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Abstract. Let L be an infinite-dimensional simple Lie algebra over a field of characteristic
0. Then there exist a derivation d on L and n ≥ 2 such that dn is a nonzero finite rank
map if and only if L is finitary and contains a nonzero finite-dimensional abelian inner ideal.
This is a partial statement of our main theorem. As auxiliary results needed for the proof we
establish some properties of derivations in general nonassociative algebras.

1. Introduction

This paper connects two topics that have been studied over the last decade. The first topic
concerns finitary Lie algebras (see, e.g., [1]) and Lie algebras with minimal inner ideals, a notion
introduced by G. Benkart in [4] (see, e.g., [5, 8]). The second topic concerns derivations of
algebras such that some of their powers are nonzero finite rank operators (see, e.g., [6, 7]). To
the best of our knowledge, so far such derivations were treated only in associative algebras. In
this paper we shall examine them in nonassociative algebras, particularly in Lie algebras. The
results that we obtain do not give such a detailed information as one can get in the associative
case where various powerful tools are available; nevertheless, they do give a precise description
of the structure of a Lie algebra in question.

Let us be more specific. We will confine ourselves to the consideration of an infinite-
dimensional simple Lie algebra L over a field with characteristic 0. We will show that nonzero
finite rank derivations on L do not exist (Theorem 3.1). In our main result we consider the
situation where d is a derivation of L such that for some n ≥ 2, dn is a nonzero finite rank
operator. It turns out that this occurs exactly when L belongs to a certain class of finitary
Lie algebras (Theorem 3.2). The proof combines the recently developed structure theory of
finitary Lie algebras and Lie algebras with minimal inner ideals with the results on derivations
in general nonassociative algebras, obtained in Section 2. The basic result from that section
is hidden in the arguments from the recent paper by E. Garćıa and M. Gómez Lozano [9].

2. Results on general nonassociative algebras

Let A be a nonassociative algebra. By End(A) we denote the algebra of all linear maps
from A into itself. For every a ∈ A we define La, Ra ∈ End(A) by La(x) = ax, Ra(x) = xa.
One can define a derivation of A as a map d ∈ End(A) satisfying Ld(a) = [d, La] for every
a ∈ A. Equivalently, Rd(a) = [d,Ra] for every a ∈ A. Consequently, Ldm(a) = [d, Ldm−1(a)] and

Key words and phrases. Derivation, finite rank, nonassociative algebra, simple Lie algebra, finitary Lie
algebra, inner ideal.

1Supported by the Slovenian Research Agency (Program No. P1-0288).
2Supported by the MEC and Fondos FEDER, MTM2007-61978.

1
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Rdm(a) = [d,Rdm−1(a)] for all a ∈ A and m ≥ 1. A simple induction argument shows that this
implies

(1) Ldm(a) =
m∑

i=0

(−1)i

(
m

i

)
dm−iLad

i, Rdm(a) =
m∑

i=0

(−1)i

(
m

i

)
dm−iRad

i.

Lemma 2.1. Let A be a nonassociative algebra such that cA is an infinite-dimensional space
for every nonzero c ∈ A. If d is a derivation of A such that dn has finite rank for some n ≥ 1,
then d2n−1 = 0.

Proof. From (1) we see that for every a ∈ A, Ld2n−1(a) lies in the ideal of End(A) generated by
dn. Accordingly, Ld2n−1(a) has finite rank, i.e., d2n−1(a)A is a finite-dimensional space. But
then d2n−1(a) = 0 in view of our assumption. ¤

The next result is deeper.

Theorem 2.2. Let A be a nonassociative algebra over a field F with char(F) = 0. If a
derivation d of A is such that dn = 0 for some n ≥ 2, then D = dn−1(A) satisfies D2 = 0 and
(DA)D ⊆ D.

An apparently very special case of Theorem 2.2, where A is a Lie algebra and d is an
inner derivation, was proved recently by Garćıa and Gómez Lozano [9, Theorem 2.3]. Their
main intention was to generalize the well-known Kostrikin’s lemma [10, p.31] which concerns
nilpotent inner derivations on Lie algebras. However, a careful inspection of the proof shows
that their arguments can be easily adapted to prove a considerably more general Theorem 2.2.
Therefore we shall not give a detailed proof here; let us, however, just point out what are the
necessary changes that one has to make.

The first assertion that D2 = 0 is trivial - it follows immediately from dn(adn−2(b)) = 0 by
using Leibniz formula (together with the assumption that char(F) = 0). Proving (DA)D ⊆ D
is much more difficult. To demystify this a little bit, let us state explicit formulas for n = 2
and n = 3 confirming this inclusion:

d2 = 0 =⇒ (d(a)b)d(c) = d((d(a)b)c),

d3 = 0 =⇒ (d2(a)b)d2(c) = d2
(
(d(a)b)d(c)− (d(a)d(b))c

)
.

Checking the first formula is rather easy, while checking the second one is already not entirely
straightforward as one must also use some other relations derived from d3 = 0. It does not
seem completely obvious how to proceed to larger integers n. However, an adaptation of the
arguments from [9] works. First we notice that (1) implies that

n−1∑

i=1

(−1)i

(
n

i

)
dn−iRad

i = 0,

n−1∑

i=1

(−1)i

(
n

i

)
dn−iLbd

i = 0

for all a, b ∈ A. A glance at the proof of [9, Lemma 2.2] then shows that this lemma holds for
d and Ra (resp. Lb) playing the role of X and A (here we have referred to the notation in [9]).
Next, following the strategy in [9] we note that (DA)D ⊆ D will be established by proving
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that for each pair a, b ∈ A there exists ξ ∈ End(A) such that Rdn−1(a)Ldn−1(b) = dn−1ξ. By
(1) we have

(−1)n−1Rdn−1(a)Ldn−1(b) =
(n−1∑

i=0

(−1)i

(
n− 1

i

)
dn−1−iRad

i
)(n−1∑

i=0

(−1)i

(
n− 1

i

)
diLbd

n−1−i
)
.

This is very similar to the beginning of the proof of [9, Theorem 2.3]. The only difference is
that in that proof Ra and Lb are the same operator (which is denoted by A, while X is used
instead of d). Fortunately, this does not effect the proof. One just has to follow literally all
steps from [9] to arrive at the desired conclusion Rdn−1(a)Ldn−1(b) = dn−1ξ.

Let us also mention that Theorem 2.2 also holds if char(F) is big enough (depending on n),
not only if it is 0. See [9].

Corollary 2.3. Let A be a nonassociative algebra over a field F with char(F) = 0. Suppose
that cA is an infinite-dimensional space for every nonzero c ∈ A. If there exist a derivation
d of A and an integer n ≥ 2 such that dn is nonzero and has finite rank, then there exists a
nonzero finite-dimensional subspace D of A such that D2 = 0 and (DA)D ⊆ D.

Proof. Lemma 2.1 shows that d2n−1 = 0. Let k be such that dk+1 = 0 and dk 6= 0. Our
assumptions imply that k ≥ n and dk has finite rank. Theorem 2.2 therefore tells us that
D = dk(A) has the desired properties. ¤

3. Results on Lie algebras

We shall deal with Lie algebras over a field F with char(F) = 0. We recall that a Lie algebra
L is said to be nondegenerate if it has no nonzero zero divisors, i.e., if [x, [x, L]] = 0 implies
x = 0 for any x ∈ L. By [10, Theorem 4.2], the ideal generated by the absolute zero divisors of
a Lie algebra over F is locally nilpotent. Since a simple Lie algebra cannot be locally nilpotent,
simple Lie algebras over F are nondegenerate.

An inner ideal of a Lie algebra L is a subspace B of L such that [B, [B,L]] ⊂ B. An inner
ideal B such that [B, B] = 0 is called an abelian inner ideal. By [4, Theorem 1.12], if B is
an abelian minimal inner ideal of a Lie algebra L over F, then B = [b, [b, L]] for any nonzero
element b ∈ B.

A Lie algebra is said to be finitary (over F) if it is a subalgebra of the Lie algebra fgl(X)
consisting of all finite rank operators on a vector space X over F [1].

Theorem 3.1. Let L be a simple Lie algebra over a field F with char(F) = 0. If there exists
a nonzero derivation d on L with finite rank, then L is finite dimensional.

Proof. Since d 6= 0, add(a) = [d, ada] is a nonzero inner derivation of finite rank for some a ∈ L.
Noticing that the set of all c ∈ L such that adc has finite rank is an ideal of L, it follows, by
simplicity of L, that every inner derivation of L has finite rank. Identifying L with adL we
may therefore assume that L is finitary. Suppose L was not finite dimensional. Then by [1,
Theorem 1.1] (rephrased in ring-theoretic terms) we would have that either (a) L = [A,A],
where A is an infinite dimensional simple associative algebra containing an idempotent e
such that eAe is a finite dimensional division algebra, that is, A has nonzero socle and can
be realized as an algebra of finite rank operators on a left vector space X over the division
algebra ∆ = eAe [2, Theorems 4.3.8 and 4.3.9], or (b) L = [K,K] for K = Skew(A, ∗), where
A is as in (a) and ∗ is an involution.
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Suppose first that L = [A,A] as in (a). Then X is infinite dimensional over ∆, equivalently,
A is not Artinian and therefore it contains an infinite sequence {en} of nonzero pairwise
orthogonal idempotents. Then, for n 6= m, enAem = [enAem, em] ⊂ [A,A]. Take a nonzero
element a12 ∈ e1Ae2. Then, for each n ≥ 3, [a12, e2Aen] = a12Aen 6= 0. Moreover, since the
subspaces e1Aen form a direct sum, the inner derivation determined by a12 has infinite rank,
a contradiction.

Suppose then that L = [K,K] as in (b). As in the previous case, A is not Artinian. Then
A contains an infinite sequence {en} of symmetric pairwise orthogonal nonzero idempotents
(of rank one when the involution is of transpose type, and of rank two when it is of symplectic
type [2, Proposition 4.6.2]). We claim that for any anm ∈ enAem, with n 6= m, anm − a∗nm ∈
[K, K]. Indeed, let r be a natural number different from n and m. By simplicity of A, we
have (enAer)(erAem) = en(AerA)em = enAem. Thus we can write anm =

∑k
i=1 xiyi, with

xi ∈ enAer, yi ∈ erAem. Hence

anm − a∗nm =
∑

(xiyi − y∗i x
∗
i ) =

∑
[xi − x∗i , yi − y∗i ] ∈ [K,K].

Now take a nonzero element a12 ∈ e1Ae2. For any n ≥ 3, take b2n ∈ e2Aen such that a12b2n is
nonzero. We have [a12 − a∗12, b2n − b∗2n] = a12b2n − b∗2na∗12 ∈ e1Aen ⊕ enAe1, which proves that
the inner derivation determined by a12 − a∗12 has infinite rank, again a contradiction. Hence
L is finite-dimensional, as claimed. ¤

It would be interesting to find a different proof of Theorem 3.1, avoiding Baranov’s classi-
fication [1]. Then one might hope to prove this result for more general classes of Lie algebras.
Of course, some restrictions on a Lie algebra in question are necessary. After all, just take an
infinite-dimensional abelian Lie algebra. A somewhat more sophisticated example, indicating
the delicacy of the problem, can be given as follows. Let M be a finite-dimensional simple
Lie algebra, and let L = M ⊕ M ⊕ M ⊕ . . . be a direct sum of countably many copies of
M . Note that ada is nonzero and has finite rank for every nonzero a ∈ L. However, L is
infinite-dimensional.

Theorem 3.2. Let L be an infinite-dimensional simple Lie algebra over a field F with char(F) =
0. Then the following conditions are equivalent:

(i) There exists a derivation d on L such that d2 is nonzero and has finite rank.
(ii) There exist a derivation d on L and n ≥ 2 such that dn is nonzero and has finite rank.
(iii) L contains a nonzero finite dimensional abelian inner ideal.
(iv) L is finitary and there exists a nonzero linear operator a ∈ L ⊂ F(X) such that a2 = 0.
Moreover, if F is algebraically closed, then the existence of a nonzero square zero operator

in (iv) is automatic.

Proof. (i) ⇒ (ii). Trivial.
(ii) ⇒ (iii). Theorem 3.1 implies that adc(A) = [c, A] is an infinite-dimensional space

for every nonzero c ∈ L. Corollary 2.3 therefore tells us that there exists a nonzero finite-
dimensional subspace D of A such that [D, D] = 0 and [[D,A], D] ⊆ D. That is, D is a
nonzero finite dimensional abelian inner ideal.

(iii) ⇒ (iv). Since L is simple, nondegenerate and contains a finite dimensional abelian
minimal inner ideal, we have by [8, Theorem 5.1] that either (a) L is a finite dimensional
simple Lie algebra over its centroid Γ, (b) L = [A,A]/Z(A) ∩ [A,A], where A is a simple
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associative algebra containing an idempotent e such that eAe is a finite dimensional division
algebra [8, Proposition 4.7(i)] and A is not a division algebra [3, Corollary 3,15], or (c) L =
[K, K]/Z(A) ∩ [K, K] for K = Skew(A, ∗), where A is as in (b), ∗ is an isotropic involution
(a∗a = 0 for some nonzero a ∈ A), and either Z(A) = 0 or the dimension of A over Z(A) is
greater than 16 [8, Proposition 4.14].

Let B be a (finite dimensional) abelian minimal inner ideal of L and fix a nonzero element
b in B. Then b = [b, [b, a]] for some a ∈ L and the mapping α 7→ αb = α[b, [b, a]] = [b, [b, αa]]
defines a linear isomorphism of Γ into B, so Γ is finite dimensional over the base field, and
hence the case (a) cannot occur. If L is as in (b), then A is simple with nonzero socle, so it can
be regarded as an algebra of finite rank operators on a left vector space X over the division
algebra ∆ = eAe [2, Theorem 4.3.7]. Since ∆ is finite dimensional, X is infinite dimensional
over ∆ and A is not Artinian, so Z(A) = 0 and L = [A,A] is a finitary special linear algebra
[1, Proposition 6.1], which clearly contains a nonzero operator a with a2 = 0. Suppose then
that L is as in (c). As above, Z(A) = 0, so L = [K,K]. Now it follows from the structure
theorem for simple associative rings with involution and nonzero socle [2, Theorem 4.6.8],
and the fact that the division algebra ∆ is finite dimensional, that L is finitary. Using the
determination of the inner ideals of L = [K,K] given in [5, Theorem 6.6], we observe that
the only possibility for the nonexistence of a nontrivial abelian inner ideal of finite dimension
is that L is the finitary orthogonal algebra defined by an infinite-dimensional vector space
X with a nondegenerate symmetric bilinear form not containing a totally isotropic subspace
of dimension at least 2. But the existence of a 2-dimensional totally isotropic subspace is
equivalent to the existence of a skew operator a of rank 2 such that a2 = 0. Notice finally
that if the base field is algebraically closed, then X contains totally isotropic subspaces of any
finite dimension, so the existence of a zero square operator in (i) is automatic in this case.

(iv) ⇒ (i). Take d = ada. Then d2(b) = −2aba for all b ∈ L. Therefore d2 is nonzero and
has finite rank. ¤

If d is an inner derivation, then (ii)=⇒(iv) of Theorem 3.2 slightly reminiscences of Mar-
tindale’s result [2, Lemma 6.1.2 (ii)] which is of fundamental importance in the theory of
generalized polynomial identities of prime rings. One of our intentions when working on this
note was to give some indications that the theory of generalized polynomial identities of Lie
algebras is plausible.
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[7] M. Brešar, D. Eremita, and T.-L. Wong, On commutators and derivations in rings, J. Algebra 278 (2004),

704-724.
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