px+⊕x−(y+ ⊕ y−) = Qx+y− ⊕Qx−y+ [7, 1.13, 1.14]

0.4 An ideal I of a Jordan triple system J is a Φ-submodule of J such that it
is both an inner ideal (PIJ ⊆ I) and an outer ideal (PJI + {J, J, I} ⊆ I). Similar
notions are defined for Jordan algebras and pairs.

0.5 An element x of a Jordan system J (algebra, pair, or triple system) is called
invisible if every Jordan monomial of degree > 1 in J containing x vanishes.

0.6 We recall the following identities valid for arbitrary Jordan triple systems
which will be needed in the sequel:

(i) Px{y, z, t} = {{x, y, z}, t, x} − {z, y, Pxt},
(ii) {x, Pyz, t} = {x, y, {z, y, t}} − {x, Pyt, z},
(iii) {x, {y, z, t}, u} = {{x, y, z}, t, u}+ {{u, y, z}, t, x} − {z, y, {x, t, u}},
(iv) {Pxy, z, t}+ {Pxz, y, t} = {x, {y, x, z}, t},
(v) {{x, y, u}, z, t}+ {{x, z, u}, y, t} = {x, {y, u, z}, t}+ {u, {y, x, z}, t}
(vi) PPxy = PxPyPx.

Indeed, (i)—(vi) are respectively JP12, JP9, JP15, JP8, JP16, JP3 of [7].

0.7 For a Jordan triple system J , M(J) will denote its multiplication algebra,
i.e., the unital subalgebra of EndΦ(J) generated by all multiplication operators Px

(hence containing Px,y), Lx,y for x, y ∈ J . Equivalently, M(J) is generated by all
T = Px, Bx,y := Id − Lx,y + PxPy ([7, 2.11]), which have the advantage of being
structural transformations (PT (x) = TPxT ∗). If A, B are Φ submodules of J , LA,B ,
PA,B = PB,A will denote respectively the spans of all La,b, Pa,b = Pb,a for a ∈ A,
b ∈ B, while MA,B ⊆ EndΦ J will denote the sum

MA,B = MB,A := LA,B + LB,A + PA,B .
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For a given element x ∈ J , let LA,x, Lx,A, Px,A = PA,x, denote respectively the spans
(in this case just the set) of all La,x, Lx,a, Px,a = Pa,x for a ∈ A and

MA,x = Mx,A := LA,x + Lx,A + Px,A.

Also MA will denote the unital subalgebra of M(J) generated by all Pa, La,a′ for
a, a′ ∈ A (hence containing all Pa,a′).

For any Φ submodule S of EndΦ J , Ŝ will denote S + ΦIdJ .

1. Combinatorial Lemmas

1.1 Throughout this section J will denote a Jordan triple system, and I will be
an ideal of J . We will write X for the Φ-submodule of J spanned by a given finite
set {x1, . . . , xn} ⊆ J .

Let Z denote the set of elements M in M(J) that annihilate I, M(I) = 0, which
is obviously an ideal of M(J), and let ≡ denote congruence modulo Z.

1.2 MI,X-Migration Lemma. MI,XMX ⊆MXMI,X .

Proof: It suffices if UM ∈MXMI,X for the spanning elements U = Lx,a, La,x,
Px,a for x ∈ X, a ∈ I and the generating elements M = Ly,z, Py for y, z ∈ X. The
resulting 6 cases are handled as follows:

(1) Lx,aPy = P{x,a,y},y − PyLa,x (by (0.6)(i) acting on t, replacing x, y, z, t 7→
y, a, x, •) ∈ PI,X +MXLI,X ⊆MXMI,X ;

(2) La,xPy = P{a,x,y},y − PyLx,a (by (0.6)(i) acting on t, replacing x, y, z, t 7→
y, x, a, •, i.e. switching x, a in (1)) ∈ PI,X +MXLX,I ⊆MXMI,X ;

(3) Px,aPy = Lx,yLa,y − Lx,Pya (by (0.6)(ii) acting on z, replacing x, y, z, t 7→
x, y, •, a) ∈MXLI,X + LX,I ⊆MXMI,X ;

(4) Lx,aLy,z = Ly,zLx,a + L{x,a,y},z − Ly,{a,x,z} (by (0.6)(iii) acting on x, replacing
x, y, u, z, t 7→ •, a, y, x, z) ∈MXLX,I + LI,X + LX,I ⊆MXMI,X ;

(5) La,xLy,z = Ly,zLa,x + L{a,x,y},z − Ly,{x,a,z} (by (0.6)(iii) acting on x, replacing
x, y, u, z, t 7→ •, x, y, a, z, i.e. switching x, a in (4)) ∈ MXLI,X + LI,X + LX,I ⊆
MXMI,X ;

(6) Pa,xLy,z = Lx,yPa,z + P{a,y,z},x − Pz,xLy,a (by (0.6)(v) acting on y, replacing
x, y, u, z, t 7→ a, •, z, y, x) ∈MXPI,X + PI,X +MXLX,I ⊆MXMI,X .

1.3 x, y-Alternation Lemma. If I is trivial, then for any x, y ∈ J we have

MI,xMI,y ⊆ M̂I,yMI,x + Z.
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More specifically, for any x, y ∈ X, we have

(C1) Lx,ILy,I ⊆ Ly,ILx,I + Z, (C1)0 Lx,ILx,I ⊆ Z,

(C2) Lx,ILI,y ⊆ L̂I,yLx,I + Z,

(C3) Lx,IPy,I ⊆ Ly,IPx,I + Z, (C3)0 Lx,IPx,I ⊆ Z,

(C4) LI,xLy,I ⊆ Py,IPx,I + Z,

(C5) LI,xLI,y ⊆ LI,yLI,x + Z, (C5)0 LI,xLI,x ⊆ Z,

(C6) LI,xPI,y ⊆ Py,ILx,I + Z,

(C7) Py,ILx,I ⊆ LI,xPI,y + Z,

(C8) Px,ILI,y ⊆ Py,ILI,x + Z, (C8)0 Px,ILI,x ⊆ Z,

(C9) Px,IPy,I ⊆ LI,yLx,I + Z,

Proof: These follow from the following formulas taking into account that PI,I

and LI,I are contained in the ideal Z since I is trivial. Let a, b ∈ I,

(C1)0 : Lx,aLx,b = PxPb,a + LPxa,b (by (0.6)(i) acting on z, replacing x, y, z, t 7→
x, b, •, a) ∈ PxPI,I + LI,I ⊆ Z,

(C3)0 : Lx,aPx,b = PPxa,b + PxLa,b (by (0.6)(i) acting on y, replacing x, y, z, t 7→
x, •, b, a) ∈ PI,I + PxLI,I ⊆ Z,

(C5)0 : La,xLb,x = Pa,bPx + La,Pxb (by (0.6)(ii) acting on z, replacing x, y, z, t 7→
a, x, •, b) ∈ PI,IPx + LI,I ⊆ Z,

(C8)0 : Px,aLb,x = PPxb,a + La,bPx (by (0.6)(iv) acting on z, replacing x, y, z, t 7→
x, b, •a) ∈ PI,I + LI,IPx ⊆ Z.

Notice that (C1), (C3), (C5), (C8) follow from (C1)0, (C3)0, (C5)0, (C8)0 by lin-
earization.

(C4) , (C9) : La,xLy,b−Py,aPx,b = La,{x,y,b}−La,bLy,x (by (0.6)(v) acting on u,
replacing x, y, u, z, t 7→ y, x, b, •, a) ∈ LI,I + LI,ILy,x ⊆ Z,

(C2) : Lx,aLb,y = Px,bPy,a + Lx,{a,b,y} − Lx,yLb,a (by (0.6)(v) acting on u, re-
placing x, y, u, z, t 7→ b, y, •, a, x) ≡ Px,bPy,a + Lx,{a,b,y} ∈ Px,IPy,I + Lx,I ⊆
LI,yLx,I + Lx,I + Z by (C9),

(C6) , (C7) : La,xPb,y −Py,aLx,b = Pa,bLx,y −Pa,{y,x,b} (by (0.6)(v) acting on z,
replacing x, y, u, z, t 7→ y, x, b, •, a) ∈ PI,ILx,y + PI,I ⊆ Z.

2. Trivial Minimal Ideals of Jordan Triple Systems

2.1 Lemma. If I is a minimal ideal of a Jordan triple system J , then {I, I, J} ⊆
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{I, J, I}.
Proof: There are two possibilities: either PJI = 0 or PJI 6= 0. In the first case

{I, I, J} ⊆ PJI = 0. In the second case, PJI is a nonzero ideal of J (it is a semiideal
[9, 6.2(a)] and PJPJI ⊆ PJI by idealness of I) which is contained in I, thus I = PJI

by minimality of I; hence

{I, I, J} = {I, PJI, J} ⊆(0.6)(ii) {I, J, {I, J, J}}+ {I, PJJ, I} ⊆ {I, J, I}.

In either case, {I, I, J} ⊆ {I, J, I}.
2.2 Proposition. If a minimal ideal I of a Jordan triple system J is trivial

as a subsystem, PII = 0, and PIJ 6= 0, then I = PIJ = {I, J, I}.
Proof: We recall that PIJ is a nonzero semiideal of J [9, 6.2(a)], hence PIJ +

PJPIJ is a nonzero ideal of J [9, 6.2(b)] contained in I. By minimality of I,

I = PIJ + PJPIJ, (1)

hence,
PIJ ⊆ {I, J, I}. (2)

Indeed, PIJ =(1) PPIJ+PJPIJJ is spanned (for ai, bi ∈ I and xj , yj .zj ∈ J) by

P∑
Pai

xi+
∑

Pyj
Pbj

zj

J ⊆(0.6)(vi)

∑ (
PaiPxiPai

)
J +

∑ (
Pyj Pbj Pzj Pbj Pyj

)
J + PI,IJ

⊆ PIPJPIJ + PJPIPJPIPJJ + {I, J, I}
⊆ PII + PJPII + {I, J, I} = {I, J, I},

using triviality of I. Now,

PJPIJ ⊆(2) PJ{I, J, I} ⊆(0.6)(i) {{J, I, J}, I, J}+ {J, I, PJI}
⊆ {I, I, J}+ {J, I, I} = {I, I, J} ⊆(2.1) {I, J, I}. (3)

Now (1), (2), and (3) yield I ⊆ {I, J, I}. But {I, J, I} ⊆ PIJ ⊆ I.

2.3 Theorem. If a minimal ideal I of a Jordan triple system J is trivial as a
subsystem, PII = 0, then it is J-trivial, PIJ + {I, I, J} = 0.

Proof: Let us assume that PIJ 6= 0. Taking any a ∈ I, y ∈ J such that z :=
Pay 6= 0, we have a nonzero absolute zero divisor z ∈ I (PzJ = PPayJ = PaPyPaJ

(by (0.6)(vi)) ⊆ PIPJPIJ ⊆ PII = 0 since I is a trivial ideal). Hence Φz is an inner
ideal of J and the ideal of J generated by z is just the outer hull M(J)(z) ([14, 1.9]
can be easily extended to triple systems by replacing the operators Ux by structural
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Px and Bx,y so that each monomial M1 · · ·Mr(z) remains an absolute zero divisor),
and I = M(J)(z) by minimality. We have

z ∈ I = {I, J, I} (by (2.2)) = LI,JI = LI,JM(J)z, (1)

and there are finitely many elements {x1, . . . , xn} ⊆ J involved in (1) to express
z = T (z) for T ∈ LI,JM(J). If X is the Φ-module spanned by those elements, we
indeed have T ∈ LI,XMX ⊆ MI,XMX .

For any positive integer m,

Tm ∈
m︷ ︸︸ ︷

(MI,XMX) · · · (MI,XMX) ⊆MX

m︷ ︸︸ ︷
MI,X · · ·MI,X , (2)

by MI,X -Migration Lemma (1.2). But

m︷ ︸︸ ︷
MI,X · · ·MI,X consists of the sum of the

submodules MI,xi1
· · ·MI,xim

for all choices of i1, . . . im ∈ {1, . . . , n}.
Let Z as in (1.1) denote the set of elements in M(J) annihilating I. We claim

that

(3) when m ≥ 4n + 1, MI,xi1
· · ·MI,xim

⊆ Z, hence

m︷ ︸︸ ︷
MI,X · · ·MI,X ⊆ Z.

Indeed, in this case one of the different xi must occur at least 5 times. By x, y-
Alternation Lemma (1.3), we can move this x := xi to the right modulo Z, so

that, MI,xi1
· · ·MI,xim

⊆ MI,xj1
· · ·MI,xjr

5︷ ︸︸ ︷
MI,x · · ·MI,x +Z (where it might be r ≤

4n − 4, recalling possible attrition in (1.3)(C2)). Now, we just need to show that
5︷ ︸︸ ︷

MI,x · · ·MI,x ⊆ Z. Each string of length 5 consisting of elements of Lx,I , LI,x, Px,I

can be normalized modulo Z as follows:

(I) LI,xLx,I can be replaced by Px,IPx,I (1.3)(C4),

(II) LI,xPx,I can be replaced by Px,ILx,I (1.3)(C6),

(III) Lx,ILx,I , Lx,IPx,I , LI,xLI,x can be replaced by zero by (1.3)(C1)0, (C3)0,
(C5)0, respectively.

Applying (I-III) to LI,xLx,I , LI,xLI,x, LI,xPx,I , we can assume that any LI,x ap-
pears at the very end (and there is at most one of them), so that the string has an
initial substring of at least 4 terms consisting only of Lx,I ’s and Px,I ’s. But then
Lx,ILx,I , Lx,IPx,I ⊆ Z by (III) implies that we can assume that there is at most one
Lx,I at the very end, so that there must be a string of at least three Px,I , and

Px,IPx,IPx,I ⊆(1.3)(C9) Px,ILI,xLx,I + Z ⊆(1.3)(C8)0 Z.
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Hence, (2) and (3) imply T 4n+1 ∈ Z, and z = T (z) = T 4n+1(z) = 0, which is a
contradiction coming from our assumption that PIJ 6= 0. Then it must be PIJ = 0,
hence {I, J, I} ⊆ PIJ = 0 and {I, I, J} = 0 using (2.1).

3. Trivial Minimal Ideals of Jordan Algebras and Pairs

We will use the functors linking Jordan algebras and pairs with triple systems
to obtain analogues of (2.3) for algebras and pairs.

3.1 Theorem. If a minimal ideal I of a Jordan algebra J is trivial as a
triple subsystem, I3 = UII = 0, then it is trivial as a subalgebra, and even J-trivial,
I2 + UIJ + {I, I, J} = 0.

Proof: Notice that I remains a trivial minimal ideal of the unitization Ĵ of J ,
hence we may assume that J is unital. But the ideals of a unital Jordan algebra and
those of its underlying triple system coincide since x2 = Px1 and x ◦ y = {x, 1, y} are
now triple products, so that I is a trivial minimal ideal of J as a triple system and
we can apply (2.3) noticing I2 = PI1.

3.2 Remark: The functor T ( ) (0.3) linking pairs and triple systems does not
interact with ideals nicely enough to provide a straightforward pair version of (2.3).
In [2, 2.5], a similar problem was solved by applying [1, Sect. 5] and [3, 3.7(ii)] to
a suitable quotient of the given Jordan pair where the minimal ideal under study
turned to be the heart. In our case, we are looking for a property involving not only
the minimal ideal I of the Jordan pair V , but also V . So, rather than modifying V ,
we can use the argument given in [1, Sect. 5] without assuming semiprimeness of V ,
which proves:

For a given Jordan pair V and a nonzero triple ideal L of T (V ), either
there exists a nonzero pair ideal K of V such that T (K) ⊆ L, or the (+/−)
projections π+(L) and π−(L) of L consist of invisible elements.

3.3 Proposition. Let I = (I+, I−) be a pair of Φ-submodules of a Jordan pair
V . Then I is a minimal ideal of V if and only if T (I) is a minimal ideal of T (V ).

Proof: From the definition of T ( ) (0.3), it is clear (and indeed well known)
that I is an ideal of V if and only if T (I) is an ideal of T (V ).

Assume first that I is minimal as an ideal of V , and let L be any nonzero triple
ideal of T (V ) such that L ⊆ T (I). We claim that L = T (I), proving that T (I) is
minimal in T (V ).

If there exists a nonzero pair ideal K of V with T (K) ⊆ L ⊆ T (I) then by
minimality K = I and T (I) ⊆ L ⊆ T (I) yields the desired equality L = T (I).
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Otherwise, by (3.2) both π+(L) and π−(L) consist of invisible elements. In this case
πε(L) 6= 0 for ε = + or −, and K = (πε(L), 0) ⊆ (Iε, 0) ⊆ I would be an ideal
of V , hence by minimality I = K = (πε(L), 0), and L ⊆ T (I) = πε(L) ⊕ 0 forces
L = πε(L)⊕ 0 = T (I) as desired.

Conversely, if T (I) is a minimal ideal of T (V ) then I is a minimal ideal of V

since any ideal 0 6= M ⊆ I has 0 6= T (M) ⊆ T (I), hence T (M) = T (I) by minimality
in T (V ), hence M = I in V .

3.4 Theorem. If a minimal ideal I of a Jordan pair V is trivial as a subpair,
QIεI−ε = 0, ε = ±, then it is V -trivial, QIεV −ε + {Iε, I−ε, V ε} = 0, ε = ±.

Proof: Since T (I) is a minimal ideal of T (V ) (3.3), and it is trivial since I is
so, PT (I)T (V ) + {T (I), T (I), T (V )} = 0 by (2.3), which readily implies QIεV −ε +
{Iε, I−ε, V ε} = 0, ε = ±.

4. An Alternative Simpler Approach to the Algebra Case

This section is devoted to sketch an alternative direct proof of (3.1) without
making use of triple systems.

First of all, one can obtain a unital algebra version of the MI,X -Migration Lemma
(1.2) using the following additional algebra identities.

4.1 Let J be a unital Jordan algebra, for any x, y, z ∈ J

(i) (x ◦ y) ◦ z = {x, y, z}+ {y, x, z},
(ii) Vx = Vx,1 = V1,x = Ux,1.

Indeed, (i) is the linearization of [6, QJ12, p. 2.16], and (ii) can be found in [6, p.
1.11].

4.2 VI,X-Migration Lemma. Let J be a unital Jordan algebra, I be an ideal of
J , and X be a Φ-submodule of J spanned by a finite set of elements {x0, x1, . . . , xn},
where x0 = 1. Then

VI,XMX ⊆MXVI,X .

Proof: Noticing that MX is generated by operators of the form Ux, for x ∈ X,
the result is obtained by repeatedly using the fact that for w ∈ I, x, y ∈ X we have

Vw,yUx ⊆MXVI,X . (1)
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Indeed,
Vw,yUx = U{w,y,x},x − UxVy,w (by (0.6)(i) in algebra form)

⊆ UI,X + UxVX,I

(2)

But
VX,I ⊆ VX◦I − VI,X (by (4.1)(i))

⊆ VI + VI,X = VI,x0 + VI,X (by (4.1)(ii))

⊆ VI,X

(3)

and
UI,X ⊆ VXVI + VX,I (by (4.1)(i))

= UX,x0VI,x0 + VI,X (by (4.1)(ii) and (3))

⊆ UXVI,X + VI,X

, (4)

and (1) follows from (2), (3), and (4).

4.3 Lemma. Let J be a Jordan algebra, and I be an ideal of J such that
{I, I, I} = 0. Then, for any x ∈ J , VI,xVI,xI = 0.

Proof: For any a1, a2, b ∈ I, Va1,xVa2,xb = {a1, Uxa2, b} + {a1, Uxb, a2} (by
(0.6)(ii) in algebra form) ∈ {I, I, I} = 0.

Now we can obtain (3.1).

Alternative Proof of (3.1): We can replace J by its unitization and assume
that J is unital. We will prove that UIJ = 0 by showing that UIJ 6= 0 leads to a
contradiction. Otherwise UIJ is a nonzero ideal of J (see [8, p. 221]) which coincides
with I by minimality, hence I = UIJ = UUIJJ is spanned for wi ∈ I, ai ∈ J by
elements

U∑
i
Uwi

ai
J =

∑

i

UUwi
aiJ +

∑

i<j

UUwi
ai,Uwj

aj J

⊆ 0 +
∑

i<j

UI,IJ = {I, J, I}

since all zi := Uwiai are absolute zero divisors [UziJ = UwiUaiUwiJ (by (0.6)(vi) in
algebra form) ⊆ UI(UJUIJ) ⊆ UII = 0 by cubelessness] leading to

I = {I, J, I} = VI,JI. (1)

Choose 0 6= z ∈ I of the form z = Uwa for w ∈ I, a ∈ J (we are assuming
UIJ 6= 0). As above, z is an absolute zero divisor of J , then Φz is an inner ideal
of J and the ideal of J generated by z is just the outer hull M(J)z [14, 1.9]. By
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minimality of I, I = M(J)z, hence I = VI,JI = VI,JM(J)z. In particular, z = T (z)
for a multiplication operator T of the form

T =
∑

i

Vwi,yi
Uxi1 · · ·Uxini

(2)

for some wi ∈ I, yi, xij ∈ J . Let X be the finitely generated Φ-submodule of J

spanned by all yi, xij appearing in (2), together with x0 = 1. We have T ∈ VI,XMX .
Thus

Tm ∈
m︷ ︸︸ ︷

(VI,XMX) · · · (VI,XMX) ⊆MX

m︷ ︸︸ ︷
VI,X · · ·VI,X (3)

using (4.2). By (4.3), for fixed a1, . . . , am ∈ I each Va1,z1 · · ·Vam,zm is an alternating
multilinear function of z1, . . . , zm modulo the ideal Z of M(J) of multiplication
operators annihilating I. This alternating function must vanish modulo Z on the
finitely-spanned submodule X as soon as m exceeds the cardinality of the spanning
system of X, so for suitably large m we have z = T (z) = T 2(z) = · · ·Tm(z) ⊆
Tm(I) = 0, the desired contradiction.

5. On the Baer Radical of Jordan Algebras

5.1 In 1968 Zhevlakov posed the following problem [5, problem 1.44]: Do there
exist solvable prime Jordan rings? A negative answer was obtained by Medvedev
and Zelmanov in [13, Th. 3] for Jordan algebras over a ring of scalars having 1/2.
Indeed, they show that any nonzero solvable algebra J , i.e., satisfying that the series
of subalgebras

J (0) := J ⊇ J (1) := J2 ⊇ · · · ⊇ J (n) := (J (n−1))2 ⊇ · · ·

terminates (J (n) = 0 for some n), necessarily contains a nonzero ideal with zero
multiplication. The crucial point of this problem is the same as that of the one we
have dealt with in the previous sections: the fact that the square of an ideal is not
necessarily an ideal. This also causes problems with the definition of the radical
related to solvability in linear Jordan algebras, i.e., with the analogue of the Baer
radical of associative algebras.

We will say that a quadratic Jordan algebra J is semiprime if it has no nonzero
ideals which are trivial as subalgebras I, i.e., square-cube trivial, UII = I2 = 0
(although in the literature, the notion of semiprimeness is defined by imposing the
stronger condition of absence of nonzero ideals with zero cube). The Baer radical
B(J) of J is built by transfinite induction eliminating trivial ideals of J ; it is the
smallest of the ideals L such that J/L is semiprime. Then J is semiprime iff B(J) = 0.
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Transfinite induction can be avoided by simply defining B(J) to be the intersection
of all such ideals L: this intersection B is again such an ideal, since if I/B is trivial
in J/B so is its homomorphic image I/L ∼= (I/B)/(L/B) modulo any larger L, but
J/L is semiprime, so I/L = 0 and I ⊆ L for all L, i.e. I ⊆ B and I/B = 0. The
following open problem has become a part of the Jordan folklore.

5.2 Can a semiprime J have nonzero nilpotent ideals?

For a (not necessarily linear) Jordan system S, being nilpotent of index n means that
any Jordan monomial of degree n or bigger vanishes when evaluated in S. Obviously
J/B(J) does not have nonzero ideals which are nilpotent of index 2, but what about
other indexes of nilpotency?

We will show how the results obtained in the previous sections solve the above
problems under the assumption that we deal with algebras with the minimal condition
on ideals.

We say that J is free of some sort of ideal if it has no nonzero such ideals.

5.3 Corollary. (i) Let J be a Jordan algebra such that any nonzero ideal
contains a minimal ideal (for example, when J satisfies the minimal condition on
ideals). If J is semiprime, then J is free of ideals of zero cube, then also free of
nilpotent ideals.

(ii) Let J be a Jordan algebra satisfying the minimal condition on ideals. Then
B(J) is the smallest of the ideals L of J such that J/L is free of nilpotent ideals.

Proof: (i) If L is a nonzero ideal of zero cube of J , by hypothesis L contains a
minimal ideal L0 which has zero cube too. Thus L0 is trivial as a triple subsystem, and
by (3.1), L0 is J-trivial, hence trivial as subalgebra, which contradicts semiprimeness
of J .

If I is a nonzero nilpotent ideal of J of index n for some n ≥ 3, then we can use
the fact that the cubes of ideals are again ideals to find another nonzero ideal L of J

with cube zero, which is impossible as shown above.

(ii) Notice that J/B(J), as any quotient of J , also satisfy the minimal condition
on ideals, so that we can apply (i), and the assertion readily follows.

5.4 Remarks: (i) We remark that the minimal condition on ideals is weaker
than other more usual finiteness conditions, so that (5.3) can be applied to broad
families of examples. In particular, the descending chain condition on inner ideals
clearly implies the minimal condition on ideals.

(ii) The problems concerning solvability and nilpotency have a long tradition
in the study of linear Jordan algebras (see, Chapter 4 of [16]). This is because, in
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this setting, where any product can be expressed in terms of the bilinear product,
the analogues of associative algebra results and notions are easy to express and the
problems come out naturally.

(iii) Notice that, when dealing with linear algebras where intrinsic triviality
reduces to zero square (see (0.2)), (5.3) gives an answer to the classical formulation
of the problem stated in (5.2): Let J be a Jordan algebra such that any nonzero
ideal contains a minimal ideal (for example, when J satisfies the minimal condition
on ideals). If J is free of ideals of zero square, then it is also free of ideals of zero
cube and free of nilpotent ideals.
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