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Introduction

Associative localization theory is a well developed subject which was inaugu-
rated in the works of Ore and Osano and culminates in the general theory of Gabriel
localization. Form the viewpoint of Jordan theory, it is natural to ask for extension
of these ideas to the setting of Jordan algebras (or more generally, of general Jordan
systems). That line of research originated in the question raised by Jacobson [J1, p.
426] of whether it would be possible to imbed a Jordan domain in a Jordan division
algebra in a way similar to Ore’s construction in associative theory, in connection
with the search for new exceptional Jordan division algebras as algebras of fractions
of Jordan domains. From a more structure-theoretic standpoint, and related to the
possible extensions of Goldie theory to Jordan algebras, the early results of Mont-
gomery [Mon] and Britten [Br1-3] deal with the problem for lineal Jordan algebras
H(R, ∗). A general and purely combinatorial framework was laid by Jacobson et al.
in [JMP]. Based on the localization of the monoid of U -operators, they obtained an
imbedding of a Jordan algebra with a monoid of denominators in an algebra of outer
fractions, but in the words of one of the authors (see [BoM]), they had to impose an
unnatural extra condition.

As for the search for a Jordan version of Goldie’s theorems, which of course
required a construction of an algebra of fractions, a definitive answer for linear Jordan
algebras came with the papers [Z1,Z2] of Zelmanov, where he made use of his deep
results on structure theory rather than the direct approach of [JMP]. This result has
been extended in [FGM] to quadratic algebras by using again Zelmanov’s structural
approach, and refining Zelmanov’s ideas with the introduction of inner ideals of
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denominators, which play a key role in some of the notions of algebras of quotients
developed in later works (including the present one).

From a entirely different and more intrinsic approach, Mart́ınez has recently
given in her beautiful work [M] necessary and sufficient Ore-like conditions for the
existence of algebras of fractions of linear (with 1

6 ∈ Φ) Jordan algebras, thus solving
Jacobson’s original problem. Her strategy consists of using the Kantor-Koecher-Tits
construction to embed the algebra of fractions in a Lie algebra through partially
defined derivations. This approach has also been followed in the quadratic extension
[Bo, BoM] of her theorem by Bowling and McCrimmon, where they use Faulkner’s
Hopf algebra construction which provides an adequate quadratic substitute of the
Kantor-Koecher-Tits Lie algebra. It must be pointed out, however that the quadratic
result requires some extra Ore condition, called in [BoM] “unwelcome condition”,
which makes it less neat than its linear counterpart.

Before describing some of the additional literature on Jordan algebras of quo-
tients, let us pause for a moment to reflect on the two approaches to the problem
laid in the above mentioned works of Zelmanov and Mart́ınez. As a general remark,
the construction of algebras of quotients of a Jordan algebra J amounts to the con-
struction of an over-algebra Q ⊇ J whose elements have some kind of denominators
in J , so that one can see those elements as acting partially on J (where that action
should include the linear as well as the quadratic actions derived from the way in
which an element of Q multiplies by elements of J). So to some extent we are forced
to decide what kind of partially defined or germs of “regular representations” will
be adequate for that construction. The two mentioned approaches choose different
regular representations: a Lie representation in Mart́ınez’s work, and an associative
representation (hence a specialization) in Zelmanov’s. Of course it is a truism that
specializations only work for special Jordan algebras, however, if we impose regular-
ity conditions as nondegeneracy, what is left out is algebras satisfying polynomial
identities, and for these we can try to use the results of Jordan PI-theory. On the
other hand, while partially defined regular representations of associative algebras on
suitable filters of one-sided ideals are the main theme of associative localization the-
ory, and are known to produce associative algebras, the effectiveness of using germs
of regular representations (hence derivations) of Lie algebras lies in the important
fact discovered in [M] that they also produce new Lie algebras.

Following the Lie approach of Mart́ınez, in [GG] Gómez-Lozano and Garćıa
defined and studied what they called Martindale-like systems of quotients of Jordan
systems (not just algebras) over rings Φ of scalars with 1

6 ∈ Φ, paralleling the known
construction of associative systems of Martindale quotients. By the general reasons
mentioned above, that required the previous work of Siles [S] on Martindale-like Lie



Jordan algebras of quotients 3

algebras of quotients, also inspired in the construction given in [M].

On the other hand, among the works that follow Zelmanov’s structural approach
we can mention the study [MP] of the Jordan analogue of Johnson’s algebra of quo-
tients of an associative algebra. Here, the set of denominators is the filter of essential
inner ideals of the Jordan algebra, and as in the associative theory, one must impose
some nonsingularity condition, which is called strong nonsingularity in that paper
(since there already existed a weaker notion of nonsingularity, introduced in [FGM]).
Also within the framework of Zelmanov’s structural approach, and following some
of the ideas of [MP] (in a preliminary version), Anquela, Gómez-Lozano and Garćıa
have studied in [AGG] algebras of Martindale-like quotients of strongly prime lin-
ear Jordan algebras (thus dropping the condition 1

3 ∈ Φ of [GG], but assuming the
additional condition of primeness).

In this paper we address the problem of adapting to nondegenerate Jordan al-
gebras Lambek and Utumi’s construction of algebras of quotients (also referred to in
the literature as general algebras of quotients), and define and prove the existence
of maximal algebras of quotients. The importance of this construction is that it em-
braces all known types of algebras of quotients in the nondegenerate case. We adopt
the above mentioned Zelmanov’s structural approach, and follow many of the ideas
of [MP].

The paper is organized as follows. After a first section of preliminaries, we define
in section 1 dense inner ideals, which are intended to be the Jordan analogues of dense
one-sided ideals, basic for the construction of Lambek-Utumi’s algebras of quotients.
It must be noted that, with that definition, the existence of dense inner ideals in a
Jordan algebra implies that the algebra is nondegenerate. As commented before, this
is a natural restriction for the structural approach that we will follow.

In section 2, we introduce the notion of Jordan algebra of quotients linked to the
notion of dense inner ideal. We show that, for nondegenerate algebras, this definition
includes as particular cases all the different types of algebras of quotients mentioned
above. We study then some of the properties of algebras of quotients, and introduce
the natural notion of maximal algebra of quotients. We close the section by studying
how the weak centroid of a Jordan algebra relates with the weak centroids of its
algebras of quotients, a result which will be instrumental in the study in section 3
of maximal algebras of quotients of PI algebras. To construct a maximal algebra of
quotients for those, we extend Beidar and Mikhalev’s nearly classical localization to
quadratic Jordan algebras, and show that for a PI-algebra that is in fact the maximal
algebra of quotients.

Section 4 is devoted to the construction of maximal algebras of quotients for
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hermitian algebras, or more precisely, for special algebras for which a particular
Zelmanov ideal generates an essential ideal. Here the specialization strategy outlined
before is used, and we translate the problem to the associative setting, where it can
be solved by using Lanning’s symmetric algebra of quotients. The fundamental fact
here is the good relationship that exists between dense inner ideals and dense one-
sided ideals of a ∗-tight associative ∗-envelope, which also suggests the adequacy of
the notion of dense inner ideal.

Finally, in section 5, we put all pieces together, and state and prove the existence
of maximal algebras of quotients. We obtain as corollaries the existence of maximal
Martindale algebras of quotients, and the sufficiency of Mart́ınez’s Ore conditions for
the existence of algebras of fractions in nondegenerate Jordan algebras.

0. Preliminaries

0.1. We will work with Jordan algebras over a unital commutative ring of scalars
Φ which will be fixed throughout. We refer to [J2, MZ] for notation, terminology,
and basic results. In particular, we will make use of the identities proved in [J2],
which we will quote with the labels QJn of that reference. In this section we recall
some of those basic results and notations, together with some other that will be used
in the paper.

0.2. A Jordan algebra has products Uxy and x2, quadratic in x and linear in
y, whose linearizations are Ux,zy = Vx,yz = {x, y, z} = Ux+zy − Uxy − Uzy, and
x ◦ y = (x+ y)2 − x2 − y2 respectively.

We will denote by Ĵ the free unital hull Ĵ = Φ1⊕J with products Uα1+x(β1+y) =
α2β1 + α2y + αx ◦ y + 2αβx + βx2 + Uxy and (α1 + x)2 = α21 + 2αx + x2. (We
will also use this notation for the corresponding construction for associative algebras:
R̂ = Φ1+R.) A tight unital hull J ′ of J is a Jordan algebra having J as a subalgebra
which is tight over J : any nonzero ideal I of J ′ hits J , J ∩ I 6= 0.

0.3. A Φ-submodule K of a Jordan algebra J is an inner ideal if UxĴ ⊆ K for
all x ∈ K, and that an inner ideal I ⊆ J is an ideal if {I, J, Ĵ} + UJI ⊆ I. If I, L
are ideals of J , so is their product UIL, and in particular so is the derived ideal
I(1) = UII. An (inner) ideal of J is essential if it has nonzero intersection with any
nonzero (inner) ideal of J .

For any subset X of the Jordan algebra J , the annihilator of X in J is the set
AnnJ(X) of all z ∈ J which satisfy Uzx = Uxz = 0 and UxUzĴ = UzUxĴ = Vx,zĴ =
Vz,xĴ = 0 for all x ∈ X. This is always an inner ideal of J , and it is also an ideal if
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X is an ideal. If J is nondegenerate and I is an ideal of J , the annihilator of I can
be characterized in the following alternative ways (see [Mc2, Mo2]):

AnnJ(I) = {z ∈ J | UzI = 0} = {z ∈ J | UIz = 0}.

0.4. The centroid Γ(J) of a Jordan algebra J is the set of all Φ-linear mappings
γ : J → J that satisfy: γ(Uxy) = Uxγ(y), γ2(Uxz) = Uγ(x)z, and γ({x, y, z}) =
{γ(x), y, z} for all x, y ∈ J and all z ∈ Ĵ . If J is nondegenerate, then Γ(J) is a
reduced unital commutative ring, and if in addition J is strongly prime, then Γ(J)
is a domain acting faithfully on J . In that case we can localize to define the central
closure Γ(J)−1J which is an algebra over the field of fractions Γ(J)−1Γ(J). In a
nondegenerate J , γnx = 0 implies γx = 0 for any γ ∈ γ(J), any positive integer n,
and any x ∈ J .

Following [Fu], we define the weak center Cw(J) as the set of all z ∈ J which
have Uz, Vz ∈ Γ(J). We will also consider the notion of extended centroid of a Jordan
algebra J which we will denote by C(J), and for which we refer to [Mo2]. Its attached
scalar extension C(J), the extended central closure was defined and studied in [Mo2].

0.5. It is well known that any associative algebra R gives rise to a Jordan algebra
R(+) by taking the products Uxy = xyx and x2 = xx. A Jordan algebra is special if it
is isomorphic to a subalgebra of an algebra of the form R(+), and it is called i-special
if it satisfies all the identities satisfied by all special algebras. An important class of
special algebras are algebras of symmetric elements H(R, ∗) of associative algebras
with involution (R, ∗), and more generally, ample subspaces H0(R, ∗) ⊆ H(R, ∗) of
symmetric elements, subspaces that satisfy: r+ r∗, rr∗ and rhr∗ belong to H0(R, ∗)
for all r ∈ R and all h ∈ H0(R, ∗).

For a special Jordan algebra J we can always find a associative ∗-envelope, an
associative algebra R with involution ∗ such that J is a subalgebra of H(R, ∗), and
R is generated (as an associative algebra) by J . An associative ∗-envelope of J is
∗-tight is any nonzero ∗-ideal I of R hits J : I ∩ J 6= 0. By an easy application of
Zorn’s lemma, one can always ∗-tighten an associative ∗-envelope R of J by factoring
out a ∗-ideal I, maximal among those which miss J : J ∩ I = 0.

A fundamental fact in Jordan theory with important structural consequences
for i-special algebras is the existence of hermitian ideals in the free special Jordan
algebra FSJ [X], generated by X in the (+)-algebra of the free associative algebra
Ass[X] (see [MZ]): for any special Jordan algebra J ⊆ H(R, ∗) and any a in the
associative subalgebra algR(H(J)) of R generated by the evaluation H(J) of H(X)
on J , the trace a+a∗ belongs to H(X). An i-special Jordan algebra J is of hermitian
type if AnnJ(

∑
HH(J)) = 0, where the sum runs on the set of all hermitian ideals.
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Often we will consider the stronger condition that there exists a particular hermitian
ideal H(X) with AnnJ(H(J)) = 0. It does not seem to be known if this is always
the case for a hermitian Jordan algebra J .

0.6. We refer to [St, R2] for basic facts about algebras of quotients for associative
algebras. If L is a left ideal of an associative algebra R, and a ∈ R, we denote by (L :
a) the set of all r ∈ R with Lr ⊆ L. Recall that the left ideal is dense if (L : a)b 6= 0
for any a ∈ R and any nonzero b ∈ R. We will be interested in algebras of quotients
attached to the filters of dense right or left ideals of an associative algebra R, and in
particular to the right and left maximal algebra of quotients which we will denote by
Qr

max(R) and Ql
max(R) respectively. The associative algebras that naturally arise in

Jordan theory are associative envelopes and they carry an involution, so it will be
important for us to be able to extend involutions to algebras of quotients. This can
not be done in general for the one sided maximal algebras of quotients Ql

max(R) and
Qr

max(R), so the adequate substitute is the maximal symmetric algebra of quotients
Qσ(R) defined by Lanning [L]. Recall that Qσ(R) is the set of elements q ∈ Qr

max(R)
for which there exists a dense left ideal L of R with Lq ⊆ R (or symmetrically, the
set of all q ∈ Ql

max(R) for which there exists a dense right ideal K with qK ⊆ R).
If R has an involution, this is the biggest subalgebra of the maximal algebra of
left (resp. right) quotients to which the involution extends. Another algebra of
quotients to which involutions can be extended, and which plays a fundamental role
in Zelmanov’s structure theory is the Martindale algebra of symmetric quotients
Qs(R) of a semiprime algebra R (see [MZ]). As it is easy to see, one has Qs(R) ⊆
Qσ(R), and Qσ(Qs(R)) = Qσ(R), so if S is a subalgebra of R and R ⊆ Qs(S), then
Qσ(R) = Qσ(S).

1. Dense inner ideals

1.1. Let J be a Jordan algebra, K be an inner ideal of J , and a ∈ J . We will
use the following notations

(K : a)L = {x ∈ K | x ◦ a ∈ K},

(K : a) = {x ∈ (K : a) | Uax ∈ K}.

Also, for a finite family of elements a1, . . . , an ∈ J , we inductively define (K : a1 :
a2 : . . . : an) = ((K : a1 : . . . : an−1) : an).

1.2. Lemma. Let J be a Jordan algebra, K ⊆ J be an inner ideal of J , and
a ∈ J . Then, the sets (K : a)L and (K : a) are inner ideals of J and they satisfy
U(K:a)L

K ⊆ (K : a).
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Proof. for all x ∈ (K : a)L and b ∈ J , we have (Uxb)◦a = {x, b, x◦a}−Ux(b◦a) ∈
K, hence Uxb ∈ (K : a)L, and (K : a)L is inner.

On the other hand, for any x ∈ (K : a) and b ∈ J , we have UaUxb = Ua◦xb −
UxUab − Ux(a ◦ b) ◦ a + {x, b, Uax} ∈ K, hence Uxb ∈ (K : a) y (K : a) is an inner
ideal.

Finally, if k ∈ K and x ∈ (K : a)L, we have UaUxk = Ua◦xk − UxUak −
{{a, x, k}, a, x}+k◦Uxa

2 and {a, x, k} = (a◦x)◦k−{x, a, k} ∈ K, hence UaUxk ∈ K,
and since Uxk ∈ (K : a)L, this yields Uxk ∈ (K : a).

1.3. We will say that an inner ideal K of J is dense if Uc(K : a1 : . . . : an) 6= 0
for any finite collection of elements a1, a2, . . . , an ∈ J , and any 0 6= c ∈ J .

Our next aim is to get a more manageable characterization of density. To that
end we consider the following properties for an inner ideal K of J .

(1) ∀a, b, c ∈ J, Uc((K : a) ∩ (K : b)) = 0 ⇒ c = 0,

(1L) ∀a, b, c ∈ J, Uc((K : a)L ∩ (K : b)L) = 0 ⇒ c = 0,

(2) ∀a, b, c ∈ J, Uc(K : a : b) = 0 ⇒ c = 0,

(2L) ∀a, b, c ∈ J, Uc((K : a)L : b)L = 0 ⇒ c = 0.

Since (K : a) ∩ (K : b) ⊆ (K : a)L ∩ (K : b)L and (K : a : b) ⊆ ((K : a)L : b)L

for any a, b ∈ J , clearly (1) implies (1L), and (2) implies (2L).

Note also that if J has an inner ideal which satisfies any one of those conditions,
then J is nondegenerate.

We will prove next that all these conditions are equivalent to K being dense.

1.4. Lemma. Let K be an inner ideal of a Jordan algebra J . IfK satisfies
(1L) of 1.3, then K satisfies (2) of 1.3.

Proof. Take a, b ∈ J , x ∈ (K : a)L∩(K : b)L, and y ∈ (K : a◦(b◦x))L∩(K : b)L,
we claim that Uxy ∈ ((K : a) : b)L.

By QJ20’ and its linearizatión, we have ((Uxy) ◦ b) ◦ a = {x ◦ a, y, x ◦ b}− {x, a ◦
y, x ◦ b}+ {x, y, a ◦ (x ◦ b)} − a ◦ Ux(y ◦ b). Now,

• {x ◦ a, y, x ◦ b} ∈ {(K : a) ◦ a, J(K : b) ◦ b} ⊆ {K,J,K} ⊆ K,
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• {x, a ◦ y, x ◦ b} ⊆ {K,J, (K : b) ◦ b} ⊆ {K,J,K} ⊆ K,

• {x, y, a ◦ (x ◦ b)} = x ◦ (y ◦ (a ◦ (x ◦ b)))− {x, a ◦ (x ◦ b), y} ∈ K ◦ ((K : a ◦ (x ◦
b) ◦ (a ◦ (x ◦ b) +K ⊆ K ◦K +K ⊆ K, y

• a ◦ Ux(y ◦ b) ∈ a ◦ U(K:a)J ⊆ a ◦ (K : a) ⊆ K.

And therefore ((Uxy) ◦ b) ◦ a ∈ K and Uxy ∈ ((K : a)L : b)L.

On the other hand, Ua((Uxy) ◦ b) = Ua{x, y, x ◦ b} − UaUx(y ◦ b) (by QJ20’)
= {x ◦ a, y, (x ◦ b) ◦ a}− {x,Uay, x ◦ b}− {x, a, {y, x ◦ b, a}}− {x ◦ b, a, {y, x, a}}+ y ◦
{x, a2, x ◦ b}−UaUx(y ◦ b) (by QJ16 and the linearization in b = x ◦ b of the identity
VaUbVa − VUab,b = Va,bVb,a − VUab2 , which follows from Macdonald’s theorem [J2,
3.4.16]). Now, we have

• {x ◦ a, y, (x ◦ b) ◦ a} = (x ◦ a) ◦ (y ◦ ((x ◦ b) ◦ a)) − {x ◦ a, (x ◦ b) ◦ a, y} ∈ ((K :
a)◦a)◦((K : (x◦b)◦a)◦((x◦b)◦a))+{(K : a)◦a, J,K} ⊆ K◦K+{K,J,K} ⊆ K,

• {x, Uay, x ◦ b} ∈ {K,J, (K : a) ◦ a} ⊆ K,

• {x, a, {y, x ◦ b, a}} = {x, a, (y ◦ ((x ◦ b) ◦ a)} − {x, a, {y, a, x ◦ b}} ∈ {K,J, (K :
(x ◦ b) ◦ a) ◦ ((x ◦ b) ◦ a)}+ {K; J : {K,J, (K : b) ◦ b}} ⊆ K

• {x◦ b, a, {y, x, a}} = {x◦ b, a, y ◦ (x◦a)}−{x◦ b, a, {y, a, x}} ∈ {(K : b)◦ b, J,K ◦
((K : a) ◦ a)}+ {K,J, {K,J,K}} ⊆ K,

• UaUx(y ◦ b) ∈ UaU(K:a)L
((K : b)L ◦ b) ⊆ UaU(K:a)L

K ⊆ Ua(K : a) (by 1.2) ⊆ K.

Therefore Ua((Uxy) ◦ b) ∈ K y (Uxy) ◦ b ∈ (K : a), hence Uxy ∈ ((K : a) : b)L

Suppose now that K has (1L) , and let a, b, c ∈ J be elements satisfying Uc(K :
a : b) = 0. By what has been proved above, for any x ∈ (K : a) ∩ (K : b) and any
y ∈ (K : a ◦ (b ◦ x))L ∩ (K : b)L, we have Uxy ∈ ((K : a) : b)L. Thus, for any
z ∈ (K : a) we get UUxyz ∈ (K : a : b) by 1.2. Therefore UcUUxyz = 0 for any
x, y, z in those conditions. In particular, taking z ∈ UsK ⊆ (K : a) (by 1.2) for a
given s ∈ (K : a)L, we get UcUUxyUsK = 0. So if w ∈ UsUUxyUcJ , then UwK = 0,
hence w = 0, that is UsUUxyUcJ = 0, and thus, UUUxyUcsJ = 0, which implies
UUxyUcs = 0. Since s ∈ (K : a)L is arbitrary, we have UUxyUc(K : a)L = 0, hence
UUcUxy(K : a)L = UcUUxyUc(K : a)L = 0. Now, the property (1L) of K implies
UcUxy = 0. And since this holds for any y ∈ (K : a ◦ (b ◦ x))L ∩ (K : b)L, we have
UcUx((K : a ◦ (b ◦ x))L ∩ (K : b)L) = 0. Thus, Uw((K : a ◦ (b ◦ x))L ∩ (K : b)L) = 0
for any w ∈ UxUcJ , hence w = 0 by (1L), so we obtain UxUcJ = 0. Therefore
UUcxJ = UcUxUcJ = 0, which yields Ucx = 0. Again, since x ∈ (K : a)L ∩ (K : b)L

can be arbitrarily chosen, we obtain Uc((K : a)L ∩ (K : b)L) = 0, hence c = 0 by
(1L).

Since (1) implies (1L), and (2) implies (2L), we obtain as a consequence of this
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lemma that (1) implies (2), and (1L) implies (2L).

1.5. Lemma. Let L,N be inner ideals of the algebra J , and assume that the
following properties hold:

- For any a, c ∈ J , Uc(L : a)L = 0 implies c = 0,

- For any c ∈ J , if UcN = 0, then c = 0.

Then Uc(N ∩ L) 6= 0 for any 0 6= c ∈ J .

Proof. Take b ∈ N . Then UbU(K:b)L
K ⊆ N ∩ L because U(K:b)L

K ⊆ (K : b).
Thus, Uc(N ∩ L) = 0 implies UcUbU(K:b)L

K = 0. Then, for any x ∈ J and k ∈ (K :
b)L we have UUkUbUcxK = UkUbUcUxUcUbUkK = 0, which yields UkUbUcJ = 0 by
the hypothesis on L. Then UUcUbkJ = UcUbUkUbUcJ = 0, hence UcUbk = 0 and
thus UcUb(K : b)L = 0. Therefore, UUbUcx(K : b)L = UbUcUxUcUb(K : b)L = 0 for
all x ∈ J , hence UbUcJ = 0 by the hypothesis on K. Now, this implies UUcbJ =
UcUbUcJ = 0, hence Ucb = 0 since J is nondegenerate. Therefore Ucb = 0 for all
b ∈ N , hence c = 0.

1.6. Lemma. Let K be an inner ideal of the Jordan algebra J . If K satisfies
1.3(2L), then K satisfies 1.3(1).

Proof. We first show that if K satisfies (2L), then Uc((K : a) : b)L 6= 0 for
any a, b ∈ J and 0 6= c ∈ J . Indeed, if x ∈ ((K : a)L : b)L and y ∈ (K : b)L,
we have (Uxy) ◦ b) = {x, y, x ◦ b} − Ux(y ◦ b) ∈ {(K : a)L,K, ((K : a)L : b)L ◦
b} + U(K:a)L

((K : b)L ◦ b) ⊆ {(K : a),K, (K : a)} + U(K:a)L
K ⊆ (K : a) by 1.1.

So if Uc((K : a) : b)L = 0 for all x ∈ ((K : a)L : b)L, then UcUx(K : b)L = 0
Therefore, UUxUcz(K : b)L = UxUcUzUcUx(K : b)L = 0 for any z ∈ J , and we get
UxUcJ = 0. This implies UUcxJ = 0, hence Ucx = 0 by nondegeneracy of J . Thus
Uc((K : a)L : b)L = 0, hence c = 0 by (2L).

Now, it suffices to apply 1.5 with L = (K : a) and N = (K : b).

1.7. Lemma. Let K be an inner ideal of the Jordan algebra J . If K satisfies
1.3(1), then Uc((K : a1) ∩ · · · ∩ (K : an)) = 0 implies c = 0 for any n and any
a1, a2, . . . , an, c ∈ J .

Proof. To carry out an induction on n it suffices to apply 1.5 with L = (K : an)
and N = (K : a1)∩ · · · ∩ (K : an−1), taking into account that 1.3(1) implies 1.3(2).

1.8. Lemma. Let K be an inner ideal of the Jordan algebra J . If K satisfies
1.3(1), then (K : a) also satisfies (1) de 1.3 for all a ∈ J .

Proof. Take a, b, c, d ∈ J with Ud((K : a : b) ∩ (K : a : c)) = 0. By the proof of
lemma1.4, if x ∈ (K : a)∩(K : b)∩(K : c), y ∈ (K : a◦(b◦x))∩(K : a◦(c◦x))∩(K :
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b) ∩ (K : c), and z ∈ (K : a), then UUxyz ∈ (K : a : b) ∩ (K : a : c). Therefore
UdUUxyz = 0 for any x, y, z in those conditions. The we have UdUUxy(K : a) = 0,
hence UUUxyUdt(K : a) = UUxyUdUtUdUUxy(K : a) = 0 for any t ∈ J . It follows then
from (1) that UUxyUdJ = 0, and hence UUdUUxy

J = 0.Thus UdUxy = 0, and since y
is arbitrary we get UdUx((K : a ◦ (b ◦ x)) ∩ (K : a ◦ (c ◦ x)) ∩ (K : b) ∩ (K : c)) = 0.
Arguing as above we get UxUdJ = 0 by lemma 1.7, hence UUdxJ = 0 and Udx = 0
by the nondegeneracy of J . Again, since this holds for any x ∈ J this yields Ud((K :
a) ∩ (K : b) ∩ (K : c)) = 0, hence d = 0 by 1.7.

1.9. Proposición. Let J be a Jordan algebra and K be an inner ideal of J .
The following assertions are equivalent:

(0) K is dense.

(1) For any a, b, c ∈ J , Uc((K : a) ∩ (K : b)) = 0 implies c = 0.

(1L) For any a, b, c ∈ J, Uc((K : a)L ∩ (K : b)L) = 0 implies c = 0.

(2) for any a, b, c ∈ J, Uc(K : a : b) = 0 implies c = 0.

(2L) For any a, b, c ∈ J, Uc((K : a)L : b)L = 0 implies c = 0.

(3) For any n and any a1, a2, . . . , an, c ∈ J , Uc((K : a1)∩· · ·∩ (K : an)) = 0 implies
c = 0.

Proof. The equivalence of (1), (1L), (2), and (2L) is proved in 1.4 and 1.6. On
the other hand, (1) ⇒ (3) is proved in lemma 1.7, and (3) ⇒ (1) is obvious. Finally,
(0) ⇒ (2) is also obvious, and (1) ⇒ (0) immediately follows from 1.8.

1.10. Lemma. Let K,L ⊆ J be inner ideals of a Jordan algebra J . If K and
L are dense, then K ∩ L is dense.

Proof. Suppose that a, b, c ∈ J have Uc((K∩L : a)∩(K∩L : b)) = 0. Applying
lemma 1.5 with (K : a)∩ (K : b) and (L : a) as N and L of that lemma respectively,
gives Ux((K : a)∩(K : b)∩(L : a)) 6= 0 if x 6= 0. Thus, again by 1.5 with (K : a)∩(K :
b)∩ (L : a) as N , and (L : b) as L, we get Uc((K : a)∩ (K : b)∩ (L : a)∩ (L : b)) 6= 0
if c 6= 0. So it suffices to note that (K : x) ∩ (L : x) = (K ∩ L : x) for any x ∈ J .

1.11. Let J be a Jordan algebra. Following [MP], we will say that a set F of
inner ideal is a linearly topological filter of inner ideals if it satisfies:

FT I. Any inner ideal of J which contains an element from F belongs to F.

FT II. If K,L ∈ F , then K ∩ L ∈ F .

FT III. If K ∈ F and a ∈ J , then (K : a) ∈ F .

It is obvious that the set of all dense inner ideals satisfies FT I and FT III.
Property FT II is proved in 1.10, and consequently, the set of all dense inner ideals
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of J is a linearly topological filter. This notion parallels the corresponding one used
in associative theory (see[St]). However, a complete Jordan version of the associative
localization theory would require the definition of a Jordan analogue of the notion
of Gabriel filter, which is far from obvious. Nevertheless, some of the consequences
that one should expect from that definition can be obtained when we consider dense
inner ideals, as is in particular the case with the fact that the product UKL of a
dense inner ideals K and L contains a dense inner ideal (although it may not be an
inner ideal itself). The proof of this fact follows the proof of the corresponding fact
for essential inner ideals in strongly nonsingular Jordan algebras [MP].

1.12. Lemma. For a Jordan algebra J and a Φ-submodule A ⊆ J , the set

K(A) = {a ∈ A | UaJ + {a, J,A} ⊆ A}

is an inner ideal of J .

Proof. This is [MP,1.4]

1.13. Lemma. Let K ⊆ J be a dense inner ideal of the Jordan algebra J .
Suppose that H ⊆ K ⊆ J is an inner ideal of J which is also an ideal of K: H /K.
If UxH 6= 0 for any 0 6= x ∈ K, then H is a dense inner ideal of J .

Proof. For any a, b ∈ J and x, y ∈ H ∩ (K : a) ∩ (K : b), we have (Uxy) ◦
a = {a, y, x ◦ a} − Ux(y ◦ a) ∈ {H,H,K} + UHK ⊆ L (since H / K). Therefore
Uxy ∈ (H : a)L ∩ (H : b)L. Thus, if c ∈ J satisfies Uc((H : a)L ∩ (H : b)L) = 0, then
UcUxy = 0 for any x, y ∈ H ∩ (K : a) ∩ (K : b).

Now, since (K : a) and (K : b) are dense, so is L = (K : a) ∩ (K : b) by lemma
1.10. Then we get that Ud(L : e) = 0 implies d = 0 for all d, e ∈ J . On the other hand,
if UdH = 0 , then UUkUdzH = UkUdUzUdUkH ⊆ UkUdUzUdH (since H is an ideal of
K) = 0 for any k ∈ K y z ∈ J . Then, from UkUdz ∈ K, it follows that UkUdz = 0 by
the hypothesis on H. Thus UkUdJ = 0, hence UUdkJ = 0 and this yields Udk = 0.
Thus UdK = 0, and so d = 0. This shows that L and H satisfy the hypothesis of
lemma 1.5 on L and N respectively. As a consequence, Ud(H ∩ (K : a)∩ (K : b)) = 0
implies d = 0

Now take z ∈ J , since UcUxy = 0 for all x, y ∈ H ∩ (K : a) ∩ (K : b), we
get UUxUczH ∩ (K : a) ∩ (K : b) = UxUcUzUcUxH ∩ (K : a) ∩ (K : b) = 0, hence
UxUcz = 0, and sice z is arbitrary we have UxUcJ = 0. Thus UUcxJ = UcUxUcJ = 0,
hence Ucx = 0 by the nondegeneracy of J . Then we get Uc(H∩(K : a)∩(K : b)) = 0,
which implies c = 0, so the lemma follows from 1.13.

1.14. Remark. Let H ⊆ K be inner ideals of J . If K is dense and H /K, then
H is dense if and only if it is an essential ideal of K. Indeed, if H is dense, then for
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any nonzero ideal I of K, and any 0 6= y ∈ I, we have 0 6= Uy(H : y) ⊆ H ∩I. On the
other hand, since K is a nondegenerate algebra, the essentiality of H is equivalent to
the condition UkH = 0 ⇒ k = 0 (0.3).

1.15. Lemma. Let K be an inner ideal of the Jordan algebra J .

(a) If A is an ideal of K, then K(A) is also an ideal of K.

(b) If in K is a nondegenerate algebra and A 6= 0, then K(A) 6= 0.

(c) If in K is a nondegenerate algebra and A is an essential ideal of K, then K(A)
is dense.

Proof. (a) Take k ∈ K, a ∈ K(A) and z ∈ J . We have Ua◦kz = UaUkz +
UkUaz + k ◦ Ua(k ◦ z)− {a, z, Uka}. Using now that A is an ideal of K we get

UaUkz ∈ UaJ ⊆ A,

UkUaz ∈ UKUaJ ⊆ UKA ⊆ A

and

{a, z, Uka} ∈ {a, J, UkA} ⊆ {a, J,A} ⊆ A.

Hence Ua◦kz ⊆ A, and we have Ua◦kJ ⊆ A.

On the other hand, for any y ∈ J and b ∈ A we get

{a ◦ k, y, b} = {a, k ◦ y, b} − {a, y, k ◦ b}+ k ◦ {a, y, b} ∈
∈ {a, J,A}+ {a, J,K ◦A}+K ◦ {a, J,A} ⊆
⊆ A+ {a, J,A}+K ◦A ⊆ A.

And therefore, a ◦ k ∈ K(A) hence K(A) ◦K ⊆ K(A).

Next, for a and k as before, and any z ∈ J ,

UUkaz = UkUaUkz ∈ UKUaJ ⊆ UKA ⊆ A.

Now, we have

{a ◦ k, z, b ◦ k} = {a, Ukz, b}+ Uk{a, z, b}+

+k ◦ {a, z ◦ k, b} − {a, z, Ukb} − {b, z, Uka}.
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Hence

{Uka, z, b} = {a, Ukz, b}+ Uk{a, z, b}+
+ k ◦ {a, z ◦ k, b} − {a, z, Ukb} − {a ◦ k, z, b ◦ k} ∈
∈ {a, J,A}+ UK{a, J,A}+K ◦ {a, J,A}+
+ {a, J, UKA}+ {a ◦ k, J,A ◦K} ⊆
⊆ A+ UKA+K ◦A+ {a, J,A}+ {k ◦ a, J,A} ⊆
⊆ A. (since a ◦ k ∈ K(A))

Thus UKK(A) ⊆ K(A), and this proves that K(A) is an ideal of K.

(b) Now suppose that K is a nondegenerate algebra and A 6= 0. We claim that
UUabc ∈ K(A) for any a, b, c ∈ A. Indeed we have UUUabcJ ⊆ UaUbJ ⊆ UAUKJ ⊆
UAK ⊆ A, and for any x ∈ J , d ∈ A we also have, by QJ15 ,

{UUabc, x, d} = {Uab, c, {Uab, x, d}} − UUab{x, c, d} =

= {Uab, c, {Uab, x, d}} − UaUbUa{x, c, d} ∈
∈ {A,A,K}+ UAUKJ ⊆ A.

Thus, if K(A) = 0, then UUabc = 0 for all a, b, c ∈ A, hence UUabA = 0 for all a, b ∈ A
and from 0.3and the nondegeneracy of we get K Uab ∈ AnnK(A) ∩ A = 0 for all
a, b ∈ A. So again UaA = 0 for all a ∈ A, hence A = 0.

(c) Since K is nondegenerate, by 1.14 and (b) it suffices to show that if k ∈ K has
UkK(A) = 0, then k = 0. Now, by the proof of (b), UUabc ∈ K(A) for all a, b, c ∈ A,
hence UkK(A) = 0 implies UkUUabc = 0 for all a, b, c ∈ A. But if UkUUabc = 0 for all
a, b, c ∈ A, then UUabUklA = UUabUkUlUkUUabA = 0, hence UUabUkK ⊆ AnnK(A)
(by ideals) = 0 (by essentiality of A). Thus UUkUabK = UkUUabUkK = 0, hence
UkUab = 0 for all a, b ∈ A. Arguing as before, we get Uka = 0 for all a ∈ A, and
finally k = 0.

1.16. Lemma. Let K be an inner ideal of the Jordan algebra J . If K is dense,
then K(UKK) is also dense. In particular, UKK contains a dense inner ideal.

Proof. Since K is dense, it is nondegenerate, hence UKK is an essential ideal
of K and 1.15(c) applies.

1.17. Following [MP], a Jordan algebra J is called strongly nonsingular if UcK 6=
0 for any essential inner ideal K of J and any nonzero c ∈ J .

1.18. Lemma. Let J be a Jordan algebra. Then:
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(a) Any dense inner ideal of J is essential.

(b) J is strongly nonsingular if and only if any essential inner ideal is dense.

Proof. (a) Let K a dense inner ideal of J and L be a nonzero inner ideal of J .
For any 0 6= x ∈ L we have UxJ ⊆ L and 0 6= Ux(K : x) ⊆ K ∩ UxJ ⊆ K ∩ L, which
proves that K is essential.

(b) Suppose first that J is strongly nonsingular, and take a, b ∈ J . If K is
essential, then (K : a) and (K : b) are essential by [MP, 1.2], hence (K : a) ∩ (K : b)
is essential. Thus, Uc(K : a) ∩ (K : b) = 0 implies c = 0 by strong nonsingularity of
J , and this proves that K is dense. The reciprocal is obvious.

1.19. We next examine some inheritance properties of dense inner ideals which
will be useful later. Recall that if J is a Jordan algebra and a ∈ J , the local algebra
Ja of J at a is the quotient of the a-homotope J (a) by the ideal Ker a of J (a) of all
the elements x ∈ J with Uax = UaUxa = 0. If J is nondegenerate, the condition
Uax = 0 already implies a ∈ Ker a. We refer to [DAM] for a throughout study of
local algebras.

1.20. Lemma. Let J be a Jordan algebra, a be an element of J and K be an
inner ideal of J . If K is dense, then the inner ideal K̄ = K + Ker a/Ker a is dense
in Ja.

Proof. Denote with bars the projections on Ja and take x̄ = x + Ker a ∈ Ja.
Then, for all k ∈ (K : x : a)∩(K : a+x) = Nx we have {k, a, x} = (k◦a)◦x−{a, k, x},
and since Nx ⊆ (K : a)∩(K : x)∩(K : a+x), we get Ux,ak = Ux+ak−Uak−Uxk ∈ K,
hence {k, a, x} ∈ K, and x̄◦k̄ ∈ K̄. Also, UxUak ∈ UxUa(K : x : a) ⊆ Ux(K : x) ⊆ K,
hence Ux̄k̄ ∈ K̄. Therefore N̄x ⊆ (K̄ : x̄).

Now, if c̄ ∈ Ja has Uc̄((K̄ : x̄) ∩ (K̄ : ȳ)) = 0 for some x̄, ȳ ∈ Ja. Using the
previous notation, we have UcUa(Nx ∩Ny) ⊆ Uc̄(N̄x ∩ N̄y) = 0, hence UUac(Nx ∩
Ny) = UaUcUa(Nx ∩ Ny) = 0. But Nx ∩ Ny is dense by 1.10 since Nx and Ny are
dense, so we get Uac = 0, hence c̄ = 0, and K̄ is dense.

1.21. Local algebras can also be defined for associative algebras in the same way
as for Jordan algebras, and for those, the analogue of lemma 1.20 is also true: If L
is a dense left ideal of an associative algebra R, and a ∈ R, then L+ Ker a/Ker a is
a dense left ideal of the local algebra Ra.

1.22. Lemma. Let J be a nondegenerate Jordan algebra and let I be an ideal
of J . If K is a dense inner ideal of J , then K + AnnJ(I)/AnnJ(I) is a dense inner
ideal of J/AnnJ(I).

Proof. We denote with bars the projections in J̄ = J/AnnJ(I). Now suppose
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that Uc̄((K̄ : ā) ∩ (K̄ : b̄)) = 0 for some a, b, c ∈ J . Since K is dense, so is (K :
a) ∩ (K : b), and since we obviously have (K : a) ∩ (K : b) ⊆ (K̄ : ā) ∩ (K̄ : b̄), it
suffices to show that for any dense inner ideal K of J , Uc̄K̄ = 0 implies c̄ = 0. Now,
if Uc̄K̄ = 0, then UcK ⊆ AnnJ(I), hence UUcyK ⊆ I ∩ AnnJ(I) = 0 for any y ∈ I,
which implies UcI = 0 by the density of K. Then c ∈ AnnJ(I) by 0.3, hence c̄ = 0.

1.23. Again, the corresponding result holds for associative algebras: if R is a
semiprime associative algebra, I is an ideal of R, and L is a dense left ideal of R,
then L+ AnnR(I)/AnnR(I) is a dense left ideal of R/AnnJ(I).

2. Algebras of quotients

2.1. Let J̃ be a Jordan algebra, let J be a subalgebra of J̃ and let ã ∈ J̃ .
Recall from [Mo2] that an element x ∈ J is a J-denominator of ã if the following
multiplications take ã back into J :

(Di) Uxã (Dii) Uãx (Diii) UãUxĴ

(Diii’) UxUãĴ (Div) Vx,ãĴ (Div’) Vã,xĴ

We will denote the set of J-denominators of ã by DJ(ã). It has been proved in
[Mo2, 4.2] that DJ(ã) is an inner ideal of J . We remark (see [FGM, p.410]) that any
x ∈ J satisfying (Di), (Dii), (Diii) and (Div) belongs to DJ(ã).

2.2. Let J be a subalgebra of a Jordan algebra Q. We will say that Q is an
algebra of quotients of J if the following conditions hold:

(i) DJ(q) is a dense inner ideal of J for all q ∈ Q.

(ii) UqDJ(q) 6= 0 for any nonzero q ∈ Q.

Clearly, any nondegenerate algebra J is its own algebra of quotients since its
inner ideals of denominators DJ(x) = J are dense for all x ∈ J , and UxDJ(x) =
UxJ 6= 0 by nondegeneracy of J . Reciprocally, any Jordan algebra having an algebra
of quotients is nondegenerate since it contains a dense inner ideal.

2.3. Examples.

1. We have already mentioned that a nondegenerate Jordan algebra J is an algebra
of quotients of J itself. More generally, if K is a dense inner ideal of J , then J

is an algebra of quotients of K. Indeed, any x ∈ J has DK(x) = (K : x), which
is dense in J , hence also in K, and UxDJ(x) = Ux(K : x) 6= 0. In particular, if
J is nondegenerate and I is an essential ideal of J , then I is a dense inner ideal
and J is an algebra of quotients of I.
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2.- We refer to [GG, AGG] for the notion of Martindale-like algebra of quotients of a
linear Jordan algebra, which has been generalized for quadratic Jordan algebras
to the notion of Martindale-like cover [ACGG1, ACGG2]. Let J be a Jordan
algebra and let F be a filter of essential ideals of J satisfying the property: for
all I ∈ F , the derived ideal I(1) = UII is again in F . We will say that an
over-algebra Q ⊇ J is a Martindale algebra of F-quotients if for any q ∈ Q there
exists I ∈ F with I ⊆ DJ(q), and UqI 6= 0 if q 6= 0. It is easy to see that when
J is nondegenerate and F is the filter of all essential ideals of J , that is exactly
the same as a Martindale-like cover of J .

3. Let J be a nondegenerate Jordan algebra with centroid Γ and let Σ ⊆ Γ be the
set of all elements γΓ with Ker γ = 0. Then Σ is a multiplicatively closed subset
and one can consider the module of quotients JΣ = Σ−1J , which is a Jordan
algebra over the ring of quotients Σ−1Γ. Then JΣ is an algebra of quotients of J
(and, in fact, a Martindale algebra of quotients). Indeed, if q ∈ JΣ, then there is
γ ∈ Σ with γq = x ∈ J . It is easy to see that γ2J ⊆ DJ(q) (cf. [FGM;2.1]), and
this is clearly an essential ideal of J (since Kerγ2 = 0). Now, if UqDJ(q) = 0,
then x = γq ∈ AnnJ(γ2J) = 0, hence q = 0.

3. The extended central closure C(J)J of a nondegenerate Jordan algebra J is an
algebra of quotients of J . Indeed, since for any x ∈ C(J)J there is an essential
ideal of J contained in DJ(x) by [Mo2, 4.3(ii)], we get UxDJ(x) 6= 0 by [FGM,
4.3].

5. Let J be a Jordan algebra. Recall that an element s ∈ J is said to be injective
if the mapping Us is injective over J . Following [FGM] we denote by Inj(J) the
set of injective elements of J . A set S ⊆ Inj(J) is a monad if Ust, s

2 ∈ S for
any s, t ∈ S (see [Z1, Z2, FGM]). A monad S is said to be an Ore monad if
UsS ∩ UtS 6= ∅ for any s, t ∈ S. An algebra Q containing J as a subalgebra
is an algebra of S-quotients (and J is an S-order of Q) if all elements of S
are invertible in Q and for all q ∈ Q, DJ(q) ∩ S 6= ∅. It has been proved in
[M,B] that a necessary condition for such an algebra Q to exist is that S satisfies
the Ore condition in J : for any x ∈ J and any s ∈ S there exists t ∈ UsS

such that t ◦ x ∈ Ks = Φs + UsĴ . Note that for such an element t, we have
Uxt

2 = (x ◦ t)2 + Utx
2 − {x ◦ t, x, t} ∈ Ks, hence t2 ∈ S ∩ (Ks : x). Moreover,

if r ∈ S ∩ (Ks : x), then any t ∈ UsS ∩ UrS has t ∈ UsS and t ◦ x ∈ Ks. Thus
the Ore condition can be rephrased: for any x ∈ J and any inner ideal K of J ,
K ∩ S 6= ∅ implies (K : x) ∩ S 6= ∅.

Let J be a nondegenerate Jordan algebra and S ⊆ Inj(J) be an Ore monad
which satisfies the Ore condition in J . Consider the set IS of all inner ideals
K ⊆ J with S∩K 6= ∅. Then IS is a filter of inner ideals since for any K,L ∈ IS
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there are s ∈ S ∩ K and t ∈ S ∩ L, and hence there is r ∈ UsS ∩ UtS which
then belongs to S ∩ K ∩ L, thus giving K ∩ L ∈ IS . Also, by what has been
proved above, (K : a) ∈ IS for any K ∈ IS and any a ∈ J . Now, if K ∈ IS

and UcK = 0, then UUscJ = UsUcUsJ ⊆ UsUcK = 0 for any s ∈ S ∩K. Thus,
Usc = 0 by nondegeneracy of J , and c = 0 by injectivity of s. This shows
that IS consists of dense inner ideals. As a consequence, if Q is an algebra
of S-quotients of J (whose existence makes superfluous the assumption that S
satisfies the Ore condition in J), then Q is an algebra of quotients of J in the
sense of 2.2. Indeed, since DJ(q) ∈ IS is dense for any q ∈ Q, it only remains
to show that UqDJ(q) 6= 0 if q 6= 0. To prove that, take s ∈ DJ(q) ∩ S. Then
UUsqJ ⊆ UsUqDJ(q) = 0 implies Usq = 0 since J is nondegenerate and Usq ∈ J ,
hence q = 0 because s is invertible in Q.

2.4. Lemma. Let Q be an algebra of quotients of the Jordan algebra J . Then:

(i) Q is nondegenerate,

(ii) For any q ∈ Q, UqJ ∩ J 6= 0,

(iii) Any nonzero inner ideal of Q hits J nontrivially (hence Q is tight over J),

(iv) If K is a dense inner ideal of J , then UqK 6= 0 and UKq 6= 0 for any nonzero
q ∈ Q,

(v) If L is an inner ideal of Q, then L is dense in Q if and only if L ∩ J is a dense
inner ideal of J .

Proof. (i) and (ii) follow from the fact that 0 6= UqDJ(q) ⊆ UqJ ∩ J ⊆ UqQ,
and the tightness (iii) readily follows from this.

Now, if K ⊆ J is a dense inner ideal and UqK = 0 for some q ∈ Q, then
UUqxK ⊆ UqUxUqK = 0 for any x ∈ DJ(q), hence UqDJ(q) = 0 since UqDJ(q) ⊆ J

and K is dense, and thus q = 0. Now, if UKq = 0 for some q ∈ Q, then arguing as in
[MP, 2.6], we get q = 0. This proves (iv).

To prove (v) first assume that L is dense, and note that if a ∈ J , then (L ∩ J :
a) = (L : a)∩J , so it suffices to show that if Uc(L∩J) = 0 for a dense inner ideal L of
Q and c ∈ J , then c = 0. Now, for any q ∈ L we have UUqcD(q)J = UqUcUqD(q)J ⊆
UqUc(L∩J) = 0, hence Uqc = 0 by (iv), and thus ULc = 0, hence c = 0, again by (iv).
Reciprocally, suppose that L ∩ J is dense in J , and that Uc((L : a) ∩ (L : b)) = 0 for
some a, b, c ∈ Q. Take x ∈ K = DJ(a) ∩ DJ(b), so that the elements Uxa, Uxb, x ◦ a
and x ◦ b all belong to J . Then, for any y ∈ N = (K : Uxa) ∩ (K : Uxb) ∩ (K :
x ◦ a) ∩ (K : x ◦ b), we have

(Uxy) ◦ a = x ◦ (y ◦ (x ◦ a))− {x, x ◦ a, y} − (Uxa) ◦ y ∈ K,
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and similarly (Uxy) ◦ b ∈ K. Therefore we have Uxy ∈ (L : a)L ∩ (L : b)L, and thus
UcUxy = 0 for any x, y chosen in that way. Then, for any z ∈ J we have UUxcN = 0,
and since N is dense by 1.10, we get Uxc = 0 for any x ∈ K, hence UKc = 0, which
implies c = 0 by (iv).

2.5. Lemma. The following identities are satisfied in any Jordan algebra:

{r, UUxyz, t} = {({r, x, y} ◦ x) ◦ z, Uxy, t} − {{x, {r, x, y}, z}, Uxy, t}−(1)

− {{y, Uxr, z}, Uxy, t} − {z, UxUyUxr, t},

{r, {Uxy, z, {x, y, w}}, t} =(2)

= {({r, w, y} ◦ x) ◦ z, Uxy, t}+ {({r, x, y} ◦ w) ◦ z, Uxy, t}+
+{({r, x, y} ◦ x) ◦ z, {x, y, w}, t} − {{w, {r, x, y}, z}, Uxy, t}−
−{{x, {r, w, y}, z}, Uxy, t} − {{x, {r, x, y}, z}, {x, y, w}, t}−
−{{y, {x, r,w}, z}, Uxy, t} − {{y, Ux, r, z}, {x, y, w}, t}−
−{z, {x,UyUxr, w}, t} − {z, UxUy{x, r, w}, t}.

UrUUxyt = U{r,x,y}Uxt− UyUUxrt−(3)

− {{r, Uxy, t}, Uxr, y}+ {t, x, UyUxUrx}

Ur{Uxy, t, {x, y, z}} = {{r, x, y}, Uxt, {r, z, y}}+ U{r,x,y}{x, t, z}(4)

− Uy{{x, r, z}, t, Uxr} − {{r, {x, y, z}, t}, Uxr, y}−
− {{r, Uxy, t}, {x, r, z}, y}+ {t, z, UyUxUrx}+
+ {t, x, Uy({x, Urx, z}+ UxUrz)}.

Proof. Note that we have

{r, UUxyz, t} = {{r, Uxy, z}, Uxy, t} − {z, UUxyr, t} = (by QJ21)

= {{{r, x, y}, x, t}, Uxy, t} − {{y, Uxr, z}, Uxy, t} − {z, UxUyUxr, z} = (by QJ21)

= {({r, x, y} ◦ x) ◦ z, Uxy, z} − {{x, {r, x, y}, z}, Uxy, z}−
−{{y, Uxr, z}, Uxy, t} − {z, UxUyUxr, z}, (by QJ14)

which proves identity (1). Identity (2) is its partial linearization in x .

As for (3), it is an application of QJ6 using the identity

−{{r, Uxy, t}, Uxr, y}+ {t, x, UyUxUrx} =

= −{r, Ux{r, Uxt, y}, y}+ {Uzx,Uxt, Uyx},
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which is just the evaluation in the x-homotope of the identity {r, {r, t, y}, y} +
{r2, t, y2} = −{{r, y, t}, r, y} + t ◦ Uyr

2, which in turn follows from Macdonald’s
theorem [J2, 3.4.16]. Finally, (4) is the partial linearization in x of (3).

2.6. Lemma. Let J̃ be a Jordan algebra, let J be a subalgebra of J̃ and let
ã ∈ J̃ . If J there is a dense inner ideal K of J such that x ◦ ã and Uxã are in J for
all x ∈ K, then DJ(q) is a dense inner ideal of J .

Proof. Take x, y ∈ K, and set z = Uxy. Note that z ∈ K, hence z ◦ ã and Uzã

belong to J . Next, for all c ∈ Ĵ , we have {z, ã, c} = {Uxy, ã, c} = {x, y ◦ (x ◦ ã), c} −
{x, {y, ã, x}, c} − {Uxã, y, c} ∈ J . Thus, considering K(UKK) instead of K, which is
again dense by 1.16, we can assume that {K, ã, J} ⊆ J .

Next, take u,w ∈ K and v ∈ J , and set x = Uuv, z = {u, v, w}. Then we have:

(1) UxUãx = UUuvUãUuv = UuUvUUuãv ∈ J,

since Uvq ∈ UKq ∈ J . Note that this identity holds in the polynomial algebra J̃ [t],
so we can partially linearize it by considering its term in degree 1 when evaluated in
u = u+ tw. This partial linearization yields:

(2) {x, Uãx, z}+ UxUãz ∈ J.

Now take y ∈ K, t ∈ J , and x and z as before. Taking r = ã in identity 2.5(3), and
using (1), we get

(3) UãUUxyt ∈ J,

and from 2.5(4) and (2), also

(4) Uã{Uxy, t, {x, y, z}} ∈ J,

which implies UUxyt ∈ DJ(q).

Let a ∈ J and take elements x, y, t as above. We have

(UUxyt) ◦ a = {Uxy, t, {x, y, x ◦ a}} − {Uxy, t, Ux(y ◦ a)} − UUxy(t ◦ a)

and
x ◦ a = (Uuv) ◦ a = {u, v, u ◦ a} − Uu(v ◦ a).

Now take u, v, y ∈ (K : a) and w = u◦a ∈ K in the above formulae. Then, from
(4) we get Uã{Uxy, t, {x, y, x ◦ a}} ∈ J . On the other hand, {Uxy, t, Ux(y ◦ a)} =
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UUx(y+y◦a)t − UUxyt − UUx(y◦a)t, and from (3) it follows Uã{Uxy, t, Ux(y ◦ a)} ∈ J .
Finally, also from (3) we get UãUUxy(t ◦ a) ∈ J and hence Uã((UUxyt) ◦ a) ∈ J

Therefore, with that choice for u, v, x, y y t we get that the element d = UUxyt

satisfies

(5) d ∈ DJ(ã), d ◦ a ∈ K and Uã(d ◦ a) ∈ J.

Note that if d′ ∈ K has Uãd
′ ∈ J , then

Uã{d′, s, r} = {ã, d′, {r, s, ã}} − {Uãd
′, s, r} ∈ J

for any r ∈ K and s ∈ J , and hence

(6) Uã{d′, J,K} ∈ J.

Take now d as above, and let k ∈ K. We claim that Udk ∈ (DJ(ã) : a)L. First
note that (Udk)◦a = {d, k, d◦a}−Ud(k◦a) and Ud(k◦a) = UUxyUtUUxy(k◦a) = UUxyt

′

with t′ = UtUUxy(k ◦ a), hence Ud(k ◦ a) ∈ DJ(ã) by (5). So it suffices to show that
{d, k, d ◦ a} ∈ DJ(ã). It is clear that {d, k, d ◦ a} ∈ K and Uã{d, k, d ◦ a} ∈ J by(6),
so it remains to prove that UãU{d,k,d◦a}s ∈ J for any s ∈ J .

By QJ6 we have

U{d,k,d◦a}s = UdUkUd◦as+ Ud◦aUkUds−
− {Ud{k, d ◦ a, s}, k, d ◦ a}+ {d, s, Ud◦aUkd}.

Now, UãUdUkUd◦as ∈ J by (5). Also

Uã{Ud{k, d ◦ a, s}, k, d ◦ a} ∈ J

and
Uã{d, s, Ud◦aUkd} ∈ J

by (6).

On the other hand, again by QJ6 we have

UãUd◦aUkUds = U{ã,d◦a,k}Uds− UkUd◦aUãUds+

+ {k, d ◦ a, Uã{Uds, k, d ◦ a}} − {UkUd◦aã, Uds, ã}.

Since {ã, d ◦ a, k} ∈ {ã,K,K} ∈ J , we get U{ã,d◦a,k}Uds ∈ J . Moreover,
UãUds ∈ UãDJ(ã) ⊆ J , hence UkUd◦aUãUds ∈ J . On the other hand, Uã{Uds, k, d ◦
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a} ∈ J by (6), hence {k, d ◦ a, Uã{Uds, k, d ◦ a}} ∈ J , and Ud◦aã ∈ UK ã ∈ J , so
{UkUd◦aã, Uds, ã} ∈ J by (6). Thus we get U{d,k,d◦a}s ∈ J and hence {d, k, d ◦ a} ∈
DJ(ã), which proves that Udk ∈ (DJ(ã) : a)L.

Suppose now that a, b, c ∈ J satisfy Uc((DJ(ã) : a)L ∩ (DJ(ã) : b)L) = 0.
Taking as before u, v, y ∈ (K : a) ∩ (K : b), x = Uuv, t ∈ J , and k ∈ K we
have d = UUUxytk ∈ (DJ(ã) : a)L ∩ (DJ(ã) : b)L), and therefore Ucd = 0. Since
k ∈ K is arbitrary, we get UcUUUxytK = 0, hence for any t′ ∈ J , the element
c′ = UUUxytUct

′ has Uc′K = 0, which implies c′ = 0, and hence UUUxytUcJ = 0. It
then follows that UcUUxyt = 0, and since t ∈ J is arbitrary, that UcUUxyJ = 0, hence
UUcUxyJ = UcUUxyUcJ = 0. Thus UcUxy = 0, hence UcUx((K : a) ∩ (K : b)) = 0
and UUxUct′′((K : a) ∩ (K : b)) = 0 for any t′′ ∈ J . Thus UxUct

′′ = 0 by density
of K. Then UUcx = UcUxUcJ = 0, hence Ucx = 0, that is UcUuv = 0 for any
u, v ∈ (K : a) ∩ (K : b). Arguing as before we get c = 0 , and this proves the density
of DJ(ã) by 1.9.

2.7. Lemma. Let Q be an algebra of quotients of a Jordan algebra J and
assume that Q is a subalgebra of a Jordan algebra Q̃. If q̃ ∈ Q̃ has a dense inner
ideal of denominators DJ(q̃), then DQ(q̃) is dense in Q. Moreover, if Uq̃DJ(q̃) 6= 0,
then Uq̃DQ(q̃) 6= 0.

Proof. For any x, y ∈ DJ(q̃) and any p ∈ Q we have by QJ15,

{q̃, Uxy, p} = {{q̃, x, y}, x, p} − {y, Uxq̃, p} ∈ {J, J,Q} ⊆ Q.

Moreover, by QJ6,

Uq̃UUxyp = U{q̃,x,y}Uxp− UyUUxq̃p− {{q̃, Uxy, p}, Uxq̃, y}+ {p, x, UyUxUq̃x} ∈

UJUJQ+ {{J, J,Q}, J, J}+ {Q, J, J} ⊆ Q.

Therefore, Uxy ∈ DQ(q̃) for any x, y ∈ DJ(q̃), hence K = KJ(UDJ (q̃)DJ(q̃)) ⊆
DQ(q̃). Since K is dense in J by 1.16, the density of DQ(q̃) follows from 2.4(v).

Now, if Uq̃DJ(q̃) = 0, then, with the previous notation, Uq̃K = 0. Hence for any
p ∈ DQ(q̃) we have UUq̃pK = 0, and since Uq̃p ∈ Q and K is a dense inner ideal of J ,
we get Uq̃p = 0 for all p ∈ DQ(q̃) by 2.4(iv), that is Uq̃DQ(q̃) = 0.

2.8. Proposition. Let J1 ⊆ J2 ⊆ J3 be Jordan algebras, each a subalgebra of
the next one. Then J3 is an algebra of quotients of J1 if and only if J3 is an algebra
of quotients of J2 and J2 is an algebra of quotients of J1.

Proof. If J3 is an algebra of quotients of J1, it is obvious that J2 is also an
algebra of quotients of J1, and it follows from 2.7 that J3 is an algebra of quotients
of J2.
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Now assume that J2 is an algebra of quotients of J1, and J3 is an algebra of
quotients of J2. Take q ∈ J3 and consider as in [MP, 3.10] the set

N = {x ∈ J1 | x ◦ q ∈ J1, Uxq ∈ J1, {x, q, J1} ⊆ J1},

which is an inner ideal of J1.

Now evaluating the identity 2.5(1) in r = q, t ∈ J1, x ∈ DJ2(q)∩J1 (hence Uxq ∈
J2 and {x, q, J2} ⊆ J2), y ∈ DJ1(Uxq), and z ∈ DJ1({q, x, y} ◦ x) ∩DJ1({q, x, y}), we
get {q, UUxyz, t} ∈ J1. Also with that choice of x, y, z we have UUUxyzq ∈ UJ1UyUxq ⊆
UJ1UD(Uxq)Uxq ⊆ UJ1J1 ⊆ J1. Therefore we have

(1) UUxyz ∈ N.

On the other hand, applying identity 2.5(2) for r = q, any t ∈ Ĵ1, x,w ∈
DJ2 ∩ J1, y ∈ Dx,w = DJ1(Uxq) ∩ DJ1({x, q, w}) ∩ DJ1(Uwq) (note Uxq, Uwq ∈
J2), and z ∈ Ex,w,y = DJ1({q, x, y} ◦ x) ∩ DJ1({q, x, y}) ∩ DJ1({q, w, y} ◦ x) ∩
DJ1({q, w, y}) ∩ DJ1(U{x,y,w}q) (note {q, x, y}, {q, w, y}, and U{x,y,w}q ∈ J1), we
get {q, {Uxy, z, {x, y, w}}, J1} ⊆ Ĵ1.

Next, by QJ16 we have

U{Uxy,z,{x,y,w}}q = UUxyUzU{x,y,w}q + U{x,y,w}UzUUxyq−
−{UUxyz, q,U{x,y,w}z}+ {Uxy, Uz{{x, y, w}, q, Uxy}, {x, y, w}}.

Now, we have

• UxUzU{x,y,w}q ∈ UxUDJ1 (U{x,y,w}q)U{x,y,w}q ⊆ J1,

• U{x,y,w}UzUUxyq ∈ U2
J1
UxUyUxq ⊆ U3

J1
UDJ1 (Uxq)Uxq ⊆ J1,

• {UUxyz, q, U{x,y,w}z} ∈ {{UUxyz, q, J1} ⊆ J1 (by above),

• Uz{{x, y, w}, q, Uxy} = UzUxUy{w, q, x}+ Uz(w ◦ UyUxq) ∈
∈ U2

J1
UDJ1 ({x,q,w}){w, q, x}+ UJ1(J1 ◦ UDJ1 (Uxq)Uxq ∈ J1,

• {Uxy, Uz{{x, y, w}, q, Uxy}, {x, y, w}} ∈ J1.

Thus we get U{Uxy,z,{x,y,w}}q ∈ J1.

It follows from those computations that if x, y, z are chosen as above, then

(2) {Uxy, z, {x, y, w}} ∈ N.

Let us now see that N is dense, suppose that Uc((N : a)∩ (N : b)) = 0 for some
a, b, c ∈ J1, and keeping the previous notations, take x ∈ (DJ2(q) : a) ∩ (DJ2(q) :



Jordan algebras of quotients 23

a) ∩ J1, y ∈ (Dx,x◦a : a) ∩ (Dx,x◦b : b), and z ∈ (Ex,x◦a,y : a) ∩ (Ex,x◦a,y : a). Then,
using QJ15 two times we get

(UUxyz) ◦ a = {Uxy, z, {x, y, x ◦ a}} − {Uxy, z, Ux(y ◦ a)} − UUxy(z ◦ a).

Now, {Uxy, z, {x, y, x ◦ a}} ∈ N by (2), {Uxy, z, Ux(y ◦ a)} = UUx(y+y◦a)z −UUxyz −
UUx(y◦a)z ∈ N by (1), and UUxy(z◦a) ∈ N by (1), hence (UUxyz)◦a ∈ N , and UUxyz ∈
(N : a)L. Symmetrically UUxyz ∈ (N : b)L, hence UUxyz ∈ (N : a)L ∩ (N : b)L, and
UcUUxyz = 0 for all x, y, z in the conditions above. Thus we get UcUUxy((Ex,x◦a,y :
a)∩ (Ex,x◦a,y : a)) = 0. Now, Ex,x◦a,y and Ex,x◦a,y are intersections of inner ideals of
J1-denominators of elements of J2, which are dense since J2 is an algebra of quotients
of J1, and hence they are dense inner ideals and so is their intersection by 1.10. Since
UUUxyUct((Ex,x◦a,y : a) ∩ (Ex,x◦a,y : a)) = 0 for all t ∈ J1, from 2.4(iv) we get
UUxyUcJ1 = 0, hence UUcUxyJ1 = 0 by nondegeneracy of J1, and UcUxy = 0 again
by nondegeneracy of J1. Then UcUx(((Dx,x◦a : a) ∩ (Dx,x◦b : b)) = 0, and arguing
as before this yields Ucx = 0, hence Uc((DJ2(q) : a) ∩ (DJ2(q) : a) ∩ J1) = 0 which
implies c = 0 since (DJ2(q) : a)∩ (DJ2(q) : a)∩J1 is dense in J1 by 2.4(v). Therefore
N is dense, and DJ1(q) is dense by lemma 2.6.

Now, if UqDJ1(q) = 0, then for any p ∈ DJ2(q) we have UUpqDJ1(q) = 0, hence
Upq = 0 by 2.4(iv) and the essentiality of DJ1(q). Thus UDJ2 (q)q = 0, hence q = 0 by
2.4(iv). This proves that J3 is an algebra of quotients of J1.

2.9. We will say that an algebra of quotients Q of a Jordan algebra J is a
maximal algebra of quotients if for any other algebra of quotients Q′ ⊇ J there
exists a homomorphism α : Q′ → Q whose restriction to J is the identity mapping:
α(x) = x for all x ∈ J .

2.10. Remark. If Q and Q′ are algebras of quotients of a Jordan algebra
J and α : Q′ → Q is a homomorphism which restricts to the identity on J , then
α is injective. Indeed, if q ∈ Q has α(q) = 0, then UqDJ(q) = α(UqDJ(q)) (since
UqDJ(q) ⊆ J) = Uα(q)α(DJ(q)) = 0, hence q = 0.

2.11. Lemma. Let Q and Q′ be algebras of quotients of a strongly nonsingular
Jordan algebra J . If α, β : Q′ → Q are homomorphisms whose restriction to J is the
identity mapping, then α = β.

Proof. The proof of [MP,2.12] works here, using 2.4(iv) instead of [MP, 2.6].

2.12. Lemma. If Q and Q′ are maximal algebras of quotients of a Jordan
algebra J , then there exists a unique isomorphism α : Q → Q′ that extends the
identity mapping J → J .

Proof. This is straightforward from 2.11.
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In view of this result, if a Jordan algebra J has a maximal algebra of quotients,
such an algebra is unique up to an isomorphism extending the identity on J . We will
then denote this algebra by Qmax(J) and will refer to it as the maximal algebra of
quotients of J .

To close this section we examine the relationship between the weak center of a
Jordan algebra and of an algebra of quotients. This result will be fundamental in the
study of maximal algebras of quotients of PI algebras that we carry out in the next
section. The proof of the main result is the same as in the case studied in [MP], so
we will skip it and refer to that paper.

2.13. Proposition. Let J be a Jordan algebra and let Q ⊇ J be an algebra of
quotients of J . Then Cw(J) = Cw(Q) ∩ J .

Proof. The proof of [MP, 3.4] works here, using 2.4(iv) instead of [MP, 2.6].

3. Algebras of quotients of PI algebras

In this section we construct maximal algebras of quotients for nondegenerate PI-
algebras. The construction is a wide generalization of the central closure which was
first introduced for linear Jordan algebras (and other classes of algebras) by Beidar
and Mikhalev [BM].

3.1. Lemma. Let J be a nondegenerate PI Jordan algebra. Then:

(a) Any dense inner ideal of J hits nontrivially the weak center of J .

(b) An inner ideal of J is dense if and only if it contains an essential ideal of J .

Proof. (a) Any dense inner idealK of J is itself a nondegenerate Jordan algebra,
hence Cw(K) 6= 0 by [FGM, 3.6] since K is PI. Now, J is an algebra of quotients of
K by 2.3.1, hence Cw(J) ∩K = Cw(K) by 2.13.

(b) It is clear that any essential ideal in a nondegenerate Jordan algebra is a
dense inner ideal, hence so is any inner ideal that contains one. Suppose then that
K is a dense inner ideal and let I be the core of K, the biggest ideal of J contained
in K. If I is not essential, then AnnJ(I) 6= 0 by nondegeneracy, hence AnnK(I) =
AnnJ(I) ∩K 6= 0 by the essentiality of K (1.18). Since K is nondegenerate and PI,
there is a nonzero z ∈ Cw(K) ∩AnnK(K). Then z ∈ Cw(J) = Cw(K) ∩ J as in (a).
Moreover, UzJ ⊆ AnnJ(I) hence UzJ ∩ I = 0, but UzJ ⊆ K, hence UzJ ⊆ I, which
contradicts the nondegeneracy of J .

3.2. In [BM] the authors introduced what was called the nearly classical local-
ization of an algebra, which included the case of linear Jordan algebras. In the case
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of associative algebras that construction was called in [W, p. 271] the almost clas-
sical localization. Our aim now is to extend their construction to quadratic Jordan
algebras.

We consider a nondegenerate Jordan algebra J and denote by Γ = Γ(J) its
centroid, which is a reduced associative commutative ring. Then Γ is nonsingular
and J is a Γ-module. Denote by E(Γ) the set of essential ideals of Γ. We will assume
that the Γ-module J is nonsingular, that is if ax = 0 for some a ∈ E(Γ), and x ∈ J ,
then x = 0. The one can define the localization ΓE(Γ), and the localization of the
Γ-module J : JE(Γ) = lim

→
{HomΓ(a , J) | a ∈ E(Γ)}, the direct limit of the directed

system {HomΓ(a , J) | a ∈ E(Γ)}. Its elements can be represented as classes [f, a ]
of pairs (f, a ) where f ∈ HomΓ(a , J) for a ∈ E(Γ), modulo the equivalence relation:
(f, a ) ∼ (g, b ) if f and g agree on a ∩ b . It is well known that there is an action of
ΓE(Γ) on JE(Γ) extending the action of Γ that gives JE(Γ) a ΓE(Γ)-module structure.

3.3. Remark. We mention here two instances in which the algebra J is
automatically a nonsingular Γ-module. On the one hand, that happens if J is strongly
prime. Indeed, for any a ∈ E(Γ), the set a J is easily seen to be a nonzero ideal of J ,
so if x ∈ J has ax = 0, then Ua Jx ⊆ aUJx = UJax = 0 implies x ∈ AnnJ(a J) = 0.

On the other hand, if J is a nondegenerate PI-algebra and there are a ∈ E(Γ)
and 0 6= x ∈ J with ax = 0, then as before AnnJ(a J) 6= 0. Since J is PI, by [FGM,
3.6], there is a nonzero z ∈ AnnJ(a J)∩Cw(J), and then (aUz)J = Uza J = 0, hence
aUz = 0, which contradicts the essentiality of a .

3.4. Lemma. Let J and Γ be as in 3.2. If a ∈ E(Γ) and n ≥ 0, then
a [n] =

∑
α∈a Γαn ∈ E(Γ)

Proof. If β ∈ Γ annihilates a [n], then αnβ = 0 for all α ∈ a , hence (αβ)n = 0
for all α ∈ a , and this implies αβ = 0 for all α ∈ a since Γ is reduced. Thus aβ = 0,
hence β = 0.

3.5. We next give JE(Γ) a structure of ΓE(Γ)-algebra. To do that, take p = [f, a ]
and q = [g, b ] in JE(Γ). We set p2 = [k, a [2]], and Upq = [h, a [2]b ], where h and k

are defined as follows: k(
∑

i λiα
2
i ) =

∑
i λif(αi)2, and h(

∑
i α

2
iβi) =

∑
i Uf(αi)g(βi),

where αi ∈ a , βi ∈ b and λi ∈ Γ. To see that these operations are well defined
suppose that

∑
i α

2
iβi = 0 for some αi ∈ a and βi ∈ b , and set x =

∑
i Uf(αi)g(βi) ∈

J . Then, for any α ∈ a , and any β ∈ b we have: α2βx =
∑

i α
2βUf(αi)g(βi) =∑

i α
2Uf(αi)βg(βi) =

∑
i Uαf(αi)βg(βi) =

∑
i Uf(ααi)g(ββi) =

∑
i Uαif(α)βig(β) =∑

i α
2
iUf(α)βig(β) =

∑
i α

2
iβiUf(α)g(β) = (

∑
i α

2
iβi)(Uf(α)g(β)) = 0Uf(α)g(β) = 0,

hence a [2]b annihilates x, and this implies x = 0 by the essentiality of a [2]b and the
nonsingularity of the Γ-module J . So it only remains to prove that Upq is independent
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of the choice of the representatives of p and q. Suppose then that p = [f, a ] =
[f1, a 1] and q = [g, b ] = [g1, b 1]. Then it is easy to see that the mapping h1 ∈
HomΓ(a [2]

1 b , J) given by h1(
∑

i α
2
iβi) =

∑
i Uf1(αi)g1(βi) for any finite collection of

αi ∈ a 1 and βi ∈ b 1 agrees with h on the essential ideal (a ∩a 1)[2](b ∩b 1), and hence
[h, a [2]b ] = [h1, a

[2]
1 b 1]. Thus Upq is well defined, and similarly p2 is well defined. It

is also a routine checking to show that Upq and p2 are quadratic on p, and that Upq

is linear on q.

Recall that the mapping µ : J → JE(Γ), x 7→ µx = [mx,Γ] given by mx(α) = αx

is well defined, and a monomorphism of Γ-modules (the injectivity is a consequence
of the nonsingularity of J). We identify J with its image µ(J) under µ. Recall the
following well known fact:

3.6. Lemma. Let J and JE(Γ) be as before, and q ∈ JE(Γ). Then:

(1) Suppose that q has a representative (f, a ) ∈ q. If α ∈ a , then αq = f(α).

(2) If there is b ∈ E(Γ) such that b q = 0, then q = 0.

Proof. (1) Note that αq = [αf, a ] and take β ∈ a . Then (αf)(β) = αf(β) =
f(αβ) = βf(α) = mf(α)(β), hence αq = [αf, a ] = [mf(α), a ] = [mf(α),Γ] = µf(α) =
f(α).

(2) This just means that JE(Γ) is nonsingular as a Γ-module, which is well known.

3.7. Lemma. Let J and E(Γ) be as before. If a ∈ E(Γ), then a J is an essential
ideal of J .

Proof. We have already noted in 3.3 that a J is an ideal of J . Now, if x ∈
AnnJ(a J), then UxαJ ⊆ Uxa J = 0 for all α ∈ a , hence 0 = α(UxαJ) = α2UxJ =
UαxJ . Then αx = 0 by nondegeneracy of J , and since this holds for any α ∈ a , we
have ax = 0, hence x = 0 since J is a nonsingular Γ-module.

3.8. Lemma. Let J be a nondegenerate Jordan algebra, and let Γ be its centroid.
Assume that J is a nonsingular J-module, and let E(Γ) and JE(Γ) be as before. Then:

(1) JE(Γ) is a Jordan algebra with the operations defined in 3.5,

(2) J is a subalgebra of JE(Γ) (through the mapping µ of 3.5),

(3) For any q ∈ JE(Γ) there exists a ∈ E(Γ) with a J ⊆ DJ(q), and therefore JE(Γ) is
an algebra of quotients of J .

Proof. (1) Let F (x1, . . . , xn) = 0 be one of the defining identities of Jordan
algebras, where F ∈ FQ[X], the free quadratic algebra over a countable set of genera-
tors X (see [J, 3.1]). Take q1, . . . , qn ∈ JE(Γ) and set p = F (q1, . . . , qn). Note that the
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defining identities of Jordan algebras are homogeneous elements of FQ[X], so suppose
that F has degree ki in xi. Choose representatives (fi, a i) ∈ qi. Then, for any αi ∈ a i,
i = 1, . . . , n, we have αk1

1 · · ·αkn
n p = αk1

1 · · ·αkn
n F (q1 . . . , qn) = F (α1q1, . . . , αnqn) =

F (f1(α1), . . . , fn(αn)) = 0, and therefore, setting b = a (k1) · · · a (kn) we have b p = 0,
hence p = 0 by 3.6(2).

Assertion (2) is straightforward. For assertion (3), if q = [g, b ], it suffices to take
a = b [2].

Following [W], we call JE(Γ) the almost classical algebra of quotients of J .

3.9. Corollary. Let J be a nondegenerate Jordan algebra, and let Γ be its
centroid. Assume that J is a nonsingular J-module, and let E(Γ) and JE(Γ) be as
before. Then JE(Γ) ⊇ J is tight and JE(Γ) is nondegenerate.

Proof. We can apply 2.4 since JE(Γ) is an algebra of quotients of J by 3.8(3).

3.10. Lemma. Let J be a nondegenerate PI Jordan algebra, Γ be its centroid,
and E(Γ) the set of all essential ideals of Γ. For any ideal I of J denote by u (I) the
Γ-linear span of the set of all operators Uz for z ∈ Cw(J)∩ I, and by (I : J)Γ the set
of all γ ∈ Γ such that γJ ⊆ I. Then u (I) ⊆ (I : J)Γ, and I is essential if and only
if u (I) ∈ E(Γ).

Proof. If u (I) is essential, then u (I)J is an essential ideal of J by 3.7, and
since u (I)J ⊆ I, we obtain that I is essential.

Reciprocally, suppose that I is essential, and take a nonzero γ ∈ Γ with γu (I) =
0. let L = AnnJ(u (I)J). Clearly γJ ⊆ L, hence L 6= 0. Then I ∩L is nonzero by the
essentiality of I, hence there is a nonzero z ∈ L∩Cw(J) by [FGM, 3.6]. Then we have
Uz ∈ u (I), hence UzJ ⊆ L∩ u (I)J = 0, and this contradicts J being nondegenerate.
Therefore L = 0 and γJ = 0, hence γ = 0.

3.11. Theorem. Let J be a nondegenerate PI Jordan algebra, then J has max-
imal algebra of quotients Qmax(J) = JE(Γ), the almost classical algebra of quotients
of J .

Proof. Let Q ⊇ J be an algebra of quotients of J . We define a mapping
φ : Q → JE(Γ) in the following way. For any q ∈ Q, the dense inner ideal DJ(q)
contains an essential ideal I of J by 3.1(b). We set φ(q) = [fq, u (I)], with u (I) as in
3.10, where fq : u (I) → J is given on a typical element α =

∑
i λiUzi

of u (I), with
λi ∈ Γ and zi ∈ Cw(J) ∩ I, by fq(α) =

∑
i λiUziq (note that Uziq ∈ J for all i, since

zi ∈ DJ(q)). To see that it is well defined, we have to check, on the one hand, that
this does not depend on the particular representation of α as a linear combination
of Uzi

’s, and on the other hand, that the class [fq, u (I)] does not depend on the
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particular choice of the essential ideal I ⊆ DJ(q).

For the first question, suppose that
∑

i λiUzi
= 0. Set a =

∑
i λiUzi

q and take a
nonzero z ∈ Cw(J)∩I. Then Uza =

∑
i λiUzUzi

q =
∑

i λiUzi
Uzq (since Uz ∈ Cw(Q)

by 2.13) = (
∑

i λiUzi)Uzq (since Uzq ∈ J) = 0. Since u (I) is spanned by the elements
Uz when z ∈ Cw(J) ∩ I, we get u (I)a = 0. Now u (I) ∈ E(Γ) by 3.10, hence a = 0
since J is a nonsingular Γ-module by 3.3. This shows that f is well defined, and it is
clear that it is a homomorphism of Γ-modules.

Now suppose that L is another essential ideal contained in DJ(q), and let g :
u (L) → J be the corresponding homomorphism: g(

∑
i λiUzi

) =
∑

i λiUzi
q for λi ∈ Γ

and zi ∈ Cw(J)∩L. Then L∩I is again an essential ideal, and u (L∩I) ⊆ u (L)∩u (I) is
essential in Γ by 3.10. Clearly fq and g agree on u (L∩I), hence [fq, u (I)] = [g, u (L)],
which proves that φ is well defined.

Let us now show that φ is a homomorphism of algebras. If p, q ∈ Q, then
DJ(p) ∩ DJ(q) is a dense inner ideal of J , hence there exists an essential ideal I ⊆
DJ(p) ∩ DJ(q) by 3.1(b). Now put φ(p) = [fp, u (I)] and φ(q) = [fq, u (I)] defined
as above. Then it is easy to see that I(1) = UII ⊆ DJ(p + q), hence φ(p + q) =
[fp+q, u (I(1))]. Note that u (I(1)) ⊆ u (I), and the mappings fp+q and fp + fq agree
on that ideal. Then γ(φ(p + q)) = fp+q(γ) = fp(γ) + fq(γ) = γφ(p) + γφ(q) =
γ(φ(p) + φ(q)) for any γ ∈ u /I(1) by 3.6(1), hence φ(p+ q) = φ(p) + φ(q) by 3.6(2),
and φ is linear.

Now take an essential ideal L ⊆ DJ(Upq), and z, w ∈ I ∩ L ∩ Cw(J). Then
φ(Upq) = [fUpq, u (L)], and

U2
zUwφ(Upq) = Uz2Uwφ(Upq) = fUpq(Uz2Uw) = by 3.6(1)

= Uz2UwUpq = UUzpUwq =

= Ufp(Uz)fq(Uw) = UUzφ(p)Uwφ(q) = by 3.6(1)

= U2
zUwUφ(p)φ(q). by 2.13 and 3.8(3)

Hence U2
zUw(φ(Upq) − Uφ(p)φ(q)) = 0. Now Uz ∈ Cw(J) ⊆ Cw(JE(Γ)) by 2.13

and 3.8(3), hence we get UzUw(φ(Upq) − Uφ(p)φ(q)) = 0, and this implies u (I ∩
L)2(φ(Upq) − Uφ(p)φ(q)) = 0. Since u (I ∩ L)2 is essential in Γ we obtain φ(Upq) −
Uφ(p)φ(q) = 0 from 3.6(2), hence φ(Upq) = Uφ(p)φ(q).

The equality φ(q2) = φ(q)2 is proved analogously, so we obtain that φ is a
homomorphism, and this proves that JE(Γ) is the maximal algebra of quotients of
J .

4. Algebras of quotients of algebras of hermitian type

Since algebras of hermitian type are special we can make use of associative
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envelopes to transfer problems to the associative setting. In the case of algebras of
quotients this requires first to have a good relationship between dense inner ideals of
the Jordan algebra and dense one sided ideals of its associative envelopes.

4.1. Following [Mo1] we denote by PI(J) the set of all a ∈ J such that Ja is
a PI-algebra. It is proved in [Mo1] that if J is nondegenerate, PI(J) is an ideal of
J . Similar notions can be defined for associative algebras where we again use the
notation PI(R). Following [FGM] we will say that a Jordan algebra J is PI-less if
PI(J) = 0.

4.2. Lemma. Let R be a semiprime associative algebra with involution ∗, and
let J = H0(R∗) be an ample subspace of symmetric elements of R.

(1) If I is an essential ∗-ideal of R, then I ∩ J is an essential ideal of J .

(2) If I is an essential ideal of J , then lannR(I) = rannR(I) = 0.

Proof. Note first that R is ∗-tight over J by [ACMM,1.1], and that J is a
nondegenerate Jordan algebra [Mc3, 2.9]. (1) Set L = AnnJ(I∩J), and take x ∈ L(1)

and a ∈ R. Then ax + xa∗ and axa∗ belong to L (see the proof of [Mc1, Theorem
5]). Now, if y ∈ I and x ∈ L(1), then yx + xy∗ ∈ L ∩ I ∩ J = 0, hence yx = −xy∗.
Thus, xy2 = −y∗xy ∈ L∩ I = 0, and if a ∈ R, then xyaxy = x(ya)xy = −a∗y∗x2y =
−a∗x2y2 = 0. Thus xyRxy = 0, hence xy = 0 since R is semiprime. Therefore we
have L(1)I = 0, hence L(1) = 0 since I is essential, and this implies L = 0 since J is
nondegenerate, hence semiprime.

(2) Suppose that Ir = 0 for some r ∈ R. Now, for all x ∈ I and a ∈ R, we have
a∗x+xa ∈ I, hence 0 = (a∗x+xa)r = xar. Thus I(1)Rr = 0, and r ∈ AnnR(R̂I(1)R̂).
Now AnnR(R̂I(1)R̂) ∩ J ⊆ AnnJ(I(1)) = 0 (by [FGM, 1.13]). Therefore r = 0.

4.3. Lemma. Let J be a nondegenerate Jordan algebra. Then the algebra
J̄ = J/AnnJ(AnnJ(PI(J)) is PI-less: PI(J̄) = 0.

Proof. We denote with bars the projections in J̄ . Note that AnnJ(PI(J))
is an essential ideal of J̄ , since if Uz̄AnnJ(PI(J) = 0, then UzAnnJ(PI(J)) ⊆
AnnJ(PI(J)) ∩AnnJ(AnnJ(PI(J))) = 0, hence z ∈ AnnJ(AnnJ(PI(J)), i. e., z̄ = 0.

Now, if PI(J̄) 6= 0, then there is a nonzero x̄ ∈ PI(J̄) ∩ AnnJ(PI(J)), and
we can choose a preimage x ∈ AnnJ(PI(J)). Then J̄x̄ is PI, and if f ∈ FJ [X]
is an essential polynomial which vanishes on J̄x̄, then J̄ satisfies Ux̄f(x̄; J̄) = 0
(where h(y;x1, . . . , xn) is the evaluation in the homotope FJ [X](y) of the polyno-
mial h(x1, . . . , xn)), hence letting g = f3, J̄ satisfies g(x̄; J̄) = 0. Thus g(x; J) ⊆
AnnJ(AnnJ(PI(J))), but x ∈ AnnJ(PI(J)) implies g(x; J) ⊆ AnnJ(PI(J)), and
therefore we get g(x; J) = 0, which implies that Jx is PI, hence x ∈ PI(J) ⊆
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AnnJ(AnnJ(PI(J))), and x̄ = 0.

4.4. Lemma. Let J be a nondegenerate Jordan algebra, and let p ∈ FJ [X] be
an essential polynomial. Put I = idJ(p(J)), the ideal generated by all the evaluations
of p in J . Then AnnJ(I) ⊆ PI(J), so if J is PI-less, then I is essential. In particular,
J is of hermitian type: AnnJ(H(J)) = 0 for any hermitian ideal H(X).

Proof. Let a ∈ AnnJ(I) and consider the algebra J̄ = J/AnnJ(AnnJ(I)), which
is nondegenerate by [FGM, 1.15]. Then AnnJ(AnnJ(I)) ⊆ Kera implies Ja = J̄ā

(where bars denote projections in J̄). Note that J̄ is PI since p(J̄) = 0, and therefore
PI(J̄) = J̄ by [Mo1, 2.7]. Thus J̄ā = Ja is PI, and a ∈ PI(J).

4.5. Lemma. Let J be a PI-less nondegenerate special Jordan algebra, R be a
∗-tight associative ∗-envelope of J , and L be a left ideal of R. Then L∩J = 0 implies
idR(L) ∩ idR(L)∗ = 0, where idR(L) is the ideal of R generated by L.

Proof. Suppose that L is a left ideal of R with L ∩ J = 0. Let H(X) be a
hermitian ideal, so that H(J) is essential in J by 4.4. Denote A = algR(H(J), the
associative subalgebra of R generated by H(J), and take B = L ∩ A. Then, for all
b ∈ B we have b∗H(J)b ⊆ H(J)∩L = 0, hence R satisfies the ∗-GPI b(X +X∗)b = 0
by [FGM, 6.11]. Thus, if c = b∗rb ∈ bRb∗, we have c∗ = b∗r∗b = −b∗rb = −c,
and for all x, y ∈ R, we have cxcyc = −cy∗c∗x∗c = cy∗cx∗c = cycac, hence
Rc is commutative and c ∈ PI(R). Now PI(R) ∩ J ⊆ PI(J) (by [Mo1, 4.6(b)])
= 0, hence PI(R) = 0 by tightness, and this gives c = 0. Therefore b∗Rb = 0
for all b ∈ B, hence idR(B) ∩ idR(B∗) = 0 by [FGM, 6.13]. Now,since J gener-
ates R, for any l ∈ L there exists a positive integer n(l) with H(J)(m)l ⊆ A ∩
L = B for any m ≥ n(l) by [MZ, 1.5(3)]. Thus, for any l1, l2 ∈ L, and any
n ≥ n(i1), n(l2), we have H(J)(n)l1R̂l

∗
2H(J)(n) ⊆ BRB∗ ⊆ idR(B) ∩ idR(B∗) = 0.

Then l1R̂l
∗
2H(J)(n) ⊆ rannR(H(J)(n)) = rannR(R̂H(n)) = AnnR(R̂H(n)). But

AnnR(R̂H(n)) ∩ J = AnnJ(H(J)(n)) (by [FGM, 1.15]) = 0 (by [FGM, 1.13]), hence
l1R̂l

∗
2H(J)(n) = 0. The same argument gives now l1R̂l

∗
2 = 0, hence LL̂∗ = 0 which

implies idR(L) ∩ idR(L)∗ = 0.

4.6. Theorem. Let J be a nondegenerate special Jordan algebra, let (R, ∗) be
a ∗-tight associative ∗-envelope of J , and let L be a left ideal of R. If there exists a
hermitian ideal H(X) with AnnJ(H(J)) = 0, then L is a dense left ideal if and only
if L ∩ J is a dense inner ideal of J .

Proof. Assume first that L is dense, and set K = L ∩ J . Then (K : a) ⊇ (L :
a) ∩K for all a ∈ J . Indeed, if x ∈ (L : a) ∩K, then xa, ax ∈ L, hence a ◦ x ∈ L

and Uax = a(xa) ∈ aL ⊆ L. Since x ◦ a, Uax ∈ J , we have x ◦ a, Uax ∈ K, hence
x ∈ (K : a). Thus (K : a)∩ (K : b) = ((L : a)∩ (L : b)∩L)∩ J for any a, b ∈ J is the
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intersection with J of a dense left ideal of R, so it suffices to prove that Uc(L∩J) = 0
implies c = 0 for a dense left ideal L of R and any c ∈ J .

Suppose then that Uc(L∩J) = 0 for some nonzero c ∈ J , and take d ∈ Uc(H(J)∩
PI(J)). We set A = algR(H(J)), the associative subalgebra of R generated by
H(J). Then H(J) = H0(A, ∗) is an ample subspace of symmetric elements of A,
and its local algebra H(J)d = H0(Ad, ∗) is also an ample subspace of symmetric
elements of the local algebra Ad. We will denote with bars the projections onto
the local algebras at d (of H(J), J , A and R) Since d ∈ PI(J), the local algebra
H(J)d = H0(Ad, ∗) ⊆ Jd is also PI, hence Ad is PI by a theorem of Amitsur [R1,
7.4.13]. Now take any h ∈ H(J). Then L1 = (L : dh) is a dense left ideal of R
and, since R is a ring of quotients of A (see [MZ,]), L2 = L1 ∩ A is a dense left
ideal of A. Therefore L̄2 = L2 + Kerd/Kerd is a dense left ideal of Ad by 1.21.
Since Ad is PI, arguing as in 3.1, it is easy to see that there is an essential ideal
Ī of Ad with Ī ⊆ L̄2 (note that the preimage I ⊆ A of Ī need not be an ideal of
A, although it is an ideal of the homotope A(d)). Now, for any ȳ ∈ Ī ∩ H(J) such
that y ∈ H(J), we have ȳ = l̄ for some l ∈ L2, hence UhUdy = hdldh ∈ hdL2dh ⊆
hdL1dh ∩ A = hd(L : dh)dh ∩ A ⊆ L ∩ A, and since UhUdy ∈ H(J) ⊆ J we get
UhUdy ∈ L ∩ J , hence UdUhUdy ∈ UJUcUhUdy ⊆ UJUc(L ∩ J) = 0. So we have
Uh̄(Ī ∩H(J)) = 0. Since A is semiprime, Ad is also semiprime, hence AnnAd

(Ī) = 0
which yields AnnH(J)d

(Ī ∩ H̄(J)) = 0 by 4.2, hence h̄ = 0 for all h ∈ H(J). Thus
UdH(J) = 0, hence d ∈ AnnJ(H(J)) = 0. So turning back to the choice of d, this
implies Uc(H(J) ∩ PI(J)) = 0, hence UcPI(J) ⊆ AnnJ(H(J)) = 0, and therefore
c ∈ AnnJ(PI(J)).

Consider now the algebra J̄ = J/AnnJ(AnnJ(PI(J))), which is PI-less by 4.3.
Note that R̄ = R/AnnR(AnnJ(PI(J))) is a ∗-tight envelope of J̄ by [FGM, 1.15]
(in what follows we change our convention and denote with bars the projections
into these algebras). Note also that L̄ is a dense left ideal of R̄ by 1.23. Now set
L1 = (L : c), which is again a dense left ideal of R. For any ȳ ∈ L̄1 ∩ J̄ (note
that we can choose y ∈ J) there is l ∈ L1 with ȳ = l̄, hence y = l + z with
z ∈ AnnR(AnnJ(PI(J))). Thus czc ∈ AnnR(AnnJ(PI(J))) ∩ AnnR(PI(J)) = 0 (by
[FGM, 1.15]), hence Ucy = Ucl ∈ J ∩ c(L : c)c ⊆ J ∩ L. Thus Ucy ∈ Uc(L ∩ J) = 0,
so we have Uc̄(J̄ ∩ L̄1) = 0. We will prove that this situation forces c̄ = 0.

To alleviate the notation we now omit bars, and we consider a PI-less special
Jordan algebra with ∗-tight associative ∗-envelope R, a dense left ideal L of R, and
d ∈ J with Ud(L ∩ J) = 0.

Consider the left ideal Lc of R. If x ∈ Lc ∩ J , then x = ld for some l ∈
L, and there is a positive integer n such that l∗H(J)(n)l ⊆ J ∩ L (see [MZ, p.
146]). Thus UxH(J)(n) = x∗H(J)(n)x ⊆ dl∗H(J)(n)ld ⊆ Ud(L ∩ J) = 0, hence
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x ∈ AnnJ(H(J)(n)) = 0 by [FGM, 1.13] and the essentiality ofH(J). Thus Ld∩J = 0,
hence idR(Lc) ∩ idR(cL∗) = 0 by 4.5, and we get LcRcL∗ = 0. Then, since L is a
dense left ideal (hence L∗ is a dense right ideal), we have cRc = 0, which implies
c = 0 by the semiprimeness of R.

Thus, going back to our previous notation, we have proved that c̄ = 0, hence
c ∈ AnnJ(AnnJ(PI(J))). But since c ∈ AnnJ(PI(J)), we get c = 0.

Let us now prove the reciprocal. Assume that L ∩ J is a dense inner ideal of J .
Since R̂(L ∩ J) ⊆ L, the result will follow if we prove that any dense inner ideal K
of J generates a dense left ideal R̂K in R.

First we claim that for any dense innerK of J and any r ∈ R, there exists a dense
inner ideal N of J such that Nr ⊆ R̂K. Since J generates R, the element r can be
written as a sum of products of elements of J , so taking the intersection of the inner
ideals corresponding to each of the summands of r, we can assume that r = a1 · · · an

is a product of elements from J . We then carry out an induction on the number n of
factors. For the case n = 1 note that (K : a1)a1 = (K : a1) ◦ a1 + a1(K : a1) ⊆ R̂K,
hence N = (K : a1) works since it is dense. Now, if the result holds for products of at
most n−1 elements from J , the density of (K : an) implies that there is a dense inner
ideal N in J with Na1 · · · an ⊆ R̂(K : an). Then Na1 · · · an ⊆ R̂(K : an)an ⊆ R̂K,
so we have found the desired inner ideal N . This proves the induction step and
therefore the claim.

In view of the fact just proved, for any dense inner ideal K of J and any r ∈ R,
the left ideal (R̂K : r) contains a left ideal of the form R̂N , for a dense inner ideal
N of J . Thus, to prove that a left ideal R̂K generated by a dense inner ideal K of
J is dense, it suffices to prove that Ka 6= 0 for any dense inner ideal K of J and any
0 6= a ∈ R.

Suppose then that Ka = 0 for some dense inner ideal K of J and some a ∈ R,
and take d ∈ PI(J)∩H(J). Then (K : d)da ⊆ ((K : d) ◦d)a+d(K : d)a ⊆ R̂Ka = 0.
Now set N = (K : d), which is again dense. Denote by A the associative subalgebra
A = algR(H(J)) generated by H(J) in R and put N1 = N∩H(J). Then N1 is a dense
inner ideal of H(J) by 2.4(v), hence N̄1 = N1 + Ker d/Ker d is a dense inner ideal of
the local algebra H(J)d by 1.20. Now, since d ∈ PI(J), the algebra H(J)d is PI, hence
there exits an essential ideal Ī of H(J)d contained in N̄1 by 3.1. Now there is na with
aH(J)(n) ⊆ A for all n ≥ na, so if b ∈ aH(J)(n)A, denoting as usual the projections
in H(J)d and Ad with bars, we have Ī b̄ ⊆ N̄1 b̄ = N1db ⊆ ((K : d) ∩H(J))daA = 0,
hence b̄ ∈ rannAd

(Ī). Note that Ad is semiprime since A is semiprime, and H(J)d =
H0(Ad, ∗) is an ample subspace of symmetric elements of Ad since H(J) = H0(A, ∗)
is an ample subspace of symmetric elements of A. Since Ī is essential, 4.2 gives
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rannAd
(Ī) = 0, whence b̄ = 0. Thus we have proved that daH(J)(n)Ad = 0 for

any d ∈ PI(J) ∩ H(J). Then we have (daH(J)(n))A(daH(J)(n)) = 0, which implies
daH(J)(n) = 0 for all d ∈ PI(J) ∩ H(J), hence (PI(J) ∩ H(J))a ⊆ lannR(H(J)) = 0
(since lannR(H(J)) = lannR(idR(H(J))) = AnnR(idR(H(J)) = 0 by the essentiality
of H(J)) and we get (PI(J) ∩ H(J))a = 0. Now, for any h, g ∈ H(J) and any
x ∈ PI(J), we have (Uhg)xa = h{g, h, x}a− ((Uhx) ◦ g)a+ g(Uhx)a ∈ Ĥ(J)(H(J) ∩
PI(J))a = 0. Therefore H(J)(1)PI(J)a = 0, and PI(J)a ⊆ AnnR(H(J)(1)) = 0,
hence a ∈ AnnR(PI(J)).

Consider now the algebra J̄ = J/AnnJ(AnnJ(PI(J)), and its ∗-tight associative
∗-envelope R̄ = R/AnnR(AnnJ(PI(J)) (see [FGM, 1.15]), where, as usual, we denote
with bars the images under the projections. We have PI(J̄) = 0 by 4.3, the inner
ideal K̄ of J̄ is dense by 1.20, and K̄ā = 0. Now, for any c̄ ∈ J̄ ∩ āR̄, the equality
Uc̄K̄ = c̄K̄c̄ = 0 implies c̄ = 0. Thus J ∩ āR̄ = 0, and since J̄ is PI-less, 4.5 gives
idR̄(āR̄) ∩ idR̄(R̄ā∗) = 0. Set now V = ā ̂̄R + ā∗ ̂̄R and take x̄ ∈ N̄ ∩ J̄ . Then
x̄K̄x̄ = x̄∗K̄x̄ ⊆ V ∗K̄V ⊆ ( ̂̄Rā∗K̄ + ̂̄RāK̄)V = ( ̂̄R(K̄ā)∗ + ̂̄RāK̄)V = ̂̄RāK̄V =̂̄RāK̄(ā ̂̄R+ ā∗ ̂̄R) = ̂̄RāK̄ā∗ ̂̄R ⊆ idR̄(ā ̂̄R) ∩ idR̄( ̂̄Rā∗) = 0, which implies x̄ = 0 by the
density of K̄. Thus V ∩ J̄ = 0, hence V V ∗ = 0 by 4.5, and we get āR̄ā ⊆ V V ∗ = 0,
hence a = 0 by semiprimeness of R̄. Therefore we have a ∈ AnnR(AnnJ(PI(J))),
and since a ∈ AnnR(PI(J)), we obtain a = 0.

4.7. Lemma. Let J be a nondegenerate Jordan algebra, and let Q be an
algebra of quotients of J . Assume that Q is special and let A be a ∗-tight associative
∗-envelope of Q. Denote by T = algA(J) the associative subalgebra of A generated
by J . Then:

(i) For any a ∈ A, there exits a dense inner ideal K of J such that Ka ⊆ T .

(ii) T is a ∗-tight associative envelope of J .

Proof. (i) Since any element a ∈ A can be written as a sum of elements from
Q, if we prove that for any element of the form q1 · · · qn, with qi ∈ Q, there exists a
dense inner ideal K of J with Kq1 . . . qn ⊆ T , the result will follow for an arbitrary
a ∈ A by taking the intersection of the inner ideals obtained for each summand that
makes up a. We can therefore assume that a = q1 · · · qn is a product of elements from
Q and csrry out an induction on the number n of factors.

For n = 1, let K = K(UDJ (q1)DJ(q1)), which is dense by 1.16 since DJ(q1) is. If
k ∈ K, then there exist x, y ∈ DJ(q1) with k = Uxy and we have kq1 = (Uxy)q1 =
x{y, x, q1} − (Uxq1)y ∈ JJ ⊆ T .

So suppose that the result holds for products of at most n − 1 elements from
Q, and let b = q2 · · · qn and q = q1, so that a = qb. By induction hypothesis there
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exists a dense inner ideal N of J with Nb ⊆ T . Put L = {x ∈ T | xq ∈ TN}. It
is clear that L is a left ideal of T , hence K = L ∩ J is an inner ideal of J that has
Ka = Kqb ⊆ TNb ⊆ T . Therefore it suffices to show that L ∩ J is dense.

Take u, v, c ∈ J , and assume that Uc((L ∩ J : u)L ∩ (L ∩ J : v))L = 0. For any
s ∈ N ∩DJ(q) and t ∈ N we have {t, s, q} ∈ J . Now, if y ∈ (N : s◦{t, s, q}), we have

(Uxy)q = x{y, x, q} − (Uxq)y =

x{y, Ust, q} − (UUstq)y =

= x(y ◦ (s ◦ {t, s, q}))− x{y, {t, s, q}, s} − (UsUtUsq)y,

but y◦(s◦{t, s, q}) ∈ (N : s◦{t, s, q})◦(s◦{t, s, q}) ∈ N , {y, {t, s, q}, s} ∈ UNJ ⊆ N ,
and UsUtUsN ∈ UsUtJ ⊆ J ⊆ T , hence (Uxy)q ∈ xN + Ty ⊆ TN and we get
Uxy ∈ L ∩ J

Take now s ∈ (N ∩ DJ(q) : u) ∩ (N ∩ DJ(q) : v), t ∈ (N : u) ∩ (N : v). For
d = u or v, we set Ms,t,d = (N : s ◦ {t, s ◦ d, q}) ∩ (N : (s ◦ d) ◦ {t, s, q}) ∩ (N :
s ◦ {t ◦ d, s, q})∩ ((N : s ◦ {t, s, q} : d) (note that if d = a or b, then s ◦ d ∈ N ∩DJ(q),
hence {t, s ◦ d, q}, {t, s, q} and {t ◦ d, s, q} belong to J). Take now y ∈Ms,t,u ∩Ms,t,v

and put x = Ust. Let us see that Uxy ∈ (L ∩ J : u)L ∩ (L ∩ J : v)L.

we have:

(Uxy) ◦ u = {x, y, x ◦ u} − Ux(y ◦ u) =

= {x, y, {s, t, s ◦ u}} − {x, y, Us(t ◦ u)} − Ux(y ◦ u).

We will show next that each of the terms in this sum belongs to L ∩ J .

First note that Ux(y ◦ u) ∈ L ∩ J and, {x, y, Us(t ◦ u)} = UUs(t+t◦u)y − UUsty −
UUs(t◦u)y ∈ L ∩ J follow from what was proved above. Now, we have:

{x, y, {s, t, s ◦ u}}q = x{y, {s, t, s ◦ u}q}+ {s, t, s ◦ u}{y, x, q} − {x, q, {s, t ◦ u}}y

where, on the one hand:

{y, {s, t, s ◦ u}q} = {y, s, {t, s ◦ u, q}}+ {y, s ◦ u, {t, s, q}} =

= y ◦ (s ◦ {t, s ◦ u, q})− {y, {t, s ◦ u, q}, s}+
+ y ◦ ((s ◦ u) ◦ {t, s, q})− {y, {t, s, q}, s ◦ u} ∈
∈ (N : s ◦ {t, s ◦ u, q}) ◦ (s ◦ {t, s ◦ u, q}) + UNJ+

+ (N : (s ◦ u) ◦ {t, s, q}) ◦ ((s ◦ u) ◦ {t, s, q}) + UNJ ∈ N,

hence x{y, {s, t, s ◦ u}q} ∈ JN ⊆ TN .
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On the other hand

{s, t, s ◦ u}{y, x, q} = {s, t, s ◦ u}{y, Ust, q}
= {s, t, s ◦ u}((y ◦ (s ◦ {t, s, q}))− {y, {t, s, q}, s}+ {y, Usq, t} ∈
∈ J((N : s ◦ {t, s, q}) ◦ (s ◦ {t, s, q}))− UNJ) ⊆ JN ⊆ TN,

And finally,

{x, q, {s, t ◦ u}}y ∈ (UDJ (q)q)N ⊆ JN ⊆ TN.

Therefore {x, y, {s, t, s ◦ u}} ∈ L ∩ J and we obtain Uxy ∈ (L ∩ J : u)L. Analo-
gously, Uxy ∈ (L ∩ J : v)L, hence Uxy ∈ (L ∩ J : u)L ∩ (L ∩ J : v)L and UcUxy = 0
for any x, y chosen as above. Arguing as in the proof of 2.8 we get c = 0, hence L∩J
satisfies 1.9(1L). This proves the induction step, hence (i).

(ii) is proved as [MP, 4.4(ii)] with the obvious changes.

4.8. Proposition. Let J be a nondegenerate Jordan algebra, and assume
that there is a hermitian ideal H(X) such that H(J) is essential. If R is a ∗-tight
associative ∗-envelope of J , then the set

Q = {q ∈ H(Qσ(R), ∗) | DJ(q) is dense in J}

is an ample subspace of symmetric elements of the maximal algebra of symmetric
quotients Qσ(R) of R.

Proof. Again, the proof of the corresponding result [MP, 4.6] can be easily
adapted to the present case.

4.9. Remark. In the previous results we have assumed that our Jordan alge-
bras were hermitian in the strong sense that there existed a hermitian ideal whose
values in the algebra was an essential ideal. We will now choose a particular hermi-
tian ideal to apply the results of [Mc4] without further comments. Recall that the
Zelmanov polynomial in the variables X(i) = {xi, yi, zi, wi} (i = 1, 2, 3) has the form
([MZ, pp. 192, 195])

Z48 = [[P16(X(1)), P16(X(2))], P16(X(3)]

for P16(X) = [[[t, [t, z]]2, [t, w]], [t, w]] (t = [x, y]), where [[a, b]c] = {a, b, c} − {b, c, a}.
Denote by Z(X) the ideal generated in the free Jordan algebra FJ [X] over a count-
able set of generators X by all the evaluations Z48(a1, . . . , a12) for ai ∈ FJ [X]. Then
Z(X) is a hermitian ideal.
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4.10. Theorem. Let J be a special nondegenerate Jordan algebra and assume
that Z(J) is an essential ideal of J . Then the algebra Q of 4.8 is the maximal algebra
of quotients of J .

Proof. Once more, the proof of [MP, 4.7] works in this situation with minor
obvious changes. Note however that since we are using the ideal Z(X) we do not need
here to adapt the results of [Mc4], since the General Zelmanov Extension Theorem
[Mc4, 2.1] can be applied directly.

5. Main theorem and consequences

In this section we collect the previous results and find maximal algebras of quo-
tients for nondegenerate algebras. This will stem from a (finite) subdirect decom-
position of Jordan algebras which will transfer to a subdirect decomposition of their
algebras of quotients.

5.1. Lemma. Let Q be an algebra of quotients of the nondegenerate Jordan
algebra J , let L be an ideal of Q, and put I = AnnQ(L). Then I ∩ J = AnnJ(L∩ J).

Proof. Since I∩L = 0 by nondegeneracy 2.4(i) ofQ, we have (I∩J)∩(L∩J) = 0,
and this implies I ∩ J ⊆ AnnJ(L ∩ J) since both I ∩ J and L ∩ J are ideals of J .

Now take x ∈ AnnJ(L ∩ J) and any q ∈ L, and set p = Uxq, K = (DJ(q) : x).
Then UpK = UxUqUxK ⊆ UxUqDJ(q) ⊆ Ux(L ∩ J) = 0, hence p = 0 by 2.4(iv)
since K is dense. Thus we get UxL = 0, hence x ∈ AnnQ(L) = I by 0.3. Therefore
AnnJ(L ∩ J) ⊆ I ∩ J and this gives the equality.

5.2. Lemma. Let Q be an algebra of quotients of the nondegenerate Jordan
algebra J , let L be an ideal of Q, and set I = AnnQ(L). Then Q̄ = Q/I is an algebra
of quotients of J̄ = J/J ∩ I(= J + I/I ⊆ Q̄).

Proof. First note the obvious containment DJ(q) ⊆ DJ̄(q̄) for any q̄ = q+I ∈ Q̄.
Since I ∩J = AnnJ(L∩J) by 5.1, we have J̄ = J/AnnJ(L∩J), so we can apply 1.22
to conclude that DJ(q) is dense, hence that DJ̄(q̄) is dense. Moreover, Uq̄DJ̄(q̄) = 0
implies UqDJ(q) ⊆ I, hence for all p ∈ L we have UqpDJ(q) ⊆ UqULAnnQ(L) = 0,
and this implies UqL = 0 by 2.4(iv). Thus q ∈ AnnQ(L) = I by 0.3, hence q̄ = 0.

5.3. Lemma. Let J be a Jordan algebra and let Q be an algebra of quotients of
J . If I, L are orthogonal ideals of J : I ∩L = 0, then they generate orthogonal ideals
in Q: idQ(I) ∩ idQ(L) = 0.

Proof. Consider first the particular case where Q is PI. For an ideal N of J
we denote by G(N) the set of all q ∈ Q for which there exists a dense inner ideal K
of J such that for any z ∈ K ∩ Cw(J) there is a positive integer n with Uznq ∈ N .
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Clearly N ⊆ G(N), and we claim that G(N) is an ideal of Q. (Although this is not
important in what follows, we note that Cw(J) = 0 would imply G(N) = Q, but this
is not the case with our nondegenerate PI algebra J by [FGM, 3.6]. Note also that if
N is essential, then G(N) = Q since for any q ∈ Q we can consider the dense inner
ideal N ∩DJ(q), and any z ∈ N ∩DJ(q)∩Cw(J) has Uz2q = UzUzq ⊆ UNUDJ (q)q ⊆
UNJ ⊆ N .)

Take now q1, q2 ∈ G(N) and dense inner ideals Ki with Uz
ni
i
qi ∈ N for any

zi ∈ Cw(J) ∩Ki and some ni > 0 (for i = 1, 2). Then K = K1 ∩K2 is dense and
for any z ∈ Cw(J) ∩ K there are positive integers n1, n2 with Uzni qi ∈ N , hence
Uzn(q1 + q2) = Uznq1 + Uznq2 ∈ N for any n ≥ n1, n2. Thus q1 + q2 ∈ G(N) and
G(N) is a submodule.

Next, take q ∈ G(N) and p ∈ Q̂. Note that if p = α1 + p′ with α ∈ Φ and
p′ ∈ Q, then DJ(p) = DJ(p′) is dense in J . Now choose a dense inner ideal K of J
such that for all z ∈ Cw(J)∩K there exists a positive integer n with Uznq ∈ N . Then
K ′ = DJ(p)∩K is dense, and for any z ∈ Cw(J)∩K ′ and n > 0 with Uznq ∈ N (note
that K ′ ⊆ K), we have Uzn+2Upq = U2

zUznUpq = UzUpUzUznq (since z ∈ Cw(Q) by
2.13) = UUzpUznq ∈ UJN ⊆ N . This proves that UQ̂G(N) ⊆ G(N). On the
other hand we have Uz2n+1Uqp = U2

znUzUqp = UznUqUznUzp (since z ∈ Cw(Q) by
2.13)= UUznqUzp ⊆ UNJ ⊆ N , which proves UG(N)Q̂ ⊆ G(N), and therefore the
claim.

We now go back to our ideals I, L. By what we have just proved, we have
idQ(I) ⊆ G(I) and idQ(L) ⊆ G(L). So if q ∈ idQ(I) ∩ idQ(L), then there are dense
inner ideals KI and KL such that for any z ∈ Cw(J) ∩ KI ∩ KL there is n with
Uznq ∈ I and Uznq ∈ L, hence Un

z q = Uznq ∈ I ∩ L = 0. This implies that Uzq = 0
for any z ∈ Cw(J)∩K for some dense inner ideal K (= KI ∩KL) of J by 0.4. Thus
we have U2

zUqQ = UUzqQ = 0 (since z ∈ Cw(Q) by 2.13), hence 0 = UzUqQ (by
0.4) = UqUzQ, and since UzQ is an ideal of Q, we obtain q ∈ AnnJ(UzQ), hence
idQ(q) ⊆ AnnJ(UzQ) for any z ∈ Cw(J)∩K. Now consider the ideal A = idQ(q)∩K.
Then for any z ∈ Cw(J)∩A, we have z ∈ idQ(q) ⊆ AnnJ(UzQ) (since z ∈ Cw(J)∩K),
hence z = 0. Thus Cw(J) ∩ (A ∩ J) = Cw(J) ∩ A = 0, which yields A ∩ J = 0 by
[FGM, 3.6], hence idQ(q) ∩ J = 0 since K is dense. Thus idQ(q) = 0 by tightness
2.4(iii) of Q over J , and we get q = 0, hence idQ(I) ∩ idQ(L) = 0.

We consider next the case where Q is special. For an ∗-tight associative ∗-
envelope A of Q we have idQ(I) ⊆ ÂIÂ and idQ(L) ⊆ ÂLÂ. Thus, if q ∈ idQ(I) ∩
idQ(L), there are ai, bi, cj , dj ∈ Â, yi ∈ I, and xj ∈ L with q =

∑
i aiyibi =∑

j cjxjdj . Now, by 4.7 the associative subalgebra R = algA(J) generated by J in A
is ∗-tight over J , and there is a dense inner idealK in J withKai+Kcj+biK+djK ⊆
R. Therefore Ukq ∈ idR(I) ∩ idR(L) for all k ∈ K. Since idR(I) ∩ idR(L) = 0 by
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[FGM, 1.15], we get UKq = 0, hence q = 0 by 2.4(iv). This proves idQ(I)∩idQ(L) = 0.

Finally, the general case is proved exactly as in the analogous lemma [FGM, 7.8]
with the obvious changes for the references.

5.4. Lemma. Let Q be an algebra of quotients of a nondegenerate Jordan
algebra J , and let I be an ideal of J , then AnnJ(I) = AnnQ(idQ(I)) ∩ J .

Proof. This is proved exactly as [FGM, 7.9(i)].

5.5. We will say that an ideal I of a nondegenerate Jordan algebra is closed if
I = Ann(AnnJ(I)). It is clear that if I is of the form I = AnnJ(L) for some ideal L,
then I is closed. Note that by [FGM, 1.16], the quotient J/I by any closed ideal of
a nondegenerate Jordan algebra J is again nondegenerate.

5.6. Lemma. Let J be a nondegenerate Jordan algebra and let I1, I2 be ideals
with I1 = AnnJ(I2) and I2 = AnnJ(I1). If Ji = J/Ii has a maximal algebra of
quotients Qi, then J has maximal algebra of quotients Qmax(J) ∼= Q1 ×Q2.

Proof. Denote by πi : J → Ji the projection onto Ji. We have a natural
monomorphism J → J1 × J2 given by x 7→ (π1(x), π2(x)). Composing this with
the monomorphism J1 × J2 → Q1 × Q2, we can assume that J ⊆ Q1 × Q2. To
see that Q1 × Q2 is an algebra of quotients of J , note that the projections induce
monomorphisms I1 → J2 and I2 → J1, so we can identify I1 with the ideal I1 + I2/I2
of J2, and I2 with the ideal I2 + I1/I1 of J1, and each of these ideals is essential.
Thus J1 is an algebra of quotients of I2 by 2.3.1, hence Q1 is an algebra of quotients
of I2 by 2.8, and similarly Q2 is an algebra of quotients of I1. Thus it is easy to see
that Q1×Q2 is an algebra of quotients of I = I1 +I2 ∼= I2×I1. Since I is an essential
ideal of J , hence J is an algebra of quotients of I, we get from 2.8 that Q1 × Q2 is
an algebra of quotients of J .

Now, let Q be an algebra of quotients of J . Then Q/AnnQ(idQ(I1)) is an algebra
of quotients of J/J∩AnnQ(idQ(I1)) by 5.2. Now J∩AnnQ(idQ(I1)) = AnnJ(I1) = I2
by 5.4, hence Q/AnnQ(idQ(I1)) is an algebra of quotients of J2, and there exists a
homomorphism φ2 : Q/AnnQ(idQ(I1)) → Q2 extending the inclusion J2 ⊆ Q2 by the
maximality of Q2. Similarly, there exists a homomorphism φ1 : Q/AnnQ(idQ(I1)) →
Q1 extending the inclusion J1 ⊆ Q1. Note now that AnnQ(idQ(I1))∩AnnQ(idQ(I2))∩
J = I2 ∩ I1 = 0, hence AnnQ(idQ(I1)) ∩ AnnQ(idQ(I2)) = 0 by tightness. thus
we have a monomorphism ψ : Q → Q/AnnQ(idQ(I1)) × Q/AnnQ(idQ(I2)) made
up of the corresponding projections. Then we get a homomorphism φ1 × φ2 :
Q/AnnQ(idQ(I1))×Q/AnnQ(idQ(I2)) → Q1×Q2, whose composition with ψ defines
a homomorphism Q→ Q1 ×Q2, whose restriction to J is the identity mapping.
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5.7. Remark. Lemma 5.6 can be easily extended to a finite collection of
ideals: If J is a nondegenerate Jordan algebra, I1, . . . , In is a finite collection of
closed pairwise orthogonal ideals (Ii ∩ Ij = 0 if i 6= j) whose sum I = I1 + · · ·+ In is
an essential ideal, and for each i = 1, . . . , n the algebra Ji = J/

∑
j 6=i Ij has a maximal

algebra of quotients Qi, then J has maximal algebra of quotients Q1 × · · · × Qn.(It
is easy to see that L1 =

∑
i 6=1 Ii has AnnJ(L1) = I1 and AnnJ(I1) = L1. Also,

J/I1 has closed pairwise orthogonal ideals Ī2 = I2 + I1/I1, . . . , Īn = In + I1/I1, and
L̄1 =

∑
j 6=i,1 Īj = Li/I1 for all i 6= 1, the algebra (J/I1)/L̄i = (J/I1)/(Li/I1) ∼= J/Li

has a maximal algebra of quotients Qi. Then it is clear that an induction on n proves
the assertion.

5.8. Theorem. Any nondegenerate Jordan algebra J has maximal algebra of
quotients Qmax(J).

Proof. Following the proof of [FGM, 7.8], we consider the T-ideal A(X) ⊆
FJ [X] satisfied by all Albert algebras. For each strongly prime ideal P of J , either
J/P is Albert, hence A(J) ⊆ P , or J/P is special. Denote by B the intersection
of all containers (strongly prime ideals P of J such that A(J) ⊆ P ), and by C

the intersection of all noncontainers (those P not containing A(J)). It is proved in
[FGM, 7.8] that C is a closed ideal that satisfies AnnJ(B) = C. Moreover, J/C is
nondegenerate, and a subdirect product of special algebras J/P for all containers P ,
hence it is itself special, and J/AnnJ(C) is nondegenerate, and PI since A(J) ⊆ B ⊆
AnnJ(C).

Thus, lemma 5.6 implies that J will have maximal algebra of quotients Qmax(J)
as soon as J/C and J/AnnJ(C) do. Now, since J/AnnJ(C) is nondegenerate and
PI, it has maximal algebra of quotients by 3.11, so it remains to show that J/C has
maximal algebra of quotients. In other words, we can assume that J is special.

Under that assumption, consider the hermitian ideal Z(X) of 4.9, and set I =
AnnJ(Z(J)) and L = Ann(I). By 5.6 it suffices to prove that J/I and J/L have
maximal algebras of quotients.

First note that both J/I and J/L are special algebras by [FGM, 1.5(vi)]. Now,
Z(J/L) = Z(J) + L/L = 0 since Z(J) ⊆ AnnJ(AnnJ(Z(J))) = L, hence J/L is
PI and therefore it has maximal algebra of quotients by 3.11. On the other hand,
Z(J/L) = Z(J) + L/L is essential in J/L by [FGM, 1.13(iii)], hence it has maximal
algebra of quotients by 4.10.

5.9. Remark. For any nondegenerate Jordan algebra Qmax(J) is unital. In-
deed,take a tight unital hull J ′ of J , and denote by 1 its unit element. Since J is an
essential ideal of J , J ′ is an algebra of quotients of J , hence Qmax(J ′) is an algebra
of quotients of J by 2.8, so we have Qmax(J) = Qmax(J ′) by the maximality of
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Qmax(J) and of Qmax(J ′). Now, arguing as in the proof of [MP, 3.2], we conclude
that 1 is the unit element of Qmax(J ′) = Qmax(J).

Our next aim is to show that the maximal algebra of quotients is independent
of the ring Φ of scalars over which J is an algebra.

5.10. Lemma. Let J be a special nondegenerate Jordan algebra and let R be
a ast-tight associative ∗-envelope of R. Then the action of the centroid Γ = Γ(J)
extends to R, so that R is a Γ-algebra.

Proof. We claim that for any γ ∈ Γ and any x, y ∈ J , we have γ(x)y =
xγ(y). Choose γ ∈ Γ and for any x ∈ J set h(x) = γ(x)x − γ(x2). Then we have
h(x) = γ(x)x − γ(x2) = γ(x) ◦ x − xγ(x) − γ(x2) = γ(x ◦ x) − xγ(x) − γ(x2) =
2γ(x2) − xγ(x) − γ(x2) = −xγ(x) + γ(x2) = −h(x)∗. On the other hand, if z ∈
J , then zh(x) + h(x)z = zh(x) − h(x)∗z = zγ(x)x − zγ(x2) + xγ(x)z − γ(x2)z =
{z, γ(x), x} − γ(x2) ◦ z = γ({z, x, x}) − γ(x2 ◦ z) = 0. Therefore h(x)R = Rh(z).
Now, h(x)2 = −h(x)h(x)∗ = γ2(x4)−γ(x2)γ(x)x−xγ(x)γ(x2)+γ2(x4) = 2γ2(x4)−
{γ(x2)γ(x), x} = 2γ2(x4)− 2γ2(x4) = 0. Thus h(x)Rh(x) = 0, and we get h(x) = 0
by semiprimeness of R. Linearizing the condition h(x) = 0 we get γ(x)y + γ(y)x =
γ(x ◦ y) and since γ(x ◦ y) = x ◦ γ(y) = γ(y)x+ xγ(y), we obtain γ(x)y = xγ(y).

Now, since J generates J , for any r ∈ R there are elements xij ∈ J with r =∑
i xi1 · · ·xini

. We define γ(r) =
∑

i γ(xi1) · · ·xini
. To see that this is well defined,

suppose that
∑

i xi1 · · ·xini = 0 and set s =
∑

i γ(xi1) · · ·xini . Then, for any y ∈ J
we have ys =

∑
i yγ(xi1) · · ·xini

=
∑

i γ(y)xi1 · · ·xini
= γ(y)

∑
i xi1 · · ·xini

= 0.
Hence Js = 0, which implies Rs = 0, hence s = 0 by semiprimeness of R. Therefore
γ(r) is well defined, and it is clear that the action r 7→ γ(r) for γ ∈ Γ extends the
action of Γ on J and makes R a Γ-algebra.

5.11. Lemma. Let J be a nondegenerate Jordan algebra and let Q ⊇ J be an
algebra of quotients of J . If Q is a Φ-algebra for some ring of scalars Φ, and J is a
Φ-subalgebra, then Q is an algebra of quotients of J over Φ.

Proof. This is straightforward from the fact that every denominator inner ideal
DJ(q) for q ∈ Q is a Φ-inner ideal, which is obviously dense as a Φ-inner ideal.

Let J be a nondegenerate Jordan algebra over a ring of scalars Φ, we denote
(temporarily) denote by Qmax(JΦ) its maximal Φ-algebra of quotients. It is clear
that for ring of scalars Φ we have Qmax(JΓ) ⊆ Qmax(JΦ) ⊆ Qmax(JZ).

5.12. Lemma. For any nondegenerate Jordan algebra we have Qmax(JΓ) =
Qmax(JZ), and therefore, the maximal algebra of quotients of a nondegenerate Jordan
algebra does not depend on the ring of scalars.
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Proof. In view of 5.11, it suffices to prove that if J is a nondegenerate Jordan
Φ-algebra, then Q = Qmax(JZ) is a Φ-algebra. Following the proof of 5.8, we can
find ideals I, L of J with AnnJ(I) = L and AnnJ(L) = I such that J/L is PI, and
J/I is special and has Z(J/I) essential. Then I and L are Φ-ideals, hence J/I and
J/L are Φ-algebras, and since Qmax(JZ) = Qmax((J/I)Z) × Qmax((J/L)Z), we can
assume that either J is PI, or J is special and Z(J) is essential in J . In the first
case, the description 3.11 of the algebra of quotients as the almost classical algebra
of quotients of J makes it clear that Qmax(JZ) is a Γ(J)-algebra, hence a Φ-algebra.

On the other hand, if J is special and Z(J) is essential in J , by 4.10 Qmax(J) is
the set of all q ∈ H(Qσ(R), ∗), for a ∗-tight associative ∗-envelope R of J which have
DJ(q) dense in J . It follows from 5.10 that R is a Φ-algebra, and it is easy to show
that then Qmax(J) is a Φ-algebra.

We next apply 5.8 to other classes of algebras of quotients.

5.13. Lema. Let J ⊆ J̃ be nondegenerate Jordan algebras and let F be a filter
of essential ideals of J such that I(1) ∈ F for all I ∈ F . Assume that UãI 6= 0 for
any ideal I ∈ F and any ã ∈ J̃ . Then, the set Q = {ã ∈ J̃ | DJ(ã) contains an ideal
of F} is a subalgebra of J̃ which is a Martindale algebra of F-quotients of J .

Proof. Note first that for any p, q ∈ Q with ideals I ⊆ DJ(p) and L ⊆ DJ(q),
I, L ∈ F , we have N = I ∩ L ∈ F , and {p, Uxy, q} = {{p, x, y}, x, q} ∈ J for
any x, y ∈ N . Thus, Up+qN

(1) ⊆ UpN
(1) + UqN

(1) + {p,N (1), q} ⊆ J , and since
N (1) ◦ (p + q) ⊆ J , we get N (2) = (N (1))(1) ⊆ DJ(p + q) (see 2.3.2) and N (2) ∈ F ,
hence p+ q ∈ Q.

Now, keeping the notation, but assuming q ∈ Ĵ (and L = J if q = 1), if M ⊆ N

andM ∈ F ,then {z, Uxy, p} = {z, x, {y, x, p}}−{z, Uxp, y} ∈ {Ĵ ,M, J}+{Ĵ , J,M} ⊆
M for any x, y ∈M (1) and any z ∈ Ĵ , i. e.

(1) {Ĵ ,M (1), p} ⊆M and {Ĵ ,M (1), q} ⊆M

and

(2) {M (1), Ĵ , p} ⊆M and {M (1), Ĵ , q} ⊆M.

Now, UpUxy = Up◦xy−UxUpy−Up(x ◦ y) ◦x+ {p, y, Uxp} ∈ UJM +UMJ +J ◦M +
{p,M (1), J} ⊆M for any x, y ∈M1) using (1). Hence

(3) UpM
(2) ⊆M and UqM

(2) ⊆M.

Moreover, for any x, y ∈M (1) we have {Uxy, p, q} = {x, {y, x, p}q}−{Uxp, y, q} ∈
{M (1), J, q}+ {J,M (1), q} ⊆M by (1) and (2), hence

(4) {M (3), p, q} ⊆M and {M (3), q, p} ⊆M.
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Therefore, z ◦ (Upq) = {z, p, q} ◦ p − q ◦ Upz ∈ {N (3), p, q} ◦ p + q ◦ UpN
(2) ⊆

N ◦ p+ q ◦N ⊆ J for any z ∈ N (3) by (3) and (4), i. e.

(5) N (3) ◦ Upq ⊆ J.

On the other hand, UUpqN
(4) = UpUqUpN

(4) ⊆ UpUqN
(2) ⊆ UpN ⊆ J by (3).

This together with (5) proves that the ideal N (4) ∈ F satisfies N (4) ◦ Upq ⊆ J and
UUpqN

(4) ⊆ J . Now, for any x, y ∈ N (4) and any z ∈ J , we have {Uxy, Upq, z} =
{x, {y, x, Upq}, z}−{Uxq, y, z} = {x, y◦(x◦Upq), z}−{x, {x,Upq, y}, z}−{Uxq, y, z} ∈
J , hence {N (5), Upq, J} ⊆ J . Now, UUxyUpq ∈ J for any x, y ∈ M (4) follows easily
using QJ16 and the above containments. This yields N (5) ⊆ D(Upq), and since
N (5) ∈ F , this establishes Upq ∈ Q, and proves that Q is a subalgebra of J̃ .

5.14. Let J be a nondegenerate Jordan algebra and let F be a filter of essential
ideals of J such that I(1) ∈ F for any I ∈ F . A Martindale algebra of F-quotients Q
will be said to be maximal if for any other Martindale algebra of F-quotients Q′ of
J there exits an algebra homomorphism Q′ → Q which extends the inclusion J ⊆ Q.
Since Martindale algebras of F-quotients are, in particular, algebras of quotients, it
follows from 2.11 that there is at most one such extension of the inclusion J ⊆ Q,
and as in the case of maximal algebras of quotients, that up to isomorphism there
exists at most one maximal Martindale algebra of F-quotients.

5.15. Corollary. Let J be a nondegenerate Jordan algebra and let F be a filter
of essential ideals of J such that I(1) ∈ F for any I ∈ F . Then there exits a maximal
Martindale algebra of F-quotients.

Proof. The set Q = {q ∈ Qmax(J) | DJ(q) contains an ideal from F} is a
subalgebra of Qmax(J) by 5.13. It is easy to see that this is in fact a Martindale
algebra of F-quotients of J , and its maximality readily follows from the maximality
of Qmax(J) since any Martindale algebra of F-quotients is in particular an algebra
of quotients.

The next result, proved in [M] for linear algebras, and extended in [Bo] to
quadratic algebras, is the analogue of 5.13 for algebras of S-quotients (see 2.3.5).

5.16. Lema. Let J ⊆ J̃ be Jordan algebras, J a subalgebra of J̃ , and let S be
an Ore monad in J which satisfies the Ore condition in J . If any element from S is
invertible in J̃ , then US−1J = {Us−1x ∈ J̃ | s ∈ S, x ∈ J} = {ã ∈ J̃ | DJ(ã) ∩ S 6= ∅}
is a subalgebra of J̃ which is an algebra of S-quotients of J .

5.17. Lemma. Let J be a nondegenerate Jordan algebra, I 6= J be a closed
ideal of J , and S ⊆ J an Ore monad. Then S/I = {s+ I | s ∈ S} is an Ore monad
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in J/I. Moreover, if S satisfies the Ore condition in J , then S/I satisfies the Ore
condition in J/I.

Proof. Denote with bars the projections in J̄ = J/I. We first show that
Inj(J) ⊆ Inj(J̄). Indeed, if Us̄x̄ = 0 for some s ∈ S and x ∈ J , then Usx ∈ I and
UsUxUsAnnJ(I) = UUsxAnnJ(I) ⊆ I ∩ AnnJ(I) = 0. Therefore UxUsAnnJ(I) = 0
since s is injective. Now we have UUsUxzAnnJ = UsUxUzUxUsAnnJ(I) = 0 for any
z ∈ J , hence UsUxJ ⊆ AnnJ(AnnJ(I)) = I (by 0.3, since I is closed). Then, for
any z ∈ J , we get UsUUxzAnnJ(I) ⊆ UsUxJ ∩ AnnJ(I) ⊆ I ∩ AnnJ(I) = 0, and
since s is injective, this implies UUxzAnnJ(I) = 0 for any z ∈ J , hence UxJ ⊆
AnnJ(AnnJ(I)) = I (again by 0.3 ). In particular, UxAnnJ(I) ⊆ I ∩ AnnJ(I) = 0,
hence x ∈ AnnJ(AnnJ(I)) = I by 0.3, and we obtain x̄ = 0. Now the fact that S/I
is an Ore monad is a straightforward verification.

Suppose next that S satisfies the Ore condition in J . as has been proved in 2.3,
this means that for any s ∈ S and any a ∈ J , the inner ideal Ks = Φs + UsĴ has
(Ks : a) ∩ S 6= ∅. Now we clearly have K̄s = Ks̄ = Φs̄ + Us̄

̂̄J and (Ks : a) ⊆ (K̄s :
ā) = (Ks̄ : ā), and since (Ks : a)∩ S 6= ∅, we obtain (Ks̄ : ā)∩ S̄ 6= ∅, hence S̄ = S/I

satisfies the Ore condition in J̄ = J/I.

5.18. Corollary. Let J be a nondegenerate Jordan algebra. and let S ⊆ J be
an Ore monad of J . If S satisfies the Ore condition in J , then there exists an algebra
of S-quotients of J .

Proof. In view of 5.16, it suffices to find an algebra J̃ ⊇ J in which every
element from S becomes invertible. We will show that this is indeed the case for
J̃ = Qmax(J).

We retrieve here the notation of the proof of 5.8, and consider the intersection
C of all noncontainers, which is a closed ideal. Take now ideals I and N of J
with C ⊆ I ∩ N , I/C = AnnJ/C(Z(J/C)) and N/C = AnnJ/C(AnnJ/C(Z(J/C))),
and set L = N ∩ AnnJ(C). Since Z(J/C) = Z(J) + C/C, it is clear that I =
AnnJ(Z(J) +C) +C (see [FGM 1.13(iii)]) = AnnJ(Z(J) +C) + AnnJ(AnnJ(C)) =
AnnJ [(Z(J)+C)∩AnnJ(C)] and N = AnnJ(I)+C = AnnJ(I)+AnnJ(AnnJ(C)) =
AnnJ(I ∩ AnnJ(C)) are closed ideals. Now set L = AnnJ(C) ∩ N = AnnJ(C) ∩
AnnJ(I ∩AnnJ(C)) = AnnJ(C+I ∩AnnJ(C)). Since C+I ∩AnnJ(C) ⊆ C+I ⊆ I,
we have AnnJ(I) ⊆ L. On the other hand, if z ∈ AnnJ(C)∩AnnJ(I∩AnnJ(C)) = L,
then UUzIAnnJ(C) ⊆ Uz(I ∩ AnnJ(C) = 0, hence UzI ⊆ Ann(AnnJ(C)) = C,
but since z ∈ AnnJ(C) this gives UzI = 0, hence z ∈ AnnJ(I). thus we have
L = AnnJ(I). Note also that J1 = J/L = J/(AnnJ(C) ∩ N is a subdirect product
of the PI algebras J/AnnJ(C) and J/N ∼= (J/C)/AnnJ/C(AnnJ/C(Z(J/C))), and
J2 = J/I = (J/C)/(I/C) = (J/C)/AnnJ/C(Z(J/C)) is special and has essential
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Z(J/C). From 5.6 we get then that Qmax(J) = Qmax(J1) × Qmax(J2) through the
inclusion J ⊆ J1×J2 ⊆ Qmax(J1)×Qmax(J2). Moreover, an s ∈ S will be invertible
in Qmax(J) if and only if s1 = s+ L and s2 = s+ I are invertible in Qmax(J1) and
Qmax(J2) respectively.

Note now that by 5.17, with the notation introduced there, S/I and S/L are
Ore monads in J/I and J/L respectively, and they satisfy the Ore condition in
their respective algebras. Thus, it suffices to show that the theorem holds for J/I
and for J/L or, in other words, we can consider separately the case where J is PI,
and the case where J is special and the ideal Z(J) is essential. Before going into
the proof of that fact we note that if s ∈ J is injective, then s is also injective
in every algebra of quotients Q of J . Indeed, if Usq = 0 for some q ∈ Q, then
UsUq(Ks2 ∩ DJ(q)) ⊆ UsUqUsĴ = UUsqĴ = 0, hence Uq(Ks2 ∩ DJ(q)) = 0 by the
injectivity of s since Uq(Ks2 ∩ DJ(q)) ⊆ J . Now Ks2 ∩ DJ(q) is a dense inner ideal
of J , hence q = 0 by 2.4(iv).

Assume first that J is PI. Then Qmax(J) = JE(Γ) is the almost classical algebra
of quotients of J by 3.11. Take any injective s ∈ J and note that since UsĴ ⊇ Ks2

is a dense inner ideal of J , there exists an essential ideal N of J with N ⊆ UsĴ by
3.1. Since s is injective, every element of N can be written in the form Usa for a
unique a ∈ Ĵ . Now take z = Usa ∈ N ∩ Cw(J). Then for any p ∈ Qmax(J) and any
w = Usc ∈ N∩Cw(J) we have: UsUwUsUap = UsUsUaUwp (since w ∈ Cw(Q) by 2.13)
= UsUsUaUsUcUsp = UsUzUcUsp = UzUsUcUsp = UzUwp = UwUzp = UsUwUaUsp,
hence UsUw(UsUap − UaUsp) = 0. Thus Uw(UsUap − UaUsp) = 0 by the injectivity
of s in Qmax(J) proved above, and we get u (N)(UsUap − UaUsp) = 0 (with the
notations of section 2), hence UsUap− UaUsp = 0 by 3.6, i. e.

(∗) UsUap = UaUsp for all p ∈ Q.

We define a mapping fs : u (N) → J by fs(
∑

i λiUzi) =
∑

i λiUais
2, where

λi ∈ Γ, and zi ∈ Cw(J) ∩ N has the form zi = Usai for a unique ai ∈ Ĵ . To
see that this is well defined suppose that

∑
i λiUzi

= 0 with λi and zi as before.
Then 0 =

∑
i λiUzi

s2 =
∑

i λiUai
s4 =

∑
i λiUsUai

s2 (by (∗)) = Us

∑
i λiUai

s2,
hence

∑
i λiUai

s2 = 0 since s is injective. It is clear that f is a homomorphism of
Γ-modules, an thus it defines an element q = [f, u (N)] ∈ JE(Γ).

Now take r ∈ Qmax(J). For any z = Usa ∈ Cw(J) ∩N we have:

U4
zUUsUqsr = U4

zUsUqUsUqU
2
s r = UsUUzqUsUUzqU

2
s r =

(since Cw(J) ⊆ Cw(Qmax(J)) by 2.13)

= UsUf(Us)UsUf(Us)U
2
s r = UsUUas2UsUUas2U2

s r = (by 3.6)
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= UUsaUUsaUaUsUUsaUsr = UzUzUaUsUzUsr =

= U3
zUaU

2
s r =

(again since Cw(J) ⊆ Cw(Qmax(J)))

= U3
zUsUaUsr = U4

z r, (by (∗))

so U4
z (UUsUqsUsr− r) = 0 for all r ∈ Qmax(J), hence UUsUqsUsr− r = 0 by 0.3 since

Uz ∈ Γ(Qmax(J)), and UUsUqsUsr = r for all r ∈ Qmax(J), which proves that s is
invertible in Qmax(J) with inverse s−1 = UsUqs, and the theorem in the case where
J is PI.

Assume finally that J is special and Z(J) is an essential ideal of J . For any
∗-tight associative ∗-envelope R of J , the maximal algebra of quotients of J is
Qmax(J) = {q ∈ H(Qσ(R), ∗) | DJ(q) is dense in J} by 4.10. Now take s ∈ S, and
note that since the inner ideal Ks = Φs+ UsĴ is dense in J , the left ideal R̂s ⊇ Ks

is dense in R by 4.6, hence Rs = RR̂s is also dense left ideal, and sR = (Rs)∗ is a
dense right ideal. In particular this implies that the right annihilator of R̂s is zero,
hence s is regular in R.

Now note that the mapping f : Rs → R given by f(rs) = r is well defined
since s is regular, and is a homomorphism of left R-modules. Then fs defines an
element q ∈ Ql

max(R) which satisfies xsq = x for all x ∈ R. Moreover, ys(qsx− x) =
ysqsx − ysx = ysx − ysx = 0 for any x, y ∈ R, hence Rs(qsx − x) = 0, and this
implies qsx = x for any x ∈ R, since Rs is dense. It follows then that qsR ⊆ R, hence
q ∈ Qσ(R) by the density of sR, and q = s−1 is the inverse of s in Qσ(R). Note now
that q = q∗, and DJ(q) ⊇ Ks is a dense inner ideal of J , hence s−1 ∈ q ∈ Qmax(J),
which proves the theorem for the present case.

5.19. Notes.

1.- We have already noted in 1.18(b) that in a strongly nonsingular Jordan algebra,
an inner ideal is dense if and only if it is essential, and in this case the algebras
of quotients in the sense of [MP] are the same as our algebras of quotients.
Therefore Theorem 5.8 generalizes [MP, 4.8]. (It is easy to see that if for a
strongly prime Jordan algebra J , the almost classical localization JE(Γ) coincides
with the usual central closure Γ−1J .)

2.- Note that the description 4.10 of the maximal algebra of quotients easily provides
the corresponding description of the Martindale algebra of quotients by 5.13: If
J is a nondegenerate special Jordan algebra such that Z(J) is essential, and R

is a ∗-tight associative ∗-envelope of J , then the maximal Martindale algebra of
quotients of J consists of the set of all q ∈ H(Qσ(R), ∗) (or equivalently in this
case q ∈ H(Qs(R), ∗)) such that DJ(q) contains an essential ideal of J . This
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shows that 5.15 generalizes [AGG,4.6] both to quadratic and to nondegenerate
algebras.

3.- Corollary 5.18 gives an answer to the quadratic version of Jacobson’s original
problem [J1, p. 426] of finding rings of fractions of Jordan domains (which are
nondegenerate) without the need of the “unwelcome Ore condition” of [BoM]. Of
course, since it is shown in [BoM] that this is a necessary condition for general
algebras of fraction to exist, there is no point in trying to avoid this extra Ore
condition unless it turns out to be a consequence of the monad being Ore in the
algebra, which seems unlikely. Corollary 5.18 just shows that a more familiar
condition like nondegeneracy is enough. It would be desirable however to have a
direct combinatorial proof of this fact (that is, of the fact that together with the
usual Ore condition, nondegeneracy implies the “unwelcome Ore condition”).

4.- It was proved in [ACGG] that if Qis a Martindale-like cover of a nondegenerate
Jordan algebra J , then: (a) if J is PI, then Q is PI, and in this case, every
homogeneous polynomial p which vanishes on J , also vanishes on Q [ACGG1,
2.5], and (b) if J is special, then Q is special. It is clear that the proof of
3.8(1) adapts to yield the corresponding results for any algebra of quotients Q
of a nondegenerate J , which contains the above results as particular cases. Of
course, the situation in [ACGG1] is in principle more general, since the authors
consider there what they call covers satisfying the condition Cw(J) ⊆ Cw(Q),
and the outer absorption property IA1 of [ACGG1, 0.10]: for any q ∈ Q there
exits an essential ideal I of J such that 0 6= UIq ∈ J . Note however the following

Lemma. Let Q be a cover of the nondegenerate Jordan algebra J . If J is PI
and Q satisfies IA1 of [ACGG1], then Q is a Martindale-like cover of J .

Proof. We first prove the following claim:

(1) ULq 6= 0 for any essential ideal L of J, and any 0 6= q ∈ Q.

Indeed, if L is an essential ideal of J and there is a nonzero q ∈ Q with ULq = 0,
the there is a nonzero p ∈ Q with UpL = 0 by [MP, 2.5]. Now, we can find an
essential ideal I of J with o 6= UIp ⊆ J , and for any y ∈ I we have UUypL ⊆
UyUpL = 0, hence Uyp ∈ AnnJ(L) = 0, and we get UIp = 0, a contradiction.

Using this fact, the corresponding part of the proof of [MP, 3.4] can be easily
adapted to yield:

(2) UzUxq = UxUzq and Uz{x, y, q} = {x, y, Uzq}

for any z ∈ Cw(J), x, y ∈ Ĵ , and q ∈ Q.
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Next take an essential ideal L of J , and fix q ∈ Q, we claim:

(3) if Uzq = 0 for all z ∈ Cw(J) ∩ L, then q = 0

Indeed, suppose that there is an essential ideal L with Uzq = 0 for all z ∈ Cw(J)∩
L, and take an essential ideal I with 0 6= UIq ⊆ J . Then UzUIq = UIUzq (by
(2)) = 0 implies u (L)UIq = 0 (see 3.10), hence UIq = 0 by 3.6, a contradiction.

Now take q ∈ Q and z ∈ Cw(J) and choose an essential ideal I of J with
UIq ⊆ J . For any w ∈ Cw(I) we have Uw({Uzx, y, q}) = {Uzx, y, Uwq} (by (2))
= {x, y, UzUwq} (since z ∈ Cw(J) and Uwq ∈ J) = {x, y, UwUzq} (by (2) since
w ∈ Cw(J)) = Uw{x, y, Uzq} (by (2)). Thus Uw({Uzx, y, q} − {x, y, Uzq}) = 0
for all w ∈ Cw(J) ∩ I, and (3) gives:

(4) {Uzx, y, q} = {x,Uzy, q} = {x, y, Uzq}

for any z ∈ Cw(J), x, y ∈ Ĵ , and q ∈ Q.

Now fix q ∈ Q, and an essential ideal I of J with UIq+UIq
2 ⊆ J . SetN = u (I)J ,

which is an essential ideal of J by 3.10 and 3.7. Then, for any z ∈ Cw(J)∩I, a, b ∈
Ĵ , we have {Uza, q, b} = ((Uza)◦q)◦b−{b, Uza, q} = (a◦Uzq)◦b−{b, a, Uzq} ∈ J ,
hence {N, q, Ĵ} ⊆ J . Consider now the ideal b of Γ generated by all U2

z for
z ∈ Cw(J) ∩ N . This is an essential ideal of Γ for if αb = 0 for some α ∈ Γ,
then α(Uz)2 = 0 for all z ∈ Cw(J) ∩ N , hence (αUz)2 = 0, and αUz = 0 for
all z ∈ Cw(J) ∩ N since Γ is reduced. Thus αu (N) = 0, hence α = 0 by 3.10.
Set now L = b J , which is an essential ideal of J by 3.7. Then L ⊆ N ⊆ I,
hence ULq + {L, q, Ĵ} ⊆ J . Also, for any z ∈ Cw(J) ∩ N and any a ∈ J we
have UqU

2
z a = Uq◦zUza − UUzqUa − {{q, z, Uza}, q, z} + (Uza) ◦ (Uzq

2) (apply
Macdonald’s theorem [J2, 3.4.16]), which belongs to J by the above containments
and since UNq

2 ⊆ UIq
2 ⊆ J . This shows that UqL ⊆ L and proves the lemma.
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