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0. Introduction and Preliminaries

Much of the structure theory of infinite dimensional linear Jordan systems is
based on the local nilpotency of the McCrimmon radical (see [17, 18, 19]). In this
paper we prove this fact for Jordan systems over an arbitrary ring of scalars. As
an application, we conclude that simple Jordan systems are always nondegenerate.
Two more applications to Kurosh-type problems and to Moufang loops will appear
in subsequent papers.

The key observation that absolute zero divisors of a Jordan pair become Lie
sandwiches of the corresponding TKK Lie algebra allows us to translate our problem
into the Lie setting. Thus, our proof is based on Kostrikin-Zelmanov’s theorem on
the local nilpotency of Lie algebras generated by sandwiches [6]. Different proofs of
this result can be found in the literature [2, 20].
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0.1 We will deal with Jordan systems (algebras, triple systems and pairs), and
associative and Lie algebras over an arbitrary ring of scalars Φ. We warn the reader
that even when dealing with Lie algebras, we will not make any additional assumption
on the ring of scalars. In particular, we will NOT assume 1/2 ∈ Φ.

The reader is referred to [3, 4, 8, 13, 14] for basic results, notation, and termi-
nology, though we will stress some notions.

— When dealing with an associative algebra, the (associative) products will be
denoted by juxtaposition.

— The product in a Lie algebra L will be denoted by square brackets [x, y] =
Adx(y) = Ad(x)(y), for any x, y ∈ L.

— Given a Jordan algebra J , its products will be denoted by x2, Uxy, for x, y ∈ J .
They are quadratic in x and linear in y and have linearizations denoted x ◦ y = Vxy,
Ux,zy = {x, y, z} = Vx,yz, respectively.

— For a Jordan pair V = (V +, V −), we have products Qxy = Qσ
xy ∈ V σ, for

any x ∈ V σ, y ∈ V −σ, σ = ±, with linearizations Qx,zy = Qσ
x,zy =: {x, y, z} =:

Dσ
x,yz = Dx,yz.

— A Jordan triple system T is given by its products Pxy, for any x, y ∈ T , with
linearizations denoted by Px,zy =: {x, y, z} =: Lx,yz.

0.2 (i) A Jordan algebra gives rise to a Jordan triple system by simply forgetting
the squaring and letting P = U . By doubling any Jordan triple system T one obtains
the double Jordan pair V(T ) = (T, T ) with products Qσ

xy = Pxy, σ = ±, for any
x, y ∈ T . From a Jordan pair V = (V +, V −) one can get a (polarized) Jordan triple
system T(V ) = V + ⊕ V − by defining Px+⊕x−(y+ ⊕ y−) = Q+

x+y− ⊕Q−x−y+ [8, 1.13,
1.14].

(ii) An associative system R gives rise to a Jordan system R(+) by symmetriza-
tion: over the same Φ-module (the same pair of Φ-modules in the pair case), we
define, for any x, y ∈ R, x2 = xx, Uxy = xyx in the case of algebras, Pxy = xyx in
the case of triple systems, and, for any x ∈ Rσ, y ∈ R−σ, σ = ±, Qσ

xy = xyx in the
pair case, where juxtaposition denotes the associative product in R.

0.3 A Jordan system J is called special if it is a subsystem of R(+), for some
associative system R. Otherwise J is said to be exceptional.

0.4 For a Jordan triple system T , a derivation is a map ∆ ∈ EndΦ T satisfying
∆(Pxy) = P∆(x),xy + Px∆(y), for any x, y ∈ T . For a Jordan algebra, besides
∆(Uxy) = U∆(x),xy + Ux∆(y) it must satisfy ∆(x2) = x ◦∆(x).

Given a Jordan pair V , a derivation of V is any pair of Φ-linear maps ∆ =
(∆+,∆−) ∈ EndΦ V + × EndΦ V − such that

∆σ(Qσ
xy) = {∆σ(x), y, x}+ Qσ

x∆−σ(y),
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for any x ∈ V σ, y ∈ V −σ, σ = ±. The set Der(V ) of all derivations of V is a (Lie)
subalgebra of (EndΦ V + × EndΦ V −)(−) (see [8, 1.4]). For any x ∈ V +, y ∈ V −, we
define δ(x, y) := (Dx,y,−Dy,x) which turns out to be a derivation of V by [8, JP12],
and is called an inner derivation of V . The Φ-submodule of Der(V ) spanned by all
inner derivations of V will be denoted InDer(V ) and is an ideal of the Lie algebra
Der(V ) since

[∆, δ(x, y)] = δ(∆+(x), y) + δ(x, ∆−(y)),

for any ∆ ∈ Der(V ), and any x ∈ V +, y ∈ V −.

0.5 Given a Jordan pair V and any subalgebra D of Der(V ) containing InDer(V ),
the Φ-module

TKK(V,D) := V + ⊕D ⊕ V −

can be equipped with a product [ , ] given by

[x+ ⊕ c⊕ x−, y+ ⊕ d⊕ y−] :=(
c+(y+)− d+(x+)

)⊕ (
[c, d] + δ(x+, y−)− δ(y+, x−)

)⊕ (
c−(y−)− d−(x−)

) (1)

yielding a Lie algebra over Φ called the Tits-Kantor-Koecher algebra of V and D
[15, XI]. When D = InDer(V ), we obtain the so called Tits-Kantor-Koecher algebra
of V , denoted TKK(V ). In some references (see [9, 10]), the Tits-Kantor-Koecher
construction is understood as the universal central cover of the Lie algebra TKK(V )
above.

Notice that L := TKK(V ) is a Z-graded Lie algebra, where L−1 = V −, L1 = V +,
L0 = InDer(V ), Li = 0, for any i ∈ Z \ {−1, 0, 1}.

0.6 An absolute zero divisor of a Jordan algebra J (resp. triple system T ) is
an element x such that UxJ = 0 (resp. PxT = 0). An absolute zero divisor in
a Jordan pair (V +, V −) is any element x ∈ V σ such that QxV −σ = 0. In special
Jordan systems this means all elements y sandwiched between two x’s are annihilated,
xyx = 0. The key to understanding such “Jordan sandwiches” will be understanding
Lie sandwiches.

A Jordan system is said to be nondegenerate if it does not have nonzero absolute
zero divisors.

As a consequence of [4, QJ16] and MacDonald’s Theorem [7], we have the fol-
lowing well-known lemma.

0.7 Lemma. If a, b, c are absolute zero divisors of a Jordan algebra, then a2,
a ◦ b, and {a, b, c} are also absolute zero divisors. If a, b, c are absolute zero divisors
of a Jordan triple system, then so is {a, b, c}.

Proof: In the algebra case,

Ua2 = UaUa = 0,
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Ua◦b = UaUb + UbUa + VbUaVb − Ua,Uba = 0,

U{a,b,c} = UUa+cb−Uab−Ucb = UUa+cb = Ua+cUbUa+c = 0,

if all of a, b, c are absolute zero divisors.

The triple system assertion holds putting P instead of U in the last equality.

0.8 We recall that the McCrimmon or nondegenerate radical (also called small
radical in [8, 4.5]) Mc(J) of a Jordan system J is the smallest ideal of J which
produces a nondegenerate quotient. It can be obtained by a transfinite induction
process as follows [8, 4.7]: Let M1(J) be the span of absolute zero divisors of J ,
which is an ideal of J by [8, 4.6]. Once we have the ideals Mα(J) for all ordinals
α < β, we define Mβ(J) by

(i) Mβ(J)/Mβ−1(J) = M1(J/Mβ−1(J)) when β is not a limit ordinal,

(ii) Mβ(J) = ∪α<βMα(J) when β is a limit ordinal.

Then Mc(J) = limα Mα(J), so that for any Jordan system J , Mc(J) = Mα(J) for
some ordinal α (such that M1(J/Mα(J)) = 0, i.e., J/Mα(J) is nondegenerate).

0.9 An element a in a Lie algebra L is called a sandwich (see [5]) if

(i)
[
a, [L, a]

]
= 0 and (ii)

[
a,

[
L, [L, a]

]]
= 0

or
(i) Ad2

a = 0 and (ii) Ada AdL Ada = 0

If L does not have 2-torsion, then (ii) follows from (i).

1. Monomials, Free Systems, and Nilpotency

1.1 Given a set X, FA[X] will denote the free associative algebra over X. It is
a free Φ-module with a basis W [X] consisting of the associative algebra monomials
or words xi1 · · ·xin

, for arbitrary xi1 , . . . , xin
∈ X. When dealing with associative

words, X will be called the alphabet, and its elements will be called letters. The
algebra FA[X] is Z-graded by the degree or length of words, and also ZX -graded by
the composition of words.

1.2 Let FL[X] be the free Lie algebra on a set of variables X (see [21, Section
1.2]). This algebra is spanned over Φ by the set LM[X] of Lie algebra monomials
(on X), defined inductively as follows: X ⊆ LM[X], and, given a, b ∈ LM[X], the
element [a, b] is also a Lie algebra monomial. We will say that the elements of X are
Lie algebra monomials of degree 1, and, in general, we will say that a Lie algebra
monomial a has degree n > 1 if a is [b, c], where b, c are Lie algebra monomials of
degrees k, l, and k + l = n.
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The Lie algebra FL[X] is ZX -graded, so every monomial has a unique well-
defined degree in each generator x ∈ X, and also a well-defined total degree.

For a positive integer n, let LMn[X] denote the set of Lie algebra monomials of
degree n in FL[X]. Clearly,

(i) FLn[X] := Φ(∪k≥n LMk[X]) is an ideal of FL[X].

For an infinite set X, let Z[X] be any of the following subsets of FL[X]:

FL[X], LMn[X], FLn[X].

Let L be a Lie algebra, S ⊆ L, and j : S −→ L the inclusion map. For any
map σ0 : X −→ S, there exists a unique Lie algebra evaluation homomorphism
σ : FL[X] −→ L extending the composition j σ0 : X −→ L. Considering all possible
choices of σ0, we obtain the evaluation Z[S] of Z[X] on S as the union of all the
images of Z[X] under all possible evaluation homomorphisms. Notice that,

(ii) since X is infinite, the evaluations FL[S], LMn[S], and FLn[S] of FL[X],
LMn[X], and FLn[X] are independent of X.

(iii) FL[S] is the subalgebra of L generated by S, and FLn[S] is an ideal of FL[S].

(iv) A Lie algebra L is nilpotent if and only if FLn[L] = 0 for some positive
integer n, i.e., every Lie algebra monomial in L of degree greater than or
equal to n vanishes (in this case L will be said to be nilpotent of degree n).
Moreover, if S is a generating subset of L, then nilpotency of degree n of L
is equivalent to FLn[S] = 0.

We will also deal with the version of (1.2) for Jordan systems:

1.3 The free Jordan algebra FJ[X] on X is spanned over Φ by the set JM[X] of
Jordan algebra monomials (on X), defined inductively as follows: X ⊆ JM[X], and,
given a, b, c ∈ JM[X], the elements a2, a ◦ b, Uab and Ua,bc are also Jordan algebra
monomials. We will say that the elements in X are Jordan algebra monomials of
degree 1, and, in general, we will say that a Jordan algebra monomial a has degree
n > 1 if one of the following holds for b, c, d Jordan algebra monomials of degrees k,
l, m: a is b2 (n = 2k), b ◦ c (n = k + l), Ubc (n = 2k + l), or Ub,cd (n = k + l + m).

It can be shown that FJ[X] is ZX -graded, so that every monomial has a unique,
well-defined degree.

1.4 The free Jordan triple system FT[X] on X is spanned over Φ by the set
TM[X] of Jordan triple system monomials (on X), defined inductively as follows:
X ⊆ TM[X], and, given a, b, c ∈ TM[X], the elements Pab and Pa,bc are also Jordan
triple monomials. We will say that the elements in X are Jordan triple monomials
of degree 1, and, in general, we will say that a Jordan triple monomial a has degree
n > 1 if one of the following holds for Jordan triple monomials b, c, d of degrees k,
l, m: a is Pbc (n = 2k + l), or Pb,cd (n = k + l + m).
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1.5 We will need to consider, inside FT[X] the span FT{X} of the set TM{X} of
all Jordan triple {}-monomials, i.e., those Jordan monomials built exclusively out of
the multilinear triple product as follows: X ⊆ TM{X}, and, given a, b, c ∈ TM{X},
the element {a, b, c} = Pa,cb is also a Jordan triple {}-monomial.

1.6 Let X be a set of variables. For a positive integer n, denote by JMn[X] the
set of Jordan algebra monomials of degree n in FJ[X], by TMn[X] the set of Jordan
triple monomials of degree n in FT[X], and by TMn{X} the set of Jordan triple
{}-monomials of degree n. Now, it is immediate that we have ideals

FJn[X] := Φ(∪k≥n JMk[X]) / FJ[X], FTn[X] := Φ(∪k≥n TMk[X]) / FT[X].

1.7 As in (1.2), the ideals defined in (1.6) are used to define nilpotency of
Jordan algebras and triple systems.

(i) For an infinite set X, the evaluations of FJ[S], JMn[S], and FJn[S] of FJ[X],
JMn[X], and FJn[X], respectively, on a subset S of a Jordan algebra J are
independent of X. Moreover,

(ii) FJ[S] is the subalgebra of J generated by S, and FJn[S] is an ideal of FJ[S].

(iii) The triple system versions of (i) and (ii) are also true, and we can also
consider the evaluations TMn{S} of TMn{X}, and TM{S} of TM{X},
which are also independent of X if X is infinite.

(iv) Given a positive integer n, a Jordan algebra J (resp. triple system T ) is said
to be nilpotent of degree n if the evaluation FJn[J ] = 0 (resp. FTn[T ] = 0).
If S is a generating subset of J or T , then nilpotency of degree n is equivalent
to FJn[S] = 0 (resp. FTn[S] = 0).

(v) A Jordan pair V will be said nilpotent of degree n if the Jordan triple system
T(V ) is nilpotent of degree n.

2. From Lie Algebras to Jordan Systems

We will use the following results on Lie algebras over arbitrary rings of scalars
which can be found in [2, 6, 20].

2.1 Lie Sandwich Theorem. A Lie algebra generated by a finite set of sand-
wiches is nilpotent. Hence a Lie algebra generated by a set of sandwiches is locally
nilpotent.

2.2 First we stress some connections between the products of a Jordan pair V
and the products in the Lie algebra TKK(V ) which are particular cases of (0.5)(1):

(i) [x, y] = −[y, x] = δ(x, y), for any x ∈ V +, y ∈ V −,

(ii) [[x, y], z] = {x, y, z}, for any x, z ∈ V σ, y ∈ V −σ, σ = ±.
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2.3 Lemma. Let T be a Jordan triple system, S ⊆ T , and L = TKK((V(T )).
Let V(S) be the set consisting of two copies of S in V(T )+ and V(T )−. Then, for
any positive integer k, TMk{S} ⊆ LMk[V(S)] ∩ Li, for i = ±1.

Proof: We will prove the result by induction on k. Fix an infinite set X.

Indeed, the assertion is clear for k = 1 since TM1{S} = S = V(S) ∩ Li =
LM1[V(S)] ∩ Li, i = ±1. If we assume that the result is true for all positive integers
smaller than k (k ≥ 2), and a ∈ TMk{S}, then a is some evaluation on S of a
monomial ã ∈ TMk{X}. This means a = σ(ã), for some Jordan triple system
homomorphism σ : FT[X] −→ T extending a map X −→ S. Now, ã = {b̃, c̃, d̃},
where b̃, c̃, d̃ are monomials in TM{X} such that deg(b̃) + deg(c̃) + deg(d̃) = k, and
thus a = σ(ã) = σ({b̃, c̃, d̃}) = {σ(b̃), σ(c̃), σ(d̃)} = {b, c, d}, where b = σ(b̃), c =
σ(c̃), d = σ(d̃) are the evaluations through σ of b̃, c̃, d̃, respectively. By the induction
assumption, there exist Lie monomials b̂, ĉ, d̂ ∈ LM[X] with degrees deg(b̂) = deg(b̃),
deg(ĉ) = deg(c̃), deg(d̂) = deg(d̃), and evaluations b ∈ T = V + = L1, c ∈ T = V − =
L−1, d ∈ T = V + = L1, respectively. Being more precise, this means that there
are three Lie algebra homomorphisms τ1, τ2, τ3 : FL[X] −→ L, extending three maps
X −→ V(S) with b = τ1(b̂), c = τ2(ĉ), d = τ3(d̂). Using that X is infinite, we can
assume that b̂, ĉ, d̂ do not have common variables, which allows us to find a single Lie
algebra homomorphism τ : FL[X] −→ L, extending a map X −→ V(S), such that
τ(b̂) = b ∈ T = V + = L1, τ(ĉ) = c ∈ T = V − = L−1, τ(d̂) = d ∈ T = V + = L1. Now
a = {b, c, d} =(2.2)(ii) [[b, c], d] = [[τ(b̂), τ(ĉ)], τ(d̂)] = τ([[b̂, ĉ], d̂]) ∈ LMk[V(S)] ∩ L1.
Similarly, we can show that a ∈ LMk[V(S)] ∩ L−1.

2.4 Lemma. Let V be a Jordan pair, and a ∈ V + be an absolute zero divisor of
V . Then, for any d ∈ Der(V ), and any y, y′ ∈ V −,

(i) Da,yd+(a) = 0,

(ii) [δ(a, y), δ(a, y′)] = 0.

Proof: (i) Using that d is a derivation,

Da,yd+(a) = {a, y, d+(a)} = d+(Qay)−Qad−(y) = 0

since Qa = 0.

(ii) Also [δ(a, y), δ(a, y′)] = ([Da,y, Da,y′ ], [Dy,a, Dy′,a]) = 0 since, for any b, b′ ∈
V −, using [8, JP13] and [8, JP9], respectively,

Da,bDa,b′ = DQab,b′ + QaQb,b′ = 0, Db,aDb′,a = Qb,b′Qa + Db,Qab′ = 0.

We want to relate Jordan absolute zero divisors to Lie sandwiches. One direction
is easy.

2.5 Main Lemma. If V is a Jordan pair, and a ∈ V σ, σ ∈ {+,−}, is an
absolute zero divisor of V , then a is a sandwich of TKK(V ).



8 anquela, cortés, zelmanov

Proof: We will prove the result for a ∈ V + since the case σ = − follows by
passing to the opposite pair V op = (V −, V +) (see [8, 1.5]).

For any x, x′ ∈ V +, d, d′ ∈ InDer(V ), y, y′ ∈ V −, we can use (0.5)(1) to obtain

[
[x⊕ d⊕ y, a], a

]
=[d+(a)⊕−δ(a, y)⊕ 0, a]

=− δ(a, y)+(a) = −Da,ya = −{a, y, a} = −2Qay = 0
(1)

since Qa = 0, and

[[
[x⊕ d⊕ y, a], x′ ⊕ d′ ⊕ y′

]
, a

]

=
[[

[x⊕ d⊕ y, a], a
]
, x′ ⊕ d′ ⊕ y′

]
+

[
[x⊕ d⊕ y, a], [x′ ⊕ d′ ⊕ y′, a]

]

(since Ad(a) is a derivation in TKK(V ))

=
[
[x⊕ d⊕ y, a], [x′ ⊕ d′ ⊕ y′, a]

]
(as in (1))

=[d+(a)⊕−δ(a, y)⊕ 0, d′+(a)⊕−δ(a, y′)⊕ 0] (by (0.5)(1))

=
(−δ(a, y)+d′+(a) + δ(a, y′)+d+(a)

)⊕ [δ(a, y), δ(a, y′)]⊕ 0 (by (0.5)(1))

=
(−Da,yd′+(a) + Da,y′d

+(a)
)⊕ [δ(a, y), δ(a, y′)]⊕ 0 = 0

(2)

by (2.4). But (1) and (2) are exactly (0.9)(i)(ii) for a.

2.6 Theorem. Any Jordan pair or Jordan triple system generated by a finite
collection of absolute zero divisors is nilpotent.

Proof: First let T be a Jordan triple system generated by a finite set S ⊆ T
of absolute zero divisors of T . Fix an infinite set X.

We may assume without loss of generality that 0 ∈ S, so that always 0 ∈ TMn{S}
and 0 ∈ TMn[S].

We will show, by induction on k, that,

(1) for any positive integer k, TMk{S} = TMk[S], and any element in TMk[S]
is an absolute zero divisor of T .

Indeed, the assertion is obvious for k = 1 since TM1{S} = TM1[S] = S.

Assume that (1) is true for all positive integers smaller than k (k ≥ 2). We will
show that TMk{S} ⊇ TMk[S], which obviously yields the desired equality TMk{S} =
TMk[S]. If a ∈ TMk[S], then a is some evaluation on S of a monomial ã ∈ TMk[X],
i.e., a = σ(ã), for some Jordan triple system homomorphism σ : FT[X] −→ T
extending a map X −→ S. Now, either (i) ã = Pb̃c̃, or (ii) ã = {b̃, c̃, d̃}, where b̃, c̃, d̃
are monomials in TM[X] of degree smaller than k, so by the induction assumption
b := σ(b̃), c := σ(c̃), d := σ(d̃) are absolute zero divisors of T . In (i), a = σ(ã) =
σ(Pb̃c̃) = Pσ(b̃)σ(c̃) = Pbc = 0 (which is certainly an absolute zero divisor of T !),
and a = 0 ∈ TMk{S}. In (ii), a = σ(ã) = σ({b̃, c̃, d̃}) = {σ(b̃), σ(c̃), σ(d̃)} = {b, c, d}



local nilpotency of the mccrimmon radical 9

which is an absolute zero divisor of T by (0.7). Moreover, again by the induction
assumption, we can find Jordan monomials b̂, ĉ, d̂ ∈ TM{X} of the same degrees as
b̃, c̃, d̃, respectively, having b, c, d as certain evaluations on S. More precisely, there
exist three Jordan triple system homomorphisms τ1, τ2, τ3 : FT[X] −→ T extending
three maps X −→ S, such that b = τ1(b̂), c = τ2(ĉ), d = τ3(d̂). Using that X is
infinite, we can assume that b̂, ĉ, d̂ do not have common variables, which allows us
to find a single Jordan triple system homomorphism τ : FJT [X] −→ T extending
a map X −→ S such that b = τ(b̂), c = τ(ĉ), d = τ(d̂). Now a = {b, c, d} =
{τ(â), τ(b̂), τ(ĉ)} = τ({â, b̂, ĉ}) ∈ TMk{S}.

Let V = V(T ). It is clear that V is generated as a Jordan pair by the finite set
V(S) consisting of the copies of the elements of S in both V + = T and V − = T . Let
L = TKK(V ). We claim that

(2) L is generated by V(S) as a Lie algebra.

Indeed, by its definition (0.5), L is generated by V + ∪ V −, but

V + = V − = T =(1.7)(iii) FT[S] = Φ(∪k∈N TMk[S]) =(1) Φ(∪k∈N TMk{S})
⊆(2.3) Φ(∪k∈N LMk[V(S)]) = FL[V(S)],

which is the subalgebra of L generated by V(S) (1.2)(iii).

Notice that all the elements in V(S) are absolute zero divisors of V , hence
sandwiches in L := TKK(V ) by (2.5). Thus, L is nilpotent by (2.1) and (2), hence
there exists a positive integer n such that FLn[V(S)] = 0 (1.2)(iv), i.e.,

(3) LMk[V(S)] = 0, for all k ≥ n.

By (3) and (2.3), TMk{S} = 0 for all k ≥ n, hence TMk[S] = 0 for all k ≥ n
using (1), i.e., FTn[S] = 0, and T is nilpotent (1.7)(iv).

Now let V be a Jordan pair generated by a finite collection of absolute zero
divisors. The nilpotency of V follows from the nilpotency of T(V ), which is also
generated by a finite collection of absolute zero divisors.

2.7 Notice that, in general, if S is a set of generators for a Jordan triple system
T , then V(S) need not generate L = TKK(V(T )). Take, for example, Φ = Z and
T0 = FA[X](+), for X = {x}, and T be the subtriple of T0 generated by S = X,
so that T is freely spanned over Z by {x, x3, x5, . . .}. However, it can be shown
that the subalgebra M of L generated by V(S) satisfies M ∩ L1 = M ∩ L−1 ⊆
Z(x, 2x3, 2x5, . . .), hence M 6= L.

The validity of (2) in the proof above is due to the fact that the elements of S
are absolute zero divisors, so that (1) is also true.

2.8 Corollary. A Jordan algebra generated by a finite collection of absolute
zero divisors is nilpotent.
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Proof: If J is a Jordan algebra generated by the collection A = {a1, . . . , an}
of absolute zero divisors, then the underlying triple system of J is generated (as a
triple system) by the finite set Ã = A ∪ {a2, a ◦ b | a, b ∈ A} [1, 1.4], which also
consists of absolute zero divisors of the algebra and the triple system J by (0.7).
Thus, J is nilpotent as a triple system (2.6), i.e., there is a positive integer N such
that FTN [J ] = 0. In particular, FTN [Ã] = 0, which implies FJ2N [A] = 0 by [1, 1.9].
Since J is generated by A as a Jordan algebra, this implies that J is nilpotent as a
Jordan algebra by (1.7)(iv).

We can rephrase the above results (2.6) and (2.8) as follows.

2.9 Corollary. A Jordan system (algebra, triple system or pair) generated by
a set of absolute zero divisors is locally nilpotent.

2.10 We recall that local nilpotency in Jordan systems is a radical property (cf.
[12, 0.1]) and, in particular, is a transitive property in the sense that

(i) If I is an ideal of a Jordan system J and both I and J/I are locally nilpotent,
then J is locally nilpotent too.

This assertion follows from the following facts:

(ii) Every finitely generated solvable Jordan system is nilpotent.

(iii) If a Jordan system is finitely generated, then its derived ideals are also
finitely generated systems.

In [21, Chapter 4], (ii), (iii), and consequently (i) are proved for linear Jordan alge-
bras. For general (quadratic) Jordan algebras, (ii) is given in [11, Albert-Zhevlakov
Theorem], and (iii) in [11, Proposition 9]. For Jordan pairs, (ii) and (iii) are estab-
lished in [16, Theorems 2 and 3], and from them one can easily derive the correspond-
ing results for Jordan triple systems.

2.11 Corollary. For any Jordan system J , the McCrimmon radical Mc(J)
is locally nilpotent.

Proof: Taking into account (0.8), we just need to prove that Mα(J) is locally
nilpotent for any ordinal α, which we will do by transfinite induction (on α):

(1) M1(J) is locally nilpotent by (2.9).

(2) Let us assume that Mα(J) is locally nilpotent for any ordinal α < β, β > 1.

(a) If β is a limit ordinal, then Mβ(J) = ∪α<βMα(J), and any finite set S
of elements of Mβ(J) is contained in Mα(J) for some α < β, hence the
subsystem generated by S is nilpotent by local nilpotency of Mα(J).

(b) If β is not a limit ordinal, then Mβ(J)/Mβ−1(J) = M1(J/Mβ−1(J)) is
locally nilpotent by (1), and Mβ−1(J) is locally nilpotent since β − 1 < β.
Hence Mβ(J) is locally nilpotent too by (2.10)(i).

2.12 Corollary. Simple Jordan systems are always nondegenerate.
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Proof: Let J be a simple Jordan system. If J is degenerate, then Mc(J) 6= 0,
hence J = Mc(J) by simplicity, which implies that J is locally nilpotent by (2.11).
But then, we can apply [1, 2.3; 11, Cor. on page 476] to obtain J = 0, which is a
contradiction.

2.13 Remark: Some authors consider a stronger definition of an absolute zero
divisor z of a Jordan algebra J . They require z2 = 0 besides UzJ = 0. Obviously,
those “strong” absolute zero divisors are absolute zero divisors in our sense (0.6),
so that (2.8) and (2.9) remain valid. Using (0.7), it is immediate to check that
the absence of nonzero “strong” absolute zero divisors is equivalent to the absence of
nonzero absolute zero divisors (0.6), so that there is only one notion of nondegeneracy
for Jordan algebras, hence only one McCrimmon radical.

Acknowledgements: The authors want to thank the referee for his or her
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