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Abstract

We define Lie multiplication derivations of an arbitrary non-associative algebra A
over any commutative ring and, following an approach due to K. McCrimmon, de-
scribe them completely if A is alternative. Using this description, we propose a new
definition of inner derivations for alternative algebras, among which Schafer’s stan-
dard derivations and McCrimmon’s associator derivations occupy a special place,
the latter being particularly useful to resolve difficulties in characteristic 3. We
also show that octonion algebras over any commutative ring have only associator
derivations.
2000 Mathematics Subject Classification. Primary 17D05; Secondary 17A36, 17A45,
17B40
Keywords. Inner derivations; Alternative algebras; Derivation functors; Composi-
tion algebras; Automorphisms

Introduction

There are many important properties satisfied by inner but not in general by all deriva-
tions of Lie, associative or (linear) Jordan algebras. A particularly important one may
be described as follows.

Let f : A → B be a homomorphism of non-associative algebras and D a derivation
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of A. We say a derivation D′ of B is f -related to D if

f(D(a)) = D′(f(a))

for all a ∈ A. In general, there will be no such D′. The situation is better for inner
derivations, which satisfy the following

Mapping Principle. Given a homomorphism f : A → B of algebras (Lie, associative
or Jordan), every inner derivation D of A admits an inner derivation D′ of B that is
f-related to D.

Indeed, an inner derivation of A can be naturally expressed in terms of left and right
multiplication operators. This suggests and yields an inner derivation D′ of B in a
natural way which is f -related to D.

Properties of this kind tie up nicely with the fact that, under suitable regularity
conditions, all derivations of A are inner.

This satisfactory state of affairs has led Schafer [19] (see also [20, II, §3, p. 21])
to propose a notion of inner derivations for arbitrary non-associative algebras over a
field F that reduces to the usual one when dealing with Lie or unital associative (resp.
Jordan) algebras [19]. Moreover, inner derivations in his sense always form an ideal in the
full derivation algebra, so it follows also in this generality that all derivations are inner
provided (i) non-zero inner derivations exist and (ii) the derivation algebra is simple (as
a Lie algebra).

While (i) is a harmless condition rarely causing any difficulties, (ii) is a much more
delicate one. Moreover, it points to a strong link between Lie theory and non-associative
algebras in general that has dominated the scene for decades. For example, the interest
in derivations of alternative algebras grew out of the fundamental observation, due to
various authors, most notably É. Cartan [6], Jacobson [9, 11], Bannow [2] and Alberca-
Elduque-Mart́ın-Navarro [1], that the derivations of an octonion (= Cayley) algebra C
over F form a central simple Lie algebra of type G2 if and only if F has characteristic not
3; in particular, all derivations of C are inner in this case. Going one step further, the
proof of [1, Prop. 1] may be combined with a base field extension argument to show that
an octonion algebra over any field (possibly of characteristic 3) has only inner derivations.

In spite of these remarkable advances, a particularly annoying deficiency of Schafer’s
approach remains: again in the setting of alternative algebras, inner derivations in his
sense fail to satisfy the Mapping Principle. Already implicit in Schafer’s own work on the
subject (cf. [20, p. 78]), this deficiency comes into full view through their characteristic-
free description in McCrimmon’s unpublished monograph on alternative algebras [15]
that only quite recently has been made accessible to the mathematical public.

In view of the preceding circumstances, E. Neher has suggested to relinquish alto-
gether the idea of a universal definition for inner derivations of arbitrary non-associative
algebras. Instead, he argued, they should be defined, as in the old days, for each rele-
vant class of non-associative algebras individually, always taking into account the special
requirements of the theory at hand. In the present paper, Neher’s suggestions will be
implemented for the class of alternative algebras over an arbitrary commutative ring k.
The basic concepts and results of the paper may be summarized as follows.
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A slight modification of Schafer’s original approach will lead us in Section 1 to what
we call Lie multiplication derivations, which turn out to be the same as inner derivations
in the sense of Schafer when dealing with unital algebras (Remark to Prop. 1.4) but not in
general (Example 1.5). The Lie multiplication derivations always form an ideal in the full
derivation algebra and specialize to inner derivations (in the usual sense) of associative
and linear Jordan algebras even when these fail to have a unit. We then proceed to show
that the Lie multiplication algebra of a non-associative k-algebra A commutes with flat
base change if A is finitely spanned as a k-module (Cor. 1.10). The same conclusion
holds for the algebra of multiplication derivations if A is also projective as a k-module
and its automorphism group is smooth as a group scheme (Cor. 1.12).

In Section 2, we follow McCrimmon [15, A5.2] to describe the Lie multiplication
derivations of an alternative k-algebra A (Thm. 2.3). It follows immediately from this
description that they do not in general satisfy the Mapping Principle. For this reason,
we define inner derivations of A by a condition that is more restrictive than the one
of just being a Lie multiplication derivation and automatically ensures the validity of
the Mapping Principle (2.5). Adapting McCrimmon’s terminology (loc. cit.) to the
present set-up, we also introduce a few subclasses of inner derivations that turn out
to be useful later on. Among them, associator derivations (2.5(a)), having the form∑

[Lai
, Rbi

] where ai, bi ∈ A satisfy
∑

[ai, bi] = 0, and standard derivations (2.5(b)),
which are sums of operators Da,b = [La, Lb] + [La, Rb] + [Ra, Rb] for a, b ∈ A, seem to
be of particular importance. Standard derivations made their first appearance in the
work of Schafer [19] and, historically, constitute the oldest class of derivations known for
arbitrary alternative algebras. Associator derivations, on the other hand, which can be
transformed quite easily into standard ones if 3A = A (Prop. 2.7(b)), are apparently best
suited for dealing with difficulties in characteristic 3, for which alternative algebras are
notorious. The aforementioned definitions give rise to various ideals in the full derivation
algebra that all commute with flat base change provided the algebra itself is finitely
spanned as a k-module (Prop. 2.9).

Let again f : A → B be a homomorphism of algebras and D an inner derivation of
A. The derivation D′ of B furnished by the Mapping Principle will in general not be
uniquely determined by D, so we don’t have a natural map from inner derivations of A
to those of B: the inner derivations of A do not depend functorially on A. In many ex-
amples, functoriality can be achieved at the cost of replacing the inner derivation algebra
by a suitable central extension. This problem is addressed in Section 3. We introduce
the notion of derivation functor and show that the ideals of standard, associator and
commutator derivations are all induced by suitable derivation functors. These deriva-
tion functors commute with flat base change, and the standard derivation functor even
with arbitrary base change (Proposition 3.12), without finiteness assumptions on the
underlying algebra.

In Section 4, we take up the study of octonion algebras over commutative rings.
They will be introduced here in a “rational” manner, i.e., without the need of changing
scalars, along the lines of [17]. We define a splitting of any octonion algebra C over
k as an isomorphism from Z onto C, where Z = Zor(k) stands for the split octonion
algebra of ordinary Zorn vector matrices over k. We then proceed to show, using the
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notion of splitting datum (4.7), that the functor assigning to each unital commutative
associative k-algebra R the set of splittings of C ⊗k R over R is a smooth affine torsor
in the étale topology whose structure group is the automorphism group scheme of Z
(Thm. 4.10). As immediate consequences, we conclude that octonion algebras, just like
Azumaya algebras, become split after a faithfully flat (even étale) extension (Cor. 4.11)
and that their automorphism group schemes are smooth (Cor. 4.12). In particular, our
definition of octonion algebras is equivalent to the one given by Thakur [22] over base
rings containing 1

2 .

In the final section of the paper, the preceding results are applied to show that an
octonion algebra C over an arbitrary commutative ring has only associator derivations
(Thm. 5.1). This theorem is new even when the base ring is a field. After a reduction to
the case where C is reduced, the proof consists in a careful analysis of the Z/3Z-grading
given on the derivation algebra (Example 5.4, Prop. 5.5) by an elementary idempotent
of C (cf. 4.4).

Notations. Throughout we fix an arbitrary commutative ring k. Unadorned tensor
products will always be taken over k. We write Spec(k) for prime spectrum of k, i.e., for
the totality of all prime ideals in k, equipped with the Zariski topology. The category of
commutative associative k-algebras with 1 will be denoted by k-alg. For R ∈ k-alg, a k-
module M and x ∈M , we abbreviate MR = M⊗R as R-modules and xR = x⊗1R ∈MR;
we also write fR for the R-linear extension of a k-linear map f between k-modules. The
standard terminology of non-associative algebras (including notation) will be used as
in Schafer [20], except that (linear) operators will always act on the left so, e.g., the
equations Lab = ab = Rba describe left and right multiplications in a non-associative
algebra A, and the associator of elements a, b, c ∈ A (resp. the commutator of a, b) will
be indicated by [a, b, c] = (ab)c − a(bc) (resp. [a, b] = ab − ba). The symbols N and Z
denote the positive natural numbers and the rational integers, respectively.

1. Lie multiplication derivations

In this section, we fix an arbitrary non-associative algebra A over k. We do not assume
that A has a unit.

1.1. The Lie multiplication algebra. The Lie algebra defined on the k-module
Endk(A) by the usual commutator of linear maps will be denoted by gl(A). The subalge-
bra of gl(A) generated by all left and right multiplication operators of arbitrary elements
in A is called the Lie multiplication algebra of A, denoted by L(A). For example, if A
is associative, then L(A) = LA + RA. Or, if A is a (linear) Jordan algebra over a ring
containing 1

2 , then L(A) = LA + [LA, LA].
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1.2. Derivations. Recall that a derivation of A is a linear map D : A → A satisfying
one (hence all) of the following equivalent relations, for all x, y ∈ A:

D(xy) = (Dx)y + x(Dy),
[D,Lx] = LDx, (1)
[D,Ry] = RDy. (2)

The derivations of A form a Lie algebra (more precisely, a subalgebra of gl(A)), de-
noted by Der(A). The elements of Der(A) also act on commutators and associators in a
derivation-like manner, i.e., we have

D([x, y]) = [Dx, y] + [x,Dy], (3)
D([x, y, z]) = [Dx, y, z] + [x,Dy, z] + [x, y,Dz] (4)

for all x, y, z ∈ A. By (1), (2), Der(A) acts on L(A) through the adjoint representation
of gl(A), i.e.,

[Der(A), L(A)] ⊆ L(A). (5)

1.3. The ideal of Lie multiplication derivations. We write Â = k1 ⊕ A for the
algebra obtained by adjoining a unit 1 = 1Â to A and L̂, R̂ for the left, right multi-
plication, respectively, of Â. The relations L̂α1+a = αIdÂ + L̂a, R̂α1+a = αIdÂ + R̂a
(α ∈ k, a ∈ A) show L(Â) = kIdÂ+ L̂(A), where L̂(A) stands for the subalgebra of gl(Â)
generated by L̂A ∪ R̂A. Observe that there are no natural maps L(A) → L(Â) satisfying
La 7→ L̂a (resp. Ra 7→ R̂a) unless aA = {0} (resp. Aa = {0}) implies a = 0. But since
A ⊆ Â is an ideal, we obtain the inclusions

L(Â) ⊆ g := {f ∈ gl(Â) | f(A) ⊆ A}, L̂(A) ⊆ g′ := {f ∈ gl(Â) | f(Â) ⊆ A} ⊆ g (6)

as subalgebras of gl(Â), and the restriction homomorphism ρ : g → gl(A) satisfies ρ(L̂a) =
La, ρ(R̂a) = Ra for all a ∈ A, hence ρ(L̂(A)) = L(A).

There is a natural embedding Der(A) → Der(Â), D 7→ D̂ of Lie algebras, where D̂
stands for the unique linear extension of D ∈ Der(A) to Â given by D̂1 = 0. It follows
from (5) applied to Â in place of A that

LMDer(A) := {D ∈ Der(A) | D̂ ∈ L(Â)} ⊆ Der(A) (7)

is an ideal. The elements of LMDer(A) are called Lie multiplication derivations of A.
Indeed, as we will now see, they all belong to the Lie multiplication algebra of A and
may thus be expressed as Lie polynomials in left and right multiplication operators by
suitable elements of A.

1.4. Proposition. The inclusion

LMDer(A) ⊆ L(A) ∩Der(A)
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always holds; it may be strengthened to the equality

LMDer(A) = L(A) ∩Der(A)

if A has a unit.

Proof. For the first part of the proposition, we must show D ∈ L(A) for all D ∈
LMDer(A). To this end, using 1.3, we decompose D̂ ∈ L(Â) as D̂ = αIdÂ + D′ with
α ∈ k, D′ ∈ L̂(A) and obtain 0 = D̂1Â = α1Â + D′1Â, where the second summand on
the right by (6) belongs to A. This implies α = 0, D̂ = D′ ∈ L̂(A), hence D = ρ(D̂) ∈
ρ(L̂(A)) = L(A), as claimed.

For the second part, we assume A has a unit 1A, put e = 1Â − 1A and conclude
Â = ke⊕A as a direct sum of ideals. This implies L(Â) = kIdke ⊕ L(A), the right-hand
side being diagonally embedded into

gl(Â) =
(

k · Idke Homk(A, ke)
Homk(ke,A) gl(A)

)
. (8)

On the other hand, given D ∈ Der(A), we obtain D̂e = 0 since D kills 1A, and this
amounts to Der(A)̂= {D̂ | D ∈ Der(A)} = {0}⊕Der(A), the right-hand side again being
embedded diagonally into (8). The assertion follows by comparing the decompositions
for L(Â) and Der(A)̂. �

Remark. Comparing Prop. 1.4 with [20, p. 21], we conclude that the Lie multiplication
derivations of A and its inner derivations in the sense of Schafer are the same if A has
a unit. In general, however, this need not be so, as may be seen from the following
example.

1.5. Example. Equality does not always hold in Prop. 1.4. To see this, suppose A is
associative. We first claim

LMDer(A) = InDerass(A) = {La −Ra | a ∈ A},

i.e., that the Lie multiplication derivations of A and its inner derivations (in the usual
sense) are the same. As inner derivations of A obviously belong to LMDer(A), we
need only worry about the converse, so let D ∈ LMDer(A). Observing D̂ ∈ L(Â) =
k1Â + L̂A + R̂A and D̂(1Â) = 0, we obtain D̂ = α1Â + L̂a + R̂b for some α ∈ k, a, b ∈ A,
hence 0 = α1Â + (a+ b), which yields α = 0, b = −a, D = La −Ra, as claimed.

On the other hand, a derivation of A belonging to L(A) = LA+RA need not be inner.
To see this, suppose A is also commutative. Then there are no inner derivations other
than zero, while Lz ∈ LA ⊆ L(A) for z ∈ A is easily seen to be a derivation if and only
if AzA = {0}, which in the absence of a unit element does not imply Lz = 0.

Remark. An analogous argument also works for a linear Jordan algebra J over k (with
1
2 ∈ k) since D ∈ LMDer(J) implies D̂ ∈ L(Ĵ) = L̂Ĵ + [L̂Ĵ , L̂Ĵ ] = kIdĴ + L̂J + [L̂J , L̂J ],
D̂(1Ĵ) = 0, hence D̂ = αIdĴ + L̂a +

∑
[L̂ai

, L̂bi
] for some α ∈ k, a, ai, bi ∈ J , and
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from 0 = D̂(1Ĵ) = α1Ĵ + a we conclude D =
∑

[Lai , Lbi ]. Thus the Lie multiplication
derivations of J are just the inner ones in the usual sense:

LMDer(J) = InDerJord(J) = [LJ , LJ ].

Not so, however, in the case of Lie algebras. The idea of defining Lie multiplication
derivations by passing to the algebra Â seems to work well only when dealing with
varieties of algebras that are stable under adjoining a unit.

Our principal objective in the present section will be to show that Lie multiplication
derivations are well behaved under suitable scalar extensions. We begin by treating the
analogous question for the Lie multiplication algebra L(A).

1.6. Flat k-algebras. Let R ∈ k-alg be a flat k-algebra, so R is flat as a k-module,
equivalently, the assignment M 7→ MR gives an exact functor from k-modules to R-
modules. For a k-module M and a k-submodule N ⊆ M with inclusion i : N → M , we
can and always will identify NR ⊆ MR as an R-submodule via the injection iR : NR →
MR.

The following easy lemma collects a few properties of flat k-algebras that are surely
well known but seem to lack a convenient reference.

1.7. Lemma. Conventions being as in 1.6, let f : M → M ′ be a k-linear map of k-
modules and let N,P ⊆M , N ′ ⊆M ′ be arbitrary k-submodules.

(a) Ker(f)R = Ker(fR), Im(f)R = Im(fR).

(b) f(N)R = fR(NR), f−1(N ′)R = f−1
R (N ′

R).

(c) (N ∩ P )R = NR ∩ PR.

(d) For every family (Nα)α∈I of k-submodules in M we have( ∑
α∈I

Nα

)
R

=
∑
α∈I

(Nα)R ⊆MR.

(e) If N is generated as a k-module by a family (xα)α∈I of elements in M , then NR ⊆
MR is generated as an R-module by the family (xαR)α∈I of elements in MR.

Proof. By flatness, the functor −⊗R preserves kernels and co-kernels, which yields (a).
The first (resp. second) part of (b) follows by applying (a) to f

∣∣
N

: N → M ′ (resp.
to π ◦ f : M → M ′/N ′, π : M ′ → M ′/N ′ being the canonical projection). In (c) we
apply (b) with N ′ = P to the natural embedding i : N → M . For (d), we consider the
canonical map

⊕
α∈I Nα → M determined by the inclusions Nα → M and apply (a).

Finally, in (e), we let M0 be a free k-module with basis (eα)α∈I and apply (a) to the
k-linear map M0 →M , eα 7→ xα, α ∈ I. �
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1.8. Proposition. Conventions being as in 1.6, let R ∈ k-alg be a flat k-algebra and
write B for the k-subalgebra of A generated by a family (xα)α∈I of elements in A. Then
BR is the R-subalgebra of AR generated by the family (xαR)α∈I of elements in AR.

Proof. We denote by (yβ)β∈J the family of non-associative monomials built in A over
the family (xα)α∈I . Then B is generated as a k-module by (yβ)β∈J . By Lemma 1.7(e),
BR ⊆ AR is therefore generated as an R-module by the family (yβR)β∈J , which consists
precisely of the non-associative monomials built in AR over the family (xαR)α∈I . Thus
BR is generated as an R-algebra by (xαR)α∈I . �

1.9. Finitely generated modules: base change of endomorphisms. Let M be a
k-module and S ∈ k-alg a unital commutative associative k-algebra. Then the natural
map

Endk(M) −→ EndS(MS), f 7−→ fS ,

extends to a homomorphism Endk(M)S → EndS(MS) of S-algebras, which is injective if
S is a flat k-algebra and M is finitely generated [3, I, §2, Prop. 11]; we will then identify
Endk(M)S ⊆ EndS(MS) as an S-subalgebra accordingly. Under this identification, we
even have equality Endk(M)S = EndS(MS) if M is also projective [4, II, §5, Prop. 7]; in
fact, equality then holds for any S ∈ k-alg.

1.10. Corollary. If A is finitely generated as a k-module, its Lie multiplication algebra
is stable under flat base change: For all flat k-algebras S ∈ k-alg, we have L(A)S =
L(AS) after the identifications of 1.9.

Proof. L(A) is generated by LA ∪ RA as a k-algebra. But (La)S = LaS
, (Ra)S = RaS

for all a ∈ A. Hence, by Prop. 1.8, L(A)S and L(AS) are both generated as S-algebras
by LAS

∪RAS
. �

Remark. In this generality, Cor. 1.10 is due to E. Neher (oral communication), who also
pointed out that exactly the same argument yields exactly the same conclusion for the
ordinary multiplication algebra in place of the Lie multiplication algebra L(A).

1.11. Affine group schemes. Writing grp for the category of groups, we let G be an
affine group scheme over k [7, II, §1, no 1], so G : k-alg → grp is a functor represented
by some commutative associative k-algebra with 1. We write Lie(G) for its Lie algebra
[7, II, §4, 4.8] and recall from loc. cit. that, if G is smooth [7, I, §4, no 4], Lie(G)
commutes with base change, so Lie(G)R ∼= Lie(GR) canonically, for all R ∈ k-alg.

In this paper, we will be interested in the following special case. Assume A is finitely
generated projective as a k-module and consider its automorphism group scheme by
defining

Aut(A) : k-alg −→ grp, R 7−→ Aut(A)(R) := Aut(AR).

Then its Lie algebra is Der(A) [7, II, §4, 2.3], so assuming that Aut(A) is smooth forces
Der(A) to commute with base change: Der(A)R = Der(AR) for all R ∈ k-alg.
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1.12. Corollary. If A is finitely generated and projective as a k-module and Aut(A)
is smooth as an affine group scheme, then LMDer(A) commutes with flat base change:
LMDer(A)R = LMDer(AR) for all flat k-algebras R ∈ k-alg.

Proof. This follows immediately from (7), Lemma 1.7, Cor. 1.10 and 1.11. �

1.13. Nucleus and centre. We close this section by reminding the reader of the nu-
cleus of A, which is defined by

Nuc(A) :=
{
x ∈ A | [x,A,A] = [A, x,A] = [A,A, x] = {0}

}
. (9)

It is an associative subalgebra of A and even a unital one if A contains an identity
element. By (4), the nucleus is stable under derivations, i.e.,

Der(A) Nuc(A) ⊆ Nuc(A).

Recall also that the centre of A, denoted by Cent(A), consists of those elements x in the
nucleus satisfying [A, x] = 0. It is a commutative associative subalgebra of A but may
collapse to zero unless A is unital and not zero.

1.14. Proposition. If A is finitely generated as a k-module, then its nucleus and its
centre both commute with flat base change: Nuc(A)R = Nuc(AR), Cent(A)R = Cent(AR)
for all flat k-algebras R ∈ k-alg.

Proof. Assume that the elements a1, . . . , am span A as a k-module and, for 1 ≤ i, j ≤
m, consider the linear maps Lij ,Mij , Rij , Ci : A → A defined respectively by x 7→
[ai, aj , x], [ai, x, aj ], [x, ai, aj ], [ai, x]. Intersecting the kernels of the Lij ,Mij , Rij gives
the nucleus of A, whose intersection with the kernels of the Ci in turn gives the centre
of A. Hence the assertion follows from Lemma 1.7(a),(c). �

2. Alternative algebras: inner derivations

We now specialize A to a (possibly non-unital) alternative algebra over k.

2.1. Some useful identities. A is alternative if and only if the associator [x, y, z] =
(xy)z−x(yz) is an alternating function of its arguments. Hence an element x ∈ A belongs
to the nucleus if and only if one of the relations defining the nucleus (1.9) is fulfilled, and
we have the left and right alternative laws

x(xy) = x2y, (1)

(yx)x = yx2 (2)

as well as flexibility

x(yx) = (xy)x =: xyx, (3)

for all x, y ∈ A. We also recall the left, middle and right Moufang identities

x
(
y(xz)

)
= (xyx)z, (xy)(zx) = x(yz)x,

(
(zx)y

)
x = z(xyx) (4)
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for all x, y, z ∈ A.
We now derive a number of identities that will play an important role in the ex-

plicit description of Lie multiplication derivations. The following relations hold for all
a, b, c, x, y ∈ A:

[La, Lb] = L[a,b] − 2[La, Rb], (5)
[Ra, Rb] = −R[a,b] − 2[La, Rb], (6)

[[La, Rb], Lc] = L[a,b,c] − [L[a,b], Rc], (7)
[[La, Rb], Rc] = R[a,b,c] − [Lc, R[a,b]], (8)

La(xy) =
(
(La +Ra)x

)
y − x(Lay), (9)

Ra(xy) = − (Rax)y + x
(
(La +Ra)y

)
, (10)

(La −Ra)(xy) =
(
(La −Ra)x

)
y + x

(
(La −Ra)y

)
+ [x, 3a, y], (11)

[La, Rb]x = [a, b, x] = (ab)x− a(bx) = b(ax)− (ba)x = x(ba)− (xb)a, (12)
[La, Rb](xy) = ([La, Rb]x)y + x([La, Rb]y) + [x, [a, b], y]. (13)

Proof. Identities (5), (6) may be found in Schafer [20, (3.68), (3.67)]. While his proof
is carried out over fields, it works equally well over the commutative ring k. Ignoring
(7), (8) for the moment, (9) (resp. (10)) follows immediately by linearizing (1) (resp.
(2)). Subtracting (10) from (9) yields (11). To establish (12), one simply observes
[La, Rb]x = −[a, x, b] = [a, b, x] = −[b, a, x] = −[x, b, a] by alternativity. (13) is slightly
more troublesome. By (12), the left-hand side may be written as

[La, Rb](xy) = (ab)(xy)− a
(
b(xy)

)
. (14)

Linearizing (1), the first term on the right becomes

(ab)(xy) =
(
(ab)x+ x(ab)

)
y − x

(
(ab)y

)
. (15)

To the second term, we apply the linearized left Moufang identity and obtain

a
(
b(xy)

)
=

(
(ab)x

)
y +

(
(xb)a

)
y − x

(
b(ay)

)
. (16)

Subtracting (16) from (15) and observing (14), (12) implies

[La, Rb](xy) =
(
x(ab)− (xb)a

)
y − x

(
(ab)y − b(ay)

)
=

(
x(ba)− (xb)a

)
y + (x[a, b])y + x

(
b(ay)− (ba)y

)
− x([a, b]y)

= ([La, Rb]x)y + x([La, Rb]y) + [x, [a, b], y],

which is (13). To prove (7), we set x = c in (13), view the result as a linear map in y
and observe [c, [a, b], y] = −[[a, b], c, y] = −[L[a,b], Rc]y by (12). Finally, (8) follows by
reading (7) in the opposite algebra of A.

2.2. Proposition (McCrimmon [15, A5, 2.15]). The Lie multiplication algebra of A is

L(A) = LA +RA + [LA, RA].

Proof. By (5)–(8) above, it suffices to show [[LA, RA], [LA, RA]] ⊆ LA +RA + [LA, RA],
which follows from the Jacobi identity by applying (7) and (8) twice. �

Remark. Prop. 2.2 is due to Schafer [19, Thm. 5] if k is a field of characteristic not 2.
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2.3. Theorem (cf. McCrimmon [15, A5, 2.16]). D is a Lie multiplication derivation
of A if and only if it has the form

D = La −Ra +
m∑
i=1

[Lai , Rbi ] (17)

for some m ∈ N, a, ai, bi ∈ A (1 ≤ i ≤ m) satisfying

3a+
m∑
i=1

[ai, bi] ∈ Nuc(A). (18)

Proof. If D has the form (17), then

D(xy)− (Dx)y − x(Dy) =
[
x, 3a+

m∑
i=1

[ai, bi], y
]

for all x, y ∈ A by (11), (13), so (18) is equivalent to D being a derivation of A.
Now suppose D satisfies (17), (18). Then D ∈ Der(A) and D̂ = L̂a−R̂a+

∑
[L̂ai

, R̂bi
]

since the right-hand side kills 1. This implies D̂ ∈ L(Â), hence D ∈ LMDer(A) by (1.7).
Conversely, let D be a Lie multiplication derivation of A. By Prop. 2.2,

D̂ = L̂â + R̂b̂ +
m∑
i=1

[L̂âi , R̂b̂i
]

for some m ∈ N, â, âi, b̂i ∈ Â (1 ≤ i ≤ m), where D̂1 = 0 implies b̂ = −â, hence (17)
with a, ai, bi being the A-components of â, âi, b̂i, respectively. But then (18) drops out
automatically since D was assumed to be a derivation. �

When it comes to applications of Thm. 2.3, the following more concise description of
Lie multiplication derivations turns out to be useful.

2.4. Derivations and exterior powers. We introduce the notation

W (A) := A⊕
2∧
A.

Our description will be based on two linear maps defined on W (A). The first one is

s = sA : W (A) −→ A, s
(
a⊕ (b ∧ c)

)
:= 3a+ [b, c] (a, b, c ∈ A).

To define the second one, we note that the flexible law (3) makes the bilinear expression
[La, Rb] alternating in a, b ∈ A and thus leads to a linear map

∆ = ∆A : W (A) −→ gl(A), ∆a⊕(b∧c) := ∆
(
a⊕ (b ∧ c)

)
:= La −Ra + [Lb, Rc]

for a, b, c ∈ A. With these notations, Thm. 2.3 implies

LMDer(A) = {∆x | x ∈W (A), s(x) ∈ Nuc(A)}. (19)

11
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Now observe that every g ∈ gl(A) induces a linear map

g† : W (A) −→W (A), g†
(
a⊕ (b ∧ c)

)
= g(a)⊕

(
g(b) ∧ c+ b ∧ g(c)

)
(20)

for a, b, c ∈ A. Clearly, the assignment g 7→ g† determines an embedding gl(A) →
gl

(
W (A)

)
of Lie algebras, and (1.1), (1.2), (20) are easily seen to imply

[D, ∆x] = ∆D†x, [D†, ∆†
x] = ∆†

D†x
(21)

for D ∈ Der(A), x ∈W (A), while (1.3) and (20) imply that the diagram

W (A) D†
//

s

��

W (A)

s

��
A

D
// A

(22)

commutes.

Remark. Lie multiplication derivations of alternative algebras as described in Thm. 2.3
do not in general satisfy the Mapping Principle of the introduction since a homomorphism
A→ B may not map the nucleus of A into the nucleus of B, so if (18) holds for elements
a, ai, bi ∈ A, it may no longer do so for their images in B. For this reason, we will
introduce inner derivations of alternative algebras as a special type of Lie multiplication
derivations where such unpleasantness can be ruled out. McCrimmon [15, A5.2, p. 24]
gets around this difficulty in a slightly different manner, by means of his notion of strictly
inner derivations.

2.5. Classes of inner derivations. With the terminology of 2.4, the elements of

InDeralt(A) := {∆x | x ∈W (A), s(x) = 0} (23)

are called inner derivations of A. Thus the difference to (19) is that s(x) is required to
be zero instead of in the nucleus. In more explicit terms, the inner derivations of A are
precisely the linear maps

La −Ra +
m∑
i=1

[Lai , Rbi ], (24)

where m ∈ N and a, ai, bi ∈ A (1 ≤ i ≤ m) satisfy the relation

3a+
m∑
i=1

[ai, bi] = 0. (25)

Inner derivations obviously satisfy the Mapping Principle. Adapting the terminology
of McCrimmon [15] to the present set-up, and identifying A and

∧2
A canonically with

submodules of W (A) = A ⊕
∧2

A throughout the rest of the paper, we now introduce
the following three classes of inner derivations.

12
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(a) Associator derivations. These are the elements of

AssDer(A) := {∆u | u ∈
2∧
A, s(u) = 0} ⊆ InDeralt(A). (26)

They have the form
∑

[Lai , Rbi ], where ai, bi ∈ A satisfy
∑

[ai, bi] = 0, so by (12),
they act on x ∈ A as x 7→

∑
[ai, bi, x], i.e., as a sum of associators, hence the name. In

particular, AssDer(A) = {0} if A is associative. On the other hand, as we shall see in
Thm. 5.1 below, associator derivations play an important role in octonion algebras.

(b) Standard derivations. These are the elements of

StanDer(A) := {∆s(u)⊕(−3u) | u ∈
2∧
A} ⊆ InDeralt(A). (27)

As a k-module, StanDer(A) is spanned by the elements

Da,b = L[a,b] −R[a,b] − 3[La, Rb] = [La, Lb] + [La, Rb] + [Ra, Rb] (28)

for a, b ∈ A, the last equation being a consequence of (5), (6). Standard derivations
have the advantage of being parametrized by the full k-module

∧2
A, with no further

constraints on the parameters involved. On the other hand, StanDer(A) = {0} if A is
commutative, since this is well known to imply 3[A,A,A] = {0}, hence Da,b = 0 for all
a, b ∈ A by (12) and (28); cf. Prop. 2.7 below for a more precise statement.

(c) Commutator derivations. These are the elements of

ComDer(A) := {∆a | a ∈ A, 3a = 0} = {La −Ra | a ∈ A, 3a = 0} ⊆ InDeralt(A).

They appear only in the presence of 3-torsion. Note ∆ax = [a, x] for a, x ∈ A, justifying
the chosen terminology.

2.6. Proposition. In the terminology of 2.5,

3∆x = ∆s(x) + ∆s(−u)⊕3u (29)

for all x = a⊕ u ∈W (A) satisfying s(x) ∈ Nuc(A). In particular,

3LMDer(A) ⊆ {La −Ra | a ∈ Nuc(A)}+ StanDer(A) ⊆ LMDer(A). (30)

Proof. (29) is obvious by (19) and the definition of s; it immediately implies (30) since
the first summand on the right of (29) is the nuclear derivation La′ −Ra′ , a′ ∈ Nuc(A),
while the second one by (27) is a standard derivation.

Remark. If 3A = A, we obtain

LMDer(A) = {La −Ra | a ∈ Nuc(A)}+ StanDer(A),

hence Schafer’s classical description [20, pp. 76–78] of Lie multiplication derivations of
unital alternative algebras over fields of characteristic not 2 or 3, see also McCrimmon
[15, A5, 2.17].

13



Final version 26 Sep 2008

2.7. Proposition. In the terminology of 2.5, the following statements hold.

(a) InDeralt(A), AssDer(A), StanDer(A), ComDer(A) are all ideals in the full deriva-
tion algebra of A.

(b) AssDer(A)A ⊆ [A,A,A, ], 3AssDer(A) ⊆ StanDer(A).

(c)
(
StanDer(A) + ComDer(A)

)
A ⊆ [A,A].

(d) If 3[A,A] = [A,A], then

InDeralt(A) = AssDer(A) + StanDer(A) + ComDer(A).

(e) If 3A = A, then

InDeralt(A) = StanDer(A) + ComDer(A).

(f) If 1
3 ∈ k, then

InDeralt(A) = StanDer(A), ComDer(A) = {0}.

(g) If 3A = {0}, then

InDeralt(A) = AssDer(A) + ComDer(A).

Proof. (a) follows immediately from (21), (22).

(b) The first part has already been observed in 2.5(a), while the second one follows
from (29) in the special case a = s(u) = 0.

(c) The relation ComDer(A)A ⊆ [A,A] is obvious. Since (28) and (12) imply StanDer(A)A ⊆
[A,A] + 3[A,A,A], it remains to show 3[A,A,A] ⊆ [A,A] which is probably known;
we include a proof for convenience. Modulo [A,A] we have by (11) that 3[x, a, y] ≡
[x, a]y + x[y, a] ≡ y[x, a] + x[y, a], which is ≡ 0, being the bilinearization of x[x, a] =
x(xa)− x(ax) = x(xa)− (xa)x (by (3)) = [x, xa] ∈ [A,A].

(d), (e) Suppose x = a ⊕ u ∈ W (A) satisfies s(x) = 0 (cf. (23)). Since s(
∧2

A) =
[A,A], the hypothesis in (d) leads to an element w ∈

∧2
A such that s(u) = 3s(w), so

v := u−3w satisfies s(v) = 0. On the other hand, the hypothesis in (e) leads to an element
w ∈

∧2
A such that u = 3w, so again s(u) = 3s(w), but this time even v := u− 3w = 0.

In any event, setting b = a+ s(w), we conclude 3b = 3a+ 3s(w) = 3a+ s(u) = s(x) = 0.
Moreover,

∆x = ∆v + ∆(−s(w))⊕3w + ∆b ∈ AssDer(A) + StanDer(A) + ComDer(A).

Hence (d) and (e) hold. Now (f) follows immediately from (e) since ComDer(A) = {0}
in the absence of 3-torsion, and (g) is a consequence of (23). �
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2.8. Example. Let A be an associative k-algebra. Using (24), (25), one checks easily
that

InDeralt(A) ⊆ InDerass(A).

However, equality does not hold in general. To see this, suppose k contains 1
3 . Then

InDeralt(A) = StanDer(A) by Prop. 2.7, while (28) reduces to Da,b = L[a,b] − R[a,b] for
all a, b ∈ A. Hence we obtain

Lx −Rx ∈ InDerass(A) \ InDeralt(A) (31)

for any x ∈ A that does not belong to Z + [A,A], Z being the centre of A. More
specifically, let k be a field of characteristic p > 0, p 6= 3, and put A = Matp(k), the
algebra of p × p matrices with entries in k. Then [A,A], being the kernel of the trace,
contains Z = k · 1A, so any x ∈ A with non-zero trace will satisfy (31).

In the presence of the alternative law, we can improve and expand Cor. 1.12 consid-
erably.

2.9. Proposition. If A is finitely generated as a k-module, then the Lie algebras LMDer(A),
InDeralt(A), AssDer(A), StanDer(A), ComDer(A) all commute with flat base change: For
all flat k-algebras R ∈ k-alg, we have

LMDer(A)R = LMDer(AR), (32)
InDeralt(A)R = InDer(AR), (33)
AssDer(A)R = AssDer(AR), (34)

StanDer(A)R = StanDer(AR), (35)
ComDer(A)R = ComDer(AR). (36)

Proof. Since taking exterior powers commutes with flat (even arbitrary) base change [4,
III, §7, Prop. 8], so do the linear maps ∆A and sA. Furthermore, (19),(23) yield

LMDer(A) = ∆A

(
s−1
A

(
Nuc(A)

))
, InDeralt(A) = ∆A

(
Ker(sA)

)
.

Hence (32),(33) follow from Lemma 1.7(a),(b) and Prop. 1.14, while an analogous ar-
gument yields (36). After the identifications of 1.9, we obtain (Da,b)R = DaR,bR

for
all a, b ∈ A, and (35) follows from Lemma 1.7(e). It remains to prove (34). To do so,
we put KA := Ker(sA) ∩

∧2
A (which commutes with flat base change since sA does),

TA = Ker(∆A), note that ∆ by (26) restricts to a linear surjection ∆0 : KA → AssDer(A),
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and obtain a commutative diagram

0

��

0

��
0 // TA // KA

∆0 //

��

AssDer(A) //

��

0

∧2
A

∆
//

s

��

Endk(A)

[A,A]

��
0

with exact rows and columns. Tensoring with R, we end up with (34). �

3. Making inner derivations functorial

In this section, we address the lack of functoriality of the inner derivation algebra men-
tioned in the introduction. Before delving into the general categorical setup, it may be
helpful to consider the following example.

3.1. Associative algebras. Every associative algebra A defines a Lie algebra A− hav-
ing underlying k-module A and Lie product [x, y] = xy − yx, and A− depends func-
torially on A: every homomorphism f : A → B induces a Lie algebra homomorphism
f− = f : A− → B−. The inner derivations of A are the derivationsDx = Lx−Rx and the
map sending x ∈ A− to Dx ∈ Der(A) is a Lie algebra homomorphism α : A− → Der(A),
i.e., an action of A− on A by derivations, whose kernel is central in (indeed, equals the
centre of) A−. Moreover, the formula

f(Dx(a)) = Df−(x)(f(a)) (1)

holds for all x ∈ A−, a ∈ A, so the derivation Df−(x) of B is f -related to the derivation
Dx of A. But note Dx = 0 for central x ∈ A, yet Df−(x) need not be zero if f−(x) is
not central in B, showing why Dx 7→ Df−(x) is in general not a well defined map from
InDerass(A) to InDerass(B).

3.2. Categories of algebras. Abstracting from the previous example, we replace asso-
ciative algebras by an arbitrary category of non-associative algebras. To discuss questions
of base change, it is convenient to consider not only algebras over a fixed base ring, but
over all possible commutative rings, more generally, over a subcategory R of all commu-
tative rings. Thus let A be a category of algebras over R in the following sense: objects
of A are pairs (k,A) where k ∈ R and A is a non-associative k-algebra. Morphisms
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(k,A) → (l, B) of A are pairs (τ, f) where τ : k → l is a morphism of R and f : A→ B
is a τ -semilinear map from the k-module A to the l-module B preserving the algebraic
structure. Examples of this situation abound: associative, alternative or Jordan algebras,
unital or not, Lie algebras, etc.

The projection onto the first component Π: A → R is a functor, and we denote by
Ak the fibre of Π over k ∈ R, that is, the subcategory of A with objects algebras over the
fixed ring k, and morphisms k-linear maps, thus of the form (Idk, f) : (k,A) → (k,B).
It is often inconvenient to indicate explicitly the base ring k of an object of A. Thus we
frequently write simply A ∈ Ak or even A ∈ A and k = Π(A) instead of (k,A) ∈ A, or
employ a phrase like “let A be a k-algebra in A”. Similarly, a morphism of A will often
be written as f : A → B, with Π(f) = τ : Π(A) = k → Π(B) = l the corresponding
homomorphism of the respective base rings.

3.3. The derivation category. Let A be a category of (non-associative) algebras over
R as before and let Lie be the category of Lie algebras over R. We define a category
Der(A) over A as follows.

A derivation action of a Lie algebra g ∈ Liek on an algebra A ∈ Ak is a homomor-
phism α : g → Der(A) of k-Lie algebras. We write a derivation action as a quadruple
(k,A, g, α) or simply as (A,α). (Since A is not uniquely determined by Der(A), the al-
gebra A must be explicitly indicated. On the other hand, g is the domain of definition of
α, so a derivation action is determined by A and α). Now construct a category Der(A),
called the derivation category of A, whose objects are the derivation actions, and whose
morphisms are defined as follows.

Let f : A→ B be a morphism ofA and τ = Π(f) : k → l the corresponding morphism
of R. An f-derivation from A to B is a τ -semilinear map d : A→ B such that

d(aa′) = d(a)f(a′) + f(a)d(a′),

for all a, a′ ∈ A. Denote the set of f -derivations from A to B by Derf (A,B). This is
in a natural way an l-module by defining (sd)(a) = sd(a) for a ∈ A and s ∈ l. Given
derivations D ∈ Der(A) and D′ ∈ Der(B), the maps f∗(D) := f ◦D and f∗(D′) := D′ ◦f
both belong to Derf (A,B).

A morphism from (A,α) to (B, β) is now defined as a pair (f, ϕ) where f : A → B
and ϕ : g → h are morphisms of A and Lie, respectively, satisfying Π(f) = Π(ϕ), and
making the following diagram commutative:

g
ϕ //

α

��

h

β

��
Der(A)

f∗

// Derf (A,B) Der(B)
f∗
oo

Explicitly, this means:
f
(
α(X) · a

)
= β(ϕ(X)) · f(a),

for allX ∈ g and all a ∈ A. There is again a functor Der(A) → R given by (A,α) 7→ Π(A)
and (f, ϕ) 7→ Π(f). Moreover, the projections (A,α) 7→ A and (f, ϕ) 7→ f define a functor
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P1 : Der(A) → A. Similarly, the projections (A,α) 7→ g and (f, ϕ) 7→ ϕ define a functor
P2 : Der(A) → Lie.

3.4. Derivation functors. Let A be a category of algebras over R as before. A
derivation functor is a functor F : A → Der(A) commuting with the projections onto R
which is a section of the projection P1 : Der(A) → A in the sense that P1 ◦ F = IdA.

In more detail, this means the following: for every A ∈ Ak, we have a derivation
action ρA of a k-Lie algebra d(A) on A, and for every homomorphism f : A → B of
algebras in A we have a morphism d(f) : d(A) → d(B) of Lie algebras, semilinear with
respect to Π(f), and compatible with the actions in the sense that the diagram

d(A)
d(f) //

ρA

��

d(B)

ρB

��
Der(A)

f∗

// Derf (A,B) Der(B)
f∗
oo

(2)

is commutative. As before, this means

f
(
ρA(X) · a

)
= ρB

(
d(f)(X)

)
· f(a) (X ∈ d(A), a ∈ A).

In particular, d : A → Lie is a functor from A to Lie. It is tempting to say that ρ
is a natural transformation from d to the “functor” Der, but Der(A) does not depend
functorially on A. As a substitute, for every morphism f : A→ B in A, commutativity
of (2) is equivalent to (f, d(f)) : (A, ρA) → (B, ρB) being a morphism of Der(A). By
abuse of notation, we will often write F = (d, ρ) for a derivation functor.

Suppose F = (d, ρ) and F ′ = (d′, ρ′) are derivation functors. A morphism from F to
F ′ is a natural transformation of functors. This amounts to Lie algebra homomorphisms
hA : d(A) → d′(A) for all A ∈ A defining a natural transformation d → d′ and making
the diagrams

d(A)
hA //

ρA   B
BB

BB
BB

B
d′(A)

ρ′A}}{{
{{

{{
{{

Der(A)

commutative.
A derivation functor F is called inner if ρA maps d(A) into the Lie multiplication

algebra of A, and central if the kernel of ρA is central in d(A), for all A ∈ A.
In the special case where f = g ∈ Aut(A), the functoriality of F implies that Aut(A)

acts on the Lie algebra d(A) by automorphisms and the map ρA is equivariant with
respect to this action on the one hand, and with respect to conjugation of Aut(A) on
Der(A) on the other, because (2) now says

g ◦ ρA(X) ◦ g−1 = ρA
(
d(g)(X)

)
,

for all g ∈ Aut(A) and X ∈ d(A).
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If we assume that F commutes with flat base change (see 3.10), which holds in
all standard examples, then by extending k to the dual numbers k(ε) and specializing
g = Id + εD for D ∈ Der(A), we obtain an action of Der(A) on d(A) by derivations and
ρA is equivariant with respect to this action and the adjoint representation of Der(A) on
itself. In particular, d(A) is then an ideal in Der(A).

3.5. Remarks and examples. (a) The definition of a derivation functor does not
tie the Lie algebras d(A) very closely to the derivations of A: the kernels of ρA can
be arbitrarily big. For example, let l be a fixed Lie algebra over Z and define F by
d(A) = l⊗Z k and ρA = 0 for all A ∈ Ak and k ∈ R. The requirement that F be central
cuts down the kernels to some extent; it is satisfied in all the examples treated below.
The same is true of the condition of innerness.

(b) The example of associative algebras treated in 3.1 yields a derivation functor F
with d(A) = A− and ρA(x) = Dx. The commutativity of (2) is formula (1), and F is
inner and central.

(c) Let A = Lie. Then a natural choice of F is d = IdLie and ρ the adjoint represen-
tation. Again F is inner and central.

We show next that the classes of inner derivations of alternative algebras introduced
in 2.5 come from derivation functors as well. The construction rests on the following
simple lemma which is essentially contained in [13, 2.1]. We include a proof for the
convenience of the reader.

3.6. Lemma. Let g be a k-Lie algebra, M a k-g-module, and let φ : M → g be a
homomorphism of left k-g-modules, where g acts on itself by the adjoint representation.
Write the action of an element x ∈ g on u ∈M as xM · u, and define a non-associative
product {u, v} on M by

{u, v} := φ(u)M · v.

(a) The map φ : M → g is a homomorphism of non-associative algebras:

φ({u, v}) =
[
φ(u), φ(v)

]
. (3)

(b) g acts by derivations of the product {−,−}. The Jacobi identity holds in the
following form on M :

{u, {v, w}} − {v, {u,w}} = {{u, v}, w}, (4)

so M is a left Leibniz algebra [13].

(c) Let Q be the k-linear span of all squares {u, u}, u ∈M , and let Z = Ker(φ) ⊆M .
Then Q and Z are stable under the action of g, and

Q ⊆ Z, {Z,M} = 0, {M,Z} ⊆ Q. (5)
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(d) The product {−,−} induces a Lie algebra structure on h := M/Q and φ induces
a Lie algebra homomorphism φ̄ : h → g whose kernel Z/Q is central in h. The action of
g on M induces an action of g on h by derivations.

Proof. (a) Put x = φ(u) ∈ g. Since φ is a homomorphism of g-modules, φ({u, v}) =
φ(φ(u)M · v) = φ(xM · v) = [x, φ(v)] = [φ(u), φ(v)].

(b) Let x ∈ g and v, w ∈M . Then

xM · {v, w} = xM · (φ(v)M · w) = [xM , φ(v)M ] · w + φ(v)M · (xM · w)
= [x, φ(v)]M · w + φ(v)M · (xM · w) = φ(xM · v)M · w + {v, xM · w}
= {xM · v, w}+ {v, xM · w}.

Now (4) follows by specializing x = φ(u).

(c) Since φ is a homomorphism of g-modules, it is clear that Z is stable under g,
and (b) implies that Q is stable under g as well. The inclusion Q ⊆ Z follows from (3)
and the fact that the Lie product in g is alternating. Let u ∈ Z and v ∈ M . Then
φ(u) = 0, hence also {u, v} = φ(u)M · v = 0 which proves {Z,M} = 0. Moreover,
{v, u} = {u, v}+ {v, u} = {u+ u, v + v} − {u, u} − {v, v} ∈ Q, so {M,Z} ⊆ Q.

(d) Since Q ⊆ Z, (5) implies {Q,M} + {M,Q} ⊂ Q, so Q is an ideal of {−,−}.
As it contains all squares, the product induced on M/Q is alternating. Now (4) shows
that h = M/Q is a Lie algebra, and φ̄ is a Lie algebra homomorphism by (3). Finally,
{Z,M} = 0 implies that Ker(φ̄) = Z/Q is central in h, and it follows from (b) that g
acts on h by derivations.

3.7. The inner derivation functor of alternative algebras. Let A be an alternative
algebra over k. Recall from 2.4 that W (A) := A ⊕

∧2
A is a gl(A)-module under the

action

gl(A)×W (A) −→W (A), (g, x) 7−→ g · x := g†(x).

For a τ -semilinear homomorphism f : A → B of alternative algebras over k and l, re-
spectively, the map W (f) := f ⊕

∧2
f : W (A) → W (B) is again τ -semilinear, and one

checks easily that the relations

f ◦ s = s ◦W (f), W (f) ◦∆†
x = ∆†

W (f)(x) ◦W (f), f ◦∆x = ∆W (f)(x) ◦ f (6)

hold for all x ∈W (A).
We consider the k-submodule

Win(A) := Ker(s) = {x ∈W (A) | s(x) = 0}.

of the gl(A)-module W (A), which by (2.22) remains stable under Der(A), hence may be
regarded canonically as a Der(A)-module. Define φ : Win(A) → Der(A) by φ(x) := ∆x

for x ∈ Win(A). Then (2.21) shows that φ is a homomorphism of Der(A)-modules.
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Applying Lemma 3.6 therefore yields a Leibniz algebra Win(A), a Lie algebra din(A) =
Win(A)/Q and a homomorphism ρin,A = φ : din(A) → Der(A) whose image, by (2.23), is
precisely InDeralt(A).

Returning to the τ -semilinear homomorphism f : A→ B, we conclude from (6) that
W (f) sends Win(A) to Win(B) and hence induces a τ -semilinear map Win(f) : Win(A) →
Win(B), which, again by (6), is a homomorphism of Leibniz algebras, inducing canonic-
ally a Lie algebra homomorphism din(f) : din(A) → din(B). The commutativity of (2) is
a consequence of (6), so we have defined a derivation functor Fin for alternative algebras,
the inner derivation functor.

3.8. The associator and commutator derivation functors. Consider the submod-
ule Wass(A) = Win(A) ∩

∧2
A of Win(A), which is in fact a Der(A)-stable subalgebra of

the Leibniz algebraWin(A), so the construction of 3.7 can be performed mutatis mutandis
on Wass(A) and yields a derivation functor Fass, called the associator derivation func-
tor of alternative algebras. The inclusions Wass(A) → Win(A) induce homomorphisms
dass(A) → din(A) of Lie algebras (in general no longer injective) which are compatible
with the representations ρ and ρass and with morphisms of A. Thus we have a natural
transformation Fass → Fin of derivation functors.

Similarly, let Wcom(A) = Win(A) ∩ A = 3A, the 3-torsion elements of A. As be-
fore, Wcom(A) is a subalgebra of Win(A) and in fact is already a Lie algebra, because
{a, a} = ∆a · a = [a, a] = 0. We obtain a derivation functor Fcom = (dcom, ρcom), the
commutator derivation functor, where dcom(A) = 3A with Lie bracket [x, y] = xy − yx,
and ρcom : 3A → Der(A) given by the commutator: x 7→ (a 7→ [x, a]). Again, there is a
natural transformation Fcom → Fin induced from the inclusions Wcom(A) →W (A).

3.9. Standard derivation functors. By definition (2.5(b)), the standard derivations
of an alternative algebra A are of the form ∆s(u)⊕(−3u), u ∈

∧2
A. Thus they can be

parametrized by all of
∧2

A or by the image in W (A) of
∧2

A under the map ζ : u 7→
s(u)⊕ (−3u). This gives rise to two standard derivation functors as follows.

First let M :=
∧2

A and define φ : M → Der(A) by φ(a ∧ b) = [La, Lb] + [La, Rb] +
[Ra, Rb] as in (2.28). It follows from the formulas in 2.4 that φ is equivariant with
respect to the action of Der(A) on M and on itself by the adjoint representation. Hence
Lemma 3.6 yields a Lie algebra dst(A) = M/Q and a homomorphism ρst(A) : dst(A) →
Der(A) with central kernel and image StanDer(A). Also, for f : A→ B a homomorphism
of alternative algebras, we have

f ◦ φ(u) = φ
( 2∧

f(u)
)
◦ f.

Hence
∧2

f is a homomorphism of Leibniz algebras, and induces a homomorphism
dst(f) : dst(A) → dst(B), compatible with the representations ρst. This defines a deriva-
tion functor Fst = (dst, ρst), the standard derivation functor of alternative algebras.

Next, imitating the procedure of 3.8, we have a derivation functor induced from

Wst(A) = {ζ(u) | u ∈
2∧
A} ⊆Win(A),
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denoted F̄st = (d̄st, ρ̄st). As before, the inclusions Wst(A) →Win(A) induce a morphism
F̄st → Fin. The map ζ induces a morphism h : Fst → F̄st with the property that
hA : dst(A) → d̄st(A) is always surjective. In general, however, hA is not injective.
For example, if A is commutative then StanDer(A) = {0}, dst(A) =

∧2
A and d̄st(A) =

Wst(A) ∼= 3
∧2

A (abelian Lie algebras), and hA is multiplication by −3. Thus F̄st is
closer to the standard derivations in the sense that the kernels of ρ̄st(A) are smaller. On
the other hand, Fst commutes with arbitrary base change, whereas F̄st does so only for
flat base change, see Prop. 3.12 below for details.

3.10. Base change. Let A be a category of algebras over R as in 3.2. We say that A
admits base change if for every A ∈ Ak and every homomorphism τ : k → R of R the
R-algebra AR = A⊗kR (with the naturally extended algebraic structure) belongs to AR.
(In more precise categorical language, this says that A is a co-fibred category over R.)
This is true for all the examples considered in this paper, in particular for the category
of Lie algebras. If A admits base change then so does Der(A): Indeed, for a morphism
τ : k → R of R and a derivation action α of g ∈ Liek on A ∈ Ak, it is easily seen that

αR := can ◦ (ρ⊗ IdR) : g⊗k R→ Der(A)⊗k R→ Der(A⊗k R).

is a derivation action of gR = g⊗k R on AR, called the base change of α with respect to
τ : k → R.

Suppose A admits base change and F : A → Der(A) is a derivation functor. We say
F commutes with base change if for all morphisms τ : k → R of R there are natural
isomorphisms

g(τ) : d(A)R
∼= // d(AR) , (7)

making the diagrams

d(A)R
g(τ)

∼=
//

(ρA)R ""F
FFFFFFF

d(AR)

ρAR||xxxxxxxx

Der(AR)

(8)

commutative. (Naturality means that the g(τ) behave in the expected way with re-
spect to composition of morphisms in R and the usual canonical isomorphisms between
repeated tensor products. A more precise formulation would require the formalism of
fibred categories.)

One sees immediately that the usual inner derivation functor of associative algebras,
see 3.5(b), commutes with arbitrary base change. We will now show that the standard
derivation functor Fst of alternative algebras commutes with arbitrary base change, and
that the other derivation functors of alternative algebras introduced earlier commute
with flat base change. Let us emphasize that this does not improve Proposition 2.9 since
we are not dealing with the algebras ρA(d(A)) of inner derivations of the respective type
themselves, but with the more abstractly defined Lie algebras d(A). We begin with a
lemma.
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3.11. Lemma. Let M,N be k-modules and let q : M → N be a quadratic map. Let
R ∈ k-alg and let qR : MR → NR be the extension of q to a quadratic map of R-modules,
cf. [18, Proposition 2.1]. Let q(M) ⊆ N be the k-linear span of {q(x) : x ∈ M} and
define qR(MR) ⊆ NR analogously. Finally, let ι : q(M) → N be the inclusion map. Then
the base extension ιR : q(M)⊗R→ NR has image qR(MR).

Proof. For y =
∑
xi ⊗ ri ∈MR, we have

qR(y) =
∑

q(xi)⊗ r2i +
∑
i<j

q(xi, xj)⊗ rirj , (9)

where q(−,−) is the polar map of q. On the other hand, let us denote a typical spanning
element of q(M) ⊗ R by q(x)⊗̃r, to distinguish the tensor product in q(M) ⊗ R (where
q(M) is taken as a k-module in its own right) from the tensor product in N ⊗ R. Then
ιR(q(x)⊗̃r) = q(x)⊗r = qR(x⊗1R)r. This implies that indeed ιR(q(M)⊗R) ⊆ qR(MR).
Moreover, (9) shows that every qR(y) belongs to the image of ιR, proving the lemma.

3.12. Proposition. (a) The standard derivation functor Fst of alternative algebras
commutes with arbitrary base change.

(b) The derivation functors Fin, Fass, Fcom and F̄st commute with flat base change.

Proof. (a) Let τ : k → R be a ring homomorphism, so R is a k-algebra. It is well known
that η :

( ∧2
A) ⊗ R

∼=−→
∧2(AR), sending (a ∧ b)R 7→ aR ∧ bR, is an isomorphism of

R-modules.
Let M :=

∧2
A, considered as a Leibniz algebra over k as in 3.6 and 3.9, and let M ′ =∧2(AR) be the analogously defined Leibniz algebra over R for AR. The multiplication

on AR is just the R-linear extension of the multiplication on A. Hence η : MR → M ′ is
an isomorphism of Leibniz algebras over R.

Let q : M → M be the quadratic map x 7→ {x, x} and define q′ : M ′ → M ′ in the
same way. Then by definition of dst(A) in 3.9, we have an exact sequence

0 // q(M) ι // ∧2
A

π // dst(A) // 0 ,

which upon tensoring with R yields the first row of the following commutative diagram
with exact rows:

q(M)⊗R
ιR //

ϕ

��

M ⊗R
πR //

η∼=
��

dst(A)⊗R //

ψ

��

0

0 // q′(M ′)
ι′

// M ′
π′

// dst(AR) // 0

In the second row, q′(M ′) corresponds under η to the image of the quadratic map qR as
in Lemma 3.11. This yields the homomorphism ϕ and the commutativity of the left hand
square. Exactness of the second row is clear from the definition of dst(AR). Finally, ψ is
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the unique map making the right hand square commutative. We complete this diagram
by adding the kernels and co-kernels of the vertical maps and obtain:

Ker(ϕ)

��

// 0 //

��

Ker(ψ)

��
q(M)⊗R

ϕ

��

// M ⊗R

∼= η

��

// dst(A)⊗R //

ψ

��

0

0 // q′(M ′)

��

// M ′

��

// dst(AR)

��

// 0

Coker(ϕ) // 0 // Coker(ψ)

Now the Snake Lemma [5, §1, No. 2, Prop. 2] yields an isomorphism Ker(ψ) ∼= Coker(ϕ).
Lemma 3.11 implies that ϕ is surjective, so ψ is injective. But ψ is surjective as well,
because η and π′ are surjective. This establishes the isomorphisms g(τ) = ψ of (7), and
(8) is easily verified.

(b) Suppose R is a flat k-algebra. We consider first the inner derivation functor Fin

defined in 3.7. Here M = Win(A) is the kernel of the map s : W (A) → A, and M ′ =
Win(AR) is similarly defined. Since R is flat over k, Lemma 1.7(a) yields an isomorphism
η : M ⊗ R → M ′ of Leibniz algebras over R. Now the argument in the proof of (a) can
be repeated with din in place of dst and yields an isomorphism din(A) ⊗ R ∼= din(AR).
The proof of the other cases follows the same pattern. The details are left to the reader.

3.13. Remarks. The argumentation in the proof of Proposition 3.12(b) made use of
flatness only to ensure that there is an isomorphism η : M ⊗ R → M ′. This can be
used to prove base change results for arbitrary R, by restricting the category A. For
example, let A be the category octonion algebras (see 4.1 below for the definition), with
morphisms unital homomorphisms of algebras, and consider associator derivations. Here
M = Wass(A) is the kernel of the commutator map s :

∧2
A → A. The linear span

of all commutators [a, b] in an octonion algebra A is precisely the kernel of the trace
tA : A → k, and the trace is surjective. Hence Ker(tA) = Im(s) is a finitely generated
and projective module (of rank 7). It follows that the exact sequence

0 // M // ∧2
A

s // [A,A] // 0

splits and therefore remains exact (and split) upon tensoring with an arbitrary R ∈ k-alg.
Hence the natural map η : M ⊗ R → M ′ = Ker(sR) is an isomorphism. It follows that
the functor Fass commutes with arbitrary base change for octonion algebras.

4. Octonion algebras: basic properties

In this section, we prepare the ground for describing derivations of octonion algebras
over arbitrary commutative rings.
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4.1. The concept of an octonion algebra. Following [17, 1.8], a non-associative
algebra C over k is called an octonion algebra if it is finitely generated projective of rank
8 as a k-module, contains an identity element and admits a norm, i.e., a quadratic form
nC : C → k uniquely determined by the following two conditions:

(i) nC is non-singular, so its induced symmetric bilinear form nC(x, y) = nC(x+ y)−
nC(x)−nC(y) defines a linear isomorphism from the k-module C onto its dual C∗

by x 7→ nC(x,−).

(ii) nC permits composition, i.e., the relation

nC(xy) = nC(x)nC(y) (1)

holds for all x, y ∈ C.
We then call tC = nC(1C ,−) the trace of C. Since the rank of C is everywhere

positive, 1C ∈ C is a unimodular vector [14, 0.3], i.e., k1C is a free k-module of rank 1
and a direct summand of C (as a k-module).

Octonion algebras are alternative (but not associative) and invariant under base
change. They also descend from faithfully flat base change: If R ∈ k-alg is faithfully flat
over k and C is a k-algebra such that CR is an octonion algebra over R then C is an
octonion algebra over k. This follows from faithfully flat descent and the fact that the
norm and the unit element of an octonion algebra are uniquely determined.

By [16], given an octonion algebra C over k, the relations

nC(1C) = 1, tC(1C) = 2, (2)

x2 − tC(x)x+ nC(x)1C = 0, (3)
tC(xy) = tC(x)tC(y)− nC(x, y) (4)

hold for all x, y ∈ C, and tC is an associative linear form in the sense that it vanishes
on all commutators and associators of the algebra. Moreover, the conjugation of C, i.e.,
the linear map ιC : C → C, x 7→ x := tC(x)1C − x, is an algebra involution satisfying
xx = nC(x)1C , x+ x = tC(x)1C , and

xyx = nC(x, y)x− nC(x)y (5)

for all x, y ∈ C. In particular, x is invertible in C if and only nC(x) is a unit in k, in
which case x−1 = nC(x)−1x. Recall that octonion algebras over fields are simple [23,
Chap. 2, Lemma 3]. As a consequence, octonion algebras over rings share with Azumaya
algebras the property that a unital homomorphism f : C → C ′ of octonion algebras is
an isomorphism. Indeed, localizing if necessary, we may assume that k is a local ring,
with residue field K. Then the kernel of the induced homomorphism fK : CK → C ′K is
an ideal 6= CK , hence {0}. Thus fK is injective and therefore bijective, because both
algebras have dimension 8. It follows that f is an isomorphism by [3, II, §3.2, Cor. of
Prop. 6].

Remark. The same argument leads to the same conclusion in the more general setting
of arbitrary unital non-associative k-algebras C,C ′ that are finitely generated projective
of the same rank as k-modules and have CK simple for all fields K ∈ k-alg.

We now proceed to describe particularly simple and useful examples of octonion
algebras.
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4.2. Zorn vector matrices and split octonions. There are various formally different
but equivalent ways of defining an octonion algebra structure on the k-module

Z := Zor(k) :=
[
k k3

k3 k

]
of Zorn vector matrices over k, i.e., of 2 × 2 matrices with diagonal entries in k and
off-diagonal ones in column space k3 over k. The normalization chosen here is due to
Zorn [24] and turns out to be the most convenient for our subsequent computations.
Accordingly, we define[

α1 u
x α2

] [
β1 v
y β2

]
=

[
α1β1 − uty α1v + β2u+ x× y

β1x+ α2y + u× v −xtv + α2β2

]
(6)

for αi, βi ∈ k, (i = 1, 2), u, v, x, y ∈ k3, where utv and u× v stand for the ordinary scalar
and vector product, respectively, of u, v ∈ k3. Then Zor(k) becomes an octonion algebra
under the multiplication (6). Its unit element, norm, and trace are given by the formulas

1Z =
[
1 0
0 1

]
, nZ(a) = α1α2 + utx, tZ(a) = α1 + α2

for a = [ α1 u
x α2 ] ∈ Z. Note that this definition has the advantage of yielding com-

plete symmetry in the indices 1, 2 but is not consistent with the usual definition of
matrix multiplication of 2 × 2-matrices in the following sense: Let u, x ∈ k3 such that
utx = 1. Then

[
k k·u
k·x k

]
is a subalgebra of Zor(k) isomorphic to Mat2(k) under the map[

α β·u
γ·x δ

]
7→

(
α β
−γ δ

)
, and nZ

[
α β·u
γ·x δ

]
= det

(
α β
−γ δ

)
. The square brackets (instead of

the usual round brackets) serve to indicate this fact.
Let ui (i = 1, 2, 3) be the standard basis of k3. It is evident that Z is free of rank

eight as a k-module with basis

bs =
(
E1, X1, X2, X3; E2, Y1, Y2, Y3

)
given by

E1 =
[
1 0
0 0

]
, E2 =

[
0 0
0 1

]
, Xi =

[
0 ui
0 0

]
, Yi =

[
0 0
ui 0

]
.

We call bs the standard basis of Z. It satisfies the following relations:

E1E2 = E2E1 = 0, E2
1 = E1, E2

2 = E2, (7)
E1Xi = Xi = XiE2, E2Xi = 0 = XiE1, (8)
E2Yi = Yi = YiE1, E1Yi = 0 = YiE2, (9)
XiXj = sgn(i, j)Yl, YiYj = sgn(i, j)Xl, (10)
XiYj = −δijE1, YiXj = −δijE2, (11)

E1 + E2 = 1Z . (12)

Here sgn(i, j) is zero for i = j and equals the sign of the permutation (i, j, l) (sending 1
to i, 2 to j, 3 to l) if i 6= j and l is the missing index.

Our next step consists in introducing twisted versions of Zorn vector matrices.
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4.3. Reduced octonion algebras. An octonion algebra over k is said to be reduced if
it is isomorphic to an algebra Zor(M, θ), defined as follows ([17, 3.2, 3.3])1: Let M be a
finitely generated projective module of rank 3 over k. Writing M∗ = Homk(M,k) for the
dual of M and 〈 , 〉 : M∗×M → k for the natural pairing, we identify

∧3
M∗ = (

∧3
M)∗

canonically by means of the formula

〈α1 ∧ α2 ∧ α3, x1 ∧ x2 ∧ x3〉 = det
(
〈αi, xj〉

)
for αi ∈ M∗, xj ∈ M , 1 ≤ i, j ≤ 3. Now suppose we are given a volume element of M ,
i.e., an isomorphism θ :

∧3
M

∼→ k of k-modules (which may not exist but if it does is
unique up to an invertible factor in k). Then θ∗ : k = k∗

∼→
∧3

M∗, the dual of θ, gives
rise to the volume element θ∗−1 of M∗, and we obtain two associated vector products

×θ : M ×M −→M∗, ×θ : M∗ ×M∗ −→M

by means of the formulas

〈x×θ y, z〉 = θ(x ∧ y ∧ z), 〈ζ, ξ ×θ η〉 = θ∗−1(ζ ∧ ξ ∧ η) (13)

for all x, y, z ∈ M , ξ, η, ζ ∈ M∗. Note that both vector products are alternating and
induce isomorphisms

∧2
M

∼→ M∗,
∧2

M∗ ∼→ M . To simplify notations, we write
× instead of ×θ whenever the context is clear. Furthermore, to make matters more
symmetric, we identify M ∼= M∗∗ canonically, put M+ := M , M− := M∗ and then have
two dualizing bilinear forms 〈 , 〉 : M± ×M∓ → k satisfying the relation 〈x+, x−〉 =
〈x−, x+〉 for all x± ∈M±. Now the k-module

C := Zor(M, θ) =
[
k M+

M− k

]
becomes an octonion algebra over k under the multiplication[

α1 u
x α2

] [
β1 v
y β2

]
=

[
α1β1 − 〈u, y〉 α1v + β2u+ x× y

β1x+ α2y + u× v −〈x, v〉+ α2β2

]
(14)

for αi, βi ∈ k (i = 1, 2), u, v ∈ M+, x, y ∈ M−, whose unit element, norm, trace are
given by

1C =
[
1 0
0 1

]
, nC(a) = α1α2 + 〈u, x〉, tC(a) = α1 + α2 (15)

for a = [ α1 u
x α2 ] ∈ C. If M = k3 is free, then C = Zor(k) is the split octonion algebra of

ordinary Zorn vector matrices over k.

4.4. Elementary idempotents. We claim: For an element e in an octonion algebra
C over k to be an idempotent different from 0, 1 in all scalar extensions (so e2 = e and
eR 6= 0, 1CR

for all R ∈ k-alg, R 6= {0}) it is necessary and sufficient that tC(e) = 1

1We deviate from the terminology in [17], where these algebras are called split.
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and nC(e) = 0. The condition is clearly sufficient, by (2), (3). To prove necessity, we
may assume that k is a local ring, hence, in particular, connected. Then nC(e), being
an idempotent in k by (1), satisfies nC(e) = 0 or nC(e) = 1. In the latter case, e
would be invertible, forcing the contradiction e = 1C . Hence nC(e) = 0, and (3) yields
e = e2 = tC(e)e. Taking traces, we conclude that tC(e) ∈ k is an idempotent which
cannot be zero since e 6= 0. Thus tC(e) = 1.

Elements of C satisfying the equivalent conditions above are called elementary idem-
potents. If e is such and e1 := e, e2 := 1C−e = ē1, then e2 is an elementary idempotent as
well and (e1, e2) is a hyperbolic pair of the quadratic space (C, nC). Moreover, using (5)
as well as (1) and its bi-linearizations, the Peirce components Cij := Cij(e) (i, j = 1, 2)
of C relative to e [20, III, §2] are easily seen to satisfy the relations (i, j = 1, 2, i 6= j)

Cii = kei, nC(Cij) = nC(ei, C12 + C21) = tC(C12 + C21) = {0}. (16)

Since ei is a unimodular vector, Cii ∼= k as k-algebras. Also, (16) implies that the
k-modules C12 and C21 are dually paired by nC(−,−), so the decomposition C =⊕

i,j∈{1,2} Cij together with rkC = 8 shows that they are both finitely generated pro-
jective of rank 3.

4.5. Schemes. In a slightly more general vein than 1.11, we follow [7] and view schemes
over k as special covariant set-valued functors on k-alg. Then the affine scheme X defined
by a fixed k-algebra A is the functor X(R) = Homk-alg(A,R) (R ∈ k-alg); i.e., the affine
schemes are precisely the representable functors. For example, if M is a k-module, we
denote by Ma the functor defined by Ma(R) := M ⊗R for all R ∈ k-alg. If M is finitely
generated and projective then Ma is an affine k-scheme represented by the symmetric
algebra over the dual M∗ of M . We say that a k-scheme X is faithful if it has non-empty
geometric fibres: X(K) 6= ∅ for all algebraically closed fields K ∈ k-alg. In case X
is affine and represented by a finitely presented k-algebra A, this is equivalent to the
canonical map Spec(A) → Spec(k) of the prime spectra being surjective.

Given any k-scheme X, we will make use of the following facts:

(i) ([8, (17.16.2)]) If X is fppf (=flat, faithful and finitely presented), there exists an
fppf extension R of k such that X(R) 6= ∅.

(ii) ([8, (17.16.3)]) If X is smooth and faithful, we may choose R as in (i) to be even
étale.

(iii) ([8, (17.1.1), (17.3.1)], [7, I, §4, 4.6]) X is smooth if and only if it is finitely presented
and, for all R ∈ k-alg and all ideals I ⊆ R satisfying I2 = {0}, the natural map
X(R) → X(R/I) is surjective. A smooth scheme is flat.

(iv) ([8, (17.7.3)]) If R ∈ k-alg is faithfully flat, then for X to be smooth over k it is
necessary and sufficient that its base change XR from k to R be smooth over R.

4.6. Splittings and splitting bases. A splitting of an octonion algebra C over k is
an isomorphism f : Z = Zor(k) → C. We denote by Isom(Z,C) the (possibly empty) set
of splittings of C and define a functor X = Isom(Z,C) : k-alg → set by

X(R) = Isom(Zor(R), CR) (R ∈ k-alg).
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Let G = Aut(Z) be the automorphism group scheme of Z. If X(R) 6= ∅ then it is
immediately seen that the group G(R) acts simply transitively on the right on X(R) by
composition.

A splitting basis of C is an octuple b = (e1, x1, x2, x3; e2, y1, y2, y3) ∈ C8 satisfying
the relations (7)–(12), with upper case letters replaced by lower case ones. Thus by its
definition, a splitting basis is not required to be a basis of the k-module C but in fact is,
as will be seen now.

Given a splitting f : Z
∼=−→ C of C, it is clear that the image f(bs) of the standard

basis of Z is a splitting basis of C. We claim that this establishes a bijection between
Isom(Z,C) and the set of splitting bases of C. Indeed, since f is linear and bs is in
particular a basis of Z as a k-module, f is uniquely determined by its values on bs so the
map f 7→ f(bs) is injective. To prove surjectivity, let b be a splitting basis of C. The
defining relations (7)–(12) of a splitting basis say precisely that the linear map f : Z → C
defined by f(bs) = b is a unital homomorphism of octonion algebras and therefore an
isomorphism, as remarked in 4.1. In particular, b is a basis of C as a k-module.

An essential step in the proof of the main result of this section is to show that X is
a smooth k-scheme. The proof will be facilitated by introducing the following concept.

4.7. Splitting data. Let C be an octonion algebra over k. A splitting datum for C is
a quadruple d = (e, x1, x2, x3) ∈ C4 satisfying the following conditions:

e is an elementary idempotent, (17)
the xi belong to the Peirce space C12(e), (18)
x1(x2x3) = −e. (19)

Let bs be the standard basis of Z = Zor(k) as in 4.2. It is clear from 4.2 that ds =
(E1, X1, X2, X3) is a splitting datum of the split algebra Z, called the standard splitting
datum.

4.8. Lemma. Let C be an octonion algebra over k. Then the map φ : f 7→ f(ds) is a
bijection between Isom(Z,C) and the set of splitting data of C.

Proof. If f : Z → C is an isomorphism then it is clear that f(ds) is a splitting datum
of C, so the map φ is well-defined. To prove φ injective we have to show that an
f ∈ Isom(Z,C) is uniquely determined by its values on ds. Since f is a homomorphism
of unital algebras, the relations (10) and (12) show that f(Yi) = f(XjXl) = f(Xj)f(Xl)
(where (i, j, l) is a cyclic permutation of (1, 2, 3)), and f(E2) = f(1 − E1) = 1 − f(E1).
Hence f(ds) determines the values of f on bs and therefore f , by 4.6.

Again by 4.6, φ surjective means every splitting datum d of C extends to a split-
ting basis b. Thus let d = (e, x1, x2, x3) be a splitting datum of C and define b =
(e1, x1, x2, x3; e2, y1, y2, y3) by

e1 := e, e2 := 1C − e1, y1 := x2x3, y2 := x3x1, y3 := x1x2.

We verify the relations (7)–(12) for b. Here (7) and (12) are clear, and (8) holds by (18).
The equations (9) just say yi ∈ C21, which follows from C2

12 ⊆ C21 (by the Peirce rules)
and the definition of yi.
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Before continuing, we make the following remarks. Since e is an elementary idem-
potent by (17), we have tC(x) = nC(x) = 0 for x ∈ C12 ∪ C21 by (16). This implies
x2 = tC(x)x − nC(x)1 = 0, so the multiplication of C restricted to C12 and to C21 is
alternating. Moreover:

The trilinear expressions x(yz) and (xy)z (where x, y, z ∈ C12) are alternating. (20)

Indeed, their difference is the associator which is alternating, so it suffices to prove that
x(yz) is alternating. But this follows immediately from xy2 = 0 = x2y = x(xy) and
the fact that a multilinear map is alternating as soon as it vanishes when two adjacent
arguments are equal.

The equations xixj = sgn(i, j)yl of (10) now hold by definition of the yi and the
alternating character of the product. The latter also allows us to assume, in proving the
second group of equations yiyj = sgn(i, j)xl, that (i, j, l) is a cyclic permutation. Then
the middle Moufang identity (cf. (2.4)), the alternating nature of the product together
with (20) and (19) imply

yiyj = (−xlxj)(−xixl) =
(
xl(xjxi)

)
xl = −

(
x1(x2x3)

)
xl = e1xl = xl.

To prove the first group of relations xiyj = −δije1 of (11), write yj = xlxm where (j, l,m)
is cyclic, so that xiyj = xi(xlxm). If i = j this is xj(xlxm) = x1(x2x3) = −e1 by (19)
and (20). If i 6= j then either i = l or i = m, and hence xi(xlxm) = 0, again by (20).

The remaining equations yixj = −δije2 follow by applying the involution and observ-
ing that tC(x) = 0 implies x̄ = −x for x ∈ C12 + C21.

4.9. Torsors. Let X be a k-scheme and G a k-group scheme acting on X on the right
in a simply transitive manner; i.e., for all R ∈ k-alg and all x, y ∈ X(R) there exists
exactly one g ∈ G(R) such that y = xg. Note that X(R) may well be empty. Then X
is said to be a torsor in the flat topology with structure group G if there exists a fppf
S ∈ k-alg such that X(S) 6= ∅ [7, III, §4]. If S can be chosen in addition étale then
X is called a torsor in the étale topology. Fixing an element x0 ∈ X(S), we have an
isomorphism GS

∼→ XS by g 7→ x0g. Consequently, by faithfully flat descent, properties
of X and G correspond to each other. In particular, X is smooth if and only if G is
smooth, cf. 4.5(iv).

4.10. Theorem. Let C be an octonion algebra over k and Z = Zor(k) the algebra of
Zorn vector matrices. Then X = Isom(Z,C) is an affine smooth torsor in the étale
topology with structure group G = Aut(Z).

Proof. Let Y be the functor assigning to R ∈ k-alg the set of splitting data of CR.
The map φ of Lemma 4.8 is compatible with arbitrary base changes and thus induces
an isomorphism φ : X → Y of functors. The conditions (17)–(19) show that Y ⊂ C4

a is
defined by finitely many polynomial equations, so Y and therefore X is an affine finitely
presented k-scheme. Hence to prove smoothness of X, we may use 4.5(iii), and have to
show: If R ∈ k-alg and I ⊂ R is an ideal of square zero then every splitting datum of
CR/I over R/I can be lifted to a splitting datum of CR over R.
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We may assume R = k, replacing C by CR if necessary. Write π : C → C ′ := C/IC =
C ⊗ (k/I) for the canonical map and let d′ = (e′, x′1, x

′
2, x

′
3) be a splitting datum of C ′.

Denote norm and trace of C and C ′ by n, t and n′, t′, respectively. As IC ⊆ C is a
nil ideal, it is a standard fact that e can be lifted to an idempotent e of C. We have
n′(e′) = 0, t′(e′) = 1 by 4.4, so we conclude from (1) that n(e) is a nilpotent idempotent
in k. Hence n(e) = 0 and e = t(e)e by (3). Applying t, we obtain t(e)2 = t(e), and
t′(e′) = 1 shows t(e) ≡ 1 mod I, whence t(e) is an invertible idempotent in k. Thus
t(e) = 1, and we have shown that e is elementary.

Let Cij and C ′ij denote the Peirce spaces of C and C ′ relative to e and e′, respectively.
Since π is a surjective algebra homomorphism mapping e to e′, we have π(C12) = C ′12.
Hence the elements x′i ∈ C ′12 can be lifted to elements xi ∈ C12 (1 ≤ i ≤ 3). Now
x′1(x

′
2x

′
3) = −e′1 implies x1(x2x3) = (−1+α)e1 for some α ∈ I. As (1−α)−1 = 1+α (recall

that α2 = 0 since I squares to zero), we see that (19) holds for d = (e, x1, x2, (1 +α)x3),
so d is the desired lift of d′ to a splitting datum of C.

As noted in 4.6, G acts simply transitively on X. Thus to prove that X is a torsor
in the étale topology, it remains to show that X(S) 6= ∅ for some étale faithfully flat
S ∈ k-alg. It is a standard fact that an octonion algebra over an algebraically closed
field K is split [21, Thm. 1.8.1, 1.10(i)]. Hence X(K) 6= ∅, so X is a faithful k-scheme.
Now the existence of S follows from (ii) of 4.5. �

The following corollaries are now an immediate consequence of the theorem and 4.5.

4.11. Corollary. For C to be an octonion algebra over k it is necessary and sufficient
that C be a k-algebra and there exist a faithfully flat étale k-algebra R such that CR ∼=
Zor(R) is a split octonion algebra over R.

4.12. Corollary. Let C be an octonion algebra over k. Then Aut(C) is a smooth group
scheme.

5. Octonion algebras: derivations

We are now ready for our main result on derivations of octonion algebras.

5.1. Theorem. Every derivation of an octonion algebra C over k is an associator
derivation: AssDer(C) = Der(C), so every derivation of C has the form

m∑
i=1

[Lai , Rbi ]

where m ∈ N and ai, bi ∈ C (1 ≤ i ≤ m) satisfy the relation
∑

[ai, bi] = 0.

If the base ring contains 1
3 , every inner derivation of C is standard (Prop. 2.7(f)), so

Thm. 5.1 yields the following extension of Schafer’s theorem ([19, Thm. 6], [20, Cor. 3.29]
or, more generally, [1, Prop. 1]) to commutative rings.
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5.2. Corollary. If 1
3 ∈ k, then every derivation of an octonion algebra over k is stan-

dard, i.e., it is a sum of derivations Du,v, u, v ∈ C. �

Remarks. (a) Without the hypothesis on k, e.g., over fields of characteristic 3, Cor. 5.2
is false; see [1] for details.

(b) Derivations of Azumaya algebras are always inner [12, III, Thm. 1.4, Thm. 5.1].
Thm. 5.1 may be regarded as an analogue of this result for octonion algebras.

Proof of Thm. 5.1, step 1. Our proof of Thm. 5.1 proceeds in two steps, the first one
combining Cor. 4.11 with the fact that the full derivation algebra of C by 1.11 and
Cor. 4.12 (resp. the ideal of associator derivations by Prop. 2.9) commutes with arbitrary
(resp. flat) base change. Hence we may assume that C is split.

In the sequel, we will work under the less restrictive assumption that C be reduced,
and we do so for two reasons. For one, the proof will sometimes become more natural
in this slightly more general setting. For another, we will be able to derive a number of
intermediate results of independent interest that retain their validity for reduced rather
than just split octonions.

The second step of the proof will be preceded by a digression into graded modules
and algebras.

5.3. Graded modules. Let Γ be a finite additive abelian group and M =
⊕

γ∈ΓMγ

a Γ-graded k-module [4, II, §11, no 2]. Since Γ is finite, Endk(M) becomes a Γ-graded
k-algebra whose γ-homogeneous component, Endk(M)γ , γ ∈ Γ, consists of all graded
homomorphisms f : M → M of degree γ, so f is k-linear and satisfies f(Mδ) ⊆ Mγ+δ

for all δ ∈ Γ. Clearly, since Endk(M) is a Γ-graded k-algebra, so is gl(M). Moreover, if
we are given a non-associative Γ-graded k-algebra structure A on M , one checks easily
that Der(A) is a graded subalgebra of gl(A).

5.4. Example. Let C be a unital alternative k-algebra and e ∈ C an idempotent.
Writing e1 := e, e2 := 1C − e, the multiplication rules for the Peirce components Cij =
Cij(e) (i, j = 1, 2) [20, III, §2] imply that

C = C0 ⊕ C1 ⊕ C2, C0 := C00 ⊕ C11, C1 := C12, C2 := C21

gives a Z/3Z-grading of C as a k-algebra, called the e-grading of C. We write

g = g0 ⊕ g1 ⊕ g2

for the corresponding Z/3Z-grading of the derivation algebra g := Der(C) in the sense
of 5.3 and call this the e-grading of g. Fixing i, j ∈ {1, 2}, i 6= j and uij ∈ Cij = Ci, it is
straightforward to check, using (2.28), that the derivation

Di(uij) := −Dei,uij = Dej ,uij ∈ StanDer(C)
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satisfies the relations

Di(uij)xii = xiiuij , (1)
Di(uij)xjj = −uijxjj , (2)
Di(uij)xij = uijxij , (3)
Di(uij)xji = −[uij , xji] (4)

for all xλ,µ ∈ Cλ,µ, λ, µ = 1, 2.

5.5. Proposition. Assumptions and notations being as in 5.4, the e-grading of g =
Der(C) is given by g = g0 ⊕ g1 ⊕ g2, where

g0 = {D ∈ g |De = 0}, gi = {Di(uij) |uij ∈ Cij} ({i, j} = {1, 2}).

Moreover, the maps uij 7→ Di(uij) are k-module isomorphisms Cij ∼= gi for i 6= j.

Proof. Setting g′0 := {D ∈ g |De = 0} and g′i := {Di(uij) |uij ∈ Cij} ({i, j} = {1, 2}),
we first claim

g = g′0 + g′1 + g′2. (5)

Given D ∈ g, let D(e) = u11 + u12 + u21 + u22 be the Peirce decomposition of D(e).
Then D(e) = D(e2) = D(e) · e + e · D(e), and comparing Peirce components yields
D(e) = u12 + u21. This implies D0 := D − D1(u12) + D2(u21) ∈ g′0 by (1), (2), which
completes the proof of (5). But now, consulting (1)–(4) and the Peirce rules, we conclude
g′i ⊆ gi for i = 0, 1, 2, hence obtain equality by comparing (5) with the e-grading of g.
Finally, Di(uij) = 0 implies Di(uij) · ei = uij = 0 by (1), proving the last statement. �

The elements of g1, g2 are obviously standard derivations. But one can do better than
that by deriving the following result, which is due to the referee.

5.6. Proposition. Notations and assumptions being as in 5.4, let i, j ∈ {1, 2} be di-
stinct and uji, vji ∈ Cji. Using the formalism of 2.4, the element

u := 2ei ∧ (ujivji)− uji ∧ vji ∈
2∧
C ⊆W (C) = C ⊕

2∧
C

satisfies s(u) = 0 and

Di(ujivji) = ∆u ∈ AssDer(C). (6)

Proof. From 2.4 and the Peirce rules we conclude s(u) = 2ei(ujivji) − 2(ujivji)ei −
ujivji + vjiuji = 2ujivji − 2ujivji = 0. Hence the proposition will follow once we have
shown

Di(ujivji)a = Da, D := ∆u = 2[Lei
, Rujivji

]− [Luji
, Rvji

] (7)
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for a = xlm ∈ Clm, l,m ∈ {i, j}. The Peirce rules combine with (1) and the linearization
of left alternativity (2.1) to yield

Dxii = 2ei[xii(ujivji)]− 2(eixii)(ujivji)− uji(xiivji) + (ujixii)vji
= (ujixii + xiiuji)vji = uji(xiivji) + xii(ujivji)
= Di(ujivji)xii;

hence (7) holds for a = xii. Similarly, invoking (2.2) and (2), we obtain

Dxjj = 2ei[xjj(ujivji)]− 2(eixjj)(ujivji)− uji(xjjvji) + (ujixjj)vji
= − uji(xjjvji + vjixjj) = −(ujixjj)vji − (ujivji)xjj
= Di(ujivji)xjj ;

hence (7) holds for a = xjj . But the Peirce rules also combine with (4) and the lineariza-
tion of sji(sjitji) = s2jitji = 0 = tjis

2
ji = (tjisji)sji for sji, tji ∈ Cji to yield Dxji =

2ei[xji(ujivji)]− 2(eixji)(ujivji)− uji(xjivji) + (ujixji)vji = xji(ujivji)− (ujivji)xji =
−[ujivji, xji] = Di(ujivji)xji, hence (7) for a = xji as well. Finally, for a = xij , we
linearize (2.1), (2.2) and obtain

Dxij = 2ei[xij(ujivji)]− 2(eixij)(ujivji)− uji(xijvji) + (ujixij)vji
= − 2xij(ujivji)− uji(xijvji) + (ujixij)vji
= − 2(xijuji)vji − 2(ujixij)vji + 2uji(xijvji)− uji(xijvji) + (ujixij)vji
= uji(xijvji)− (ujixij)vji = uji(vjixij + xijvji)− (ujixij)vji = (ujivji)xij
= Di(ujivji)xij

by (3), as desired. �

5.7. Corollary. If Cij = C2
ji, then gi ⊆ AssDer(C). �

5.8. Setting the stage. In order to continue with the proof of Thm. 5.1, we fix once
and for all a reduced octonion algebra C = Zor(M, θ) over k as in 4.3. Our aim will be to
describe in more detail the zero component of the derivation algebra g = Der(C) relative
to its e-grading, where e is one of the two standard idempotents

e = e1 =
[
1 0
0 0

]
, e2 =

[
0 0
0 1

]
∈ C.

To this end, we first note

C0 =
[
k 0
0 k

]
= ke1 ⊕ ke2, C1 = C12 =

[
0 M+

0 0

]
, C2 = C21 =

[
0 0
M− 0

]
(8)

by 5.4. The properties of the vector product assembled in 4.3 ensure the relations

C2
ji = Cij (i, j ∈ {1, 2} distinct). (9)
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As usual, we will write SL(M) for the special linear group of M = M+, and SL(M) for
the affine group scheme over k given by

SL(M)(R) := SL(MR) (R ∈ k-alg),

whose Lie algebra is
sl(M) := {g ∈ gl(M) | tr(g) = 0}.

The centralizer in the sense of [7, II, §1, 3.4] of e in G := Aut(C) will be denoted by
G0. Then G0 acts like the identity on C0 in all extensions since e2 = 1− e1 and G fixes
the unit element. G0 is a subgroup scheme of G whose Lie algebra is the subalgebra g0

of g described in Prop. 5.5.
For g ∈ End(M) let g∗ ∈ End(M∗) be defined by 〈g∗(ξ), x〉 = 〈ξ, g(x)〉, for all x ∈M ,

ξ ∈M∗. Then formula (4.13) implies〈
g(x)× g(y), g(z)

〉
= θ

(
g(x) ∧ g(y) ∧ g(z)

)
= det(g) · θ(x ∧ y ∧ z) = det(g) ·

〈
x× y, z

〉
for all x, y, z ∈M . Now let g ∈ GL(M) and replace z by g−1(z). Then〈

g(x)× g(y), z
〉

= det(g) ·
〈
x× y, g−1(z)

〉
= det(g) ·

〈
g∗−1(x× y), z

〉
holds for all z, so

g(x)× g(y) = det(g) · g∗−1(x× y) (x, y ∈M, g ∈ GL(M)). (10)

The following theorem generalizes [10, Thm. 4] from fields to commutative rings. It says
that the group scheme G0 defined above is of type A2, i.e., a twisted form of SL3.

5.9. Theorem. With the notations of 5.8, there is an isomorphism

Φ : SL(M) ∼−→ G0

of group schemes where Φ(g) is given by

Φ(g) ·
[
α1 u
x α2

]
:=

[
α1 g(u)

g∗−1(x) α2

]
for all g ∈ SL(MR), α1, α2 ∈ R, u ∈M+

R , x ∈M−
R , R ∈ k-alg.

Proof. After a suitable base extension, it suffices to prove this for R = k. Clearly, Φ
is a group monomorphism from SL(M) to GL(C). Given g ∈ SL(M), a straightforward
verification shows, using (10) and (4.14), that Φ(g) as defined above is an automorphism
of C fixing e1. It therefore remains to show that Φ: SL(M) → G0(k) is surjective, so
let ϕ ∈ G0(k) be an automorphism of C fixing e1. Then ϕ also fixes e2 = 1C − e1 and
stabilizes the Cij . Hence (8) yields elements g ∈ GL(M+), h ∈ GL(M−) such that

ϕ
( [
α1 u
x α2

])
=

[
α1 g(u)
h(x) α2

]
(αi ∈ k, u ∈M+, x ∈M−).

Since ϕ leaves the norm of C invariant, (4.15) implies h = g∗−1, so it remains to prove
det(g) = 1. Now [ 0 u

0 0 ] [ 0 v
0 0 ] =

[
0 0

u×v 0

]
by (4.14), so ϕ multiplicative implies g∗−1(u×v) =

g(u) × g(v). But the linear map
∧2

M+ → M− determined by the vector product is
surjective, forcing det(g) = 1 by comparison with (10), as desired. �

Passing to the level of Lie algebras in Thm. 5.9, we obtain
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5.10. Corollary. Notations being as in 5.8, the map

sl(M) ∼−→ g0, f 7−→ D0(f)

determined by

D0(f)
[
α1 u
x α2

]
=

[
0 f(u)

f∨(x) 0

]
for f ∈ sl(M), αi ∈ k (i = 1, 2), u ∈M+, x ∈M−, where f∨ := −f∗, is an isomorphism
of Lie algebras. �

Remark. Combining Cor. 5.10 with Prop. 5.5, we see that Der(C) is a finitely generated
projective module of rank 14, as it should be.

Proof of Thm. 5.1, step 2. We are now in a position to finish the proof of Thm. 5.1.
By Prop. 5.5 and Cor. 5.7 combined with (9), it suffices to show that g0 consists entirely
of associator derivations, i.e.,

g0 ⊆ AssDer(C). (11)

Inspired by the proof of [1, Prop. 1], we do so by identifying M+ ⊗M− = Endk(M+)
canonically via

(u⊗ x)(v) = 〈x, v〉u (u, v ∈M+, x ∈M−). (12)

Observe

tr(u⊗ x) = 〈u, x〉 (u ∈M+, x ∈M−), (13)

let u, v ∈M+, x ∈M− and put

a :=
[
0 u
0 0

]
, b :=

[
0 0
x 0

]
, c :=

[
0 v
0 0

]
∈ C. (14)

A direct computation, involving (2.12), (4.14) and (12) yields

[a, b] = 〈u, x〉(e2 − e1), [La, Rb]e1 = 0, [La, Rb]c =
[
0 h(v)
0 0

]
, (15)

where

h = u⊗ x− 〈u, x〉IdM+ . (16)

By Cor. 5.10, every element of g0 has the form D0(f) for some f ∈ sl(M+). Write
f =

∑
ui ⊗ xi, ui ∈M+, xi ∈M−, and put

ai :=
[
0 ui
0 0

]
, bi :=

[
0 0
xi 0

]
∈ C.
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Then (13)–(16) combine with Cor. 5.10 to show
∑

[ai, bi] = 0 andD0(f) =
∑

[Lai , Rbi ] ∈
AssDer(C). This completes the proof of (11). �
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