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Introduction

Associative localization theory is a well developed subject which was inaugu-
rated in the works of Ore and Osano and culminates in the general theory of Gabriel
localization. Form the viewpoint of Jordan theory, it is natural to ask for extension
of these ideas to the setting of Jordan algebras (or more generally, of general Jordan
systems). That line of research originated in the question raised by Jacobson [J1, p.
426] of whether it would be possible to imbed a Jordan domain in a Jordan division
algebra in a way similar to Ore’s construction in associative theory, in connection
with the search for new exceptional Jordan division algebras as algebras of fractions
of Jordan domains. From a more structure-theoretic standpoint, and related to the
possible extensions of Goldie theory to Jordan algebras, the early results of Mont-
gomery [Mon] and Britten [Brl-3] deal with the problem for lineal Jordan algebras
H(R,*). A general and purely combinatorial framework was laid by Jacobson et al.
in [JMP]. Based on the localization of the monoid of U-operators, they obtained an
imbedding of a Jordan algebra with a monoid of denominators in an algebra of outer
fractions, but in the words of one of the authors (see [BoM]), they had to impose an
unnatural extra condition.

As for the search for a Jordan version of Goldie’s theorems, which of course
required a construction of an algebra of fractions, a definitive answer for linear Jordan
algebras came with the papers [Z1,Z2] of Zelmanov, where he made use of his deep
results on structure theory rather than the direct approach of [JMP]. This result has
been extended in [FGM] to quadratic algebras by using again Zelmanov’s structural
approach, and refining Zelmanov’s ideas with the introduction of inner ideals of

1 Partially supported by the Spanish Ministerio de Ciencia y Tecnologia and FEDER (MTM
2004-08115-C0O4-02), and by the Diputacién General de Aragén (Grupo de Investigacién de Algebra)

1



2 F. Montaner

denominators, which play a key role in some of the notions of algebras of quotients
developed in later works (including the present one).

From a entirely different and more intrinsic approach, Martinez has recently
given in her beautiful work [M] necessary and sufficient Ore-like conditions for the
existence of algebras of fractions of linear (with % € ®) Jordan algebras, thus solving
Jacobson’s original problem. Her strategy consists of using the Kantor-Koecher-Tits
construction to embed the algebra of fractions in a Lie algebra through partially
defined derivations. This approach has also been followed in the quadratic extension
[Bo, BoM] of her theorem by Bowling and McCrimmon, where they use Faulkner’s
Hopf algebra construction which provides an adequate quadratic substitute of the
Kantor-Koecher-Tits Lie algebra. It must be pointed out, however that the quadratic
result requires some extra Ore condition, called in [BoM| “unwelcome condition”,
which makes it less neat than its linear counterpart.

Before describing some of the additional literature on Jordan algebras of quo-
tients, let us pause for a moment to reflect on the two approaches to the problem
laid in the above mentioned works of Zelmanov and Martinez. As a general remark,
the construction of algebras of quotients of a Jordan algebra J amounts to the con-
struction of an over-algebra ) O J whose elements have some kind of denominators
in J, so that one can see those elements as acting partially on J (where that action
should include the linear as well as the quadratic actions derived from the way in
which an element of @) multiplies by elements of J). So to some extent we are forced
to decide what kind of partially defined or germs of “regular representations” will
be adequate for that construction. The two mentioned approaches choose different
regular representations: a Lie representation in Martinez’s work, and an associative
representation (hence a specialization) in Zelmanov’s. Of course it is a truism that
specializations only work for special Jordan algebras, however, if we impose regular-
ity conditions as nondegeneracy, what is left out is algebras satisfying polynomial
identities, and for these we can try to use the results of Jordan Pl-theory. On the
other hand, while partially defined regular representations of associative algebras on
suitable filters of one-sided ideals are the main theme of associative localization the-
ory, and are known to produce associative algebras, the effectiveness of using germs
of regular representations (hence derivations) of Lie algebras lies in the important
fact discovered in [M] that they also produce new Lie algebras.

Following the Lie approach of Martinez, in [GG] Gdémez-Lozano and Garcia
defined and studied what they called Martindale-like systems of quotients of Jordan
systems (not just algebras) over rings ® of scalars with % € &, paralleling the known
construction of associative systems of Martindale quotients. By the general reasons
mentioned above, that required the previous work of Siles [S] on Martindale-like Lie
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algebras of quotients, also inspired in the construction given in [M].

On the other hand, among the works that follow Zelmanov’s structural approach
we can mention the study [MP] of the Jordan analogue of Johnson’s algebra of quo-
tients of an associative algebra. Here, the set of denominators is the filter of essential
inner ideals of the Jordan algebra, and as in the associative theory, one must impose
some nonsingularity condition, which is called strong nonsingularity in that paper
(since there already existed a weaker notion of nonsingularity, introduced in [FGM]).
Also within the framework of Zelmanov’s structural approach, and following some
of the ideas of [MP] (in a preliminary version), Anquela, Gémez-Lozano and Garcia
have studied in [AGG] algebras of Martindale-like quotients of strongly prime lin-
ear Jordan algebras (thus dropping the condition % € ¢ of [GG], but assuming the
additional condition of primeness).

In this paper we address the problem of adapting to nondegenerate Jordan al-
gebras Lambek and Utumi’s construction of algebras of quotients (also referred to in
the literature as general algebras of quotients), and define and prove the existence
of maximal algebras of quotients. The importance of this construction is that it em-
braces all known types of algebras of quotients in the nondegenerate case. We adopt

the above mentioned Zelmanov’s structural approach, and follow many of the ideas
of [MP].

The paper is organized as follows. After a first section of preliminaries, we define
in section 1 dense inner ideals, which are intended to be the Jordan analogues of dense
one-sided ideals, basic for the construction of Lambek-Utumi’s algebras of quotients.
It must be noted that, with that definition, the existence of dense inner ideals in a
Jordan algebra implies that the algebra is nondegenerate. As commented before, this
is a natural restriction for the structural approach that we will follow.

In section 2, we introduce the notion of Jordan algebra of quotients linked to the
notion of dense inner ideal. We show that, for nondegenerate algebras, this definition
includes as particular cases all the different types of algebras of quotients mentioned
above. We study then some of the properties of algebras of quotients, and introduce
the natural notion of maximal algebra of quotients. We close the section by studying
how the weak centroid of a Jordan algebra relates with the weak centroids of its
algebras of quotients, a result which will be instrumental in the study in section 3
of maximal algebras of quotients of PI algebras. To construct a maximal algebra of
quotients for those, we extend Beidar and Mikhalev’s nearly classical localization to
quadratic Jordan algebras, and show that for a PI-algebra that is in fact the maximal
algebra of quotients.

Section 4 is devoted to the construction of maximal algebras of quotients for
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hermitian algebras, or more precisely, for special algebras for which a particular
Zelmanov ideal generates an essential ideal. Here the specialization strategy outlined
before is used, and we translate the problem to the associative setting, where it can
be solved by using Lanning’s symmetric algebra of quotients. The fundamental fact
here is the good relationship that exists between dense inner ideals and dense one-
sided ideals of a x-tight associative x-envelope, which also suggests the adequacy of
the notion of dense inner ideal.

Finally, in section 5, we put all pieces together, and state and prove the existence
of maximal algebras of quotients. We obtain as corollaries the existence of maximal
Martindale algebras of quotients, and the sufficiency of Martinez’s Ore conditions for
the existence of algebras of fractions in nondegenerate Jordan algebras.

0. Preliminaries

0.1. We will work with Jordan algebras over a unital commutative ring of scalars
® which will be fixed throughout. We refer to [J2, MZ] for notation, terminology,
and basic results. In particular, we will make use of the identities proved in [J2],
which we will quote with the labels QJn of that reference. In this section we recall
some of those basic results and notations, together with some other that will be used
in the paper.

0.2. A Jordan algebra has products U,y and z2, quadratic in x and linear in
y, whose linearizations are U, .,y = V, 2 = {z,y,2} = Up1.y — Upy — Uy, and
roy=(r+y)?— 2% — y? respectively.

We will denote by J the free unital hull J = ®1&.J with products Uar1+2(Bl4y) =
a?B1 + @y + ax oy + 2aBz + Br? + Uy and (al + x)? = o?1 + 2ax + 22. (We
will also use this notation for the corresponding construction for associative algebras:
R=a1 + R.) A tight unital hull J’ of J is a Jordan algebra having J as a subalgebra
which is tight over J: any nonzero ideal I of J’ hits J, J N1 # 0.

0.3. A ®-submodule K of a Jordan algebra J is an inner ideal if U,J C K for
all x € K, and that an inner ideal I C J is an ideal if {I,J,j} +U; I CI.If1,L
are ideals of J, so is their product U;L, and in particular so is the derived ideal
I = U;I. An (inner) ideal of J is essential if it has nonzero intersection with any
nonzero (inner) ideal of .J.

For any subset X of the Jordan algebra J, the annihilator of X in J is the set
Ann;(X) of all z € J which satisfy U,z = Uyz = 0 and U,U,J = U, U, J =V, .J =
Vz,l,j = 0 for all z € X. This is always an inner ideal of J, and it is also an ideal if
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X is an ideal. If J is nondegenerate and I is an ideal of J, the annihilator of I can
be characterized in the following alternative ways (see [Mc2, Mo2]):

Ann;(I)={z€J|U, I =0} ={z€ J|Urz =0}

0.4. The centroid I'(J) of a Jordan algebra J is the set of all ®-linear mappings
v : J — J that satisfy: y(Uyy) = Upy(y), v>(Uzz) = Uyw)2, and v({z,y, 2}) =
{v(z),y,2} for all x,y € J and all z € J. If J is nondegenerate, then ['(J) is a
reduced unital commutative ring, and if in addition J is strongly prime, then I'(J)
is a domain acting faithfully on J. In that case we can localize to define the central
closure I'(J)~!J which is an algebra over the field of fractions I'(J)~I'(J). In a
nondegenerate J, y"x = 0 implies yx = 0 for any v € v(J), any positive integer n,
and any z € J.

Following [Fu], we define the weak center C\,(J) as the set of all z € J which
have U, V, € I'(J). We will also consider the notion of extended centroid of a Jordan
algebra J which we will denote by C(.J), and for which we refer to [Mo2]. Its attached
scalar extension C(J), the extended central closure was defined and studied in [Mo2].

0.5. It is well known that any associative algebra R gives rise to a Jordan algebra
R by taking the products U,y = zyz and 22 = zz. A Jordan algebra is special if it
is isomorphic to a subalgebra of an algebra of the form R(), and it is called i-special
if it satisfies all the identities satisfied by all special algebras. An important class of
special algebras are algebras of symmetric elements H (R, *) of associative algebras
with involution (R, x*), and more generally, ample subspaces Hy(R,*) C H(R,*) of
symmetric elements, subspaces that satisfy: r +7*, rr* and rhr* belong to Hy(R, )
for all » € R and all h € Hy(R, *).

For a special Jordan algebra J we can always find a associative x-envelope, an
associative algebra R with involution % such that J is a subalgebra of H(R,*), and
R is generated (as an associative algebra) by J. An associative x-envelope of J is
x-tight is any nonzero *-ideal I of R hits J: I NJ # 0. By an easy application of
Zorn’s lemma, one can always *-tighten an associative x-envelope R of J by factoring
out a x-ideal 7, maximal among those which miss J: J NI = 0.

A fundamental fact in Jordan theory with important structural consequences
for i-special algebras is the existence of hermitian ideals in the free special Jordan
algebra F'SJ[X], generated by X in the (+)-algebra of the free associative algebra
Ass[X] (see [MZ]): for any special Jordan algebra J C H(R,*) and any a in the
associative subalgebra algr(H(J)) of R generated by the evaluation H(J) of H(X)
on J, the trace a+a* belongs to H(X). An i-special Jordan algebra J is of hermitian
type if Anny (>, H(J)) = 0, where the sum runs on the set of all hermitian ideals.
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Often we will consider the stronger condition that there exists a particular hermitian
ideal H(X) with Ann;(H(J)) = 0. It does not seem to be known if this is always
the case for a hermitian Jordan algebra J.

0.6. We refer to [St, R2] for basic facts about algebras of quotients for associative
algebras. If L is a left ideal of an associative algebra R, and a € R, we denote by (L :
a) the set of all » € R with Lr C L. Recall that the left ideal is dense if (L : a)b # 0
for any @ € R and any nonzero b € R. We will be interested in algebras of quotients
attached to the filters of dense right or left ideals of an associative algebra R, and in
particular to the right and left maximal algebra of quotients which we will denote by

" ee(R) and QL (R) respectively. The associative algebras that naturally arise in
Jordan theory are associative envelopes and they carry an involution, so it will be
important for us to be able to extend involutions to algebras of quotients. This can
not be done in general for the one sided maximal algebras of quotients Q',,...(R) and

rax (R), so the adequate substitute is the maximal symmetric algebra of quotients
Qo (R) defined by Lanning [L]. Recall that @, (R) is the set of elements ¢ € Q. .. (R)
for which there exists a dense left ideal L of R with Lg C R (or symmetrically, the
set of all ¢ € Q! ,.(R) for which there exists a dense right ideal K with ¢K C R).
If R has an involution, this is the biggest subalgebra of the maximal algebra of
left (resp. right) quotients to which the involution extends. Another algebra of
quotients to which involutions can be extended, and which plays a fundamental role
in Zelmanov’s structure theory is the Martindale algebra of symmetric quotients
Qs(R) of a semiprime algebra R (see [MZ]). As it is easy to see, one has Qs(R) C

Q,(R), and Q,(Qs(R)) = Q,(R), so if S is a subalgebra of R and R C Q4(S), then
Qo (R) = Qs (5).

1. Dense inner ideals

1.1. Let J be a Jordan algebra, K be an inner ideal of J, and a € J. We will
use the following notations

(K:a)p={x€e K|zoa€ K},

(K:a)={z€(K:a)| Uz € K}.
Also, for a finite family of elements aq,...,a, € J, we inductively define (K : a :
ag:...:an)=((K:a1:...:ap-1) : an).

1.2. Lemma. Let J be a Jordan algebra, K C J be an inner ideal of J, and
a € J. Then, the sets (K : a)r, and (K : a) are inner ideals of J and they satisfy
Uk.a) K C (K :a).
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Proof. forallz € (K :a)p and b € J, we have (U,b)oa = {z,b,xoa}—U,(boa) €
K, hence U,b € (K :a)r, and (K : a)f, is inner.

On the other hand, for any = € (K : a) and b € J, we have U,U,b = Ugorb —
UyUb — Ug(aob)oa+{x,b,Usx} € K, hence U,b € (K :a)y (K :a)is an inner
ideal.

Finally, if £ € K and = € (K : a)r, we have U,Uyk = Ugork — U, Uk —
{{a,z,k},a,x} +koU,a? and {a,z,k} = (aox)ok—{x,a,k} € K, hence U, U,k € K,
and since U,k € (K : a)p, this yields U,k € (K : a). m

1.3. We will say that an inner ideal K of J is dense if U.(K :ay :...:ay,) #0
for any finite collection of elements aq,as,...,a, € J, and any 0 £ c € J.

Our next aim is to get a more manageable characterization of density. To that
end we consider the following properties for an inner ideal K of J.

(1) Va,b,c € JJU((K :a)N (K :0)) =0=c¢=0,
(11) Va,b,c € JJU((K :a)p N (K :b)p)=0=¢c=0,
(2) Va,bc € JUL(K :a:b)=0=c=0,
(21) Va,b,c € JJU.((K :a)r :b)p =0=c=0.

Since (K :a)N(K :b0) C(K:a)pN(K :b)p and (K :a:b) C (K :a)r :b)p
for any a,b € J, clearly (1) implies (1), and (2) implies (2).

Note also that if J has an inner ideal which satisfies any one of those conditions,
then J is nondegenerate.

We will prove next that all these conditions are equivalent to K being dense.

1.4. Lemma. Let K be an inner ideal of a Jordan algebra J. IfK satisfies
(11) of 1.3, then K satisfies (2) of 1.5.

Proof. Takea,be J,x € (K :a) N(K :b)r,and y € (K : ao(box)),N(K : )L,
we claim that U,y € (K :a):0)L.

By QJ20’ and its linearizatién, we have ((Uyy)ob)oa = {xoa,y,xob} —{x,a0
y,0b) + {29,00 (z0b)} — a0 Us(y ob). Now,

e {roa,y,xoble{(K:a)oa,J(K:b)ob} C{K,J,K} CK,
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e {x,ao0y,xob} C{K,J,(K:b)ob} C{K,J K} CK,

e {24,000t} =0 (yo(ao(zob)) - {z,a0(zob)y} € Ko((K:ao(zo
b)o(ao(xob)+ KC KoK+ KCK,y

e aolU,(yob) caolUig.,q)J Cao(K:a)CK.
And therefore ((Uyy) ob)oa € K and Uy € ((K :a)r, : b)r.

On the other hand, U,((Uyy) o b) = Ug{x,y,x 0 b} — U,U,(y o b) (by QJ20)
={zoa,y,(rob)oa} —{x,Uyy,xob} —{z,a,{y,xo0b,a}} —{xob,a,{y,x,a}} +yo
{z,a®,z0b} — U,U,(yob) (by QJ16 and the linearization in b = x o b of the identity
VaUbVa — Vuobs = VasVea — Vu,p2, which follows from Macdonald’s theorem [J2,
3.4.16]). Now, we have

e {zoa,y,(zob)oa} = (zoa)o(yo ((zob)oa) — {roa, (zob)oay} € (K
a)oa)o((K : (zob)oa)o((zob)oa))+{(K :a)oa,J,K} C KoK+{K,J, K} C K,

o {z,Uy,x0b} e {K,J,(K:a)oa} CK,

e {z,a,{y,z0b,a}l} = {x,a,(yo ((xrob)oa)} —{z,a,{y,a,x0b}} € {K,J (K :
(xob)oa)o((xob)oa)} +{K;J :{K,J,(K:b)ob}} CK

e {xob,a,{y,x,a}} ={xob,a,yo(xoa)}—{zob,a,{y,a,z}} € {(K :b)ob,J Ko
(K:a)oa)} +{K,J{K,J,K}} CK,

o UUs(yob) € UsUtay, (K : b),0b) € UaUsray, K C Ua(K : a) (by 1.2) C K.
Therefore U, ((Upy) ob) € Ky (Uyy)ob e (K :a), hence Upy € ((K :a):b)L

Suppose now that K has (11) , and let a,b, c € J be elements satisfying U.(K
a : b) = 0. By what has been proved above, for any = € (K : a) N (K : b) and any
ye (K :ao(box))rN(K :b)r, we have U,y € ((K : a) : b)r. Thus, for any
z € (K :a) we get Uy,yz € (K : a:b) by 1.2. Therefore U.Uy,,z = 0 for any
x,y,z in those conditions. In particular, taking z € UK C (K : a) (by 1.2) for a
given s € (K : a)p, we get U.Uy,,UsK = 0. So if w € U;Uy,,U.J, then U, K = 0,
hence w = 0, that is Us;Uy,,Uc.J = 0, and thus, Uy, ,u.sJ = 0, which implies
Uv,yUecs = 0. Since s € (K : a)r, is arbitrary, we have Uy, ,U.(K : a)r = 0, hence
Uv.v,y(K :a)p = UUy,,U(K : a)r = 0. Now, the property (11) of K implies
Uc.U,zy = 0. And since this holds for any y € (K :ao (box))r N (K :b)r, we have
UU, (K :ao0(box)),N(K:b)y)=0. Thus, U,((K :ao0(box)),N(K:b))=0
for any w € U,U.J, hence w = 0 by (1), so we obtain U,U.J = 0. Therefore
Uv,.J = UU,U.J = 0, which yields U.z = 0. Again, since x € (K :a), N (K :b)p,
can be arbitrarily chosen, we obtain U.((K : a)r N (K : b)r) = 0, hence ¢ = 0 by

(1L) |

Since (1) implies (1), and (2) implies (2), we obtain as a consequence of this
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lemma that (1) implies (2), and (1) implies (2f,).

1.5. Lemma. Let L, N be inner ideals of the algebra J, and assume that the
following properties hold:

- For any a,c € J, U.(L : a), = 0 implies c =0,
- Foranyce J, if U.N =0, then ¢ = 0.
Then U.(NNL)#0 for any 0 # c € J.

Proof. Take b € N. Then UyU(x.py, K € N N L because Uk.p), K C (K : b).
Thus, U.(N N L) = 0 implies U.UpU(k ), KK = 0. Then, for any z € J and k € (K :
b)L we have UUkUbUCLBK = UkUbUCUIUCUbUkK = O, which yields UkUbUCJ =0 by
the hypothesis on L. Then Uy,y,kJ = UUUrUyU.J = 0, hence U.Upk = 0 and
thus U.Up(K : b)r, = 0. Therefore, Uy, v, (K : b)) = UpyUU,U.Up(K : b), = 0 for
all z € J, hence UyU.J = 0 by the hypothesis on K. Now, this implies Uy ,J =
U.UyU.J = 0, hence U.b = 0 since J is nondegenerate. Therefore U.b = 0 for all
be N, hencec=0.m

1.6. Lemma. Let K be an inner ideal of the Jordan algebra J. If K satisfies
1.3(2), then K satisfies 1.3(1).

Proof. We first show that if K satisfies (21), then U.((K : a) : b)r # 0 for
any a,b € J and 0 # ¢ € J. Indeed, if x € ((K : a)r : b)p and y € (K : b)p,
we have (Uyy) ob) = {z,y,x0b} —Uzy(yob) € {(K : a)r,K,((K : a)r : b)p o
b} + Utk.a), (K : b)pob) € {(K :a),K,(K :a)} +Ug.q), K C (K :a) by 1.1.
So if U.((K : a) : b)p, =0 forall z € (K : a)p : b, then UU,(K : b), =0
Therefore, Uy, v..(K : b), = U,UU,UU,(K : b), =0 for any z € J, and we get
U,U.J = 0. This implies Uy, 5J = 0, hence U.xz = 0 by nondegeneracy of J. Thus
Uc((K :a)r :b), =0, hence ¢ =0 by (21).

Now, it suffices to apply 1.5 with L = (K :a) and N = (K : b). m
1.7. Lemma. Let K be an inner ideal of the Jordan algebra J. If K satisfies

1.3(1), then U.((K : a1) N---N (K : ay)) = 0 implies ¢ = 0 for any n and any
1,02, ...,0p,C E J.

Proof. To carry out an induction on n it suffices to apply 1.5 with L = (K : a,,)
and N = (K :a1)N---N(K : a,—_1), taking into account that 1.3(1) implies 1.3(2). m

1.8. Lemma. Let K be an inner ideal of the Jordan algebra J. If K satisfies
1.3(1), then (K : a) also satisfies (1) de 1.3 for all a € J.

Proof. Take a,b,c,d € J with Us((K :a:b)N (K :a:c)) =0. By the proof of
lemmald, ifz € (K :a)N(K :0)N(K :¢),y € (K :ao(box))N(K :ao(coz))N(K :



10 F. Montaner

b)N(K :¢), and z € (K : a), then Uy,yz € (K : a:b)N (K : a:c). Therefore
UsUy,yz = 0 for any z,y, 2 in those conditions. The we have UUy, (K : a) = 0,
hence Uy, ,v,t(K : a) = Uy,,UaUsUgUy, (K : a) = 0 for any t € J. It follows then
from (1) that Uy,,UgJ = 0, and hence Uy,v,,_,J = 0.Thus UgU,y = 0, and since y
is arbitrary we get UyU,((K :ao (boxz))N(K :ao(cox))N(K :b)N(K :¢))=0.
Arguing as above we get U,UyJ = 0 by lemma 1.7, hence Uy,,J = 0 and Ugzx = 0
by the nondegeneracy of J. Again, since this holds for any = € J this yields Uy((K :
a)N(K:b)N(K :¢)) =0, henced=0by 1.7. =

1.9. Proposicién. Let J be a Jordan algebra and K be an inner ideal of J.
The following assertions are equivalent:
(0) K is dense.
(1) For any a,b,c € J, U.((K :a) N (K : b)) =0 implies ¢ = 0.
(11) For any a,b,c € JJU.((K :a)r, N (K : b)) =0 implies c = 0.
(2) for any a,b,c € J,U.(K :a:b) =0 implies ¢ = 0.
(21)
)

(3) For anymn and any ay,asg,...,an,c € J, U.((K :a1)N---N(K : ay)) = 0 implies
c=0.
Proof. The equivalence of (1), (1), (2), and (21) is proved in 1.4 and 1.6. On

the other hand, (1) = (3) is proved in lemma 1.7, and (3) = (1) is obvious. Finally,
(0) = (2) is also obvious, and (1) = (0) immediately follows from 1.8. m

For any a,b,c € J,U.(K : a)r, : b), = 0 implies ¢ = 0.

1.10. Lemma. Let K,L C J be inner ideals of a Jordan algebra J. If K and
L are dense, then K N L 1is dense.

Proof. Suppose that a,b,c € J have U.((KNL:a)N(KNL:b)) =0. Applying
lemma 1.5 with (K :a)N (K :b) and (L : a) as N and L of that lemma respectively,
gives U, ((K : a)N(K :b)N(L : a)) # 0if x # 0. Thus, again by 1.5 with (K : a)N(K :
b)N(L:a)as N,and (L:b)as L, we get U.((K :a)N (K :b)N(L:a)N(L:b))#0
if ¢ # 0. So it suffices to note that (K :z)N(L:2z)=(KNL:x)foranyzecJ. =

1.11. Let J be a Jordan algebra. Following [MP], we will say that a set F of
inner ideal is a linearly topological filter of inner ideals if it satisfies:

FT I. Any inner ideal of J which contains an element from F belongs to F.

FTII.If K,L € 7, then KNLeF.

FT III. If K € F and a € J, then (K : a) € F.

It is obvious that the set of all dense inner ideals satisfies FT I and FT III.
Property FT II is proved in 1.10, and consequently, the set of all dense inner ideals
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of J is a linearly topological filter. This notion parallels the corresponding one used
in associative theory (see[St]). However, a complete Jordan version of the associative
localization theory would require the definition of a Jordan analogue of the notion
of Gabriel filter, which is far from obvious. Nevertheless, some of the consequences
that one should expect from that definition can be obtained when we consider dense
inner ideals, as is in particular the case with the fact that the product UxL of a
dense inner ideals K and L contains a dense inner ideal (although it may not be an
inner ideal itself). The proof of this fact follows the proof of the corresponding fact
for essential inner ideals in strongly nonsingular Jordan algebras [MP].

1.12. Lemma. For a Jordan algebra J and a ®-submodule A C J, the set
K(A)={ac A|U,J +{a,J, A} C A}

is an inner ideal of J.

Proof. This is [MP,1.4] m

1.13. Lemma. Let K C J be a dense inner ideal of the Jordan algebra J.
Suppose that H C K C J 1is an inner ideal of J which is also an ideal of K: H <1 K.
IfU,H # 0 for any 0 # x € K, then H is a dense inner ideal of J.

Proof. For any a,b € J and z,y € HN (K : a) N (K : b), we have (U,y) o
a = {a,y,xoa} —Uy(yoa) € {HH K} +UygK C L (since H< K). Therefore
Uyy € (H :a)pN(H :b)r. Thus, if ¢ € J satisfies U.((H : a)p, N (H : b)) = 0, then
UU,y =0 for any x,y € HN (K :a) N (K :b).

Now, since (K : a) and (K :b) are dense, so is L = (K : a) N (K : b) by lemma
1.10. Then we get that Uy(L : ) = 0 implies d = 0 for all d, e € J. On the other hand,
if UdH =0 y then UUkUdzH = UkUdUszUkH g UkUdUZUdH (Since H is an ideal of
K)=0forany k € Ky z € J. Then, from UyUyz € K, it follows that U,Uyz = 0 by
the hypothesis on H. Thus UpUgJ = 0, hence Uy, ,J = 0 and this yields Uzk = 0.
Thus U;K = 0, and so d = 0. This shows that L and H satisfy the hypothesis of
lemma 1.5 on L and N respectively. As a consequence, Us(HN (K :a)N(K :b)) =0
implies d = 0

Now take z € J, since U.U,y = 0 for all z,y € HN (K : a) N (K : b), we
get Uy,u.. HN(K :a)N(K :b) = U, UUUUHN(K :a)N (K :b) =0, hence
U,U.z = 0, and sice z is arbitrary we have U,U.J = 0. Thus Uy, ,J = U.U,U.J = 0,
hence U.x = 0 by the nondegeneracy of J. Then we get U.(HN(K : a)N(K : b)) =0,
which implies ¢ = 0, so the lemma follows from 1.13. m

1.14. Remark. Let H C K be inner ideals of J. If K is dense and H <K, then
H is dense if and only if it is an essential ideal of K. Indeed, if H is dense, then for
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any nonzero ideal I of K, and any 0 # y € I, we have 0 # U, (H : y) C HNI. On the
other hand, since K is a nondegenerate algebra, the essentiality of H is equivalent to

the condition UyH =0 =k =0 (0.3).
1.15. Lemma. Let K be an inner ideal of the Jordan algebra J.
(a) If A is an ideal of K, then IKC(A) is also an ideal of K.

(b) If in K is a nondegenerate algebra and A # 0, then K(A) # 0.
(¢) If in K is a nondegenerate algebra and A is an essential ideal of K, then KC(A)

is dense.

Proof. (a) Take k € K, a € K(A) and z € J. We have Uyorz = U, Uiz +
UpUgz + koU,(koz) —{a,z,Uga}. Using now that A is an ideal of K we get

U Uz € Uy J C A,

UpUuz € UgU,J CUKACA

and
{a,z,Ua} € {a,J, U A} C {a,J, A} C A.

Hence U,orz C A, and we have UgorJ C A.
On the other hand, for any y € J and b € A we get

{aok,y,b} ={a,koy,b} —{a,y,kob} +ko{a,yb}e
€{a,J,A} +{a,J,Ko A} + K o{a,J A} C
CA+{a,JJA}+ Ko ACA.

And therefore, a o k € K(A) hence K(A) o K C K(A).

Next, for a and k as before, and any z € J,

Uvpaz = UpUUpz € UgU,J C UA C A.

Now, we have

{aok,z,bok}=1{a,Ugz,b} + U{a,z b}+

+ko{a,zok,b} —{a,z Ugb} —{b, z,Uga}.
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Hence

{Uka, z,b} = {a, Uiz, b} + Ur{a, z,b}+
+ko{a,zok,b} —{a,z,Upb} —{aok,z,bok} €
€ {a,J,A} + Ug{a,J, A} + K o {a, J, A}+
+{a,JJUKkA} +{aok,J, Ao K} C
CA+UxkA+KoA+{a,J,A} +{koa,J A} C
C A. (since ao k € K(A))

Thus UxK(A) C K(A), and this proves that K(A) is an ideal of K.

(b) Now suppose that K is a nondegenerate algebra and A # 0. We claim that
Uy.pc € K(A) for any a,b,c € A. Indeed we have Uy, ,.J C UUpJ C UaUgJ C
UsK C A, and for any x € J, d € A we also have, by QJ15 ,

{Uu,pc,x,d} = {Usb, ¢, {Usb, x,d}} — Uy, p{x,c,d} =
= {Uab, c,{Uyb, x,d}} — U,UpUy{x,c,d} €
€ {A, A K} +UsUkJ C A.

Thus, if I(A) = 0, then Uy, pc = 0 for all a,b,c € A, hence Uy, A =0 for all a,b € A
and from 0.3and the nondegeneracy of we get K U,b € Anng(A) N A = 0 for all
a,b e A. So again U, A =0 for all a € A, hence A = 0.

(c) Since K is nondegenerate, by 1.14 and (b) it suffices to show that if k € K has
UK (A) =0, then k = 0. Now, by the proof of (b), Uy, sc € K(A) for all a,b,c € A,
hence UK (A) = 0 implies UyUy,pc = 0 for all a,b,c € A. But if UpUy,pc = 0 for all
a,b,c € A, then UUabUklA = UUabUkUlUkUUabA = 0, hence Uy, U, K C AnnK(A)
(by ideals) = 0 (by essentiality of A). Thus Uy, K = UxUp, UK = 0, hence
UpUub = 0 for all a,b € A. Arguing as before, we get Ura = 0 for all a € A, and
finally k =0. m

1.16. Lemma. Let K be an inner ideal of the Jordan algebra J. If K is dense,
then K(Ux K) is also dense. In particular, Ux K contains a dense inner ideal.
Proof. Since K is dense, it is nondegenerate, hence Uk K is an essential ideal

of K and 1.15(c) applies. m

1.17. Following [MP], a Jordan algebra J is called strongly nonsingular if U.K #
0 for any essential inner ideal K of J and any nonzero c € J.

1.18. Lemma. Let J be a Jordan algebra. Then:
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(a) Any dense inner ideal of J is essential.
(b) J is strongly nonsingular if and only if any essential inner ideal is dense.

Proof. (a) Let K a dense inner ideal of J and L be a nonzero inner ideal of J.
For any 0 # x € L we have U,J C L and 0 # U,(K : ) C KNU,J C K N L, which
proves that K is essential.

(b) Suppose first that J is strongly nonsingular, and take a,b € J. If K is
essential, then (K : a) and (K : b) are essential by [MP, 1.2], hence (K : a) N (K : b)
is essential. Thus, U.(K : a) N (K :b) = 0 implies ¢ = 0 by strong nonsingularity of
J, and this proves that K is dense. The reciprocal is obvious. m

1.19. We next examine some inheritance properties of dense inner ideals which
will be useful later. Recall that if J is a Jordan algebra and a € J, the local algebra
J, of J at a is the quotient of the a-homotope J(®) by the ideal Kera of J(® of all
the elements = € J with U,z = U,U,a = 0. If J is nondegenerate, the condition
U,z = 0 already implies a € Kera. We refer to [DAM] for a throughout study of
local algebras.

1.20. Lemma. Let J be a Jordan algebra, a be an element of J and K be an
inner ideal of J. If K is dense, then the inner ideal K = K + Kera/Kera is dense
m Jg.

Proof. Denote with bars the projections on J, and take = = + Kera € J,.
Then, forall k € (K : z: a)N(K : a+x) = N, we have {k,a,x} = (koa)ox—{a, k,x},
and since N, C (K : a)N(K : 2)N(K : a+x), we get Uy ok = Upyok—Usk—Uzk € K,
hence {k,a,z} € K, and zok € K. Also, U,U,k € U,U,(K :x:a) CU,(K : 2) C K,
hence Uzk € K. Therefore N, C (K : 7).

Now, if ¢ € J, has U((K : ) N (K : %)) = 0 for some Z,§ € J,. Using the
previous notation, we have U.Uy(N; N N,) C Uz(N, N ]\_fy) = 0, hence Uy, (N, N
Ny) = U, U.Uy(Ny N Ny) = 0. But N, N N, is dense by 1.10 since N, and N, are
dense, so we get U,c = 0, hence ¢ = 0, and K is dense. m

1.21. Local algebras can also be defined for associative algebras in the same way
as for Jordan algebras, and for those, the analogue of lemma 1.20 is also true: If L
is a dense left ideal of an associative algebra R, and a € R, then L + Kera/Kera is
a dense left ideal of the local algebra R, .

1.22. Lemma. Let J be a nondegenerate Jordan algebra and let I be an ideal
of J. If K is a dense inner ideal of J, then K + Ann;(I)/Ann;(I) is a dense inner
ideal of J/Ann;(I).

Proof. We denote with bars the projections in J = J/Ann;(I). Now suppose
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that Uz((K : @) N (K : b)) = 0 for some a,b,c € J. Since K is dense, so is (K :
a) N (K : b), and since we obviously have (K :a)N (K :b) C (K : a)N (K : b), it
suffices to show that for any dense inner ideal K of J, UzK = 0 implies ¢ = 0. Now,
if UzK =0, then U.K C Ann;([I), hence Uy,,K C INAnn;(I) =0 for any y € I,
which implies U.I = 0 by the density of K. Then ¢ € Ann;(I) by 0.3, hence ¢ = 0. m

1.23. Again, the corresponding result holds for associative algebras: if R is a
semiprime associative algebra, I is an ideal of R, and L is a dense left ideal of R,
then L 4+ Anng(I)/Anng(]) is a dense left ideal of R/Ann;(I).

2. Algebras of quotients

2.1. Let J be a Jordan algebra, let J be a subalgebra of J and let a € J.
Recall from [Mo2] that an element = € J is a J-denominator of & if the following
multiplications take a back into J:

A

(Di)  U,a (Dii) Usz (Diii) UzU,J
(Diii") U,Usd  (Div) Vead — (Div) VaaJ
We will denote the set of J-denominators of @ by Dj(a). It has been proved in
[Mo2, 4.2] that D;(a) is an inner ideal of J. We remark (see [FGM, p.410]) that any
x € J satisfying (Di), (Dii), (Diii) and (Div) belongs to D;(a).

2.2. Let J be a subalgebra of a Jordan algebra (). We will say that @) is an
algebra of quotients of J if the following conditions hold:

(i) Ds(q) is a dense inner ideal of J for all ¢ € Q.
(ii) UyDy(q) # 0 for any nonzero g € Q.

Clearly, any nondegenerate algebra J is its own algebra of quotients since its
inner ideals of denominators Dj(xz) = J are dense for all x € J, and U,D;(x) =
U,J # 0 by nondegeneracy of J. Reciprocally, any Jordan algebra having an algebra
of quotients is nondegenerate since it contains a dense inner ideal.

2.3. Examples.

1. We have already mentioned that a nondegenerate Jordan algebra J is an algebra
of quotients of J itself. More generally, if K is a dense inner ideal of J, then J
is an algebra of quotients of K. Indeed, any = € J has Dg(z) = (K : x), which
is dense in J, hence also in K, and U,Dj(x) = U, (K : x) # 0. In particular, if
J is nondegenerate and [ is an essential ideal of J, then I is a dense inner ideal
and J is an algebra of quotients of I.
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We refer to [GG, AGG] for the notion of Martindale-like algebra of quotients of a
linear Jordan algebra, which has been generalized for quadratic Jordan algebras
to the notion of Martindale-like cover [ACGG1, ACGG2]. Let J be a Jordan
algebra and let F be a filter of essential ideals of J satisfying the property: for
all I € F, the derived ideal I(Y) = U;I is again in F. We will say that an
over-algebra () O J is a Martindale algebra of F-quotients if for any ¢ € () there
exists I € F with I C Dj;(q), and Uyl # 0 if g # 0. It is easy to see that when
J is nondegenerate and F is the filter of all essential ideals of J, that is exactly
the same as a Martindale-like cover of J.

Let J be a nondegenerate Jordan algebra with centroid I' and let ¥ C I" be the
set of all elements 4I" with Ker~ = 0. Then X is a multiplicatively closed subset
and one can consider the module of quotients Js; = ¥ ~'J, which is a Jordan
algebra over the ring of quotients ¥~!I". Then Jyx is an algebra of quotients of .J
(and, in fact, a Martindale algebra of quotients). Indeed, if ¢ € Jx, then there is
v € ¥ with vqg = x € J. It is easy to see that v2J C D;(q) (cf. [FGM;2.1]), and
this is clearly an essential ideal of J (since Kery? = 0). Now, if U,D;(q) = 0,
then x = vq € Ann;(+%J) = 0, hence ¢ = 0.

The extended central closure C(J)J of a nondegenerate Jordan algebra J is an
algebra of quotients of J. Indeed, since for any x € C(J)J there is an essential
ideal of J contained in Dy(x) by [Mo2, 4.3(ii)], we get U,Ds(z) # 0 by [FGM,
4.3].

Let J be a Jordan algebra. Recall that an element s € J is said to be injective
if the mapping Us is injective over J. Following [FGM] we denote by Inj(.J) the
set of injective elements of J. A set S C Inj(J) is a monad if Ugt,s* € S for
any s,t € S (see [Z1, Z2, FGM]). A monad S is said to be an Ore monad if
UsSNUS # () for any s,t € S. An algebra @ containing J as a subalgebra
is an algebra of S-quotients (and J is an S-order of Q) if all elements of S
are invertible in @ and for all ¢ € @, D;s(q) NS # (. It has been proved in
[M,B] that a necessary condition for such an algebra @ to exist is that S satisfies
the Ore condition in J: for any z € J and any s € S there exists t € UsS
such that tox € K, = ®&s + Usj. Note that for such an element t, we have
Upt? = (xot)? + Upz? — {zot,x,t} € K, hence t> € SN (K, : x). Moreover,
ifre SN (Ks:x), thenany t € UsSNU,S hast € UgS and t ox € K. Thus
the Ore condition can be rephrased: for any z € J and any inner ideal K of J,
KNS # () implies (K :x) NS # 0.

Let J be a nondegenerate Jordan algebra and S C Inj(J) be an Ore monad
which satisfies the Ore condition in J. Consider the set Zg of all inner ideals
K C J with SNK # (). Then Zg is a filter of inner ideals since for any K, L € Zg
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there are s € SN K and t € SN L, and hence there is » € UyS N U S which
then belongs to S N K N L, thus giving K N L € Zg. Also, by what has been
proved above, (K : a) € Zg for any K € Zg and any a € J. Now, if K € Zg
and U.K = 0, then Uy, .J = U;U.UsJ CU;U.K =0 for any s € SN K. Thus,
Usc = 0 by nondegeneracy of J, and ¢ = 0 by injectivity of s. This shows
that Zg consists of dense inner ideals. As a consequence, if ) is an algebra
of S-quotients of J (whose existence makes superfluous the assumption that S
satisfies the Ore condition in J), then @ is an algebra of quotients of J in the
sense of 2.2. Indeed, since D;(q) € Zg is dense for any ¢ € @, it only remains
to show that U,D;(q) # 0 if ¢ # 0. To prove that, take s € D;(¢) NS. Then
Uv.qJ CUU;Dj(q) = 0 implies Usq = 0 since J is nondegenerate and Usq € J,
hence ¢ = 0 because s is invertible in Q.

2.4. Lemma. Let Q be an algebra of quotients of the Jordan algebra J. Then:
Q@ is nondegenerate,

Foranyqe Q, U, JNJ #0,

Any nonzero inner ideal of Q hits J nontrivially (hence Q is tight over J ),

If K is a dense inner ideal of J, then UK # 0 and Uxq # 0 for any nonzero
€@,

(v) If L is an inner ideal of Q, then L is dense in Q if and only if LN J is a dense
inner ideal of J.

Proof. (i) and (ii) follow from the fact that 0 # U,D;(q) C U,J NJ C U,Q,
and the tightness (iii) readily follows from this.

Now, if K C J is a dense inner ideal and U,K = 0 for some ¢ € @, then
Uy, K C UUU,K = 0 for any = € D;j(q), hence U,D;(q) = 0 since U,D;(q) € J
and K is dense, and thus ¢ = 0. Now, if Uxq = 0 for some ¢ € (), then arguing as in
[MP, 2.6], we get ¢ = 0. This proves (iv).

To prove (v) first assume that L is dense, and note that if a € J, then (LN J :
a) = (L :a)NJ, so it suffices to show that if U.(LNJ) = 0 for a dense inner ideal L of
Q and c € J, then ¢ = 0. Now, for any ¢q € L we have Uy, .D(q); = U,U.U,D(q) s C
U,Uc(LNJ) = 0, hence Uye = 0 by (iv), and thus Urc = 0, hence ¢ = 0, again by (iv).
Reciprocally, suppose that L N J is dense in J, and that U.((L : a) N (L : b)) = 0 for
some a,b,c € Q). Take z € K = Dj(a) N Dy(b), so that the elements U,a,U,b,z 0 a
and x o b all belong to J. Then, for any y € N = (K : Uza) N (K : Uyb) N (K :
xoa)N (K :xob), we have

(Uzy)oa=zo(yo(zoa)) —{z,zoa,y} — (Usa)oy € K,
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and similarly (U,y) o b € K. Therefore we have U,y € (L : a)p N (L : b)r, and thus
U.U,y = 0 for any z,y chosen in that way. Then, for any z € J we have Uy, N = 0,
and since N is dense by 1.10, we get U,c = 0 for any x € K, hence Ugc = 0, which
implies ¢ = 0 by (iv). =

2.5. Lemma. The following identities are satisfied in any Jordan algebra:

(1) {T7 UUzyZ7t} = {({T7I, y} © I) ©z, U:Eya t} - {{ZL‘, {T‘, T, y}7 Z}v Uzya t}_
— {{y, Uyr, 2}, Ugy, t} — {2, U, U, Uyr, t},

2 {r AUy, 2 {z,y, wi} t} =
={({r,w,y} ox) oz, Usy,t} +{({r,z,y} ow) 0 2, Upy, t}+
H{r 2,y oz) oz {z, y,wh, t} — {w, {r,z,y}, 2}, Uy, t}-
—{{z, {r,w,y}, 2}, Uy, t} — {{o {r, 2,9}, 2} {z,y, wh ) -
—{{y. {z,rw}, 2} Uy, ) — {{y, Uz, r, 2} {2,y wi, =
—{z,{z, UyUyr,w}, t} — {2, U Uy {x,r,w},t}.

(3) UrUy,yt = Uz, Ust — Uy Uy, ot —
- {{Tv Ul‘ya t}a an ?J} + {t, x, UyUazU’rI}

4)  UAUsy,t,{z,y,2}} = {{r, 2, y}, Ust, {r, 2,4} } + Uga gy 4,6, 2}
—Uy{{z,r, 2}, t,Upr} — {{r,{z,y, 2}, t}, Upr,y} —
= {r Uy, t} {z,r, 2}, y} +{t, 2, U, U Ura}+
+{t,z,U,({z, Uz, 2} + U, U,2)}.

Proof. Note that we have

{T, UU:cyZ7 t} = {{T, Umyv Z}a Ua:yv t} - {27 UUzyT7 t} = (by QJ21)
={{{r,z,y},x,t},Usy, t} — {{y, Usr, 2}, Upy, t} — {2, U, U,U,r, 2} = (by QJ21)
= {({7’, X, y} o ZL’) oz, Umya Z} - {{117, {Ta x, y}7 Z}a Umy7 Z}_

—{{y, UwT,Z},ny,t} - {Z,UmUyUmT,Z}, (by QJ14)

which proves identity (1). Identity (2) is its partial linearization in z .

As for (3), it is an application of QJ6 using the identity

—{{7’, Umyv t}v er; y} + {t; z, UyUxUTx} -
= —{r,U{r,Ust,y},y} +{U.x,Uyt,Uyz},
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which is just the evaluation in the x-homotope of the identity {r,{r t,y},y} +
{r2,t,y*} = —{{r,y,t},r,y} +t o Uyr?, which in turn follows from Macdonald’s
theorem [J2, 3.4.16]. Finally, (4) is the partial linearization in = of (3). m

2.6. Lemma. Let J be a Jordan algebra, let J be a subalgebra of J and let
a € J. If J there is a dense inner ideal K of J such that x oa and Uyza are in J for
all x € K, then Dj(q) is a dense inner ideal of J.

Proof. Take x,y € K, and set z = U,y. Note that z € K, hence zoa and U,a
belong to J. Next, for all ¢ € J, we have {z,a,c} = {Upy,ad,c} = {x,yo (xoa),c} —
{z,{y,a,z},c} — {U,a,y,c} € J. Thus, considering K(Uk K) instead of K, which is
again dense by 1.16, we can assume that {K,a,J} C J.

Next, take u,w € K and v € J, and set x = Uyv, z = {u,v,w}. Then we have:
(1) U,Uzx = UquUdUu'U = UquUUua’U € J,

since U,q € Ukq € J. Note that this identity holds in the polynomial algebra J [t],
so we can partially linearize it by considering its term in degree 1 when evaluated in
u = u + tw. This partial linearization yields:

(2) {z,Usz, 2} + UyUzz € J.

Now take y € K, t € J, and x and z as before. Taking r = a in identity 2.5(3), and
using (1), we get

(3) UaUUzyt € J,
and from 2.5(4) and (2), also
(4) Ud{Uwyvta {ill',y, Z}} € J,

which implies Uy, ,t € Dy (q).

Let a € J and take elements z,y,t as above. We have

(UUzyt) ca= {ny7 t, {:13, Y,x o a}} - {U$y7 t, Um(y © a)} - UUzy(t © CL)

and
rzoa= (Uyw)oa={u,v,uoa}l—U,(voa).

Now take u,v,y € (K : a) and w = uoa € K in the above formulae. Then, from
(4) we get Ua{U,y,t,{z,y,x 0a}} € J. On the other hand, {U,y,t,U,(yoa)} =
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Uu, (y+yoa)t — Uv,yt — Uu, (yoa)t, and from (3) it follows Uz{U,y,t,Uz(y o a)} € J.
Finally, also from (3) we get UsUy,,(t o a) € J and hence Uz ((Uy,yt) oa) € J

Therefore, with that choice for u,v,z,y y t we get that the element d = Uy, 4t
satisfies

(5) deDy(a), doae K and Uz(doa)eJ.

Note that if d € K has Uzd' € J, then
Ug{d' s, v} ={a,d ,{r,s,a}} — {Uad',s,r} € J
for any r € K and s € J, and hence

(6) Ui{d,JK} € J.

Take now d as above, and let k € K. We claim that Usk € (Dy(a) : a)r. First
note that (Udk)oa = {d, k‘, doa}—Ud(k:oa) and Ud(koa) = UUEyUtUUIy(kOG,) = UUzyt/
with ¢’ = UyUy,y(k o a), hence Ug(k o a) € Dy(a) by (5). So it suffices to show that
{d,k,doa} € Dy(a). It is clear that {d,k,doa} € K and Uz{d,k,doa} € J by(6),
so it remains to prove that UzU(g x,doa}s € J for any s € J.

By QJ6 we have

U{d,k,doa}s - UdUkUdoaS + UdoaUkUdS_
- {Ud{k, doa, S}a k,do a} + {d7 S, UdoaUk:d}‘

Now, UsUyUrUgoqs € J by (5). Also
U&{Ud{ka do a, S}v k? do CL} cJ

and
Ua{d, S, Udoade} cJ
by (6).
On the other hand, again by QJ6 we have

UaUdoaUrUas = Utz doa,k}Uds — UpUdoaUaUas+
+{k,doa,Us{Ugs,k,doa}t} — {UpUgoaa,Ugs,a}.

Since {a,d o a,k} € {a,K,K} € J, we get Uz dgoarxyUas € J. Moreover,
UaUgs € UsDy(a) C J, hence UpUyoaUzUgs € J. On the other hand, Uz{Uys, k,d o
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a} € J by (6), hence {k,d o a,Uz{Uys,k,doa}} € J, and Uygoea € Uga € J, so
{UrUdoq,Ugs,a} € J by (6). Thus we get Ugg p,doa}s € J and hence {d,k,doa} €
Dj(a), which proves that Usk € (Dy(a) : a)y.

Suppose now that a,b,c € J satisfy U.((Dy(a) : a)r N (Dy(a) : b)) = 0.
Taking as before u,v,y € (K : a)N (K :b), x = Uyv, t € J, and k € K we
have d = Uy, ,+k € (Dj(a) : a)r N (Dy(a) : b)r), and therefore U.d = 0. Since
k € K is arbitrary, we get U.Uy, ,+K = 0, hence for any ¢’ € J, the element
c = Uy, ,tUct’ has Uy K = 0, which implies ¢’ = 0, and hence Uy, ,:U.J = 0. It
then follows that U.Uy,,t = 0, and since ¢t € J is arbitrary, that U.Uy,,J = 0, hence
Uv.v,yJ = UUy,,UcJ = 0. Thus UUyy = 0, hence UU,((K : a) N (K : b)) =0
and Uy, (K : a) N (K : b)) =0 for any t” € J. Thus U,U.t"” = 0 by density
of K. Then Uy, = U.U,U.J = 0, hence U.x = 0, that is U.U,v = 0 for any
u,v € (K :a)N (K :b). Arguing as before we get ¢ = 0, and this proves the density
of Dyj(a) by 1.9. m

2.7. Lemma. Let QQ be an algebra of quotients of a Jordan algebra J and
assume that Q is a subalgebra of a Jordan algebra Q. If ¢ € Q has a dense inner
ideal of denominators Dj(q), then Dg(q) is dense in Q. Moreover, if UsyD;(q) # 0,
then UzDq(q) # 0.

Proof. For any x,y € D;(G) and any p € @) we have by QJ15,

{67 ny7p} = {{(jvw,y}>$;p} - {Z/, qu7p} € {J7 J?Q} g Q
Moreover, by QJ6,

UqUUzyp = U{qygc,y}pr - UyUUIEjp - {{(j, ULEy?p}? Ua:(j: y} + {p> x, UyUqux} S
UJUJQ+ {{J7 Ja Q}7J7 J} + {Qa Ju J} - Q

Therefore, U,y € Dg(q) for any z,y € D;(q), hence K = K;(Up,5Ds(q)) C
Dq(q). Since K is dense in J by 1.16, the density of Dg(g) follows from 2.4(v).

Now, if U;D;(G) = 0, then, with the previous notation, U;K = 0. Hence for any
p € Dg(q) we have Uy,, K = 0, and since Ugp € @ and K is a dense inner ideal of .J,
we get Uzp = 0 for all p € Dg(q) by 2.4(iv), that is UsDg(g) = 0. m

2.8. Proposition. Let J; C Jy C J3 be Jordan algebras, each a subalgebra of
the next one. Then Js is an algebra of quotients of Jy if and only if J3 is an algebra
of quotients of Jo and Js is an algebra of quotients of J;.

Proof. If J; is an algebra of quotients of .J;, it is obvious that Js is also an
algebra of quotients of Jy, and it follows from 2.7 that J3 is an algebra of quotients
of JQ.
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Now assume that J is an algebra of quotients of J;, and J3 is an algebra of
quotients of Jy. Take ¢ € J3 and consider as in [MP, 3.10] the set

N:{CIIEJl ‘xoqeleUwqejb{w:qa']l}ng}?

which is an inner ideal of Jj.

Now evaluating the identity 2.5(1) inr =gq, t € J, z € Dy, (q)NJ1 (hence U,q €
J2 and {z,q, )2} C J2), y € Dy, (Uzq), and 2z € Dy, ({g,z,y} ox) N Dy, ({g, 7, y}), we
get {q, Uy, y2,t} € Ji. Also with that choice of z, y, z we have Uy, ,.q € Uy, UyU,q C
UnUpw,qUzq € Uy, J1 € J1. Therefore we have

(1) UUmyZ € N.

On the other hand, applying identity 2.5(2) for r = ¢, any t € Ji, z,w €
Dy, NJi, y € Dy = Dy (Uzq) N Dy, ({z,q,w}) N Dy, (Uwg) (note Upq,Uwq €
J2), and z € Ey .y = Dj({¢,z,y} o) N Dy({q,z,y}) N Dy, ({g,w,y} oz) N
Dy, ({g;w,y}) N Dy, (Ugz,y,w1Q) (Pote {e, 7,9}, {¢,w,y}, and Uty g € J1), we
get {¢, {Uzy, z, {z,y, w}}, J1} € Ji.

Next, by QJ16 we have

U{Uzy,z,{x,y,w}}q = UUszzU{a:,y,w}q + U{m,y,w}UzUUqu_
—{UnyZ, qJU{m,y,w}Z} + {U:cya UZ{{xv Y, w}7 q, U:Uy}7 {IL’, Y, w}}

Now, we have

UsU:Utsyuyd € UsUp, (U, wy o) Ulaywrd © J1,

Utz g,y U:Uu,yq € U3 UpUyUrq C U3 Up, (v,qUzq € J1,
{Uv,y2, ¢, Utz ywy2} € {{Uu,y2, 4, J1} € J1 (by above),
U.{{z,y,w}, q, Uy} = U.UUy{w, ¢, 2} + Uz (w o UyUyq) €
€ U3 Up,, ({z.qupiw: ¢} + Uy (J1 o Up, (w,qUxq € J1,
{Usy, U-{{z,y, w}, ¢, Usy}, {z, y, w}} € Ju.

Thus we get Ui,y 2 {z,y,w}19 € J1-

It follows from those computations that if x,y, z are chosen as above, then
(2) {U.y, z,{z,y,w}} € N.

Let us now see that N is dense, suppose that U.((N : a) N (N : b)) = 0 for some
a,b,c € Ji, and keeping the previous notations, take z € (Dy,(q) : a) N (Dy,(q) :
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a)NJi, Y € (Dazoa : @) N (Dyzop : b), and 2z € (Ey goa,y : @) N (Ey zoa,y : @). Then,
using QJ15 two times we get

(Uv,yz) 0 a = {Usy, 2, {z,y, 2 0 at} = {Usy, 2, Us(y 0 a) } = Up,y(2 0 a).

Now, {Uyy, 2,{z,y,x0a}} € N by (2), {Usy,2,Us(y 0 a)} = Uy, (y+yoa)2 — Uv,yz —
Uu, (yoa)? € N by (1), and Uy, y(z0a) € N by (1), hence (Uy,yz)oa € N, and Uy, yz €
(N :a)r. Symmetrically Uy, 2z € (N : b)r, hence Uy gz € (N :a)p N (N :b)r, and
U:.Uy,yz = 0 for all z,y, z in the conditions above. Thus we get U.Uy,y((Ez z0a,y :
a) N (Ey zoay : @) =0. Now, Ey yoa,y and Ey 404, are intersections of inner ideals of
Ji-denominators of elements of .J5, which are dense since .J5 is an algebra of quotients
of Jy, and hence they are dense inner ideals and so is their intersection by 1.10. Since
Uvy, Ut (Bzzoay * @) N (Ergoay : a)) = 0 for all £ € Jy, from 2.4(iv) we get
Uy, UcJ1 = 0, hence Uy, u,yJ1 = 0 by nondegeneracy of J;, and U.U,y = 0 again
by nondegeneracy of Ji. Then U.Uy(((Dg,zoa @ @) N (Dyggop = b)) = 0, and arguing
as before this yields U,z = 0, hence U.((Dj,(q) : a) N (Dy,(q) : a) N J1) = 0 which
implies ¢ = 0 since (Dy,(q) : a)N(Dy,(q) : a) N Jy is dense in J; by 2.4(v). Therefore
N is dense, and Dy, (q) is dense by lemma 2.6.

Now, if U;Dy,(q) = 0, then for any p € Dy,(q) we have Uy, Dy, (q) = 0, hence
Upg = 0 by 2.4(iv) and the essentiality of Dy, (¢). Thus Up,, (994 = 0, hence ¢ = 0 by
2.4(iv). This proves that J3 is an algebra of quotients of J;. m

2.9. We will say that an algebra of quotients ) of a Jordan algebra J is a
mazximal algebra of quotients if for any other algebra of quotients Q' D J there
exists a homomorphism « : Q' — @ whose restriction to J is the identity mapping:
a(x) =z for all x € J.

2.10. Remark. If Q and Q' are algebras of quotients of a Jordan algebra
J and « : Q' — @ is a homomorphism which restricts to the identity on J, then
« is injective. Indeed, if ¢ € @ has a(q) = 0, then U,D;(q) = a(U,;Ds(q)) (since
U Dji(q) €J) =Uyg(Ds(q)) =0, hence ¢ = 0.

2.11. Lemma. Let QQ and Q' be algebras of quotients of a strongly nonsingular
Jordan algebra J. If o, 3 : Q' — Q are homomorphisms whose restriction to J is the
identity mapping, then o = 3.

Proof. The proof of [MP,2.12] works here, using 2.4(iv) instead of [MP, 2.6]. m
2.12. Lemma. If Q and Q' are mazximal algebras of quotients of a Jordan

algebra J, then there exists a unique isomorphism o : Q — Q' that extends the
identity mapping J — J.

Proof. This is straightforward from 2.11. m
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In view of this result, if a Jordan algebra J has a maximal algebra of quotients,
such an algebra is unique up to an isomorphism extending the identity on J. We will
then denote this algebra by Q4. (J) and will refer to it as the maximal algebra of
quotients of J.

To close this section we examine the relationship between the weak center of a
Jordan algebra and of an algebra of quotients. This result will be fundamental in the
study of maximal algebras of quotients of PI algebras that we carry out in the next
section. The proof of the main result is the same as in the case studied in [MP], so
we will skip it and refer to that paper.

2.13. Proposition. Let J be a Jordan algebra and let QQ 2 J be an algebra of
quotients of J. Then Cy(J) = Cyp(Q) N J.

Proof. The proof of [MP, 3.4] works here, using 2.4(iv) instead of [MP, 2.6]. m

3. Algebras of quotients of PI algebras

In this section we construct maximal algebras of quotients for nondegenerate PI-
algebras. The construction is a wide generalization of the central closure which was
first introduced for linear Jordan algebras (and other classes of algebras) by Beidar
and Mikhalev [BM].

3.1. Lemma. Let J be a nondegenerate PI Jordan algebra. Then:
(a) Any dense inner ideal of J hits nontrivially the weak center of J.
(b) An inner ideal of J is dense if and only if it contains an essential ideal of J.

Proof. (a) Any dense inner ideal K of J is itself a nondegenerate Jordan algebra,
hence C,(K) # 0 by [FGM, 3.6] since K is PI. Now, J is an algebra of quotients of
K by 2.3.1, hence C,,(J) N K = Cy(K) by 2.13.

(b) Tt is clear that any essential ideal in a nondegenerate Jordan algebra is a
dense inner ideal, hence so is any inner ideal that contains one. Suppose then that
K is a dense inner ideal and let I be the core of K, the biggest ideal of J contained
in K. If I is not essential, then Ann;(/) # 0 by nondegeneracy, hence Anng (I) =
Ann;(I) N K # 0 by the essentiality of K (1.18). Since K is nondegenerate and PI,
there is a nonzero z € C,(K) N Anng (K). Then z € Cy(J) = Cp(K) N J as in (a).
Moreover, U,J C Ann;(I) hence U,J NI =0, but U,J C K, hence U,J C I, which
contradicts the nondegeneracy of J.

3.2. In [BM] the authors introduced what was called the nearly classical local-
ization of an algebra, which included the case of linear Jordan algebras. In the case
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of associative algebras that construction was called in [W, p. 271] the almost clas-
sical localization. Our aim now is to extend their construction to quadratic Jordan
algebras.

We consider a nondegenerate Jordan algebra J and denote by I' = I'(J) its
centroid, which is a reduced associative commutative ring. Then I' is nonsingular
and J is a I'-module. Denote by £(I") the set of essential ideals of I'. We will assume
that the I'-module J is nonsingular, that is if axz = 0 for some a € £(T"), and = € J,
then x = 0. The one can define the localization I'g(r, and the localization of the
[-module J: Jgry = li_r)n{Homp(a, J) | a € ()}, the direct limit of the directed

system {Homr(a,J) | a € £(I')}. Its elements can be represented as classes [f, a]
of pairs (f,a) where f € Homr(a,J) for a € £(I"), modulo the equivalence relation:
(f,a) ~(g,b)if f and g agree on a Nb. It is well known that there is an action of
Lery on Jg(ry extending the action of T' that gives Jg(ry a I'¢(r)-module structure.

3.3. Remark. We mention here two instances in which the algebra J is
automatically a nonsingular I'-module. On the one hand, that happens if J is strongly
prime. Indeed, for any a € £(T'), the set aJ is easily seen to be a nonzero ideal of J,
soif z € J has ax =0, then Uy jo CaUjz = Ujaxz = 0 implies x € Anny(aJ) = 0.

On the other hand, if J is a nondegenerate Pl-algebra and there are a € £(I)
and 0 # x € J with ax = 0, then as before Ann;(aJ) # 0. Since J is PI, by [FGM,
3.6], there is a nonzero z € Anny(aJ)NCy(J), and then (aU,)J = U,aJ = 0, hence
aU, = 0, which contradicts the essentiality of a.

3.4. Lemma. Let J and I be as in 3.2. If a € E(I') and n > 0, then
alfl =3 _ Tam e (D)

Proof. If § € T annihilates a[™, then a”8 = 0 for all « € a, hence (a3)" =0
for all o € a, and this implies a3 = 0 for all o € a since I' is reduced. Thus a3 = 0,
hence f =0.m

3.5. We next give Jg(ry a structure of I'g(r)-algebra. To do that, take p = [f, a]
and ¢ = [g,b] in Jgry. We set p* = [k,al], and U,q = [h,alb], where h and k
are defined as follows: k(3°, \ja?) = >, Xif(a;)?, and h(3; o23) = 3, Up(an9(3i),
where «; € a, 5; € b and \; € I'. To see that these operations are well defined
suppose that Y, a?; = 0 for some o; € a and 3; € b, andset z =, Uta9(Bi) €
J. Then, for any o € a, and any 3 € b we have: o?Bz = Y, &®BUj (0 9(Bi) =
S 02U BI(B) = 5 UnganB9(3:) = X Ustaan9(88:) = 324 Uns e Bi9(8) =
220 Up)Big(B) = 32, 0BT 9(B) = (32; 078:)(Up)9(B)) = 0Up)g(8) = 0,
hence a!?b annihilates , and this implies = 0 by the essentiality of a?!b and the
nonsingularity of the I-module J. So it only remains to prove that U, q is independent
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of the choice of the representatives of p and ¢q. Suppose then that p = [f,a] =
[fi,a1] and ¢ = [g,b] = [g1,b1]. Then it is easy to see that the mapping hy €
Homp(a [12][) ,J) given by hi (3", ai6;) = >, Ut (a:)91(0;) for any finite collection of
a; € aq and 3; € by agrees with h on the essential ideal (a Na 1)[2] (bNbq), and hence
(h,al?b] = [hy,a [12][1 1]. Thus U,q is well defined, and similarly p? is well defined. It
is also a routine checking to show that U,q and p? are quadratic on p, and that U,q
is linear on q.

Recall that the mapping p1: J — Je(r), & = gz = [mg, '] given by m.(a) = ax
is well defined, and a monomorphism of I'-modules (the injectivity is a consequence
of the nonsingularity of J). We identify J with its image p(J) under p. Recall the
following well known fact:

3.6. Lemma. LetJ and Jgrty be as before, and q € Jgry. Then:
(1) Suppose that q has a representative (f,a) € q. If a € a, then aq = f(«).
(2) If there is b € E(I') such that bq =0, then ¢ = 0.

Proof. (1) Note that ag = [af,a] and take § € a. Then (af)(f) = af(f) =
;EZ)ﬁ) = Bf(a) = myq)(B), hence aq = [af,a] = [my@), a] = [my@), TT = @) =

(2) This just means that Jg(ry is nonsingular as a I'-module, which is well known.

3.7. Lemma. Let J and E(I") be as before. If a € E(T'), then aJ is an essential
ideal of J.

Proof. We have already noted in 3.3 that aJ is an ideal of J. Now, if x €
Annj(aJ), then UyaJ C UzaJ = 0 for all @ € a, hence 0 = a(UzaJ) = o?U,J =
UayeJ. Then ax = 0 by nondegeneracy of J, and since this holds for any o € a, we
have ax = 0, hence x = 0 since J is a nonsingular I'-module. ®m

3.8. Lemma. Let J be a nondegenerate Jordan algebra, and let I" be its centroid.
Assume that J is a nonsingular J-module, and let £(T") and Jgry be as before. Then:
(1) Je(ry is a Jordan algebra with the operations defined in 3.5,

(2) J is a subalgebra of Jg(ry (through the mapping p of 8.5),

(3) For any q € Je(ry there exists a € E(I') with a J C D;(q), and therefore Jg(ry is
an algebra of quotients of J.

Proof. (1) Let F(zy,...,x,) = 0 be one of the defining identities of Jordan
algebras, where F' € FQ[X], the free quadratic algebra over a countable set of genera-
tors X (see [J, 3.1]). Take q1,...,qn € Jgr) and set p = F(q1,...,qn). Note that the
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defining identities of Jordan algebras are homogeneous elements of F'Q[X], so suppose
that F' has degree k; in z;. Choose representatives (f;,a;) € ¢;. Then, for any a; € a,
i=1,...,n, we have aj' -+ aknp = o/fl caknF(gr.. . qn) = Floaq, .. 0ngn) =
F(fi(a1),..., fa(an)) = 0, and therefore, setting b = a (%) ... q (#n) we have bp = 0,

hence p = 0 by 3.6(2).

k1
1

Assertion (2) is straightforward. For assertion (3), if ¢ = [g, b], it suffices to take
a=0b0Cm

Following [W], we call Jg(ry the almost classical algebra of quotients of J.

3.9. Corollary. Let J be a nondegenerate Jordan algebra, and let I' be its
centroid. Assume that J is a nonsingular J-module, and let £(I') and Jgry be as
before. Then Jgry 2 J is tight and Jgry is nondegenerate.

Proof. We can apply 2.4 since Jg(r) is an algebra of quotients of J by 3.8(3). m

3.10. Lemma. Let J be a nondegenerate PI Jordan algebra, I' be its centroid,
and E(T) the set of all essential ideals of T'. For any ideal I of J denote by u(I) the
[-linear span of the set of all operators U, for z € Cy(J) NI, and by (I : J)p the set
of all v € T such that vJ C I. Thenu(I) C (I :J)r, and I is essential if and only
ifu(l) € ET).

Proof. If u([l) is essential, then u(I).J is an essential ideal of J by 3.7, and
since u (I)J C I, we obtain that I is essential.

Reciprocally, suppose that I is essential, and take a nonzero v € ' with yu (I) =
0. let L =Ann;(u(l)J). Clearly vJ C L, hence L # 0. Then I N L is nonzero by the
essentiality of I, hence there is a nonzero z € LNC,,(J) by [FGM, 3.6]. Then we have
U, €u(l), hence U,J C LNu(I)J =0, and this contradicts J being nondegenerate.
Therefore L = 0 and vJ = 0, hence y =0. m

3.11. Theorem. Let J be a nondegenerate PI Jordan algebra, then J has mazx-
imal algebra of quotients Qmaz(J) = Je(r), the almost classical algebra of quotients
of J.

Proof. Let Q O J be an algebra of quotients of J. We define a mapping
¢ : Q@ — Jgr) in the following way. For any ¢ € Q, the dense inner ideal D;(q)
contains an essential ideal I of J by 3.1(b). We set ¢(q) = [fg,u ({)], with u(I) as in
3.10, where f, : u (/) — J is given on a typical element o = ), \;U., of u(I), with
Ai € I'and z; € C(J) NI, by fy(a) =, \iUs,q (note that U, q € J for all 4, since
z; € Dj(q)). To see that it is well defined, we have to check, on the one hand, that
this does not depend on the particular representation of « as a linear combination
of U,,’s, and on the other hand, that the class [f;,u(I)] does not depend on the
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particular choice of the essential ideal I C D;(q).

For the first question, suppose that >, A\;U., = 0. Set a = ). \;U.,q and take a
nonzero z € Cw(J)NI. Then U,a =Y, MU U.,q = >, AU, U.q (since U, € Cy,(Q)
by 2.13) = (>, \iU=,)U.q (since U.q € J) = 0. Since u (/) is spanned by the elements
U, when z € C,(J) N1, we get u(l)a =0. Now u(l) € £(T') by 3.10, hence a = 0
since J is a nonsingular I'-module by 3.3. This shows that f is well defined, and it is
clear that it is a homomorphism of I'-modules.

Now suppose that L is another essential ideal contained in Dj;(q), and let g :
u (L) — J be the corresponding homomorphism: g(>, A\;U,) = >, AUz, qfor \; € T
and z; € Cy(J)NL. Then LNI is again an essential ideal, and u (LNI) C u (L)Nu (1) is
essential in I' by 3.10. Clearly f, and g agree on u (LNI), hence [f,,u (I)] = [g,u (L)],
which proves that ¢ is well defined.

Let us now show that ¢ is a homomorphism of algebras. If p,q € @, then
Dy(p) N Dy(q) is a dense inner ideal of J, hence there exists an essential ideal I C
Dy(p) N Dy(q) by 3.1(b). Now put ¢(p) = [fp,u(I)] and ¢(q) = [fg,u(I)] defined
as above. Then it is easy to see that 1Y) = U;I C Dy(p + q), hence ¢(p + q) =
[forq,t (IM)]. Note that u (1)) C u(I), and the mappings f,4, and f, + f, agree
on that ideal. Then y(¢(p +q)) = fo+q(v) = fo(7) + fo(v) = 70(p) +v0(q) =

v(o(p) + ¢(q)) for any v € u/IM) by 3.6(1), hence ¢(p+ q) = ¢(p) + ¢(q) by 3.6(2),
and ¢ is linear.

Now take an essential ideal L C D;(Upq), and z,w € I N LN Cy(J). Then
¢(Upq) = [fu,q- 1 (L)), and

U,ZQUwgb(qu) = Uz2 Uw¢(UPQ) = fqu(UZQUw) = by 36(1)
= UzzUwqu = UUZprq =
= Ufp(UZ)fq(Uw) - UUZ¢(p)Uw¢(Q) = by 36(1)
= U2U Uy ) 0(q). by 2.13 and 3.8(3)

Hence UZUy,(¢(Upq) — Ug#(q)) = 0. Now U, € Cy(J) € Cu(Jer)) by 2.13
and 3.8(3), hence we get U.Uy(¢(Upq) — Uppy@(q)) = 0, and this implies u (I N
L)2(¢(Upq) — Uppy®(q)) = 0. Since u (I N L)? is essential in I' we obtain ¢(Uyq) —
Up(py®(q) = 0 from 3.6(2), hence ¢(Upq) = Uy()9(q)-

The equality ¢(q?) = ¢(q)? is proved analogously, so we obtain that ¢ is a
homomorphism, and this proves that Jgr) is the maximal algebra of quotients of
J.m
4. Algebras of quotients of algebras of hermitian type

Since algebras of hermitian type are special we can make use of associative
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envelopes to transfer problems to the associative setting. In the case of algebras of
quotients this requires first to have a good relationship between dense inner ideals of
the Jordan algebra and dense one sided ideals of its associative envelopes.

4.1. Following [Mol] we denote by PI(J) the set of all a € J such that J, is
a Pl-algebra. It is proved in [Mol] that if J is nondegenerate, PI(J) is an ideal of
J. Similar notions can be defined for associative algebras where we again use the
notation PI(R). Following [FGM] we will say that a Jordan algebra J is Pl-less if
PI(J) = 0.

4.2. Lemma. Let R be a semiprime associative algebra with involution *, and
let J = Ho(Rx) be an ample subspace of symmetric elements of R.

(1) If I is an essential x-ideal of R, then I NJ is an essential ideal of J.
(2) If I is an essential ideal of J, then lanng(I) = ranng(l) = 0.

Proof. Note first that R is #-tight over J by [ACMM,1.1], and that J is a
nondegenerate Jordan algebra [Mc3, 2.9]. (1) Set L = Ann;(IN.J), and take 2 € L)
and a € R. Then az + xa* and axa* belong to L (see the proof of [Mcl, Theorem
5]). Now, if y € I and 2 € L), then yz 4+ zy* € LNINJ = 0, hence yr = —xy*.

*, k.2

Thus, zy? = —y*zy € LNI = 0, and if a € R, then xyazy = r(ya)ry = —a*y* 2’y =
—a*z?y? = 0. Thus zyRxy = 0, hence zy = 0 since R is semiprime. Therefore we
have LW = 0, hence L") = 0 since I is essential, and this implies L = 0 since J is

nondegenerate, hence semiprime.

(2) Suppose that Ir = 0 for some r € R. Now, for all x € I and a € R, we have
a*r+za € I, hence 0 = (a*z+za)r = zar. Thus IV Rr =0, and r € Anng(RIVR).
Now Anng(RIMWR)NJ C Anny(IM) =0 (by [FGM, 1.13]). Therefore r = 0. m

4.3. Lemma. Let J be a nondegenerate Jordan algebra. Then the algebra
J = J/Ann;(Ann;(PI(J)) is Pl-less: PI(J) = 0.

Proof. We denote with bars the projections in .J. Note that Ann;(PI(.J))
is an essential ideal of .J, since if U;Ann;(PI(J) = 0, then U,Ann;(PI(J)) C
Ann;(PI(J)) N Anny(Anny(PI(J))) = 0, hence z € Annj(Ann;(PI(J)), i. e., 2= 0.

Now, if PI(J) # 0, then there is a nonzero z € PI(J) N Ann;(PI(J)), and
we can choose a preimage x € Annjy(PI(J)). Then J; is PI, and if f € FJ[X]
0
(where h(y;x1,...,2,) is the evaluation in the homotope FJ[X]®) of the polyno-
mial h(zy,...,2,)), hence letting g = f3, J satisfies g(z;.JJ) = 0. Thus g(z;J) C
Ann;(Ann;(PI(J))), but x € Anny(PI(J)) implies g(x;J) C Ann;(PI(J)), and
therefore we get g(z;J) = 0, which implies that J, is PI, hence z € PI(J) C

is an essential polynomial which vanishes on Jz, then J satisfies Uz f(Z;.J)
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Annj(Ann;(PI(J))),and Z =0. m

4.4. Lemma. Let J be a nondegenerate Jordan algebra, and let p € FJ[X] be
an essential polynomial. Put I = id;(p(J)), the ideal generated by all the evaluations
ofpin J. Then Anny(I) C PI(J), so if J is Pl-less, then I is essential. In particular,
J is of hermitian type: Ann;(H(J)) =0 for any hermitian ideal H(X).

Proof. Let a € Ann;(I) and consider the algebra J = J/Ann;(Ann(I)), which
is nondegenerate by [FGM, 1.15]. Then Ann;(Ann;(I)) C Kera implies J, = J;
(where bars denote projections in J). Note that J is PI since p(J) = 0, and therefore
PI(J) = J by [Mol, 2.7]. Thus J, = J, is PL, and a € PI(.J). m

4.5. Lemma. Let J be a Pl-less nondegenerate special Jordan algebra, R be a
x-tight associative x-envelope of J, and L be a left ideal of R. Then LNJ = 0 implies
idr(L) Nidr(L)* =0, where idr(L) is the ideal of R generated by L.

Proof. Suppose that L is a left ideal of R with LN J = 0. Let H(X) be a
hermitian ideal, so that H(J) is essential in J by 4.4. Denote A = algr(H(J), the
associative subalgebra of R generated by H(J), and take B = L N A. Then, for all
b € B we have b*H(J)b C H(J)N L = 0, hence R satisfies the +-GPI b(X + X*)b =0
by [FGM, 6.11]. Thus, if ¢ = b*rb € bRb*, we have ¢* = b*r*b = —b*rb = —c,
and for all z,y € R, we have cxcyc = —cy*c*xz*c = cy*cx*c = cycac, hence
R. is commutative and ¢ € PI(R). Now PI(R)NnJ C PI(J) (by [Mol, 4.6(b)])
= 0, hence PI(R) = 0 by tightness, and this gives ¢ = 0. Therefore b*Rb = 0
for all b € B, hence idr(B) Nidgr(B*) = 0 by [FGM, 6.13]. Now,since J gener-
ates R, for any | € L there exists a positive integer n(l) with H(J)™I1 C AN
L = B for any m > n(l) by [MZ, 1.5(3)]. Thus, for any l1,lo € L, and any
n > n(iy),n(ly), we have H(J)™I1,RIZH(J)™ C BRB* C idr(B) Nidr(B*) = 0.
Then L1 RIZH(J)™ C ranng(H(J)"™) = ranng(RH™) = Anng(RH(™). But
Amng(RH™) N J = Anny(H(J)™) (by [FGM, 1.15]) = 0 (by [FGM, 1.13]), hence
L RIZH(J)™ = 0. The same argument gives now I Rl = 0, hence LL* = 0 which
implies idr(L) Nidr(L)* = 0. m

4.6. Theorem. Let J be a nondegenerate special Jordan algebra, let (R, ) be
a *-tight associative x-envelope of J, and let L be a left ideal of R. If there exists a
hermitian ideal H(X) with Anny(H(J)) =0, then L is a dense left ideal if and only
if LN J is a dense inner ideal of J.

Proof. Assume first that L is dense, and set K = LN J. Then (K :a) 2O (L :
a) N K for all @ € J. Indeed, if z € (L : a) N K, then za,ax € L, hence aox € L
and U,z = a(za) € aL C L. Since x o a,U,z € J, we have x 0 a,U,z € K, hence
x€ (K :a). Thus (K :a)N(K :b)=((L:a)N(L:b)NL)NJ for any a,b € J is the
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intersection with J of a dense left ideal of R, so it suffices to prove that U.(LNJ) =0
implies ¢ = 0 for a dense left ideal L of R and any c € J.

Suppose then that U.(LNJ) = 0 for some nonzero ¢ € J, and take d € U.(H(J)N
PI(J)). We set A = algr(H(J)), the associative subalgebra of R generated by
H(J). Then H(J) = Hp(A,*) is an ample subspace of symmetric elements of A,
and its local algebra H(J)y = Ho(Ag,*) is also an ample subspace of symmetric
elements of the local algebra A;. We will denote with bars the projections onto
the local algebras at d (of H(J), J, A and R) Since d € PI(J), the local algebra
H(J)a = Ho(Ag,*) C Jy is also PI, hence A, is PI by a theorem of Amitsur [R1,
7.4.13]. Now take any h € H(J). Then L; = (L : dh) is a dense left ideal of R
and, since R is a ring of quotients of A (see [MZ,]), Lo = L; N A is a dense left
ideal of A. Therefore Ly = Lo + Kerd/Kerd is a dense left ideal of A; by 1.21.
Since A, is PI, arguing as in 3.1, it is easy to see that there is an essential ideal
I of Ag with I C Ly (note that the preimage I C A of I need not be an ideal of
A, although it is an ideal of the homotope A(?). Now, for any 7 € I N ﬁ such
that y € H(J), we have y = [ for some | € Lo, hence UpUgy = hdldh € hdLodh C
hdLidh N A = hd(L : dh)dhnN A C LN A, and since UpUyy € H(J) C J we get
UnUgy € LN J, hence UgUUgy € U;UURUgy € UyU(LNJ) = 0. So we have
U, (INH(J)) = 0. Since A is semiprime, Ag is also semiprime, hence Ann g, (1) =0
which yields Anng(sy,(I N'H(J)) = 0 by 4.2, hence h = 0 for all h € H(J). Thus
UsH(J) = 0, hence d € Ann;(H(J)) = 0. So turning back to the choice of d, this
implies U.(H(J) N PI(J)) = 0, hence U.PI(J) C Ann;(H(J)) = 0, and therefore
¢ € Ann;(PI(J)).

Consider now the algebra J = J/Ann;(Ann;(PI(J))), which is Pl-less by 4.3.
Note that R = R/Anng(Ann;(PI(J))) is a *-tight envelope of J by [FGM, 1.15]
(in what follows we change our convention and denote with bars the projections
into these algebras). Note also that L is a dense left ideal of R by 1.23. Now set
Ly = (L : ¢), which is again a dense left ideal of R. For any j € L; N .J (note
that we can choose y € J) there is [ € L; with § = [, hence y = [ + z with
z € Anng(Ann;(PI(J))). Thus cze € Anng(Ann;(PI(J))) N Anng(PI(J)) = 0 (by
[FGM, 1.15]), hence U,y = Ul € JNe(L:c)e CJNL. Thus Uy € U(LNJ) =0,
so we have Uz(J N L) = 0. We will prove that this situation forces ¢ = 0.

To alleviate the notation we now omit bars, and we consider a Pl-less special
Jordan algebra with x-tight associative x-envelope R, a dense left ideal L of R, and
d e J with Ug(LNJ)=0.

Consider the left ideal Lc of R. If x € Len J, then x = Ild for some [ €
L, and there is a positive integer n such that I*H(J)™1 C J N L (see [MZ, p.
146]). Thus U,H(J)™ = z*H(J)™a C diI*H(J)™Iid C Uy(L N J) = 0, hence
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x € Anny(H(J)™) = 0 by [FGM, 1.13] and the essentiality of H(.J). Thus LdNJ = 0,
hence idr(Lc) Nidr(cL*) = 0 by 4.5, and we get LcRcL* = 0. Then, since L is a
dense left ideal (hence L* is a dense right ideal), we have cRc = 0, which implies
¢ = 0 by the semiprimeness of R.

Thus, going back to our previous notation, we have proved that ¢ = 0, hence
¢ € Annj(Ann;(PI(J))). But since ¢ € Ann;(PI(J)), we get ¢ = 0.

Let us now prove the reciprocal. Assume that L N J is a dense inner ideal of J.
Since R(L N J) C L, the result will follow if we prove that any dense inner ideal K
of J generates a dense left ideal RK in R.

First we claim that for any dense inner K of J and any r € R, there exists a dense
inner ideal N of J such that Nr C RK. Since J generates R, the element r can be
written as a sum of products of elements of J, so taking the intersection of the inner
ideals corresponding to each of the summands of r, we can assume that r =ay - --a,
is a product of elements from J. We then carry out an induction on the number n of
factors. For the case n = 1 note that (K : a1)a; = (K :a1) oay +a1(K : a1) C RK,
hence N = (K : a1) works since it is dense. Now, if the result holds for products of at
most n—1 elements from J, the density of (K : a,) implies that there is a dense inner
ideal N in J with Na;---a, C R(K :ap). Then Nay---a, C R(K Dap)an C RK,
so we have found the desired inner ideal N. This proves the induction step and
therefore the claim.

In view of the fact just proved, for any dense inner ideal K of J and any r € R,
the left ideal (RK : r) contains a left ideal of the form RN, for a dense inner ideal
N of J. Thus, to prove that a left ideal RK generated by a dense inner ideal K of
J is dense, it suffices to prove that Ka # 0 for any dense inner ideal K of J and any
0+#ac€R.

Suppose then that Ka = 0 for some dense inner ideal K of J and some a € R,
and take d € PI(J)NH(J). Then (K : d)da C ((K : d)od)a+d(K : d)a C RKa = 0.
Now set N = (K : d), which is again dense. Denote by A the associative subalgebra
A = algr(H(J)) generated by H(J) in R and put Ny = NNH(J). Then N, is a dense
inner ideal of H(J) by 2.4(v), hence Ny = N; + Kerd/Kerd is a dense inner ideal of
the local algebra H(.J)4 by 1.20. Now, since d € PI(.J), the algebra H(.J), is PI, hence
there exits an essential ideal I of H(J)4 contained in N7 by 3.1. Now there is n, with
aH(J)™ C A for all n > n,, so if b € aH(J)™ A, denoting as usual the projections
in H(J)q and Ay with bars, we have Ib C Ny b= Nydb C (K : d) N'H(J))daA = 0,
hence b € ranny, (). Note that A, is semiprime since A is semiprime, and H(J)q =
Hy(Ag,*) is an ample subspace of symmetric elements of A, since H(J) = Ho(A, )
is an ample subspace of symmetric elements of A. Since I is essential, 4.2 gives
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ranny, (I) = 0, whence b = 0. Thus we have proved that daH(J)™ Ad = 0 for
any d € PI(J) N'H(J). Then we have (daH(J)™)A(daH(J)™) = 0, which implies
daH(J)™ =0 for all d € PI(J) N'H(J), hence (PI(J) N'H(J))a C lanng(H(J)) = 0
(since lanng (H(J)) = lanng (idr(H(J))) = Anng(idr(H(J)) = 0 by the essentiality
of H(J)) and we get (PI(J) N H(J))a = 0. Now, for any h,g € H(J) and any
x € PI(J), we have (Ung)za = h{g, h,x}a — (Unz) o 9)a + g(Upx)a € H(J)(H(J) N
PI(J))a = 0. Therefore H(J)MPI(J)a = 0, and PI(J)a € Anng(H(J)M) = 0,
hence a € Anng(PI(J)).

Consider now the algebra J = J/Ann;(Ann;(PI(.J)), and its *-tight associative
s-envelope R = R/Anng(Ann;(PI(J)) (see [FGM, 1.15]), where, as usual, we denote
with bars the images under the projections. We have PI(J) = 0 by 4.3, the inner
ideal K of J is dense by 1.20, and Ka = 0. Now, for any ¢ € J N aR, the equality
U:K = ¢Ké = 0 implies ¢ = 0. Thus J N ELR = 0, and since J is Pl-less, 4.5 gives
idg(aR) Nidg(Ra*) = 0. Set now V = R + a*R and take T € NN J Then
xKa: = x*K:c - V*KV - (Ra*K+ RaK)V = (R(Ka) + RaK)V — RaKV =
RaK(aR + a*R) RaKa*R - zdR(aR) N zdR(Ra ) = 0, which implies Z = 0 by the
density of K. Thus VN J =0, hence VV* = 0 by 4.5, and we get aRa C VV* = 0,
hence a = 0 by semiprimeness of R. Therefore we have a € Anng(Ann;(PI(J))),
and since a € Anng(PI(.J)), we obtain ¢ = 0. m

4.7. Lemma. Let J be a nondegenerate Jordan algebra, and let Q) be an
algebra of quotients of J. Assume that Q) is special and let A be a *-tight associative
x-envelope of Q. Denote by T = alga(J) the associative subalgebra of A generated
by J. Then:

(i) For any a € A, there exits a dense inner ideal K of J such that Ka C T.
(ii) T is a *-tight associative envelope of J.

Proof. (i) Since any element a € A can be written as a sum of elements from
Q, if we prove that for any element of the form ¢y - - - q,, with ¢; € @, there exists a
dense inner ideal K of J with Kq; ...q, C T, the result will follow for an arbitrary
a € A by taking the intersection of the inner ideals obtained for each summand that
makes up a. We can therefore assume that a = ¢q; - - - g,, is a product of elements from
() and csrry out an induction on the number n of factors.

For n =1, let K = K(Up, (q,)D.s(q1)), which is dense by 1.16 since D;(qy) is. If
k € K, then there exist z,y € Ds(q1) with k = U,y and we have kq; = (Uyy)q1 =
o{y, 2,1} — (Upq1)y € JJ C T.

So suppose that the result holds for products of at most n — 1 elements from
Q, and let b = g3 ---q, and ¢ = q1, so that a = ¢gb. By induction hypothesis there
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exists a dense inner ideal N of J with Nb CT. Put L={z € T | zq € TN}. It
is clear that L is a left ideal of T', hence K = L N J is an inner ideal of J that has
Ka= Kgb CTTNbCT. Therefore it suffices to show that L N J is dense.

Take u,v,c € J, and assume that U.((LNJ :u)p N (LNJ :v)), =0. For any
s € NNDy(q) and t € N we have {t,s,q} € J. Now, if y € (N : so{t, s,q}), we have

(Uzy)g = 2{y, z,q} — (Uzq)y =
a:{y,Ut Q} (UU tQ)
=az(yo(soft,s,q})) —z{y, {t. s, q}, s} — (UsU:Usq)y,
but yo(so{t,s,q}) € (N : so{t,s,q})o(so{t,s,q}) € N, {y,{t,s,q},s} € UyJ C N,

and U;UUsN € UgUpJ C J C T, hence (Upyy)qg € N + Ty C TN and we get
UyelLnJ

Take now s € (NNDy(q) : u)yN(NNDy(q) :v),t € (N :u)N(N :wv). For
d=wuorwv weset Ms1q=(N:so{t,sod,q})N(N : (sod)o{t,sq})N (N
so{tod,s,q})N((N :so{t,s,q}:d) (note that if d = a or b, then sod € NND;(q),
hence {t,sod,q},{t,s,q} and {tod,s,q} belong to J). Take now y € M1, N M ¢,
and put x = Ust. Let us see that Uyy € (LN J :w)p N (LN J:v)L.

we have:

(Upy)ou={z,y,zou} —Ug(you) =
={z,y,{s,t,soup} —{z,y,Us(tou)} — Us(y ow).

We will show next that each of the terms in this sum belongs to L N J.

First note that U,(you) € LN J and, {z,y,Us(t ou)} = Uy, t4tou)y — Uty —
Uu, (towy € LN J follow from what was proved above. Now, we have:

{z,y.{s,t,s0uttqg=a{y.{s,t,soupg} + {s,t,socul{y,z,q} —{z,q¢.{s,tou}}ly
where, on the one hand:

{y, {s,t,soutat ={y,s,{t,s0u,q}} +{y,sou,{t,s,¢}} =
=yo(sof{t,sou,q}) —{y.{t,sou,q},s}+
+yo((sou)oft,s,q}) —{y.{t.s,q},sou} €
€ (N:so{t,sou,q})o(so{t,sou,q})+UnJ+
+ (N :(sou)o{t,s,q})o((sou)o{t,s,q})+UnJ € N,

hence x{y, {s,t,sou}q} € JN CTN.
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On the other hand

{s,t,soul{y,x,q} = {s,t,s ou}{y, Ust, q}
={s,t,sout((yo(so{t,s,q})) —{y. {t,s,at. s} +{y. Usq, t} €
€ J((N :so{t,s,q})o(so{t,s,q})) —UnJ)Z JN CTN,

And finally,

{z,q.{s,tou}}y € (Up,ga)N C JN C TN.

Therefore {x,y,{s,t,sou}} € LN J and we obtain U,y € (LN J : u)y. Analo-
gously, U,y € (LNJ :v)p, hence Upyy € (LNJ :u)p N(LNJ:v), and UUyy = 0
for any x,y chosen as above. Arguing as in the proof of 2.8 we get ¢ = 0, hence LN .J
satisfies 1.9(17). This proves the induction step, hence (i).

(ii) is proved as [MP, 4.4(ii)] with the obvious changes. m

4.8. Proposition. Let J be a nondegenerate Jordan algebra, and assume
that there is a hermitian ideal H(X) such that H(J) is essential. If R is a *-tight
associative x-envelope of J, then the set

Q= {q€ HQ,(R),*) | Ds(q) is dense in J}

is an ample subspace of symmetric elements of the maximal algebra of symmetric
quotients Q,(R) of R.

Proof. Again, the proof of the corresponding result [MP, 4.6] can be easily
adapted to the present case. m

4.9. Remark. In the previous results we have assumed that our Jordan alge-
bras were hermitian in the strong sense that there existed a hermitian ideal whose
values in the algebra was an essential ideal. We will now choose a particular hermi-
tian ideal to apply the results of [Mc4] without further comments. Recall that the
Zelmanov polynomial in the variables X = {x;, y;, 2, w;} (i = 1,2,3) has the form
([MZ, pp. 192, 195])

Zss = [[Pro(X W), Pig(X@)], Prg(X )]

for Pig(X) = [[[t, [t, 2]]%, [t, w]], [t,w]] (t = [z,y]), where [[a,b]c] = {a,b,c} — {b,c,a}.
Denote by Z(X) the ideal generated in the free Jordan algebra F.J[X] over a count-
able set of generators X by all the evaluations Zyg(ay,...,a12) for a; € FJ[X]. Then
Z(X) is a hermitian ideal.
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4.10. Theorem. Let J be a special nondegenerate Jordan algebra and assume
that Z(J) is an essential ideal of J. Then the algebra Q of 4.8 is the maximal algebra
of quotients of J.

Proof. Once more, the proof of [MP, 4.7] works in this situation with minor
obvious changes. Note however that since we are using the ideal Z(X) we do not need
here to adapt the results of [Mc4], since the General Zelmanov Extension Theorem
[Mc4, 2.1] can be applied directly. m

5. Main theorem and consequences

In this section we collect the previous results and find maximal algebras of quo-
tients for nondegenerate algebras. This will stem from a (finite) subdirect decom-
position of Jordan algebras which will transfer to a subdirect decomposition of their
algebras of quotients.

5.1. Lemma. Let Q be an algebra of quotients of the nondegenerate Jordan
algebra J, let L be an ideal of ), and put I = Anng(L). Then INJ = Ann;(LNJ).

Proof. Since INL = 0 by nondegeneracy 2.4(i) of @, we have (INnJ)N(LNJ) = 0,
and this implies I N.J C Ann;(L N J) since both I NJ and L N J are ideals of J.

Now take z € Ann;(L N J) and any ¢ € L, and set p = Uzq, K = (D;(q) : x).
Then U,K = U,U,U,K C U,U,D;(q) C Uy (LNJ) = 0, hence p = 0 by 2.4(iv)
since K is dense. Thus we get U,L = 0, hence x € Anng(L) = I by 0.3. Therefore
Ann;(LNJ) CINJ and this gives the equality. m

5.2. Lemma. Let QQ be an algebra of quotients of the nondegenerate Jordan
algebra J, let L be an ideal of Q, and set I = Anng(L). Then Q = Q/I is an algebra
of quotients of J = J/JNI(=J+1/IC Q).

Proof. First note the obvious containment D;(q) € D(q) for any ¢ = ¢+1I € Q.
Since INJ = Ann;(LNJ) by 5.1, we have J = J/Ann (LN J), so we can apply 1.22
to conclude that D;(q) is dense, hence that D7(q) is dense. Moreover, U;D7(q) =0
implies U;D;(q) € I, hence for all p € L we have y,,D;(q) € U,UrAnng(L) = 0,
and this implies U,L = 0 by 2.4(iv). Thus ¢ € Anng(L) = I by 0.3, hence ¢ =0. =

5.3. Lemma. Let J be a Jordan algebra and let () be an algebra of quotients of
J. If I, L are orthogonal ideals of J: I "L = 0, then they generate orthogonal ideals
m Q: idQ(I) N idQ(L) =0.

Proof. Consider first the particular case where @) is PI. For an ideal N of J
we denote by G(INV) the set of all ¢ € @ for which there exists a dense inner ideal K
of J such that for any z € K N Cy(J) there is a positive integer n with U,nq € N.
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Clearly N C G(N), and we claim that G(N) is an ideal of Q). (Although this is not
important in what follows, we note that Cy,(J) = 0 would imply G(N) = @, but this
is not the case with our nondegenerate PI algebra J by [FGM, 3.6]. Note also that if
N is essential, then G(INV) = @ since for any ¢ € @) we can consider the dense inner
ideal NND;(q), and any z € NND;(q) NCy(J) has U,2q = U.U.q C UnUp, ()9 €
UnJ CN.)

Take now ¢1,q2 € G(N) and dense inner ideals K; with U,n:q; € N for any
z; € Cyu(J) N K; and some n; > 0 (for i = 1,2). Then K = K; N K5 is dense and
for any z € C,(J) N K there are positive integers ni,ny with U,n;q; € N, hence
Un(qg1+ q2) = Upngqy + Uyngy € N for any n > ny,ng. Thus g1 + g2 € G(N) and
G(N) is a submodule.

Next, take ¢ € G(N) and p € Q. Note that if p = al + p/ with o € ® and
p € Q, then D;(p) = Dy(p') is dense in J. Now choose a dense inner ideal K of J
such that for all z € C\,(J)NK there exists a positive integer n with U,nq € N. Then
K’ =D;(p)NK is dense, and for any z € C,,(J)NK’ and n > 0 with U,»qg € N (note
that K’ C K), we have U,n+2U,q = U2U,nUpq = U,U,U.U,~q (since z € C,,(Q) by
2.13) = Uu.pU.ng € UyN C N. This proves that UyG(N) € G(N). On the
other hand we have U, znt1Uyp = U2, U,Uyp = U,nU,UnU,p (since z € Cyy(Q) by
2.13)= Uyp..qU.p € UnyJ C N, which proves Ug(N)Q C G(N), and therefore the

claim.

We now go back to our ideals I, L. By what we have just proved, we have
idg(I) € G(I) and idg(L) C G(L). So if q € idg(I) Nidg(L), then there are dense
inner ideals K; and Kj, such that for any z € C,(J) N K; N K, there is n with
Umnqée I and Uyng € L, hence U'q = U,nq € I N L = 0. This implies that U,q = 0
for any z € C\,(J) N K for some dense inner ideal K (= K; N K1) of J by 0.4. Thus
we have U2U,Q = Uy_,Q = 0 (since z € Cy(Q) by 2.13), hence 0 = U,U,Q (by
0.4) = U,U.Q, and since U.Q is an ideal of @), we obtain ¢ € Ann;(U.Q), hence
idg(q) € Ann;(U,Q) for any z € C,,(J)NK. Now consider the ideal A = idg(q)NK.
Then for any z € Cy,(J)NA, we have z € idg(q) € Ann;(U,Q) (since z € Cy(J)NK),
hence z = 0. Thus Cy(J)N(ANJ) = Cy(J)N A = 0, which yields AnJ = 0 by
[FGM, 3.6], hence idg(¢) N J = 0 since K is dense. Thus idg(gq) = 0 by tightness
2.4(iii) of @ over J, and we get ¢ = 0, hence idg(I) Nidg(L) = 0.

We consider next the case where @) is special. For an x-tight associative -
envelope A of Q we have idg(I) € AIA and idg(L) € ALA. Thus, if ¢ € idg(I) N
idg(L), there are a;,b;,¢cj,d; € A, y; € I, and x; € L with ¢ = ), a;yib; =
Zj c;x;dj. Now, by 4.7 the associative subalgebra R = alga(J) generated by J in A
is *-tight over J, and there is a dense inner ideal K in J with Ka;+Kc;+b; K+d; K C
R. Therefore Uxq € idr(I) Nidr(L) for all k£ € K. Since idr(I) Nidr(L) = 0 by
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[FGM, 1.15], we get Uxq = 0, hence ¢ = 0 by 2.4(iv). This proves idg(I)Nidg(L) = 0.

Finally, the general case is proved exactly as in the analogous lemma [FGM, 7.8]
with the obvious changes for the references. m

5.4. Lemma. Let Q be an algebra of quotients of a nondegenerate Jordan
algebra J, and let I be an ideal of J, then Ann;(I) = Anng(idg(I)) N J.

Proof. This is proved exactly as [FGM, 7.9(i)]. m

5.5. We will say that an ideal I of a nondegenerate Jordan algebra is closed if
I = Ann(Anny(7)). It is clear that if I is of the form I = Ann (L) for some ideal L,
then I is closed. Note that by [FGM, 1.16], the quotient J/I by any closed ideal of
a nondegenerate Jordan algebra J is again nondegenerate.

5.6. Lemma. Let J be a nondegenerate Jordan algebra and let Iy, I5 be ideals
with Iy = Annjy(l2) and I = Anny(I). If J; = J/I; has a mazimal algebra of
quotients Q;, then J has maximal algebra of quotients Qmaz(J) = Q1 X Q3.

Proof. Denote by 7; : J — J; the projection onto J;. We have a natural
monomorphism J — J; x Jo given by z +— (m(z),m2(x)). Composing this with
the monomorphism J; x Jo — @1 X @2, we can assume that J C Q1 X Q2. To
see that Q1 X Q)2 is an algebra of quotients of J, note that the projections induce
monomorphisms Iy — Jy and Is — Jp, so we can identify I; with the ideal Iy + I3 /I
of J, and Iy with the ideal Iy + I1/I; of Jy, and each of these ideals is essential.
Thus J; is an algebra of quotients of I by 2.3.1, hence ), is an algebra of quotients
of Iy by 2.8, and similarly (- is an algebra of quotients of I;. Thus it is easy to see
that Q1 x Q2 is an algebra of quotients of I = I; + 15 = I x I. Since [ is an essential
ideal of J, hence J is an algebra of quotients of I, we get from 2.8 that Q)1 x Q)2 is
an algebra of quotients of J.

Now, let @ be an algebra of quotients of J. Then /Anng(idg(I1)) is an algebra
of quotients of J/JNAnng(idg(11)) by 5.2. Now JNAnng(idg(l1)) = Ann;(l;) = I
by 5.4, hence QQ/Anng(idg(11)) is an algebra of quotients of J;, and there exists a
homomorphism ¢ : Q/Anng(idg(I1)) — Q2 extending the inclusion Jy C Q2 by the
maximality of Q2. Similarly, there exists a homomorphism ¢; : Q/Anng(idg(l1)) —
@1 extending the inclusion J; C Q4. Note now that Anng(idg(11))NAnng (idg(L2))N
J = I, NI; =0, hence Anng(idg(11)) N Anng(idg(I2)) = 0 by tightness. thus
we have a monomorphism ¢ : @ — @Q/Anng(idg(l1)) x Q/Anng(idg(I2)) made
up of the corresponding projections. Then we get a homomorphism ¢; X ¢o :
Q/Anng (idg(I)) x Q/Anng (idg(I2)) — Q1 X Q2, whose composition with ¢ defines
a homomorphism @ — @1 X @2, whose restriction to J is the identity mapping. m
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5.7. Remark. Lemma 5.6 can be easily extended to a finite collection of
ideals: If J is a nondegenerate Jordan algebra, Iy,..., I, is a finite collection of
closed pairwise orthogonal ideals (I; NI; =0 if i # j) whose sum [ = I} +---+ I, is
an essential ideal, and for each i = 1,...,n the algebra J; = J/ Z#i I; has a maximal
algebra of quotients );, then J has maximal algebra of quotients Q1 X -+ x @Q,,.(It
is easy to see that L, = Zi# I; has Annj;(L;) = I and Anny(l;) = Ly. Also,
J/I has closed pairwise orthogonal ideals Iy = Is + I1/11,...,1I, = I, + I /11, and
Ly = D iin I; = L;/1; for all i # 1, the algebra (J/I1)/L; = (J/I1)/(L;/I,) = J/L;
has a maximal algebra of quotients ;. Then it is clear that an induction on n proves
the assertion.

5.8. Theorem. Any nondegenerate Jordan algebra J has maximal algebra of
quotients Qmaz(J).

Proof. Following the proof of [FGM, 7.8], we consider the T-ideal A(X) C
FJ[X] satisfied by all Albert algebras. For each strongly prime ideal P of J, either
J/P is Albert, hence A(J) C P, or J/P is special. Denote by B the intersection
of all containers (strongly prime ideals P of J such that A(J) C P), and by C
the intersection of all noncontainers (those P not containing A(.J)). It is proved in
[FGM, 7.8] that C is a closed ideal that satisfies Ann;(B) = C. Moreover, J/C is
nondegenerate, and a subdirect product of special algebras .J/P for all containers P,
hence it is itself special, and J/Ann ;(C) is nondegenerate, and PI since A(J) C B C
Ann;(C).

Thus, lemma 5.6 implies that J will have maximal algebra of quotients Qa4 (/)
as soon as J/C and J/Ann;(C) do. Now, since J/Ann;(C) is nondegenerate and
PI, it has maximal algebra of quotients by 3.11, so it remains to show that J/C has
maximal algebra of quotients. In other words, we can assume that J is special.

Under that assumption, consider the hermitian ideal Z(X) of 4.9, and set I =
Ann;(Z(J)) and L = Ann(I). By 5.6 it suffices to prove that J/I and J/L have
maximal algebras of quotients.

First note that both J/I and J/L are special algebras by [FGM, 1.5(vi)]. Now,
Z(J/L) = Z(J)+ L/L = 0 since Z(J) C Ann;(Ann;(Z(J))) = L, hence J/L is
PI and therefore it has maximal algebra of quotients by 3.11. On the other hand,
Z(J/L) = Z(J) + L/L is essential in J/L by [FGM, 1.13(iii)], hence it has maximal
algebra of quotients by 4.10. m

5.9. Remark. For any nondegenerate Jordan algebra Q,q.(J) is unital. In-
deed,take a tight unital hull J’ of J, and denote by 1 its unit element. Since J is an
essential ideal of J, J’ is an algebra of quotients of J, hence Q4. (J’) is an algebra
of quotients of J by 2.8, so we have Qnaz(J) = Qmaz(J') by the maximality of
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Qmaz(J) and of Qpax(J'). Now, arguing as in the proof of [MP, 3.2], we conclude
that 1 is the unit element of @Qqz(J") = Quaa(J). M

Our next aim is to show that the maximal algebra of quotients is independent
of the ring ® of scalars over which J is an algebra.

5.10. Lemma. Let J be a special nondegenerate Jordan algebra and let R be
a ast-tight associative x-envelope of R. Then the action of the centroid I' = I'(J)
extends to R, so that R is a I'-algebra.

Proof. We claim that for any v € T" and any z,y € J, we have v(x)y =
27y(y). Choose v € T and for any z € J set h(z) = v(x)x — v(2?). Then we have
h(z) = v(@)z —v(2?) = v(x) oz — ay(z) — 7(2?) = y(z 0 2) — ay(z) — 1(2?) =
2v(z?) — ay(z) — v(2?) = —ay(z) + v(2?) = —h(x)*. On the other hand, if 2z €
J, then zh(z) + h(z)z = zh(x) — h(z)*z = zy(x)x — 27(2?) + 2y(2)2 — Y(2?)2z =
{2,v(z),z} —v(x?) 0 2 = y({z,7,2}) — y(2? 0 2) = 0. Therefore h(z)R = Rh(z).
Now, h(z)? = —h(z)h(z)* = 7*(z") —v(2®)y(2)z — 2y (2)v(2?) + 7% (") = 29%(2") -
{v(@*)y(z), 2} = 292(2*) — 2¢%(2*) = 0. Thus h(x)Rh(z) = 0, and we get h(x) = 0
by semiprimeness of R. Linearizing the condition h(xz) = 0 we get v(x)y + v(y)z =
v(z 0 y) and since y(z o y) = z 0 y(y) = v(y)z + z7(y), we obtain y(z)y = z(y).

Now, since J generates J, for any r € R there are elements x;; € J with r =
Y i Ti1 - Tin,. We define v(r) = > v(xi1) - - - Tin,. To see that this is well defined,
suppose that > . ;1 -+ xin, = 0 and set s = >, v(z41) - - - @in,. Then, for any y € J
we have ys = ZZ yy(Ti1) - Tin, = ZZ’Y(y)leflfm = (y) Zz Ti1 - Tin, = 0.
Hence Js = 0, which implies Rs = 0, hence s = 0 by semiprimeness of R. Therefore
~(r) is well defined, and it is clear that the action r — ~(r) for v € T' extends the
action of I' on J and makes R a I'-algebra. m

5.11. Lemma. Let J be a nondegenerate Jordan algebra and let () O J be an
algebra of quotients of J. If Q is a ®-algebra for some ring of scalars ®, and J is a
®-subalgebra, then Q) is an algebra of quotients of J over ®.

Proof. This is straightforward from the fact that every denominator inner ideal
Dj(q) for g € Q is a ®-inner ideal, which is obviously dense as a ®-inner ideal. m

Let J be a nondegenerate Jordan algebra over a ring of scalars ®, we denote
(temporarily) denote by Qumaz(Je) its maximal ®-algebra of quotients. It is clear
that for ring of scalars ® we have Qaxz(Jr) C Qmaz(Jo) C Qmaz(Jz)-

5.12. Lemma. For any nondegenerate Jordan algebra we have Qpar(Jr) =
Qmaz(Jz), and therefore, the maximal algebra of quotients of a nondegenerate Jordan
algebra does not depend on the ring of scalars.
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Proof. In view of 5.11, it suffices to prove that if J is a nondegenerate Jordan
®-algebra, then Q = Qa.(Jz) is a P-algebra. Following the proof of 5.8, we can
find ideals I, L of J with Ann;(I) = L and Ann;(L) = I such that J/L is PI, and
J/I is special and has Z(J/I) essential. Then I and L are ®-ideals, hence J/I and
J/L are ®-algebras, and since Qmaz(Jz) = Qmaz((J/1)z) X Qmaz((J/L)z), we can
assume that either J is PI, or J is special and Z(J) is essential in J. In the first
case, the description 3.11 of the algebra of quotients as the almost classical algebra
of quotients of J makes it clear that Qmqz(Jz) is a I'(J)-algebra, hence a ®-algebra.

On the other hand, if J is special and Z(J) is essential in J, by 4.10 Qynqa.(J) is
the set of all ¢ € H(Q,(R), %), for a x-tight associative x-envelope R of J which have
Dy(q) dense in J. It follows from 5.10 that R is a ®-algebra, and it is easy to show
that then Q. (J) is a ®-algebra. m

We next apply 5.8 to other classes of algebras of quotients.

5.13. Lema. Let J C J be nondegenerate Jordan algebras and let F be a filter
of essential ideals of J such that IV € F for all I € F. Assume that Uzl # 0 for
any ideal I € F and any @ € J. Then, the set Q = {a € J | Ds(a) contains an ideal
of F} is a subalgebra of J which is a Martindale algebra of F-quotients of J.

Proof. Note first that for any p,q € @ with ideals I C D;(p) and L C D;(q),
I.L € F, we have N = INL € F, and {p,U,y,q} = {{p,z,y},x,q} € J for
any z,y € N. Thus, U, ,NY C U,ND 4+ U,ND + {p, N ¢} C J, and since
ND o (p4q) C J, we get N® = (NOYD C Dy(p+q) (see 2.3.2) and N?) ¢ F,
hence p+q € Q.

Now, keeping the notation, but assuming q € J (and L=Jifg=1),if M C N
and M € Fthen {z, Uy, p} = {z, @, {y,z,p}}—{z,Usp,y} € {J, M, J}+{J,J, M} C
M for any z,y € M) and any z € j, i. e.

(1) {(7,MY p} €M and {J,MY q} C M
and
(2) (MY Jpy M and {MWD J ¢} C M.

Now, UpUyy = Upory — UpUpy — Up(zoy) ox+{p,y, Usp} € UyM +UpJ + Jo M +
{p, M) J} C M for any x,y € M') using (1). Hence

3 UM CM and UM®P C M.
p q
Moreover, for any z,y € M) we have {U,.y,p, ¢} = {z, {y, z,p}q}—{U.p, vy, q} €
MO g+ 147 MDY ¢gv C M by (1) and (2), hence
{ Jiq : . q y ,
(4) (M® p gy €M and {M® ¢,p} C M.
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Therefore, z o (Upq) = {z,p,q} op —qoUpz € {N® . pg}op+qoU,N? C
Nop+qoN C J for any z € N® by (3) and (4), i. e.

(5) N® oU,q C J

On the other hand, Uy,(N® = U,U,U,N® C U,U,N® C U,N C J by (3).
This together with (5) proves that the ideal N € F satisfies N*) o U,q C J and
UquN(4) C J. Now, for any z,y € N® and any z € J, we have {U,y,U,q, 2} =
{z.{y, =, UPQ}a 2} —{Uq,y, 2} = {=, yo(xoqu), zt—{z,{z, Up4, y}, 2y —1{Uxq,y, 2} €
J, hence {N®) U,q,J} C J. Now, Uy, ,Uyq € J for any x,y € M™ follows easily
using QJ16 and the above containments. This yields N®) C D(U,q), and since
N®) € F, this establishes Upq € @, and proves that @) is a subalgebra of J.m

5.14. Let J be a nondegenerate Jordan algebra and let F be a filter of essential
ideals of J such that IV € F for any I € F. A Martindale algebra of F-quotients @
will be said to be maximal if for any other Martindale algebra of F-quotients Q' of
J there exits an algebra homomorphism Q' — @Q which extends the inclusion J C Q.
Since Martindale algebras of F-quotients are, in particular, algebras of quotients, it
follows from 2.11 that there is at most one such extension of the inclusion J C @,
and as in the case of maximal algebras of quotients, that up to isomorphism there
exists at most one maximal Martindale algebra of F-quotients.

5.15. Corollary. Let J be a nondegenerate Jordan algebra and let F be a filter
of essential ideals of J such that IVY) € F for any I € F. Then there exits a mazimal
Martindale algebra of F-quotients.

Proof. The set Q = {q € Qmaz(J) | Ds(q) contains an ideal from F} is a
subalgebra of Q. (J) by 5.13. It is easy to see that this is in fact a Martindale
algebra of F-quotients of J, and its maximality readily follows from the maximality
of Qumaz(J) since any Martindale algebra of F-quotients is in particular an algebra
of quotients. m

The next result, proved in [M] for linear algebras, and extended in [Bo] to
quadratic algebras, is the analogue of 5.13 for algebras of S-quotients (see 2.3.5).

5.16. Lema. Let J C J be Jordan algebras, J a subalgebra of J, and let S be
an Ore monad in J which satisfies the Ore condition in J. If any element from S is
invertible in J, then Ug—1J = {Us;nx € J|se€SzeJt={aecJ|Dsans +#0p}
is a subalgebra of J which is an algebra of S-quotients of J. m

5.17. Lemma. Let J be a nondegenerate Jordan algebra, I # J be a closed
ideal of J, and S C J an Ore monad. Then S/I = {s+1|s € S} is an Ore monad
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in J/I. Moreover, if S satisfies the Ore condition in J, then S/I satisfies the Ore
condition in J/I.

Proof. Denote with bars the projections in J = J/I. We first show that
Inj(J) C Inj(J). Indeed, if Usz = 0 for some s € S and = € J, then Usx € I and
UsU,UsAnn;(I) = Uy, ,Anny(I) € I'NAnny(I) = 0. Therefore U,UsAnn;(I) = 0
since s is injective. Now we have Uy, y,.Anny = U;U, U, U, UsAnn;(I) = 0 for any
z € J, hence UsU,J C Ann;(Ann;(I)) = I (by 0.3, since [ is closed). Then, for
any z € J, we get UsUy,,Ann;(I) C UsU,J N Anny(I) € I N Anny(I) = 0, and
since s is injective, this implies Uy, .Ann;(I) = 0 for any z € J, hence U,J C
Annj(Ann;(I)) = I (again by 0.3 ). In particular, U,Anny (/) C I N Ann;(I) = 0,
hence x € Annj(Ann;(I)) = I by 0.3, and we obtain z = 0. Now the fact that S/I
is an Ore monad is a straightforward verification.

Suppose next that S satisfies the Ore condition in J. as has been proved in 2.3,
this means that for any s € S and any a € J, the inner 1deal K, = ®s + U,J has
(Ks:a) NS # (. Now we clearly have Ky = K5 = &5+ UsJ and (Ks:a) C (K :
a) = (K5 : a), and since (K, : a) NS # 0, we obtain (K :a)NS # (), hence S = S/
satisfies the Ore condition in J = J/I. ®

5.18. Corollary. Let J be a nondegenerate Jordan algebra. and let S C J be
an Ore monad of J. If S satisfies the Ore condition in J, then there exists an algebra
of S-quotients of J.

Proof. In view of 5.16, it suffices to find an algebra J D J in which every
element from S becomes invertible. We will show that this is indeed the case for

J = Qmaz(J).

We retrieve here the notation of the proof of 5.8, and consider the intersection
C of all noncontainers, which is a closed ideal. Take now ideals I and N of J
with C C TN N, I/C = Anny,c(Z(J/C)) and N/C = Annj,c(Annyc(Z2(J/C))),
and set L = N N Anny(C). Since Z(J/C) = Z(J) + C/C, it is clear that I =
Ann;(Z(J)+C)+ C (see [FGM 1.13(iii)]) = Anny(Z(J) 4+ C) + Anny(Ann;(C)) =
Ann;[(Z(J)+C)NAnn;(C)] and N = Anny(I)+C = Anny(I)+Ann;(Ann;(C)) =
Ann;(I N Ann;(C)) are closed ideals. Now set L = Anny(C) N N = Anny(C) N
Ann;(INAnn;(C)) = Anny;(C+I1NAnn;(C)). Since C+INAnn;(C) CC+1C 1,
we have Ann () C L. On the other hand, if z € Ann;(C)NAnn,;(/NAnn,;(C)) =L,
then Uy, ;Ann;(C) C U.(I N Ann;(C) = 0, hence U.I C Ann(Ann;(C)) = C,
but since z € Anny(C) this gives U,I = 0, hence z € Anny([). thus we have
L = Ann;(I). Note also that J; = J/L = J/(Ann;(C) N N is a subdirect product
of the PI algebras J/Ann;(C) and J/N = (J/C)/Ann;/c(Ann;c(Z2(J/C))), and
Jo = J/I = (J/C)/(I/C) = (J/C)/Ann;,c(Z(J/C)) is special and has essential
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Z(J/C). From 5.6 we get then that Qmaz(J) = Qmaz(J1) X Qmaz(J2) through the
inclusion J C J; X J2 € Qmaz(J1) X Qmaz(J2). Moreover, an s € S will be invertible
in Qmaz(J) if and only if s; = s+ L and sy = s+ I are invertible in Q4. (J1) and
Qmaz(J2) respectively.

Note now that by 5.17, with the notation introduced there, S/I and S/L are
Ore monads in J/I and J/L respectively, and they satisfy the Ore condition in
their respective algebras. Thus, it suffices to show that the theorem holds for J/I
and for J/L or, in other words, we can consider separately the case where J is PI,
and the case where J is special and the ideal Z(J) is essential. Before going into
the proof of that fact we note that if s € J is injective, then s is also injective
in every algebra of quotients @) of J. Indeed, if Usq = 0 for some ¢ € @, then
UUy (K NDy(q)) C UUUJ = Uy.qJ = 0, hence Uy (K2 NDy(q)) = 0 by the
injectivity of s since Uy (K2 NDy(q)) € J. Now Ky NDy(q) is a dense inner ideal
of J, hence ¢ = 0 by 2.4(iv).

Assume first that J is PI. Then Q42 (J) = Jg(r) is the almost classical algebra
of quotients of J by 3.11. Take any injective s € J and note that since UyJ D K,
is a dense inner ideal of J, there exists an essential ideal N of J with N C U,J by
3.1. Since s is injective, every element of N can be written in the form Uga for a
unique a € J. Now take z = Usa € N N Cw(J). Then for any p € Qa.(J) and any
w = Use € NNCy(J) we have: UsU,UsU,p = UsUsU,Uyp (since w € Cyy (Q) by 2.13)
= Us;UsUUsUcUsp = U U U Usp = U UsUcUsp = U Uyp = Uy Upp = UsUy U Usp,
hence UsU,, (UsUup — U,Usp) = 0. Thus Uy, (UsU,p — U,Usp) = 0 by the injectivity
of s in Qmaz(J) proved above, and we get u(N)(UsUyp — U,Usp) = 0 (with the
notations of section 2), hence U;U,p — U,Usp = 0 by 3.6, i. e.

(%) UsUuyp =U,Ugp for all pe Q.

We define a mapping fs : u(N) — J by fs(O°, NiUz) = >, AilUa, s%, where
Ai € T, and z; € Cu(J) N N has the form z; = Uga; for a unique a; € J. To
see that this is well defined suppose that ) . \;U., = 0 with \; and z; as before.
Then 0 = Y, \iU,,8* = S, \iUas* = 3, \iUsUy, 8% (by (%) = Us >, AUy, 8%,
hence Y, A\;U,,s*> = 0 since s is injective. It is clear that f is a homomorphism of
[-modules, an thus it defines an element ¢ = [f,u(N)] € Jg(r).

Now take r € Qmax(J). For any z = Uga € C,(J) N N we have:

UlUy,u,sm = U2UUUUUZr = UUy, U Uy, UZr =
(since Cyy(J) C Cu(Qumaz(J)) by 2.13)
= UsUf(US)UsUf(US)USQT = USUUQSQUSUUQSQUSQT = (by 36)
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= Uu,dUu,oUuUsUy,oUsr = U, U U UsU, Ugr =
= U2UUZr =
(again since Cy(J) C Coup(Qmaz(J)))
= USU,UUyr = Ulr, (by (+))

so U (Uy,u,sUsr —7) = 0 for all r € Quas(J), hence Uy, u,sUsr — 7 = 0 by 0.3 since
U. € I'(Qmaz(J)), and Uy,u,sUsr = r for all r € Qpaz(J), which proves that s is
invertible in Qpa.(J) with inverse s~! = UyUys, and the theorem in the case where
J is PL

Assume finally that J is special and Z(J) is an essential ideal of J. For any
x-tight associative x-envelope R of .J, the maximal algebra of quotients of J is
Qmaz(J) ={q € HQ,(R),*) | Ds(q) is dense in J} by 4.10. Now take s € S, and
note that since the inner ideal K, = &s + Usj is dense in J, the left ideal Rs o K
is dense in R by 4.6, hence Rs = RRs is also dense left ideal, and sR = (Rs)* is a
dense right ideal. In particular this implies that the right annihilator of Rs is zero,
hence s is regular in R.

Now note that the mapping f : Rs — R given by f(rs) = r is well defined
since s is regular, and is a homomorphism of left R-modules. Then f; defines an
element ¢ € Q' . (R) which satisfies 2sq = z for all x € R. Moreover, ys(gsz — ) =
ysqsr — ysx = ysx — ysx = 0 for any x,y € R, hence Rs(qgsx — x) = 0, and this
implies gsz = z for any x € R, since Rs is dense. It follows then that gsR C R, hence
q € Q4 (R) by the density of sR, and ¢ = s~ is the inverse of s in Q,(R). Note now
that ¢ = ¢*, and D;(q) D K, is a dense inner ideal of J, hence s™! € ¢ € Quaz(J),
which proves the theorem for the present case. m

5.19. Notes.

1.- We have already noted in 1.18(b) that in a strongly nonsingular Jordan algebra,
an inner ideal is dense if and only if it is essential, and in this case the algebras
of quotients in the sense of [MP] are the same as our algebras of quotients.
Therefore Theorem 5.8 generalizes [MP, 4.8]. (It is easy to see that if for a
strongly prime Jordan algebra J, the almost classical localization Jg(ry coincides
with the usual central closure I'"1.J.)

2.- Note that the description 4.10 of the maximal algebra of quotients easily provides
the corresponding description of the Martindale algebra of quotients by 5.13: If
J is a nondegenerate special Jordan algebra such that Z(J) is essential, and R
is a *-tight associative x-envelope of J, then the maximal Martindale algebra of
quotients of J consists of the set of all ¢ € H(Q,(R),*) (or equivalently in this
case ¢ € H(Qs(R),*)) such that D;(q) contains an essential ideal of J. This
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shows that 5.15 generalizes [AGG,4.6] both to quadratic and to nondegenerate
algebras.

Corollary 5.18 gives an answer to the quadratic version of Jacobson’s original
problem [J1, p. 426] of finding rings of fractions of Jordan domains (which are
nondegenerate) without the need of the “unwelcome Ore condition” of [BoM]. Of
course, since it is shown in [BoM] that this is a necessary condition for general
algebras of fraction to exist, there is no point in trying to avoid this extra Ore
condition unless it turns out to be a consequence of the monad being Ore in the
algebra, which seems unlikely. Corollary 5.18 just shows that a more familiar
condition like nondegeneracy is enough. It would be desirable however to have a
direct combinatorial proof of this fact (that is, of the fact that together with the
usual Ore condition, nondegeneracy implies the “unwelcome Ore condition”).

It was proved in [ACGG] that if Qis a Martindale-like cover of a nondegenerate
Jordan algebra J, then: (a) if J is PI, then @ is PI, and in this case, every
homogeneous polynomial p which vanishes on J, also vanishes on @ [ACGGI,
2.5], and (b) if J is special, then @ is special. It is clear that the proof of
3.8(1) adapts to yield the corresponding results for any algebra of quotients @
of a nondegenerate J, which contains the above results as particular cases. Of
course, the situation in [ACGG1] is in principle more general, since the authors
consider there what they call covers satisfying the condition C,,(J) C Cy(Q),
and the outer absorption property IA1 of [ACGGI1, 0.10]: for any ¢ € @ there
exits an essential ideal I of J such that 0 # U;q € J. Note however the following

Lemma. Let QQ be a cover of the nondegenerate Jordan algebra J. If J is PI
and Q satisfies IA1 of [ACGG1], then Q is a Martindale-like cover of J.

Proof. We first prove the following claim:

(1) Urq # 0 for any essential ideal L of J, and any 0 # ¢ € Q.

Indeed, if L is an essential ideal of J and there is a nonzero g € ) with Urq = 0,
the there is a nonzero p € @ with U,L = 0 by [MP, 2.5]. Now, we can find an
essential ideal I of J with o # Urp C J, and for any y € I we have Uy, ,L C
U,U,L =0, hence Uyp € Ann;(L) =0, and we get Urp = 0, a contradiction.

Using this fact, the corresponding part of the proof of [MP, 3.4] can be easily
adapted to yield:

(2) UzUmq = UxUzq and Uz{x,y, Q} = {ili',y, UZQ}

for any z € C(J), x,y € J,and ¢ € Q.
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Next take an essential ideal L of J, and fix ¢ € ), we claim:

(3) if U,q=0 forall zeCu,(J)NL, then ¢=0

Indeed, suppose that there is an essential ideal L with U,q = 0 for all z € C,,(J)N
L, and take an essential ideal I with 0 # Uyq C J. Then U.U;q = U;U,q (by
(2)) = 0 implies u(L)Urq = 0 (see 3.10), hence Urq = 0 by 3.6, a contradiction.

Now take ¢ € Q and z € Cy(J) and choose an essential ideal I of J with
Urq C J. For any w € C\,(I) we have U, ({U.x,y,q}) = {U.z,y,Uwq} (by (2))
= {z,y,U,Uyq} (since z € Cy(J) and Uyq € J) = {z,y,U,U.q} (by (2) since
w € Cy(J)) = Unf{z,y,Uzq} (by (2)). Thus Up({U.,y,q} —{z,y,U.q}) =0
for all w € Cy(J) NI, and (3) gives:

(4) {U.2,y,q} = {2, U.y,q} = {z,y,U.q}
for any z € Cy(J), z,y € J, and q € Q.

Now fix ¢ € @, and an essential ideal I of J with Urq+Urq®> C J. Set N = u(I)J,
which is an essential ideal of J by 3.10 and 3.7. Then, for any z € Cy,(J)NI, a,b €
J, we have {U.a,q,b} = ((U,a)oq)ob—{b,Ua,q} = (acU,q)ob—{b,a,U.q} € J,
hence {N,q,J} C J. Consider now the ideal b of T' generated by all U2 for
z € Cy(J) N N. This is an essential ideal of I" for if ab = 0 for some a € T,
then a(U,)? = 0 for all z € C,(J) N N, hence (aU,)? = 0, and alU, = 0 for
all z € Cy(J) N N since T is reduced. Thus au (N) = 0, hence o = 0 by 3.10.
Set now L = bJ, which is an essential ideal of J by 3.7. Then L C N C I,
hence Upq + {L,q,J} C J. Also, for any z € Cy(J) N N and any a € J we
have U,U2a = Uyo.Usa — Uy, Uy — {{q,2,Ua},q, 2} + (U.a) o (U,q?) (apply
Macdonald’s theorem [J2, 3.4.16]), which belongs to J by the above containments
and since Ung* C Urg? C J. This shows that U,L C L and proves the lemma. m
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